
Periodic orbit theory of chaos
About the lectures

These are notes for four lectures to be given in the school of mathematics of the university of Bristol 
in May 2015. I am grateful to the University of Bristol and especially Jonathan Robbins for the warm 
hospitality I received during my stay in Bristol, and to the Leverhulme Trust for generous financial 
support.
It is well known that many dynamical systems exhibit chaotic behaior, which renders their long-time 
dynamics inherently unpredictable. For chaotic systems it is therefore reasonable to abandon the 
idea of describing their dynamics exactly, and focus instead on probabilistic descrption, even when 
the dynamical laws are deterministic. 
However, deriving the statistical distribution from the dynamical laws is a difficult problem that has 
been solved only in special cases. The goal of these lectures is to introduce periodic orbit theory, 
the strongest method that has been found so far to approach this problem.
The limited scope of the lectures allows me to introduce only the fundamental ideas of the method, 
along with the necessary basic ideas from dynamical systems theory (and only those). The level of 
rigour is dictated by my scientific background, and is similar to what one find in theoretical physics 
literature.
The main source for the material presented here is the free webbook “Chaos: Classical and Quan-
tum” by P. Cvitanovic et al., available at  chaosbook.org . Other sources will be published 
together with these notes and other course material on the course website TBD. 

Course plan

1 The Lorenz system: Introduction to chaos
The Lorenz system consists of 3 ordinary differential equations for the variables x, y, z. It was put 
forward by Lorenz in 1963 as a truncation of climate model equations exhibiting aperiodic dynamics.
x′(t) & σ𝜎 (y(t) -− x(t))
y′(t) & r x(t) -− x(t) z(t) -− y(t)
z′(t) & x(t) y(t) -− b z(t)

(1)

σ𝜎, r, and b are real constant parameters. The values assumed by Lorenz σ𝜎 = 10, b = 8
3 , and r = 28, 

lead to strongly chaotic dynamics, and are also the most studied. We will use these parameter 
values exclusively here.
A typical orbit, that is, a solution (x(t), y(t), z(t)) of the Lorenz equations looks like this:
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The dynamics can be roughly described as follows: After an initial transient, the orbit is attracted to 
a butterfly shaped region in the three-dimensional state space. Each wing of the butterfly looks like 
a slightly curved membrane, but is has a zero-measure transverse component—the attractor is a 
fractal with dimension slight larger than 2. 
The dynamics in each wing follows an ourward spiral—clockwise in the left wing and counter-
clockwise in the right, when viewed from above—and leaves the wing when the spiral radius 
increases beyond a certain radius, landing at some point in the other wing. The process then 
repeats itself. The wings are related by the exact symmetry (x, y, z) → (-−x, -−y, z) of the Lorenz 
equations.
Although the orbits converge in directions transverse to the attractor, they diverge tangent to it, a 
phenomenon called sensitive dependence on initial conditions, or ‘the butterfly effect.’
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This means that two orbits with small initial separation δ𝛿(0) (in the example above δ𝛿(0) = 0.01in the z 
direction), grows exponentially δ𝛿(t) = ⅇλ𝜆t δ𝛿(0) as long as δ𝛿 remains small, with a Lyapunov exponent 
λ𝜆 > 0. At some point, depending logarithmically on the smallness of the initial perturbation, the orbit 
separation becomes large enough that the orbits split into different wings, and then any remaining 
correlation between them is lost.
The simultaneous stretching and compression mixes the states on the attractor very efficiently, so 
that a small piece of it is quickly spread over the entire butterfly, although its volume shrinks very 
fast, the dynamics being dissipative. The stretching and folding, together with sensitive dependence 
on initial values are the fundamental properties of chaotic dynamics.
The chaotic properties of the dynamics have an important consequence. In a coarse-grained descrip-
tion, the Lorenz dynamics consists of transition between two states, left, and right which occur after 
a sequence of switching times t1, t2, … The state of the system can be labelled for example by the 
sign of x + y.
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A typical sequence of switching times looks like this
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Since the underlying dynamics is deterministic, one could have guessed that the switching time 
sequence obeys well-defined rules, but this is not the case. Sensitive dependence on initial values 
implies that there is no way to predict the future tn given the past beyond a few steps because the 
initial value is only known to a finite precision. The inevitable initial ignorance makes the dynamics 
effectively random. The purpose of these lectures is to understand this random process.

2 Unimodal maps

2.1 Discrete dynamical systems, the logistic map
The essence of the Lorenz dynamics is captured by the return map, which describes the discrete 
steps of climbing on the outward spirals and wing switching. Since the Lorenz attractor is almost 
confined to a two-dimensional manifold, the discrete dynamics takes place on a one-dimensioal 
manifold. The stretch and fold action implies that the mapping has at least one turning point.
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steps of climbing on the outward spirals and wing switching. Since the Lorenz attractor is almost 
confined to a two-dimensional manifold, the discrete dynamics takes place on a one-dimensioal 
manifold. The stretch and fold action implies that the mapping has at least one turning point.
Rather than attempt a direct description of the Lorenz dynamics, we will look at the simplest type of 
dynamical systems with these properties: unimodal maps, that is, piecewise smooth maps f (x) of 
the unit interval to itself with a single extremum, such as
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The dynamics of unimodal maps will be mostly illustrated by the logistic map family lr(x) = r x(1 -− x), 
parameterized by r. For 0 < r ⩽ 4 it maps the unit interval into itself.

