
6 STATISTICAL PROPERTIES

Applied Dynamical Systems

This file was processed March 7, 2017.

6 Statistical properties

6.1 Probability measures

We now consider statistical properties of dynamical sys-
tems. Since for chaotic systems there is sensitive depen-
dence on initial conditions, and it is not practical in phys-
ical systems to specify or measure the initial conditions
exactly, we can take an approach specifying only the prob-
ability that the system is in a given region A ⊂ X at any
time, using a probability measure µ:

P(x ∈ A) = µ(A)

for which the main properties are that 0 ≤ µ(A) ≤ 1 with
µ(X) = 11 and µ(∪iAi) =

∑
i µ(Ai) for a finite or count-

able collection of disjoint sets Ai.2 Often, the measure is
given by a density ρ

µ(A) =
∫
A

ρ(x)dx

however we have already met some sets, namely Cantor
sets, in which a density does not exist. We can include the
deterministic case using the Dirac measure δx(A) which is
1 if x ∈ A and zero otherwise.

A map or flow Φt then causes the probability measure
to evolve according to the transfer operator

Φt∗(µ)(A) = µ(Φ−t(A))

where we recall that for noninvertible maps the inverse can
be defined on sets. The ∗ is conventional but is sometimes
omitted. In terms of densities we have

Φt∗(ρ)(x) =
∑

y∈Φ−t(x)

ρ(y)
|det(DΦt|y)|

=
∫
δ(x−Φt(y))ρ(y)dy

The transfer operator is a (generally infinite dimensional)
linear operator on measures or densities. Fixed points
of the transfer operator, that is, eigenvectors with eigen-
value one, are called invariant measures. They satisfy
Φt∗µ = µ, or equivalently µ(Φ−t(A)) = µ(A). Any convex
(ie normalised positive linear) combination of invariant
measures is an invariant measure.

Example 6.1. The map x → {3x} has many invariant
measures. The uniform measure ρ = 1 is invariant, since

1An important area of research is that of dynamics with infinite
measures, in which µ(X) =∞ instead.

2Measure theory requires some more technical properties, partic-
ularly that we define µ(A) only for some subsets, called measurable
sets, which normally include all Borel sets, obtained by complements
and countable intersections and unions of closed and open intervals.
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6.1 Probability measures 6 STATISTICAL PROPERTIES

each point has three pre-images and the Jacobian factor is
1/3 everywhere. Each periodic orbit gives invariant delta
measures, for example

1
4

(δ1/10 + δ3/10 + δ9/10 + δ7/10)

There are also fractal measures, for example the uniform
measure on the middle third Cantor set that gives each
included interval of size 3−n a measure 2−n.

Do invariant measures exist in general? If for a given
initial point x the average rate of landing in a (sufficiently)
arbitrary set A exists, it generates a measure:

µx(A) = lim
T→∞

1
T

T−1∑
t=0

χA(Φt(x))

Here χA(x) is the characteristic function of A, equal to 1
if x ∈ A and zero otherwise. Linear combinations of these
can approximate any continuous function φ : X → R,
giving an expression for the time average, also called
Birkoff average of the function with initial point x:

φT (x) = lim
T→∞

1
T

T−1∑
t=0

φ(Φt(x))

We thus have a measure µx defined so that

φT (x) =
∫
X

φ(y)dµx(y) =
∫
X

φ(y)ρx(y)dy

where the second equality holds if µx has a density.
All continuous maps on a compact space have at least

one invariant measure, obtained by taking a subsequence
in the limit. An important result is the Birkoff ergodic
theorem which states that for any invariant measure µ,
the set of x for which the time average does not exist is
of zero µ-measure. The time average may still depend on
x, however we have∫

φT (x)dµ(x) =
∫
φ(x)dµ(x)

Example 6.2. The map x → {3x} + [x] (where square
brackets indicate integer part) on [0, 2) has an invariant
density ρ(x) = 1/2. But for φ(x) = x we find

φT (x) =
{

1/2 x < 1
3/2 x > 1

for almost all x. We have∫
φT (x)ρ(x)dx =

∫
xρ(x)dx = 1

as expected.
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6.2 Markov chains 6 STATISTICAL PROPERTIES

An important case is that of C2 expanding circle maps
(for example perturbations of the doubling map that con-
tinue to identify 0 with 1 and satisfy |Φ′(x)| > 1 every-
where): Here an invariant density exists and is unique.

