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4 Global dynamics

4.1 Stable and unstable manifolds

The behaviour of orbits close to nodes and focus points
(ie with eigenvalues all stable or all unstable) is straight-
forward. However for saddle points we want more precise
understanding than provided by the Hartman-Grobman
theorem. The following applies to either invertible maps
or flows:

Definition 4.1. The stable manifold of a point x is

W s(x) = {y : |Φt(y)− Φt(x)| → 0, t→∞}

while its unstable manifold is

Wu(x) = {y : |Φ−t(y)− Φ−t(x)| → 0, t→∞}

For linear maps these are linear subspaces Es and Eu

of dimension given by the number of stable and unsta-
ble eigenvalues respectively, and the rate of convergence
is exponential. The linear spaces are spanned by the rele-
vant eigenvectors and (in the degenerate case) generalised
eigenvectors. Given a neighbourhood U of a fixed point,
we define local stable and unstable manifolds as

Definition 4.2. The local stable manifold of a fixed point
x is

W s
loc(x) = {y : |Φt(y)− Φt(x)| → 0, t→∞;

Φt(y) ∈ U, t ≥ 0}

while its local unstable manifold is

Wu
loc(x) = {y : |Φ−t(y)− Φ−t(x)| → 0, t→∞;

Φ−t(y) ∈ U, t ≥ 0}

We have

Theorem 4.3. (stable manifold theorem) Each hyper-
bolic fixed point x has a neighbourhood in which W s

loc(x)
is a manifold of the same dimension as, and tangent to,
Es(DΦ|x).

Reversing time, we obtain the same result for unstable
manifolds. For non-hyperbolic fixed points, there is also
a centre manifold tangent to the corresponding linear
subspace. It is however in general less smooth than the
dynamics, and may not be unique. However the Taylor
expansion is unique - centre manifolds may only differ by
an amount smaller than any power of distance (eg expo-
nential). The centre manifold is important as it controls
bifurcations and its Taylor series expansion is used to de-
rive normal forms for these.

A manifold is a set which has locally the same topolog-
ical and differential structure as Euclidean space. We can
apply the dynamics to obtain global manifolds from the
local ones, however the theorem does not guarantee these
sets to be smooth or continued indefinitely (and hence
they may not be manifolds in the usual sense). The global
manifolds may also be dense in X.

Example 4.4. The map Φ(x, y) = (x/2, 2y−15x3/8) has
a fixed point at (x, y) = (0, 0). Its linearisation is

DΦ =
(

1/2 0
0 2

)
thus it is a saddle point. We have Wu(0, 0) is the y-axis,
and W s(0, 0) is the curve y = x3, which is tangent to the
x-axis, which is the stable space.

Note that while the definitions of manifolds apply
equally to invertible maps and flows, in the map case a sin-
gle orbit gives only a discrete set of points on the manifold,
while for a flow it traces out a one dimensional manifold.
This is similar to the invariant curves we saw in the case
of linear dynamics. Numerically, a one-dimensional un-
stable or stable manifold can be estimated by (forward or
backward) numerical integration of points near the fixed
point, but higher-dimensional manifolds often need more
specialised methods1

The definitions for stable and unstable manifolds can be
applied to more general sets than fixed points and periodic
orbits. The linearised map gives an x-dependent linear
map DΦ|x on perturbation vectors. A hyperbolic set
Λ ⊂ X is a set for which each point x ∈ Λ has stable and
unstable spaces of perturbations2 Es/u(x) which span the
full space of perturbations, and for which perturbations in
these spaces decay exponentially (in positive or negative
time, respectively).3 An Anosov map is one for which
the whole space X is a hyperbolic set, and a an Anosov
flow is one for which there is also a one-dimensional centre
space corresponding to the flow direction.4

4.2 Homoclinic and heteroclinic orbits
and bifurcations

A homoclinic orbit is one contained in both the sta-
ble and unstable manifolds of a single fixed point, thus

1See B. Krauskopf, H. M. Osinga, E. J. Doedel, M. E. Henderson,
J. Guckenheimer, A. Vladimirsky, M. Dellnitz and O. Junge, Intern.
J. Bifur. Chaos, 15, 763-791 (2005).