2.2 Fixed points, bifurcations, periodic orbits
A simple way to visualize the dynamics of one-dimensional maps is to draw the graph of the map 
overlayed with the graph of the identity function. An orbit is then obtained by vertical and horizontal 
lines bouncing between the two graphs. For example, a typical orbit of l0.8 looks like
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Evidently, the orbit tend to zero, limn→∞ lrn(x) = 0, lrn being the nth iterate of lr , for any initial x. In other 
words, x = 0 is a globally attracting fixed point. It follows that it is a (linearly) stable fixed point, 
6lr ' (0)7 < 1. Fixed point are visible in orbit plots as intersections between the map and identity 
graphs, and when f  is increasing they are linearly stable iff the map slope is smaller than the unit 
slope. 
x = 0 is the only fixed point, and is globally attracting for all 0 < r < 1, but when r = 1 there is a 
(transcritical) bifurcation, where it becomes unstable, and a new fixed point is created at x1 = 1 -− 1

r . 
The new fixed point is stable and globally attracting for 1 < r < 3. A typical orbit for r = 1.5 is 
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When r = r1 = 3 another bifurcation occurs when the x1 fixed point becomes unstable, but this time 

instead of a new fixed point, a period-2 periodic orbit  is created x2
(1,2) = r+1+ (r-−3) (r+1)

2 r
. The orbit is 

stable if for small δ𝛿

6lr (lr (δ𝛿 + x2)) -− x2 7 < δ𝛿 ⟺ lr ' x2
(1) lr ' x2

(2) < 1

that is, for 3 < r < 1 + 6 ≈ 3.45. A typical orbit for r = 3.1 is 
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The period doubling bifurcation can be visualised by plotting the orbit of lr2, the second iterate of lr

6     cycles-lectures.nb



0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

The fixed points of lr2 consist of the unstable fixed points 0, x1 of lr  and the points of the period-2 
orbit x2

(1,2), which are stable as fixed points of lr2.

When r = r2 = 1 + 6  a second period doubling bifurcation takes place: The period 2 orbit becomes 
unstable, and a stable period 4 orbit is created.
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The period-4 orbit then becomes unstable at r3 ≈ 3.544 with a third period doubling bifurcation, and 
the process continues indefinitely with decreasing spacings between bifurcations. After each bifurca-
tion, in which a stable 2n-periodic orbit is created, the previous 2k-periodic orbits, k < n, remain and 
are all unstable. It can be shown that unimodal maps have at most one stable periodic orbit.

2.3 Chaos, strange attractors, repellers
In the limit of the sequence of bifurcation r = r∞ = limn rn ≈ 3.5699456 the system has infinitely many 
periodic orbits but none of them is stable. Instead, a typical orbit is aperiodic and approaches a 
“strange attractor” 𝒜, a (fractal) set of zero measure on which the dynamics. The orbit of a typical 
attractor point x𝒜 and the set of periodic orbits are dense in the attractor, 𝒜=⋂k⋃n=k

∞ lrn(x𝒜) = ⋃xn.

When r > r∞ (for most r) the attractor has positive measure, and the dynamics on it has sensitive 
dependence on initial conditions. The sensitivity can be quantified by the Lyapunov exponent 
λ𝜆 = limn

1
n Σn=1

∞ loglr ' lrn-−1(x) > 0. It follows from this and the density properties that the dynamics is 
chaotic. λ𝜆 is independent of initial x except for a zero-measure set, namely the periodic points.
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When r = 4 the logistic map is conjugate to the piecewise linear symmetric tent map: l4 ◦ g = g ◦ t2, 
tr = r

2 (1 -− 2 6x7) with the bijection g(x) = sin2 π𝜋x
2 . For both maps the image of the map and the 

attractor are the entire interval, and the dynamics is maximally chaotic, being conjugate to the 
Bernoulli shift map (see below).
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When r > 4 the image of the lr([0, 1]) ⊄ [0, 1]. The closure ℛ of the set of (unstable) periodic orbits is 
still an invariant set, but is not an attractor: Points arbitrarily close to the invariant set are mapped 
outside the unit interval in a finite number of iterations. Rather ℛ is a repeller, which means that it is 
stabilised by the inverse map lr-−1 (as a map on sets). The probability pn that a randomly chosen 
initial point survives the dynamics after n steps decays exponentailly: pn ~∼

n→∞
ⅇ-−γ𝛾 n . γ𝛾 is the escape 

rate from the repeller. 
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(this is also true for some r∞ < r < 4, except that repelled points are attracted to a stable periodic orbit 
with a period which is not a power of 2 instead of leaving the interval).

2.4 Invariant measures
In the chaotic regime the finite precision of initial conditions makes it impossible to calculate actual 
future orbits indefinitely with any fixed degree of precision. Instead one has to adopt a probabilistic 
approach. Starting from a probability measure μ𝜇0 of initial conditions concentrated near an initial 
value xi (say) we would like to know the later probability measure μ𝜇n such that μ𝜇n(A) is the probabil-
ity that f n(x) ∈ A.
It follows from the definition that μ𝜇n+1(A) = μ𝜇nf-−1(A). If we write the μ𝜇s in terms of densities 
μ𝜇n(A) = ∫Aρ𝜌n(x) ⅆx then

ρ𝜌n+1(x) = ρ𝜌n(ξ𝜉) δ𝛿(x -− f (ξ𝜉)) ⅆξ𝜉 =
k,f(ξ𝜉k)=x

ρ𝜌n(ξ𝜉k)

6f ' (ξ𝜉k)7
≡ℒρ𝜌n(x) (2)

where ℒ is the evolution operator, also called Perron-Frobenius operator, and δ𝛿(x) is the Dirac delta 
‘function’ (or distribution), defined by ∫h(x) δ𝛿(x) ⅆx = h(0) for sufficiently nice h.

For dynamics approaching an attractor one may expect the measure to tend asymptotically to a limit 
measure that is invariant under ℒ. Actually, there are many invariant measures. For example, any 
fixed point and periodic orbit carries a singular invariant measure 1

p ∑k=1
p δ𝛿x -− xp

(k). We are interested 

in the natural measure that is the one arrived from smooth initial measures. For systems with escap-
ing orbits the natural measure is only conditionally invariant, that is ℒρ𝜌 = ⅇ-−γ𝛾 ρ𝜌 where γ𝛾 is the escape 
rate as before.
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3 Cycle expansion for the escape rate
The basic idea of cycle expansions is simple: Since periodic orbits are dense in the chaotic attrac-
tor/repeller, mean quantities can be calculated by averaging them on cycles with weights given by 
the relative time a typical orbit spends near each periodic orbit. In this section we apply this idea in 
the simplest setting of calculating escape rates, proceeding first formally, and then giving a heuristic 
justification.

