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5 Symbolic dynamics

5.1 The binary shift

The special case r = 4 of the logistic map, or the equiv-
alent 1−2x2 on [−1, 1] is sometimes called the Ulam map.
We note the similarity with the second Tchebyscheff1 poly-
nomial T2(x) = 2x2 − 1. In general Tchebyscheff polyno-
mials are defined by the (rather un-polynomial looking)
Tn(x) = cosn arccos(x), that is, it gives the formula for
cosnx as a polynomial in cosx. This suggests a trigono-
metric conjugation; for the logistic version we see that if

xn+1 = 4xn(1− xn)

is transformed according to xn = sin2(πyn/2), we find

xn+1 = 4 sin2 πyn
2

(1− sin2 πyn
2

) = sin2(πyn)

Thus
yn+1 = ±2yn (mod 1)

If we take the usual arcsin of a positive number, so in the
range [0, π/2] we find from this

yn+1 = rmin(yn, 1− yn) =
r

2
(1− |2y − 1|)

which is called the tent map, for r = 2.2 We will keep
r = 2 for the tent map for the rest of this section. An even
simpler related map is the doubling map (also called
Bernoulli map)

yn+1 = {2yn}

where {} denotes the fractional part.
Consider the binary representation of the point y ∈

[0, 1),3

y =
∞∑
j=0

ωj2−(j+1)

where the symbols ωj ∈ {0, 1}. The doubling map just
ignores ω0 and shifts all the other ωj by one. The tent map
does the same, but if ω0 = 1 all symbols are flipped as well
as shifted. In each case the sequence of ω0 values, which
denotes the “rough location” of the point with respect

1There are other spellings; the initial ‘T’ makes sense in terms of
the usual notation Tn(x)

2The tent map is also topologically conjugate to the Farey map
introduced in chapter 2 using as the conjugation the “Minkowski
question mark function”. The latter has the property that periodic
continued fractions (ie quadratic irrationals) get mapped to periodic
binary expansions (ie rationals).

3The j + 1 is so that j starts at zero, for consistency with the
literature for symbolic dynamics.
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to the partition {[0, 1/2), [1/2, 1)} is called the symbol
sequence.

We see there is (almost) a 1:1 correspondence between
y and {ωj}, with the minor exception being the case of
trailing repeated 1s, a countable set. Thus the dynamics
Φ : [0, 1) → [0, 1) is conjugate to the shift Σ : ΩR2 → ΩR2
where ΩR2 is the set of “right” sequences of two symbols.
The set Ω2 denotes bi-infinite sequences j ∈ Z, and is
useful for invertible maps. The metric, ie distance between
two sequences can be defined as4

d({ωj}, {φj}) = 2−min{|j|:ωj 6=φj}

which then defines a topology in which Σ is continuous.
This topological conjugacy between the shift map and
doubling or tent maps (and hence also the Ulam map)
has some immediate consequences:

• Periodic points are countable and dense.

• There is a dense orbit; this property is called topo-
logical transitivity5

• There are orbits that are neither periodic nor dense.

Example 5.1. List and concatenate all possible finite
symbol sequences {0, 1, 00, 01, 10, 11, 000, . . .}:

0100011011000001010011100101110111 . . .

Each finite symbol sequence appears infinitely often, so the
orbit generated by this sequence is dense.

Example 5.2. Any aperiodic sequence of 00 and 10 gives
a nowhere dense orbit since there are real numbers with
binary expansions containing 11 arbitrarily close to any
real number.

This should be compared with the Devaney definition
of chaos:6

• Periodic points are dense

• The system is topologically transitive

• There is sensitive dependence on initial conditions.

The last condition is that in every neighbourhood of a
point, there are initial conditions that eventually separate
to a specified distance. It turns out7 that the last condi-
tion follows from the first two. Thus the doubling, tent
and Ulam maps are chaotic according to this definition.

4There are many equivalent metrics used in the literature.
5Sometimes the definition is that for any open sets U

and V , there is an n ≥ 0 so that Φn(U) ∩ V is non-
empty. For a discussion of when these are equivalent, see
http://www.scholarpedia.org/article/Topological transitivity

6From his textbook, A first course in chaotic dynamical systems
first published in 1992. This is a popular definition but other defi-
nitions are useful in different contexts.