Note that by introducing probability some philosoph-
ical issues have crept in: The deterministic system with
uncertain initial conditions now has behaviour that is in-
distinguishable from a fair die.

6.2 Markov chains

A piecewise linear map with Markov partition can be rep-
resented as a topological Markov chain with corresponding
symbolic dynamics of finite type, as we saw before. The
transfer operator gives further information: Any density
which is constant on the partition elements, ρ(x) = ρi for
x ∈ Xi evolves to another density of the same type. In
particular, we have

(Φ∗ρ)j =
∑
i

ρiAij
|DΦi|

or in terms of the total mass in each partition element
πi = µ(Xi) = ρi|Xi|

πj =
∑
i

πiPij

with the transition probabilities

Pij =
Aij |Xj |
|DΦi||Xi|

This leads to dynamics on a directed graph, with transi-
tion probabilities given by the Pij matrix, which, like Aij ,
satisfies the Perron-Frobenius theorem in the irreducible
aperiodic case. In a closed system, probabilities add to
one, so we have ∑

j

Pij = 1

This ensures the leading eigenvalue is 1, with left eigen-
vector πinv giving the invariant measure corresponding to
the limiting state, with

lim
n→∞

(Pn)ij = πinv
j

a projection onto that state.

Example 6.3. The golden mean beta map {gx} above has
partition elements X0 = [0, g−1), X1 = [g−1, 1). We find

P =
(
g−1 g−2

1 0

)
and hence πinv = (g, g−1)/

√
5.
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6.3 Measures in open systems 6 STATISTICAL PROPERTIES

Even when there is no Markov partition, a useful nu-
merical technique called Ulam’s method can approxi-
mate the transfer operator using a similar approach.3 Di-
vide the space into a fine partition, and assume that the
probability of a transition from i to j is given by the pro-
portion of Xi that is mapped to Xj , that is

Pij =
|Xi ∩ Φ−1(Xj)|

|Xi|

Then (for a closed system) these probabilities add to one
and if the matrix is irreducible and aperiodic, there is a
single invariant measure given by the left eigenvalue. The
power method applies here also: Starting with a positive
vector π, repeated multiplication by P will then converge
to this measure exponentially fast.

6.3 Measures in open systems

In the case of open systems, probability is not conserved,
but we may want to know the probability conditional on
remaining within the system. Thus the (normalised) mea-
sure evolves according to

µt =
Φt∗µ0

Φt∗µ(X)

A fixed point of this operation is called a conditionally
invariant measure4 and in this case the total probability
decays exponentially

µ(Φ−t(X)) = e−γt

with escape rate

γ = − ln Φ1
∗µ(X)

The value e−γ can be considered an eigenvalue of the
transfer operator Φ1

∗.

Example 6.4. For the map x→ {3x} with hole [1/3, 2/3],
the uniform measure is conditionally invariant with Φ∗µ(X) =
2/3.

It is also useful to consider (fully) invariant measures
in these systems, for example supported on the trapped
set.

6.4 Fractal dimensions

Measures can also be used to describe the size of frac-
tals such as the Cantor set and Lorenz attractor. The

3Ulam’s method gives as a basis, piecewise constant functions
on the Xi. If there is reason to assume the invariant density is
smooth, alternative methods can be developed using polynomial or
trigonometric basis functions.

4See for example, M. F. Demers and L.-S. Young, Nonlinearity
19, 377-397 (2005).
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d-dimensional Hausdorff measure5 is defined by

Hd(A) =
πd/2

2dΓ(d/2 + 1)
lim
δ→0

inf
{Ui}

A ⊂ ∪iUi
|Ui| < δ

∑
i

|Ui|d

where we cover the set A with sets Ui of maximum diam-
eter δ, take the infimum over covers and the limit δ → 0.
The normalisation constant ensures that for d an integer
we get the usual Lebesgue measure. For ordinary sets
such as lines, we have that the length may be finite, but
the number of points (zero dimensional measure) are infi-
nite and the area (two dimensional measure) is zero. This
behaviour applies more generally, and we can define the
Hausdorff dimension:

dH(A) = sup{d : Hd(A) =∞} = inf{d : Hd(A) = 0}

Note that HdH (A) may be zero, finite or infinite. The
Hausdorff dimension behaves nicely under finite or count-
able unions

dH(∪iAi) = sup
i
dH(Ai)

and in particular, the Hausdorff dimension of a countable
set is zero.