The classical trace formula for maps
The survival ratio ⅇ-−γ𝛾 is the largest eigenvalue of ℒ. To get access to the spectrum of ℒ we first 
express trℒn in terms of cycles 

trln1d

trℒn = δ𝛿(x -− f n(x)) ⅆx =
k,fn(ξ𝜉k)=x

1

61 -− Λp7
=

n-−cycles p

np

61 -− Λp7
(3)

where Λp = d
dx f n(x)p = f ' xp

(1)⋯f ' xp
(n), and np is the number of distinct points in the cycle p. When 

the cycle contains no periodic sub-orbit, the cyle is prime and np = n; otherwise the cycle is compos-
ite and n = np r with integer r ≥ 2. 

When the map acts on d-dimensional space this is generalised to
trln

trℒn =
n-−cycles p

np

6det(1 -− Mp)7
=

n-−cycles p

np

61 -− Λp,17⋯61 -− Λp,d7
(4)

where Mp = ∂𝜕fn

∂𝜕x p= ∂𝜕f
∂𝜕xxp

(n) …
∂𝜕f
∂𝜕xxp

(1)
 is the monodromy matrix, and Λp,k are its eigenvalues.

The trace formula is a generating function for (4)
trfomula


n=1

∞
zn trℒn = tr

zℒ

1 -− zℒ
=

n


n-−cycles p

zn np

6det(1 -− Mp)7
=

prime cycles p


r

np zr np

det1 -− Mp
r  (5)

Given that our expression for trℒn involves sums over all n-cycles, and that the number of such 
cycles grows exponentially with n, the size of term in the sum must be exponentially small for the 
sum to converge. This will happen if the map is uniformly hyperbolic, which means that 
1. There is at least one expanding monodromy eigenvalue Λp,k > 1 for some k,  
2. The are no neutral eigenvalues 6Λp,k7 ≠ 1 for all k, and 
3. The expanding eigenvalues Λp,e grow exponentially and contracting eigenvalues  Λp,c (if any) 
diminish exponentially, that is, there is a positive λ𝜆 such that 6Λp,e7 > ⅇλ𝜆 np, and 6Λp,c7 < ⅇ-−λ𝜆 np. 
This guarantees that individual terms remain small. Neutrally stable eigenvalues 6Λp,k7 = 1 are not 
good because even if Λp,k ≠ 1, because arbitrary positive integral powers of Λp,k will appear for 
repeats of p, and these will eventually come close to 1.

The spectral determinant for maps
Equation (5) expresses the spectrum of the evolution operator in terms of periodic orbits, but is not 
convenient to use as is, becuase the eigenvalues appear in it as poles. Instead we will use it to 
derive a cycle expansion for the spectral determinant, det (1 -− zℒ), which has zeros at inverse 
eigenvalues. Starting from the identity log(det (1 -− zℒ)) = tr(log(1 -− zℒ)) we get
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delcyc

Δ(z) = det(1 -− zℒ) = exp -−
n=1

∞ zn trℒn

n
= exp -−

prime cycles p


r

zr np

r det1 -− Mp
r 

(6)

where r as before is the number of repetitions of the cycle ( = 1 for prime cycles). The Taylor expan-
sion of Δ

Δ(z) = 1 -− z trℒ-−
z2

2
trℒ2 -− tr2 ℒ -− ⋯ (7)

is most easily calculated from

-−z ⅆ
ⅆz det (1 -− zℒ)

det (1 -− zℒ)
= -−z

ⅆ

ⅆz
log(det (1 -− zℒ)) = tr

zℒ

1 -− zℒ
(8)

so that if Δn is the nth Taylor of Δ(z) then

1 + Δ1 z + Δ2 z2 +⋯ z trℒ+ z2 tr2 ℒ+⋯ = -−Δ1 z -− 2Δ2 z2 -− 3Δ3 z3 -−⋯ (9)

and the resulting hierarchy of equations is solved recursively by

Δn = -−
1

n
trℒn + Δ1 trℒn=1 +⋯+Δn-−1 trℒ (10)

If Δn decay fast enough for large n, when can use polynomial truncations of the spectral determinant 
to obtain approximations for γ𝛾, whose accuracy increases as a function of n. If Δ(n)(z) is the nth 
order Taylor expansion of Δ then the nth order approximation for the escape rate is γ𝛾n = logz0

(n) 
where z0

(n) is the smallest positive real zero of Δ(n). The results of numerical calculations of trℒn, Δn, 
and the nth order approximation to escape rate γ𝛾n for the logistic map with r = 4.5 are
n trace det escape rate
1 0.571429 -−0.571429 0.5596157879354226
2 0.484848 -−0.0791589 0.3758540476477187
3 0.33894 -−0.00555001 0.3616614486696799
4 0.235402 -−0.0000426985 0.3615098389545287
5 0.164061 -−3.33517 × 10-−8 0.3615096690460328
6 0.114285 1.08885 × 10-−10 0.3615096698423153
7 0.0796138 -−2.71053 × 10-−14 0.3615096698420306

The escape rate agrees beautifully with the decay rate of a histogram of survival based on one 
hundred thousand orbits starting from random initial points.