7J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey, Amer.
Math. Mon. 99, 332-334 (1992).
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We get more specific information about the periodic
points — there are clearly 2n symbol sequences with peri-
ods a factor of n for each n, and a dense set of preperiodic
points for each periodic point. Starting from any finite
symbol sequence, say 001, we can construct a periodic
symbol sequence 001 and hence calculate its correspond-
ing point in the doubling map y = 0.0012 =

∑∞
j=1 2−3j =

1/7 where the subscript denotes binary. For the tent map
we ensure that the flips are taken into account, giving y =
0.0011102 = 14

∑∞
j=1 2−6j = 2/9. Thus the corresponding

point in the Ulam map is x = sin2 π/9 ≈ 0.116978.
The stability of a periodic point DΦp = 2p for the

doubling map and ±2p for the tent map depending on the
parity of the number of 1s in the symbol sequence. We can
see that the conjugation relating the tent and Ulam maps
preserves this: If Ψ = h−1 ◦ Φ ◦ h for some conjugating
function h, we see that Ψp = h−1 ◦ Φp ◦ h and so for a
fixed point x of Ψp and corresponding y = h(x) of Φp we
have

DΨp|x = (Dh−1|y)(DΦp|y)(Dh|x) = DΦp|y

since the first and last terms in the product cancel, as-
suming both are non-zero. Thus we have Ψp = ±2p for
the Ulam map also, except for the fixed point x = 0 (at
which the conjugation is singular) which has DΨ = 4.8

Remark: The doubling map is particularly bad to sim-
ulate directly on a computer, since most software uses a
binary representation of real numbers. After a very small
number of doublings the result is zero. It is much better to
simulate a (pseudo-)random sequence of binary symbols.

Remark: Sequences with trailing 1s are equivalent in
the binary representation to others with trailing 0s. They
are just pre-images of the two fixed points 0 and 1 which
are identified for the doubling map. Thus there are actu-
ally 2n−1 points of period a factor of n for the doubling
map. In contrast, these are all distinct for the tent and
Ulam maps.

5.2 Open binary shifts

For the logistic map with r > 4 and tent map for r >
2 there are intervals around 1/2 that map out of [0, 1].
However the image of the interval [0, 1/2] still includes
the whole space [0, 1], as does the image of [1/2, 1]. Thus
for any point x ∈ [0, 1] we can construct two preimages
Φ−1

0 (x) and Φ−1
1 (x) and hence 2n preimages of order n,

one for each sequence of n symbols. It can be shown (using
the Schwarzian derivative property for the logistic map)

8The argument can often be reversed - if all the periodic points of
two hyperbolic dynamical systems have the same spectra (eigenval-
ues of DΦp), they can often be shown to have a smooth conjugation.
See for example Thm 20.4.3 in A. Katok and B. Hasselblatt, “Intro-
duction to the modern theory of dynamical systems.” (Cambridge
University Press, 1997).

Page 3. c©University of Bristol 2017. This material is copyright of the University unless
explicitly stated otherwise. It is provided exclusively for educational purposes at the

University and the EPSRC Mathematics Taught Course Centre and is to be downloaded or
copied for your private study only.



5.2 Open binary shifts 5 SYMBOLIC DYNAMICS

that this leads to a 1:1 correspondence between the set of
points that remain forever in [0, 1] and the binary shift.

Example 5.3. Consider the case r = 3 for the tent map.
The intervals [0, 1/3] and [2/3, 1] are each mapped to [0, 1],
so that the shift corresponds to the ternary representation

x =
∞∑
j=0

2ωj3−j−1

This is the middle third Cantor set.

Properties of these sets follow easily from the shift
representation: They are uncountable, complete, nowhere
dense and totally disconnected (any two points are in dif-
ferent components). Also, the Cantor set itself is struc-
turally stable - perturbing r does not affect any of these
properties.