If we insist that all covering sets are the same size,
we arrive at a different quantity, the Minkowski or box
dimension:

DB(A) = − lim
δ→0

lnN(δ)
ln δ

if the limit exists, where N(δ) can be either the number of
balls or cubes needed to cover A, or the number of cubes
containing A in a grid of box length ε. If the limit is
not defined, the lim sup and lim inf give upper and lower
Minkowski dimensions, respectively. In general we have

DH(A) ≤ DB(A)

Example 6.5. The set 1/n for n ∈ {1, 2, 3, . . .} is count-
able, so it has Hausdorff dimension zero, but requires of
order δ−1/2 boxes to cover for small δ. Thus it has box
dimension 1/2.

In the case where the set is a finite union of simi-
lar6 contracted copies of itself, as with the trapped sets of
piecewise linear open maps,

A = ∪ifi(A)

with |fi(x) − fi(y)| = ri|x − y| for all x and y and with
ri < 1, and there is a nonempty open set V satisfying

V ⊂ ∪ifi(V )
5Mark Pollicott has a nice set of lecture notes on fractal dimen-

sions: http://homepages.warwick.ac.uk/~masdbl/preprints.html
6The case of affine maps, where the contraction rates differ in

different directions, is more complicated and a subject of current
research.
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with the union disjoint, the open set condition, we have

DB(A) = DH(A) = DS(A)

where the similarity dimension DS(A) satisfies∑
i

r
DS(A)
i = 1

Note that the maps fi here are contractions; in dynamical
contexts they typically correspond to inverse branches of
an expanding map Φ.

Example 6.6. The middle third Cantor set consists of
two copies of itself scaled by 1/3. Thus its dimension sat-
isfies

2(1/3)D = 1, D =
ln 2
ln 3

6.5 Ergodic properties

With respect to an invariant measure µ we can define
properties analogous to topological transitivity and mix-
ing. The statements in this section hold for any positive
measure sets A,B ⊂ X as T → ∞; for flows the sums
are replaced by integrals. We have in increasing order of
strength:

µ(A ∩ Φ−tA) 6→ 0 Recurrence

Poincaré’s recurrence theorem states that all systems
with invariant probability measures are recurrent, an un-
expected result since it seems to imply history is (with
probability one) destined to repeat itself infinitely many
times.7 Suppose we consider a container partitioned into
two sections, and N gas particles initially on the left. If
the dynamics is measure preserving (physically realistic,
as we will see), we might expect this event to re-occur
after roughly a characteristic time scale multiplied by the
inverse of the measure of this state, 2N . However for
N ≈ 1023 this time is unphysically large; real physical ex-
periments do not have access to infinite time limits. Note
that in the context of nanotechnology, we often have only
a few particles, so timescales may be more reasonable.

1
T

T−1∑
t=0

µ(A ∩ Φ−tB)− µ(A)µ(B)→ 0 Ergodicity

For ergodic measures we have an important result relating
time and space averages:

φT (x) =
∫
X

φ(x)dµ

7Recurrence is not guaranteed in infinite measure systems, for
example x→ x+ 1 with x ∈ R. In such systems ergodicity, defined
as the statement that all invariant sets or their complements have
zero measure, implies recurrence under mild conditions, however
there is no generally agreed definition of mixing.
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6.5 Ergodic properties 6 STATISTICAL PROPERTIES

for all x except a set of measure zero, and φ for which the
integral is defined. Thus in an ergodic system, varying the
initial conditions does not (with probability one) affect the
long time average, as claimed in the Introduction.

We can always decompose an invariant measure as
a (possibly uncountable) convex combination of ergodic
measures. However, it is important (and often difficult)
to know whether a natural invariant measure, such as
Lebesgue, is ergodic. Sinai showed in 1970 that two disks
on a torus is ergodic (on the set defined by the conserved
quantities such as energy), however a proof for arbitrary
number of balls in arbitrary dimension was finally pub-
lished by Simanyi in 2013.8 Since Boltzmann in the mid-
19th century, ergodicity has been assumed in statistical
mechanics to calculate macroscopic properties of systems
of many particles. Here, again, the question of time scales
arises, and also the likelihood that many systems are not
quite ergodic, having very small measure regions in phase
space that do not communicate with the bulk.

1
T

T−1∑
t=0

|µ(A∩Φ−tB)−µ(A)µ(B)| → 0 Weak Mixing

Weak mixing is equivalent to the statement that the dou-
bled system on X × X, (x1,x2) → (Φ(x1),Φ(x2)) is er-
godic.