The dynamical zeta function
The magic of the cycle expansion for the escape rate lies in the exquisite precision obtained using 
only a small number of orbits. To try to understand this phenomenon let us consider a slightly 
modifed cycle expansion.  We start by separating the expanding eigenvalues Λe,k and the contract-
ing eigenvalues Λc,k appearing in the denominator in equation (4) 

cycles-lectures.nb     11



The magic of the cycle expansion for the escape rate lies in the exquisite precision obtained using 
only a small number of orbits. To try to understand this phenomenon let us consider a slightly 
modifed cycle expansion.  We start by separating the expanding eigenvalues Λe,k and the contract-
ing eigenvalues Λc,k appearing in the denominator in equation (4) 

trln

61 -− Λp,17⋯61 -− Λp,d7 = 6Λp7
k

1 -−
1

Λe,k


k
61 -− Λc,k7 (11)

where Λp =∏kΛe,k. For uniformly hyperbolic systems 1 -− 1
Λe,k

 and  61 -− Λc,k7 are very close to 1, 

so it makes sense to replace trℒn by
trln

Γn =
n-−cycles p

np

6Λp7
(12)

in (6) obtaining
zetcyc

1

ζ𝜁(z)
= exp -−

n=1

∞ zn Γn

n
=

exp -−
prime cycles p


r

zr np

r 6Λp7r
= exp -−

p
log 1 -−

znp

6Λp7
=

p
1 -−

znp

6Λp7

(13)

It is possible to express ζ𝜁  as a ratio of two spectral determinants, showing that 1
ζ𝜁  has the same 

zeros as the spectral determinant for nice enough systems.
The dynamical zeta function ζ𝜁(z) is a generalisation of the Riemann zeta function defined for 
Re s > 1 by

delcyc

ζ𝜁R(s) =
n=1

∞ 1

n-−s
=

r1,r2,…

1

p1
-−s r1 p2

-−s r2 ⋯
=

primes p

1

1 -− p-−s (14)

where p1, p2, … are the prime integers, and r1, r2, … are summed from zero to infinity.

We will calculate ζ𝜁  explicitly for the piecewise linear repelling tent map
delcyc

t(x) =
s0 x x ≤ s1

s0+s1

s1(1 -− x) x ≥ s1

s0+s1

(15)

with positive slopes s0, s1 such that s0 s1 > s0 + s1. To find the periodic orbits we calculate the 
inverse images of the unit interval: t-−1([0, 1]) = 0, 1

s0
 ⋃ 1 -− 1

s1
, 1, t-−2([0, 1]) = 0, 1

s0
2  ⋃⋯ etc. 

t-−n([0, 1]) is the union of 2n disjoint interval, each of which can be labelled by a sequence of 
branches bn bn-−1 ⋯ b1 of t-−1 (read from right to left).
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Each interval contains precisely one point of an n-cycle, namely limr→∞tbn
-−1 ◦ tbn-−1

-−1 ◦⋯◦tb1
-−1r [0, 1]. The 

monodromy of a bn bn-−1 ⋯ b1 cycle is ±∏k=1
n sbk and each cycle (prime or composite) is represented 

by n
r  points so that

trln

Γn =
b1 b2 …bn

1

∏k=1
n sbk

=
1

s0
+

1

s1

n

(16)

and 
trln

1

ζ𝜁
= exp -−

n

zn

n

1

s0
+

1

s1

n

= ⅇlog1-− z
s0
-− z

s1
 = 1 -−

1

s0
+

1

s1
z (17)

so that γ𝛾 = log 1
s0

+ 1
s1
.

How is it that the infinite product (13) is equal to a linear polynomial? Since each prime cycle in the 
product is weighted by znp we can find the low order Taylor coefficients of 1

ζ𝜁  by looking at the short 

prime cycles. The prime cycles of order up to 3 are 0, 1, 01, 001, 011, so that
trln

1

ζ𝜁
=

1 -−
z

s0
1 -−

z

s1
1 -−

z2

s0 s1
1 -−

z3

s0
2 s1

1 -−
z3

s0 s1
2

⋯= 1 -−
1

s0
+

1

s1
z -−

1

s0 s1
-−

1

s0

1

s1
z2 -−

1

s0
2 s1

+
1

s0 s1
2
-−

1

s0
+

1

s1

1

s0 s1
z3 +⋯= 1 -−

1

s0
+

1

s1
z

(18)

The exact cancellation of high order Taylor coefficients of 1
ζ𝜁  is a special property of piecewise linear 

maps, but the qualitative structure we found for the tent map is valid for any unimodal map repelling 
map f .
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As with the tent map the nth inverse image of the interval f-−n([0, 1]) consists of 2n disjoint intervals 
labelled by binary sequences of length n, each containing an n cycle, so that 

trln

1

ζ𝜁
= 1 -−

z

Λ0
1 -−

z

Λ1
1 -−

z2

Λ01
1 -−

z3

Λ001
1 -−

z3

Λ011
⋯=

1 -−
1

Λ0
+

1

Λ1
z -−

1

Λ01
-−

1

Λ0

1

Λ1
z2 -−

1

Λ001
+

1

Λ011
-−

1

Λ0
+

1

Λ1

1

Λ01
z3 +⋯

(19)

The coefficient of zn no longer cancel exactly in this case, but if f  is smooth 1
Λp1 p2

-− 1
Λp1

1
Λp2

, where 

p1 p2 is the prime cycle obtained by juxtaposing the binary representations of p1 and p2, decays 
exponentially in the length of p1 p2, and the Taylor expansion of 1