All the periodic orbits remain unstable as r is increased,
so we can use the method of inverse iteration to locate
them: Start at a convenient point (say, x = 1/2) and apply
a periodic sequence of Φ−1

ω (x) until the result converges.
A natural higher dimensional version of the open bi-

nary shift is called the Smale horseshoe. If a (roughly
rectangular) set is mapped to a “horseshoe” shaped set
that covers the full width of the original in two places and
for which the original covers the full width of the horse-
shoe, then the set surviving for infinite time is a Cantor
set (labelled as above by the symbol sequence) in the un-
stable direction and smooth in the stable direction. The
set surviving for both positive and negative infinite time
is the intersection of two Cantor sets, itself a Cantor set,
and labelled by the shift on the full space Ω2. Again, it is
structurally stable.

An important result is that a homoclinic tangle, ie
map with a homoclinic point at which the stable and un-
stable manifolds are transverse, has horseshoe dynamics
in a sufficiently high iterate of the map, and hence the full
complexity of the binary shift dynamics. Recall Fig. ??.

Example 5.4. The Henon map, (x, y) → (1 − ax2 +
y, bx),9 has a good example of a Smale horseshoe. For
parameters a = 12, b = 0.8 it has the form shown in
Fig. 1, leading to a Cantor set of points that never escape.
For other parameter values, such as the original a = 1.4,
b = 3 it behaves like the logistic map for r < 4, having an
attractor of a fixed point or a fractal. It is closely related
to the logistic map, but less well understood and also an
active subject of research.

Example 5.5. A billiard system consisting of three cir-
cular scatterers with a “non-eclipsing” condition (no scat-
terer intersects the convex hull of the others) has a trapped
set with complete binary symbolic dynamics, with symbols

9Other trivial variations of the equations can be found in the
literature
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Figure 1: The Henon map, a = 12 and b = 0.8

denoting which of the other two scatterers is encountered
next.10

If there are both expanding and contracting directions,
as in these two dimensional examples, we cannot use in-
verse iteration to locate the periodic orbits numerically.
In boundary value problems in ODEs there are two com-
mon approaches: Shooting and relaxation.11 A shooting
method involves finding an approximate initial condition,
evolving the system to the end point, and checking the fi-
nal boundary condition (here, that it is equal to the initial
condition). In chaotic systems this is problematic since
orbits are often exponentially unstable. Thus we usually
need an approximation to the whole orbit, either by run-
ning a long trajectory and looking for near recurrences
(for example if the periodic orbit is embedded in an at-
tractor) or using known symbolic dynamics. Then we can

10The dynamics of this system was studied rigorously in A. Lopes
and R. Markarian, Siam J. Appl. Math. 56 651-680 (1996). But
it had appeared previously in the physics literature — see chaos-
book.org of Cvitanovic et al, where it is called three disk pinball
— and a quantum version had been considered rigorously in S.
Sjöstrand, Duke Math. J. 60 1-57 (1990). The latter proposed what
is now called a fractal Weyl law, relating the fractal properties of
the classical trapped set to the distribution of quantum resonances.

11W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flan-
nery, Numerical Recipes (Cambridge University Press, 1992) gives
advice on which of these to try first: “Shoot first, and only then
relax.” But if the shooting is chaotic, this may not be the best
strategy.
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refine it using one of the following methods:

Damped Multipoint Newton method For a cycle of
length p we seek a zero of the function F : Rp → Rp

F


x1

x2

. . .
xp

 =


x1 − Φ(xp)
x2 − Φ(x1)

. . .
xp − Φ(xp−1)


The multidimensional Newton formula, found by tak-
ing the Taylor expansion around the zero to linear
order, gives

(DF )(xn+1 − xn) = −γF (x)

where a damping parameter 0 < γ ≤ 1 is added by
hand to increase the basin of attraction; the usual
Newton method is γ = 1. Here we have (writing
Φ′(xk) = Φ′k)

1 −Φ′p
−Φ′1 1

. . . . . .
−Φ′p−1 1




∆x1

∆x2

. . .
∆xp



= −γ


F1

F2

. . .
Fp


Row reduction gives

1 −Φ′p
1 −Φ′pΦ

′
1

. . . . . .
1− Φ′pΦ

′
1 . . .Φ

′
p−1




∆x1

∆x2

. . .
∆xp



= −γ


F1

F2 + Φ′1F1

. . .
Fp + Φ′p−1Fp−1 + . . .+ Φ′p−1 . . .Φ

′
1F1


from which the solution may be found by dividing
through by the last diagonal element and back sub-
stituting. Note that the matrix manipulations have
been done explicitly - we need only store the vectors
used in the intermediate steps.