2Technically, sub-bundles of the tangent bundle.
3From this definition it follows that the spaces depend con-

tinuously on x and are invariant under the dynamics, that is,
(DΦ)xEs

x = Es
Φ(x)

and the same with s replaced by u. For more

details, see the scholarpedia article on hyperbolic dynamics.
4Anosov systems are rare in physics; the first mechanical example

was probably the triple linkage: T. J. Hunt and R. S. MacKay,
Nonlinearity 16 1499-1510 (2003); M. Kourganoff, Commun. Math.
Phys. 344 831-856 (2016).
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it approaches the fixed point for both limits t → ±∞. A
homoclinic point is a point on such an orbit. Similarly a
heteroclinic orbit is one that approaches different fixed
points for t → ±∞, a heteroclinic point is a point on
such an orbit, and a heteroclinic cycle is a sequence
of homoclinic and/or heteroclinic orbits returning to the
first fixed point. The consequences of these orbits differ
substantially between maps and flows. We have

Theorem 4.5. (Poincaré-Bendixson tricotomy) For
flows in R2: Suppose a forward orbit {Φt(x), t > 0} is
contained in a compact set containing a finite number of
fixed points. Then its ω-limit set is either

• A fixed point

• A periodic orbit

• A finite or countable heteroclinic cycle

Here, the ω-limit set is the set of accumulation points
of the forward orbit; the time reverse is called the α-limit
set. Thus flows on the plane cannot be chaotic. The
countable case is pathological — very mild conditions are
needed to ensure a fixed point has only finitely many ho-
moclinic orbits. Notice that a heteroclinic cycle is not an
orbit of the system, however it can be the limit of a orbit
that approaches it from the outside or inside. Such an
orbit spends increasingly long near the fixed points, and
so will have average behaviour - if the relevant limits exist
- that is related to these fixed points.

On higher genus surfaces, such as the torus, more com-
plicated behaviour can occur, for example an irrational
translation ((ẋ, ẏ) = (α, β) with α and β incommensu-
rate) leads to a dense future orbit, so the ω-limit set is
the entire torus.5 On the other hand, for a map a sin-
gle homoclinic point with transverse stable and unstable
manifolds is sufficient to generate a chaotic “homoclinic
tangle”; see Fig. 1.

Many homoclinic and heteroclinic orbits are not struc-
turally stable - a small perturbation will cause the orbit
to miss its intended fixed point, or cause the stable and
unstable manifolds of a homoclinic point to become trans-
verse: These lead to various kinds of global bifurcations,
ie changes to the structure of orbits over a wide region as
a result of a parameter change.

Example 4.6. The Duffing oscillator is given by

ẍ+ bẋ+ (x3 − x) = 0

It has fixed points at x = −1, 0, 1. The fixed point at x = 0
is a saddle. The fixed points at x = ±1 are stable foci for
b > 0 and unstable foci for b < 0. At b = 0 the fixed point

5Dynamics of translations on flat surfaces of higher genus (ie with
singular points) is a popular research field, related to that of billiards
in polygons with angles that are rational multiples of π.

Figure 1: Stable and unstable manifolds for the map
Φ(x, y) = (3(x+ (x− y)2), (y + (x− y)2)/3) with inverse
Φ−1(x, y) = (x/3−(3y−x/3)2, 3y−(3y−x/3)2), showing
a homoclinic tangle.

at x = 0 has a pair of homoclinic orbits encircling each of
the other fixed points, which become heteroclinic orbits for
b 6= 0. The structure of the orbits is topologically distinct
for b > 0 and b < 0.

Instead of a focus, the trapped part of the manifold
could also approach a periodic orbit or heteroclinic cycle.
Thus a homoclinic bifurcation may also arise as a collision
of a periodic orbit and a saddle point. For maps and for
d ≥ 3 flows a wider variety of possibilities occurs.

Example 4.7. The driven pendulum (ẋ, v̇) =
(v,−ω2 sinx + A sin Ωt) exhibits qualitatively differ-
ent behaviour for zero and non-zero driving coefficient
A. For A = 0 there is a homoclinic connection from
x = π to the equivalent version x = −π. For non-zero
A we can consider the stroboscopic t = 2πΩ−1 map,
which is now an autonomous two dimensional map.
Typical perturbations of the homoclinic connection leads
to transverse manifolds and chaos in the vicinity of this
orbit for arbitrarily small A.

Remark: The existence of connections in unperturbed
versions of both Duffing and pendulum models is because
they are Hamiltonian and so have a conserved energy. The
level curves of energy are invariant under the dynamics,
so that homoclinic orbits are typical.
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4.3 Attractors and crises

A final category of global bifurcations is where the change
is related to larger attractors than stable fixed points or
limit cycles (recall the Lorenz attactor, Fig. 1); these are
called crises. There are varying definitions of attractor in
the literature6

Definition 4.8. Attracting set: A compact invariant set
A ⊂ X that has a neighbourhood U such that A =
∩∞t=0Φt(U)

If Φt(U) ⊂ U for all t > 0 for a compact set U then the
above intersection will always lead to an attracting set.
Attracting sets are robust: A map Φ̃ which is uniformly
close to Φ has an attracting set Ã ⊂ U which is close to
A, similarly obtained by taking the intersection of forward
images of U .