ζ𝜁  has a radius of convergence 

larger than 1 (Figures and table shown for the logistic map l4.5).
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n 1
ζ

det escape rate (ζ) escape rate (det)
1 -−0.622222 -−0.571429 0.4744579795951156 0.5596157879354226
2 -−0.0490421 -−0.0791589 0.3667382300226438 0.3758540476477187
3 -−0.00213844 -−0.00555001 0.3609881774789707 0.3616614486696799
4 0.000142274 -−0.0000426985 0.3615305562095015 0.3615098389545287
5 -−3.81085 × 10-−6 -−3.33517 × 10-−8 0.3615096647443185 0.3615096690460328
6 -−6.38317 × 10-−9 1.08885 × 10-−10 0.3615096145164176 0.3615096698423153
7 5.22714 × 10-−9 -−2.71053 × 10-−14 0.3615096735602104 0.3615096698420306
8 -−2.35567 × 10-−10 1.66533 × 10-−16 0.3615096697405278 0.3615096698420332
9 4.22687 × 10-−12 -−2.1048 × 10-−16 0.3615096698389136 0.3615096698420286
10 1.08083 × 10-−13 2.25167 × 10-−16 0.361509669842525 0.3615096698420356

4 Dynamical averages

Symbolic dynamics and pruning
In this section our purpose is to calculate expectation values on the natural invariant measure of 
chaotic unimodal maps with no escaping orbits. The spectral determinant and  1/ζ𝜁  necessarily have 
a zero at z = 1 for such systems. However, before proceeding to study more interesting quantities 
we have to face a new issue.
For this purpose note that each infinite orbit of the repelling maps studied above was uniquely 
determined by its binary symbol sequence, and that each binary sequence corresponds to an 
admissible orbit. This is also true for the Ulam map l4,

except that here the inverse images cover the entire interval, since the invariant set, an attractor, 
covers the entire interval. This is the reason that the dynamics is conjugate to the Bernoulli shift. In 
particular, every repeating binary sequence corresponds to an actual periodic orbit, and the cancella-
tion of terms in the expansion of the dynamical ζ𝜁  function is good.
For r < 4 the situation is no longer as simple. Since max lr = r

4 < 1 the points in the subinterval  r
4 , 1 

are transient, and so are all their inverse images. Consequently, not all symbolic itineraries are 
allowed

cycles-lectures.nb     15



Here, for example, r = 3.831, and the interval labelled 100 is pruned. The 100 periodic orbit is 
therefore also pruned, and there is only one prime 3-cycle. The pruning spoils the cancellation of the 
cycle expansions, which converge much more slowly, and nonuniformly:
n 1

ζr=4(1)
1

ζr=3.9(1)

1 0.25 0.217274
2 0.125 0.0589716
3 0.0625 -−0.139632
4 0.03125 0.0711449
5 0.015625 0.108127
6 0.0078125 0.0449979
7 0.00390625 0.0142551
8 0.00195312 -−0.176742
9 0.000976562 -−0.0221847
10 0.000488281 0.00506693

The convergence improves significantly when the pruning is described by a finite set of pruning 
rules. Then the dynamics is conjugate to a finite Bernoulli subshift, and cancellations becomes 
effective once periods longer than the longest pruning rule are taken into account. An example of 
this type is the logistic map with r = rgm≈3.68, where 1

2  is mapped in four step to the unstable fixed 
point x1

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

The symbolic dynamics is such that every itinierary without two consecutive 0 symbols is allowed. 
To get good convergence the 0 cycle that is not in the attractor has to be pruned as well.
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The symbolic dynamics is such that every itinierary without two consecutive 0 symbols is allowed. 
To get good convergence the 0 cycle that is not in the attractor has to be pruned as well.
n 1

ζr=4(1)
1

ζr=3.9(1)
(with 0) 1

ζrgm(1)
(w/∕out 0)

1 0.25 0.217274 0.404256
2 0.125 0.0589716 -−0.0555656
3 0.0625 -−0.139632 0.21837
4 0.03125 0.0711449 -−0.00843835
5 0.015625 0.108127 0.126682
6 0.0078125 0.0449979 -−0.00128575
7 0.00390625 0.0142551 0.07495
8 0.00195312 -−0.176742 -−0.000196076
9 0.000976562 -−0.0221847 0.0445717
10 0.000488281 0.00506693 -−0.0000299061
11 0.000244141 0.0347074 0.0265413
12 0.000122071 0.000988961 -−4.56151 × 10-−6

13 0.0000610348 -−0.005118 0.0158099
14 0.00003052 0.00488018 -−6.95757 × 10-−7

15 0.0000152584 0.00919761 0.0094184
16 7.62168 × 10-−6 0.00394753 -−1.06122 × 10-−7

Operator eigenvalues as a generating function
Our next goal is to use cycle expansions to calculate expectation values of the form 〈a〉 = ∫a dμ𝜇, 
where a is a function of the dynamical variable x and μ𝜇 is the natural invariant measure of a closed 
discrete dynamical system. For a chaotic system, this expectation value is equal to the long-time 
limit of a dynamical average taken on a typical orbit 〈a〉 = limn→∞

1
n ∑k=1

n an, with an = a(f n(x0)).
The idea of cycle expansions for dynamical averages is to construct a weighted evolution operator 
ℒβ𝛽 whose leading eigenvalue is a moment generating function. Namely, let 
ℒβ𝛽ρ𝜌(x)=∫ⅇβ𝛽 a(f(ξ𝜉)) ρ𝜌(ξ𝜉) δ𝛿(x -− f (ξ𝜉)) ⅆξ𝜉, so that 

ℒβ𝛽
2 ρ𝜌(x) =

ⅇβ𝛽 (a(f(ξ𝜉1))+a(f(ξ𝜉2))) δ𝛿(x -− f (ξ𝜉1)) ρ𝜌(ξ𝜉2) δ𝛿(ξ𝜉1 -− f (ξ𝜉2)) ⅆξ𝜉1 ⅆξ𝜉2 = ⅇβ𝛽 af2(ξ𝜉)+a(f(ξ𝜉)) δ𝛿x -− f 2(ξ𝜉) ρ𝜌(ξ𝜉) ⅆξ𝜉
(20)

and

ⅆxℒβ𝛽
n ρ𝜌(x) = ⅇβ𝛽 a(f(ξ𝜉))+af2(ξ𝜉)+⋯a(fn(ξ𝜉)) ρ𝜌(ξ𝜉) ⅆξ𝜉 = ⅇβ𝛽An (21)

defining An(x) = ∑k=1
n an so that 〈a〉 = limn→∞

〈An〉
n = limn→∞

1
n

ⅆ
ⅆβ𝛽 log ⅇβ𝛽Anβ𝛽=0.