µ(A ∩ Φ−TB)− µ(A)µ(B)→ 0 (Strong) Mixing

Mixing is equivalent to correlation decay∫
X

f(x)g(Φt(x))dµ−
∫
X

f(x)dµ
∫
X

g(x)dµ→ 0

for every square integrable f, g. The rate of decay (de-
pendence on t) is important, in that diffusion and similar
properties can be expressed as sums over correlation func-
tions. In general it depends on the functions, but it can
be shown for example that for systems conjugate to irre-
ducible aperiodi Markov chains, decay is exponential if f
and g are Hölder continuous.

Example 6.7. Rotations x → {x + α} have a uniform
invariant measure. They are are ergodic iff α 6∈ Q. In
this case they are uniquely ergodic: There is only a
single invariant measure. They are not weakly mixing.9

Example 6.8. Markov chains are not ergodic if reducible,
ergodic but not weakly mixing if irreducible but periodic,
and strong mixing if irreducible and aperiodic.

Example 6.9. The Chacon shift, generated recursively
by the substitution 0 → 0010, 1 → 1 and allowing any
finite sequence appearing there, is a notable system which
is weak mixing but not strong mixing.

8N. Simanyi, Nonlinearity 26, 1703-1717 (2013).
9However, a generalisation of rotations, interval exchange

transformations are weakly mixing (but not strong mixing) for
almost all parameter values.
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The metric entropy or Kolmogorov-Sinai entropy,10

is defined using a finite partition ξ to define the measure
of initial conditions leading after n iterations of Φ to a
sequence of symbols ω ≡ ω1 . . . ωn:

h(ξ) = lim
n→∞

−1
n

∑
ω

µ(Xω) lnµ(Xω)

Then the KS-entropy is

hKS = sup
ξ
h(ξ) ≤ htop

The KS entropy of a Markov chain is

hKS = −
∑
ij

πinv
i Pij lnPij

Example 6.10. We find for the golden beta map x →
{gx}

hKS = −
[
g√
5
g−1 ln g−1 +

g√
5
g−2 ln g−2

+
g−1

√
5

1 ln 1 +
g−1

√
5

0 ln 0
]

=
1 + 2g−1

√
5

ln g

= ln g

Note that 0 ln 0 = 0 (which is the limit as Pij → 0). Also
it turns out that all β expansions have topological entropy
lnβ, so in this case it reaches the maximum.

This quantifies the maximum rate of information loss
in the system,11 but a positive value does not require er-
godicity. If however, all nontrivial partitions h(ξ) > 0, it
is equivalent to a condition stronger than mixing called
K-mixing (or Kolmogorov mixing).

The strongest ergodic property, beyond K-mixing is
the Bernoulli property, which states that there is a par-
tition with respect to which, elements at different times
are completely uncorrelated:

µ(Xi ∩ Φ−tXj)− µ(Xi)µ(Xj) = 0

for all i and j, and all t > 0. Aperiodic irreducible Markov
chains and equivalent systems have this property. Thus we
have Bernoulli implies K-mixing implies strong mixing im-
plies weak mixing implies ergodicity. Although Bernoulli
is the strongest ergodic property, it is worth recalling that
systems containing a subset on which the dynamics is
Bernoulli are extremely prevalent, including in particular
Smale Horseshoes and therefore in homoclinic tangles.

10Confusingly, measure-theoretic quantities are called metric
properties in dynamical systems, and various thermodynamic terms
(entropy, pressure) are used in ways that differ from their physical
usage. KS-entropy is more like an entropy per unit time.

11For a recent generalisation see R. G. James, K. Burke and J. P.
Crutchfield, Phys. Lett. A 378 2124-2127 (2014).
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6.6 Lyapunov exponents
12 Lyapunov exponents quantify the sensitive dependence
on initial conditions. We have already seen that the insta-
bility of periodic orbits is determined by the eigenvalues
of DΦT where T is the period, and know that in general
these eigenvalues can vary widely between orbits. How-
ever in ergodic systems, a similar phenomenon occurs as
with time averages: Even though there is a wide variety
of possible values of the expansion rate, almost all (with
respect to the measure) orbits have the same values.