Definition 4.9. Attractor: An attracting set containing
a dense orbit.

This means an attractor does not contain other attrac-
tors. Attractors may be (marginally) stable fixed points
or limit cycles. They can also be more complicated chaotic
and fractal objects such as the Lorenz attractor, and then
are often called strange attractors. They are chaotic
in that there is still sensitive dependence on initial condi-
tions: Any periodic orbits within the attractor will have
both stable and unstable directions. The basin of at-
traction B(A) is the set of points whose ω-limit set is
contained in A. The basin boundary is its boundary
∂B(A).

Similarly

Definition 4.10. Repelling set: A compact invariant
set R ⊂ X that has a neighbourhood U such that R =
∩∞t=0Φ−t(U).

Definition 4.11. Repeller: A repelling set containing a
dense orbit.

Note that a repeller for non-invertible map may contain
other repellers, for example a chaotic repeller may contain
repelling periodic orbits. On the other hand for reversible
dynamics the involution maps attractors to repellers and
vice versa.

A rough classification of crises is given by

Boundary crisis An attractor touches its basin bound-
ary; beyond this crises orbits will eventually leave the
attractor.

Interior crisis An attractor touches an unstable peri-
odic orbit within its basin of attraction, and expands
in size.

6See the scholarpedia entry on Attractor

Attractor merging crisis Two or more attractors
touch an unstable periodic orbit on their mutual
basin boundary.

The logistic map has examples of the first two of these.
The set displayed on the bifurcation diagram for 0 < r < 4
is the attractor, whether a stable fixed point or periodic
orbit or chaotic set. For 1 < r < 4 the set U may be taken
to be an interval of the form [1− ε, 1 + ε]. At the Feigen-
baum transition point, the set is uncountable.7 Beyond
this point, if the attractor is a chaotic set it contains a zero
measure set of unstable periodic orbits (there are other or-
bits, eg x = 0 that are not contained in it, however). The
set of periodic orbits is countable, but the closure of the
set includes uncountably many aperiodic orbits, some of
them dense in the set (we will see this in the following
sections). We see that for a map, an attractor need not
be connected. For a flow, it is, since it must be invariant
under the dynamics.

Boundary crisis At r = 4 the attractor fills the whole
interval [0, 1] and hence touches its basin boundary. Be-
yond this, orbits will remain in the interval only if they
avoid the interval mapping above one, ie

1
2

(
1−

√
r − 4
r

)
< x <

1
2

(
1 +

√
r − 4
r

)

Preimages of this “hole” cover the interval densely, how-
ever none of the (now unstable) periodic orbits have been
destroyed, so there is a zero measure set of orbits that
never escape. The set, now a repeller, is uncountable and
comprises the closure of these orbits. It contains contains
other repellers, for example the individual unstable peri-
odic orbits. This repeller, and many others, is an example
of a hyperbolic set.

Interior crisis Similarly, the period 3 “window” ends
at r ≈ 3.8568 with an interior crisis - the 3-fold attractor
touches the unstable period 3 orbit that was created with
the fold bifurcation at r = 1 +

√
8 ≈ 3.8284 and expands

to fill the entire region. The unstable period 3 orbit is
in fact the edge of a repeller comprised of the closure of
the remaining infinitely many unstable periodic orbits, so
this crisis may also be viewed as a collision between an
attractor and a repeller.

Attractor merging crisis The attractor merging crisis
is also called a symmetry breaking crisis as normally
the two attractors are symmetrically related. For exam-
ple, the antisymmetric logistic map Φ(x) = rx(1− |x|) on
behaves like two separate copies of the logistic map for

7Feigenbaum attractor is a fractal with Hausdorff dimension ap-
proximately 0.538. Hausdorff dimension is discussed in chapter 6.
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r ≤ 4, with opposite signs. These merge at r = 4, lead-
ing to a single attractor located in |x| < (r + 1)/r up to
r = 2 +

√
8 ≈ 4.8284, at which point the orbits of the

critical points x = ±1/2 start to leave the system.8

8A more subtle example is given by the Lorentz gas in C. P.
Dettmann and G. P. Morriss, Phys. Rev. E 54 4782-4790 (1996).
Here the attractor and its time reverse (repeller) both collide with
a periodic orbit and merge.
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