Now, if ⅇs(β𝛽) is the largest eigenvalue of ℒβ𝛽 then ⅇβ𝛽An ~∼
n→∞

ⅇn s(β𝛽) and 〈a〉 = ⅆs
ⅆβ𝛽β𝛽=0

. We already know 

how to use cycle expansion to calculate ⅇs: It is the inverse of smallest positive zero of 1
ζ𝜁β𝛽

, the 

inverse zeta function corresponding to ℒβ𝛽. Retracing the steps leading to (13) we obtain that 

Γβ𝛽,n = ∑n-−periods p
np ⅇβ𝛽 Ap

6Λp7
, where Ap = ∑k af xp

(k) and therefore 

zetcyc

1

ζ𝜁β𝛽(z)
= exp -−

n=1

∞ zn Γβ𝛽,n

n
=

prime cycles p
1 -−

znp ⅇβ𝛽Ap

6Λp7
(22)

To get 〈a〉 we can differentiate the implicit relation 1
ζ𝜁β𝛽ⅇ-−s(β𝛽) = 0 obtaining

∂𝜕

∂𝜕β𝛽
-−s ' (β𝛽) z

∂𝜕

∂𝜕z

1

ζ𝜁β𝛽 β𝛽=0,z=1
= 0 ⟹ 〈a〉 = s ' (0) =

∑p∏q≠p 1 -− 1
6Λq7

 Ap

6Λp7

∑p∏q≠p 1 -− 1
6Λq7

 np

6Λp7

=
[A]

[n]
(23)
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defining []  for additive functions Bp = ∑n bxp
(n), n being additive for the constant function 1.

Examples: Right dwell fraction and the Lyapunov exponent
Two example dynamical averages will be shown for the logistic map. The right dwell fraction is the 
probability  to visit the decreasing part of the map, 𝕡x > r

8  = Θx -− r
8 , where Θ is the unit step 

function
𝕡(x> r

8
) r=4 r=3.9 rgm (w/∕out 0)

1 0.666667 0.672414 1.
2 0.625 0.622759 0.696565
3 0.578947 0.540562 0.731991
4 0.547619 0.636826 0.742197
5 0.52809 0.707581 0.699989
6 0.516304 0.615374 0.756479
7 0.509333 0.58925 0.713609
8 0.505277 0.542435 0.802301
9 0.502951 0.565944 0.75066
10 0.501634 0.585134 0.805908
11 0.500897 0.648843 0.77293
12 0.500489 0.583056 0.800847
13 0.500265 0.575411 0.783433
14 0.500142 0.588143 0.802898
15 0.500076 0.59642 0.790757
16 0.500041 0.587392 0.803952
17 0.500021 0.579733 0.795714
18 0.500013 0.585421 0.805507
19 0.500001 0.582077 0.799432
20 0.500006 0.579021 0.805819
106 orbit 0.499317 0.580483 0.806497
2×106 orbit 0.499615 0.580549 0.806099
Exact 0.5

The second example is the Lyapunov exponent λ𝜆 = 〈log 6f ' (x)7〉
lyapunov r=4 r=3.9 rgm (w/∕out 0)
1 0.924196 0.877429 0.517944
2 0.779791 0.706101 0.439363
3 0.729629 0.560364 0.448537
4 0.709651 0.562051 0.404545
5 0.700935 0.612267 0.40763
6 0.696914 0.593696 0.378749
7 0.694996 0.560029 0.383327
8 0.694062 0.381056 0.363434
9 0.693602 0.441828 0.36846
10 0.693374 0.49078 0.354598
11 0.69326 0.59209 0.359144
12 0.693204 0.509531 0.34948
13 0.693175 0.496493 0.353197
14 0.693161 0.510633 0.346491
15 0.693154 0.52249 0.349351
16 0.693151 0.510767 0.344733
17 0.693149 0.499492 0.346845
18 0.693148 0.506918 0.343693
106 orbit 0.693138 0.495094 0.342219
2×106 orbit 0.693147 0.496758 0.342325
Exact Log[2] = 0.693147

The cycle expansions seem to work, but the performance is mediocre. Although the convergence is 
exponential - the number of significant digits grows linearly with the maximum cycle length, the 
performance is comparable to that of simple orbit averaging, because the number of periodic orbits 
grows exponentially with their length. In practice, it is therefore advantageous to accelerate the 
convergence by replacing the ζ𝜁  function woth a spectral determinant, control of the pruning process 
to allow for better cancellations, tail resummation, or other methods. These are beyond the present 
scope.

5 The Lorenz attractor
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5 The Lorenz attractor

Qualitative dynamics
The Lorenz dynamics has three fixed points, one at the origin, and two, related by symmetry, at the 
centres of the wings. For the standard parameter values all fixed points are unstable, that is, at least 
one of the eigenvalues of the Jacobian matrix ∂𝜕 f /∕∂𝜕x has positive real part. The Jacobian eigenvec-
tors associated with the unstable eigenvalues span unstable directions. Because the Lorenz system 
is strongly dissipative there are also stable directions at each fixed point, so they are all hyperbolic. 
The wing fixed points have a complex conjugate pair of unstable eigenvalues which generate the 
outward spiralling, and a strongly stable eigenvalue which compresses the dynamics to the almost 
two-dimensional wings. The fixed point at the origin has one unstable direction, tangent to the 
intersection of the attractor with the xy plane, a stable direction along the z axis, and a strongly 
stable direction transverse to the attractor