For one dimensional maps we have for the exponential
growth rate of perturbations in the initial condition,

λx = lim
n→∞

1
n

ln |DΦn|x|

= lim
n→∞

1
n

ln
n−1∏
i=0

|DΦ|Φix

= lim
n→∞

1
n

n−1∑
i=0

ln |DΦ|Φix

which is just an ordinary time average, and hence for an
ergodic measure given by

λ =
∫

ln |DΦ|dµ

for almost all x with respect to µ.
In higher dimensions the evolution of the perturbation

is described by the product of the matrices along the orbit,
acting on a vector that gives the direction of the initial
perturbation; recall the discussion from section ??. It is
clear that the result is very different if the vector lies in
the local stable or unstable manifold. Results given by
the Oseledets theorem are that

λ(v) = lim sup
t→∞

1
t

ln
|DΦtv|
|v|

takes the same finite set of values for almost every x, called
Lyapunov exponents, giving the largest expansion rate
accessible to the linear space containing v: Typically a one
dimensional space in the stable manifold for the smallest
Lyapunov exponent, and almost the whole space for the
largest. The Lyapunov exponents may be found from

{λi} = ln{e-vals of lim
t→∞

((DΦt)∗(DΦt))1/2t}

where ∗ denotes transpose and hence the eigenvalues are
all real. The matrix is of size d so there are d Lyapunov
exponents (counted with multiplicity). Similar to stability
eigenvalues of periodic orbits, the Lyapunov exponents are
invariant under smooth conjugations. Note, however that

12A recent introductory survey on Lyapunov exponents is found
in A. Wilkinson, arxiv:1608.02843.
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unexpected phenomena can occur if the dynamics is time-
dependent.13

We have ∑
i

λi = lim
t→∞

1
t

ln |det(DΦt)|

In the case of Sinai-Ruelle-Bowen (SRB) measures (that
is, absolutely continuous on unstable manifolds), we have
the Pesin formula ∑

i:λi>0

λi = hKS

Example 6.11. Consider the open map x → {3x} with
escape from the middle third x ∈ [1/3, 2/3). The natural
measure in this case is the uniform measure on the non-
escaping set, which is the middle third Cantor set. We
have

hKS = ln 2
λ = ln 3
γ = ln(3/2)

dH =
ln 2
ln 3

This example strongly suggests the following relations:

hKS = λdH

This is a form of the Ledrappier-Young formula.

γ = λ− hKS

This is called the escape rate formula, generalising
Pesin’s formula. Both formulas have been shown under
more general conditions14

Calculation of Lyapunov exponents numerically typ-
ically uses the Benettin algorithm. Evolve both the
equations of the original system (x ∈ Rd)

d

dt
x = f(x(t))

and the linearised equations (δi ∈ Rd, i ∈ {1, 2, 3, . . . l}

d

dt
δi = (Df)|x(t)δi

for as many perturbations l as Lyapunov exponents are
required. Thus we solve d(l+ 1) equations altogether. As
some periodic interval T , apply a Gram-Schmidt orthog-
onalisation to the δi vectors,

δ′1 = δ1 δ′′1 =
δ′1
|δ′1|

13G. A. Leonov and N. V. Kuznetsov, Time-varying linearization
and the Perron effects, Intl. J. Bif. Chaos 17, 1079-1107 (2007).

14See M. F. Demers, P. Wright and L.-S. Young, Ergod. Theor.
Dyn. Sys. 32, 1270-1301 (2012).
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δ′2 = δ2 − δ′′1 · δ2 δ′′2 =
δ′2
|δ′2|

δ′3 = δ3 − δ′′1 · δ3 − δ′′2 · δ3 δ′′3 =
δ′3
|δ′3|

then the largest l Lyapunov exponents are approximated
by the sums

λi ≈
1
kT

k∑
j=1

ln |δ′i|

where j sums over the times the orthogonalisation is ap-
plied. Note that the vectors obtained are not directly
related to expanding or contracting spaces in the original
dynamical systems (which need not be orthogonal), and
that a similar algorithm applies to maps15

We see that the sum of positive exponents is related to
the KS entropy (above). The largest exponent is also im-
portant, giving the rate of fastest growth of perturbations.
Positivity is often a numerical signal of chaos (except in
the case of a single unstable periodic orbit as in the pen-
dulum).