Variational method Write an action function such as
S = |F |2 and minimise using standard multidimen-
sional minimisation routines.12 In the open billiard
example, there is a natural action given by the sum
of the path lengths.

12However standard, routines for multidimensional minimisation
are not guaranteed to work unless you know a lot about your system.
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5.3 Subshifts

The period three window of the logistic map has an infi-
nite set of unstable orbits, including all the periodic orbits
from the original bifurcation cascade, that persist with-
out any bifucations in this parameter region. The period
three points delineate two regions, roughly 0.15 < x < 0.5
which belongs to the left branch of the map (symbol ‘0’)
and 0.5 < x < 0.95 which belongs to the right branch
(symbol ‘1’). Points in ‘0’ map to ‘1’ while points in ‘1’
may map either to ‘0’ or ‘1’. Thus we have a symbolic
dynamics in which only some of the possible transitions
occur; here we specifically exclude the sequence ‘00.’

If there are a finite13 number of exclusion rules, this is
called a subshift of finite type or Topological Markov
chain. This will occur in a one-dimensional map which
is expanding (Φ′(x) > 1) if there is a partition of the
space for which each element (corresponding to a sym-
bol) is mapped to a union of elements (modulo boundary
points); this is called a Markov partition14 In the case
of the logistic map, the derivative Φ′(x) is not always less
than one, so the conjugacy with a symbolic system needs
justification, and clearly fails for some of the stable orbits.

Such a system can be represented as a directed graph
with adjacency matrix A with entries zero or one to denote
whether a transition is possible, and a symbol space

ΩA = {ω ∈ Ωn|(A)ωnωn+1 = 1 for n ∈ Z}

It is easy to show that the number of possible paths of
length m from symbols i to j are given by the entry (Am)ij
of the matrix Am. In particular, the number of periodic
points of length m is the trace of Am.

We can get from i to j iff (Am)ij > 0 for some m ≥ 0,
and write i→ j, or j is accessible from i. We have i→ i
automatically. If i → j and j → i then i and j commu-
nicate; this is an equivalence relation, so partitions the
symbols into disjoint classes. On the other hand, if there
is a j so that i→ j but j 6→ i then i is inessential. If all
symbols are essential, ie there is a single communication
class, the system15 is irreducible and topologically tran-

13There are some simply defined generalisations with an infinite
number of rules, such as the even shift, in which each 0 is followed by
an even number of 1’s. This is not a subshift of finite type, but is in
a larger category called sofic shifts, represented by directed graphs
in which the same symbol may appear in more than one place. So
here we allow transitions 0 → 0, 0 → 1 1 → 1′, 1′ → 1, 1′ → 0
and disallow all others. Many typically encountered shifts of infinite
type from dynamical systems do not have a simple representation,
however.

14Markov partitions (with a more involved definition) are also used
in higher dimensional dynamics; note that the boundaries can be
fractal, see eg Arnoux, Pierre, and Shunji Ito. “Pisot Substitutions
and Rauzy fractals.” Bulletin of the Belgian Mathematical Society
Simon Stevin 8 181-208 (2001).

15“system” depending on context refers to any of the matrix A,
the topological Markov chain, the directed graph, the symbolic dy-
namics, and the original dynamical system.
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sitive. In this case we also have a dense set of periodic
orbits and hance chaos in the sense of Devaney.