-−20
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20

-−20

0

20

0

20

40

This information is sufficient to understand the qualitative dynamics. Since orbits leave the origin in 
the unstable direction, the unstable manifold of the origin fixed point delimits the outer boundaries of 
the wings. These orbits are outside the wing switching radius, so they continue to the other wing, 
where they reach the as close as possible to the wing fixed points, and start to spiral out close to the 
unstable manifold of the wing fixed points. The intersection of the wing with the two dimensional 
stable manifold of the origin fixed point is the separatrix that separates between staying and swic-
thing orbits
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This information is sufficient to understand the qualitative dynamics. Since orbits leave the origin in 
the unstable direction, the unstable manifold of the origin fixed point delimits the outer boundaries of 
the wings. These orbits are outside the wing switching radius, so they continue to the other wing, 
where they reach the as close as possible to the wing fixed points, and start to spiral out close to the 
unstable manifold of the wing fixed points. The intersection of the wing with the two dimensional 
stable manifold of the origin fixed point is the separatrix that separates between staying and swic-
thing orbits

The Poincaré map
A Poincaré section of a d-dimensional continuous dynamical system is simply a set of intersection 
points of an orbit or orbits with a d -− 1-dimensional submanifold. The key observation is that the flow 
induces a map on the section, the Poincaré or return map, which maps each intersection point to 
the next one. A good section for the Lorenz system is the plane z = r -− 1 which passes through the 
wing fixed points.
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40

The section of the orbit shown above, which starts on the section plane close to the z axis is
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Points that intersect the plane going up are marked in blue and going down in orange. The two 
green points are the wing fixed points, and the red points are on the stable manifold of the fixed 
point at the origin. The point in the center is the initial point, which is not on the attractor. The other 
starting points of the orbit are marked in grey: the orbit first visits the right wing, going up and then 
down at its outer boundary, and then hits the inner part of the left wing, where it starts spiralling 
outward.
It is convenient to define the return map between upward going points. Then a mapped point 
remains on the same wing if it is inside the origin stable manifold intersection (outer red points on 
the graph, with approximate displacement 4.76, 9.92 from the wing fixed point). In this inner region 
the distance of the mapped point from the fixed point is monotonically increasing as a function of the 
distance of the original point. Beyond the separatrix points are mapped to the other wing, and the 
distance of the mapped point from the fixed point (of the new wing) is monotonically decreasing as a 
function of the distance of the original point. This explains the structure of the return map, here 
parameterized by the x distance from the fixed point
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To be sure, the Poincare map arises from an invertible flow, so it is also invertible, and the two 
inverse images of 4, say, are not mapped to precisely the same point; rather their images are very 
slightly spaced in the transverse, fractal, direction of the wing. This distinction however hardly 
matters for the statistical properties we’re studying here. 

Switching rate & the Lyapunov exponent
The Lorenz system dynamics having been effectively reduced to a unimodal map, can now be 
analyzed using the ideas and tools developed above. I will present two examples, the first of which 
is the switching rate γ𝛾d between the two wings. Given that points on the far side of the attractor, with 
x > xm ≈ 4.76 switch and points with x < xm stay, γ𝛾d = 𝕡(x > xm). This gives the discrete version of the 
switching rate, where ‘time’ is measured with attractor cycles. The continuous switching rate γ𝛾c can 
be calculated by the flow-version of the dynamical ζ𝜁  function, which was not presented here, is 
equal to [Θ(x-−xm)]

[T ]  instead of [Θ(x-−xm)]
[n]  for γ𝛾d where Tp is the flow time of cycle p. 

n γd γc
1 1. 1.28309
2 0.753485 0.971894
3 0.636427 0.826553
4 0.568264 0.742421
5 0.524732 0.688835
6 0.495566 0.652998
7 0.475547 0.628446
8 0.457728 0.606528
9 0.450241 0.597445
10 0.445255 0.591357
11 0.439818 0.584699
12 0.430837 0.573687
13 0.43255 0.575727
14 0.430812 0.573571
15 0.426658 0.568471
16 0.421008 0.561554
105/∕t=104 orbit 0.42553 0.5799
2×105/∕t=2×104 orbit 0.426085 0.56975

The second example is the Lyapunov exponent, again with discrete version λ𝜆d and continuous 
version λ𝜆c.
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n λd λc
1 0.776805 0.99671
2 0.763056 0.984239
3 0.744968 0.967519
4 0.729353 0.952879
5 0.716855 0.941041
6 0.707161 0.931811
7 0.699774 0.924768
8 0.691422 0.916192
9 0.688996 0.91426
10 0.687138 0.912609
11 0.684527 0.910018
12 0.678415 0.903354
13 0.680096 0.905212
14 0.679235 0.904315
15 0.676184 0.900934
16 0.671277 0.89537
105/∕t=103 orbit 0.674379 0.907762
2×105/∕t=2×103 orbit 0.674712 0.901022

Auxiliary definitions

In[1]:= lm[r_, x_] := r x (1 -− x)

In[2]:= ilm[r_, s_, y_] :=
1

2
1 + (2 s -− 1) 1 -− 4

y

r

In[3]:= lmx[r_] :=
r

4

In[4]:= rgm =
r /∕. FindRootLast@Differences@NestList[lm[r, #] &, 0.5, 4], {r, 3.68, 3.67}

Out[4]= 3.67857

In[5]:= tent[{ls_, rs_}, x_] := Piecewisels x, x ≤
-−rs

ls -− rs
, rs (x -− 1), x >

-−rs

ls -− rs


In[6]:= itent[{ls_, rs_}, 0, y_] :=
y

ls

In[7]:= itent[{ls_, rs_}, 1, y_] := 1 +
y

rs

In[8]:= plotOrbit[f_, s_, n_] :=
Module[{orbit}, orbit = NestWhileList[f[#] &, s, # < 1 &, 1, n];
Show[Plot[{f[x], x}, {x, 0, 1}, PlotRange → {0, 1}, PlotStyle → Thick], Graphics[