In addition, the largest Lyapunov exponent can be
used to estimate the number of iterations before a pertur-
bation at the level of machine round-off (say, ε = 10−16)
becomes of order unity, −(ln ε)/λ. In the case of the dou-
bling map, this is the extent to which a direct numerical
simulation gives typical behaviour (then reaching the fixed
point at zero and then remaining there). For hyperbolic
sets16 there are shadowing lemmas that guarantee the
existence of orbits close to approximate (eg numerical)
orbits, however they rarely say much about typical be-
haviour: In particular the numerical doubling map orbit
is an exact solution of the dynamics. Most systems do
however show good numerical convergence as precision is
increased, until a previously visited point is reached, lead-
ing to exact periodicity. In general we expect around ε−d

distinct points where d is a dimension of the attractor or
other invariant set. If these are assumed to appear ran-
domly, the time taken to reach a periodic cycle is around
ε−d/2. The addition of weak noise clearly prevents such
periodic cycles and presumably masks any effects due to
the finite precision.17

The entire Lyapunov spectrum is also a fruitful ob-
ject of study in many degree of freedom system, such as
molecular dynamics models of large numbers (hundreds
or thousands) of atoms.18

15Also Poincaré sections, for example in billiards; see H. R. Dullin,
Nonlinearity, 11, 151-173 (1998).

16If hyperbolicity fails (as in almost all realistic systems), we can
no longer expect shadowing. This is the case even if all periodic
orbits are hyperbolic but they have different numbers of positive
Lyapunov exponents (J. A Yorke, private communication).

17Some recent discussion of these issues is in R. Lozi, “Can we
trust numerical computations of chaotic solutions of dynamical sys-
tems,” (unpublished?)

18H.-L. Yand and G. Radons, Phys. Rev. Lett. 100 024101
(2008).
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6.7 Cycle expansions

It is possible using the transfer operators discussed at the
start of this chapter, to calculate many statistical quanti-
ties including averages, escape rates and Lyapunov expo-
nents in terms of unstable periodic orbits, in some cases
to incredible accuracy. The presentation here is based on
chaosbook.org and restricted to the simplest systems (1D
maps); it is possible to extend to higher dimensional maps,
flows, semiclassical approach to quantum systems (see the
quantum chaos course), and to a more rigorous treatment,
especially for uniformly expanding or (in higher dimen-
sions) hyperbolic systems.19

We saw that e−γ where γ is the escape rate, can be un-
derstood as the leading (ie greatest magnitude) eigenvalue
of the transfer operator Φ1

∗. Treating this as a matrix,20

the eigenvalues are inverses of solutions of

0 = det(1− zΦ1
∗)

= exp(tr ln(1− zΦ1
∗))

= 1− ztrΦ1
∗ −

z2

2
(trΦ2

∗ − (trΦ1
∗)

2) + . . .

=
∞∑
n=0

Qnz
n

where we have expanded in powers of z (since looking for
the smallest solution). Differentiating leads to the useful
relation

Qn =
1
n

(
trΦn∗ −

n−1∑
m=1

QmtrΦn−m∗

)
Now from the previous section we have

Φn∗ (ρ)(x) =
∫
δ(x− Φn(y))ρ(y)dy

from which we see that

trΦn∗ =
∫
δ(x− Φn(x))dx =

∑
x:Φn(x)=x

1
|DΦn|x − 1|

which is just a sum over periodic points of length n, in-
cluding repeats of orbits with lengths that are factors of
n. Thus, truncating at some value of n, we obtain an nth
degree polynomial, whose roots give an approximation to
the spectrum of Φ1

∗. The escape rate is then estimated as

γ = ln z1

where z1 is the root of smallest absolute value. We expect
good convergence when the system is hyperbolic (clearly

19See for example “Rigorous effective bounds on the Hausdorff
dimension of continued fraction Cantor sets: A hundred decimal
digits for the dimension of E2,” O. Jenkinson and M. Pollicott,
arxiv:1611.09276.

20The Fredholm determinant is a precise formulation of determi-
nants of some classes of infinite dimensional operators.
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6.7 Cycle expansions 6 STATISTICAL PROPERTIES

DΦ(x) = 1 is problematic above) and the symbolic dy-
namics is well behaved, so that long periodic orbits are
partly cancelled by combinations of shorter periodic or-
bits in terms like trΦ2

∗ − (trΦ1
∗)

2.

Example 6.12. Using cycle expansions to obtain the es-
cape rate of the open map Φ(x) = 5x(1 − x) we find
from the 8 periodic orbits up to length 4, the result γ =
0.5527651, accurate to 7 digits.
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