The period of a symbol i is the greatest common di-
visor of the times m at which the dynamics can return to
i, that is, when (Am)ii 6= 0, and infinite if Amii = 0 for
all m > 0. For example if the directed graph is bipartite,
all states have even periods. The period is constant on
all communication classes. If all symbols have period one,
the system is aperiodic. If it is both irreducible and ape-
riodic, then for all sufficiently large m, all entries of Am

are positive, and the system satisfies a stronger property
that topological transitivity:

Definition 5.6. A system is topologically mixing if
for any two open sets U, V , Φt(U)∩V is nonempty for all
sufficiently large t.

Clearly topological mixing implies topological transi-
tivity.

In this case we can use

Theorem 5.7. Perron-Frobenius theorem: For a matrix
A with non-negative entries, such that some power Am has
all positive entries, there is an eigenvector with positive
entries with corresponding eigenvalue real, positive, simple
and greater in magnitude that all other eigenvalues.

Finally the growth of symbol sequences and periodic
orbits are both controlled by this largest eigenvalue of A:
If A is irreducible and aperiodic we have

lim
n→∞

1
n

ln
∑
i,j

(An)ij = lim
n→∞

1
n

ln
∑
i

(An)ii = lnλmax

where λmax is the largest eigenvalue.
For a general dynamical system we can define

Definition 5.8. Let N(ε, T ) be the smallest number of
points xk such that for any x ∈ X we have |Φt(x) −
Φt(xk)| < ε for all 0 ≤ t < T and some k. Then the
topological entropy is16

htop = lim
T→∞

lim sup
ε→0

1
T

logN(ε, T )

The base of the logarithm is arbitrary, often given as
2. The topological entropy is invariant under topological
conjugacy, and in the case of an irredicible and aperiodic
symbolic system is given by log λmax.

If the largest eigenvalue of a matrix A is unique and
simple, as in the irreducible and aperiodic case, it may be
found with the power method: Apply A repeatedly to
an arbitrary positive vector and normalise. The normal-
isation constant will converge exponentially to λmax at a

16Lim is equivalent to limsup in this definition, however the same
is not true of some alternative but very similar definitions: see
arxiv:1707.09052
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rate determined by the spectral gap (difference in magni-
tude between the largest and next largest eigenvalue(s)).
The method does not require any reduction of the matrix,
and hence can be used with very large sparse matrices.17

The map Φβ(x) = {βx} is called the beta-transformation
(Renyi 1957). For β an integer, we have a (full) shift on
β symbols as in the previous section. For other values,
dividing the unit interval using multiples of β−1 gives the
“greedy” representation of a number in inverse powers of
β:

x =
∞∑
j=0

ωjβ
−(j+1)

For some algebraic values of β, the boundary of the final
partition element, 1 maps onto a multiple of β−1 and we
have a Markov partition.

Example 5.9. β = g = (1 +
√

5)/2, the golden ratio.
Φβ(1) = {g} = (

√
5 − 1)/2 = g−1 and so we have the

transitions 0 → 0, 0 → 1, 1 → 0 analogous to the period
three window of the logistic map. The transition matrix is

A =
(

1 1
1 0

)
The higher powers are given by

An =
(
Fn+1 Fn
Fn Fn−1

)
where Fn is the Fibonacci number, satisfying F1 = F2 =
1, Fn = Fn−1 + Fn−2. This recurrence may be solved
explicitly to find

Fn =
1√
5

(gn − (−g)−n)

Thus the number of fixed points of order n is Pn = Fn+1 +
Fn−1. Note that because a matrix satisfies its own char-
acteristic equation we have

A2 −A− I = 0

Multiplying by an arbitrary power of A and taking the trace
we have

Pn = Pn−1 + Pn−2

which may be solved together with P1 = 1, P2 = 3 with-
out determining An for general n directly. Finally, note
that as with the doubling map, the symbolic dynamics is
not quite 1:1: The discontinuity x = g−1 has two symbol
sequences 10 and 01; similarly for its preimages.

Example 5.10. Another system with this symbolic dy-
namics is given by the doubling map x → {2x} but en-
forcing escape for any x with symbol sequence 11, corre-
sponding to the points x ∈ [3/4, 1].

17It is reputedly used in Google PageRank and Twitter Who To
Follow algorithms.
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