Line[Join[{{orbit[[1]], 0}}, Flatten[Table[{{orbit[[k -− 1]], orbit[[k]]},
{orbit[[k]], orbit[[k]]}}, {k, 2, Length[orbit]}], 1]]]]]]

In[9]:= plotOrbits[f_, s_List, n_, st_List] :=
Module[{orbits}, orbits = NestWhileList[f[#] &, #, # < 1 &, 1, n] & /∕@ s;
Show[Plot[{f[x], x}, {x, 0, 1}, PlotRange → {0, 1}, PlotStyle → Thick], Graphics[

Transpose[{st, Line[Join[{{#[[1]], 0}}, Flatten[Table[{{#[[k -− 1]], #[[k]]},
{#[[k]], #[[k]]}}, {k, 2, Length[#]}], 1]]] & /∕@ orbits}]]]]

In[10]:= lifeSpan[f_, s_, cutoff_] := Module{n = 0}, NestWhileListn++;
f[#] &, s, # < 1 &, 1, cutoff;

n

In[11]:= imapInterval[if_, 0, int_List, fmx_] := if[0, #] & /∕@ int

cycles-lectures.nb     23



In[12]:= imapInterval[if_, 1, int_List, fmx_] := Module[{ii}, ii = if[1, #] & /∕@ int;
If[ii〚2〛 > fmx, Throw["pruned"]];
Reverse[MapAt[Min[#, fmx] &, ii, 1]]]

In[13]:= imapInterval[if_, 0, int_List, fmn_, fmx_] := Module[{ii}, ii = if[0, #] & /∕@ int;
If[ii〚2〛 < fmn, Throw["pruned"]];
MapAt[Max[#, fmn] &, ii, 1]]

In[14]:= imapInterval[if_, 1, int_List, fmn_, fmx_] := Module[{ii}, ii = if[1, #] & /∕@ int;
If[ii〚2〛 > fmx, Throw["pruned"]];
Reverse[MapAt[Min[#, fmx] &, ii, 1]]]

In[15]:= unimodalPO[if_, bits_, iter_] :=

Foldif[#2, #1] &, 0.5, Flatten@ConstantArraybits, Ceiling@
iter

Length[bits]


In[16]:= unimodalPO[if_, bits_, fmx_, iter_] :=
CatchMean@FoldimapInterval[if, #2, #1, fmx] &, {0, fmx},

FlattenConstantArraybits, Ceiling
iter

Length[bits]


In[17]:= unimodalPO[if_, bits_, fmn_, fmx_, iter_] :=
CatchMean@FoldimapInterval[if, #2, #1, fmn, fmx] &, {fmn, fmx},

FlattenConstantArraybits, Ceiling
iter

Length[bits]


In[18]:= monodromy[f_, x_, n_] := Module{λ = 1}, NestWhileλ *⋆= f'[#];
f[#] &, x, # < 1 &, 1, n;

λ

In[19]:= orbitAv[b_, f_, x_, n_] := Module{av = 0}, NestListav += b[#];
f[#] &, x, n;

av

n


In[20]:= lyapunov[f_, x_, n_] := orbitAv[Log[Abs[f'[#]]] &, f, x, n]

In[21]:= lyapunov[f_, x_, n_] := Module{λ = 0}, NestListλ += Log[Abs[f'[#]]];
f[#] &, x, n;

λ

n


In[22]:= trace[f_, if_, n_] := With{iter = 100},
Total@1  Abs[monodromy[f, #, n] & /∕@ unimodalPO[if, n, iter] -− 1]

In[23]:= spectralDet[f_, if_, n_] := Module{tr, det = {}}, tr = trace[f, if, #] & /∕@ Range[n];

DoAppendTodet, -−
1

k
(tr[[k]] + Reverse[det].Take[tr, k -− 1]), {k, n};

det

In[24]:= escapeRate[f_, if_, n_] :=
Logx /∕. FindRoot1 + spectralDet[f, if, n].xRange[n], {x, 0}

In[25]:= escapeRateTable[f_, if_, n_] := Module{sd}, sd = 1 + spectralDet[f, if, n].xRange[n];
Log[x /∕. FindRoot[Take[sd, # + 1], {x, 0}]] & /∕@ Range[n]

In[26]:=
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In[27]:= primeCycles[n_] := (*⋆ With cyclic permutations *⋆)
primeCycles[n] = DeleteRange2n-−1, 2n -− 1,

List /∕@ Flatten
2n -− 1

2# -− 1
primeCycles[#] & /∕@ Drop[Divisors[n], -−1] -− 2n-−1 + 1

In[28]:= primeCycles[1] = {1}

Out[28]= {1}

In[29]:= removeCyclic[1] = {0, 1}

Out[29]= {0, 1}

In[30]:= removeCyclic[n_] := Cases[DeleteDuplicatesBy[Flatten[
Transpose@Table[{k, RotateRight[#, k]} & /∕@ IntegerDigits[primeCycles[n], 2],

{k, 0, n -− 1}], 1], Last], {0, l_List} :> FromDigits[l, 2]]

In[31]:= discardZero[k_] := removeCyclic[k]

In[32]:= discardZero[1] = {1}

Out[32]= {1}

In[33]:= pcinvζ[f_, if_, n_] :=
Module{iter = 100, k, ζ, tfactors}, ζ = Prepend[ConstantArray[0, n], 1];

DoFortfactors = -−
1

Abs[monodromy[f, #, k]]
& /∕@

Foldif[#2, #1] &, 0.5, Flatten@ConstantArray#, Ceiling@
iter

k
 & /∕@

IntegerDigits[removeCyclic[k], 2] , tfactors ≠ {}, tfactors = Rest[

tfactors], ζ += Take[PadLeft[ζ First[tfactors], n + 1 + k], n + 1], {k, n};
Rest[ζ]

In[34]:= pcinvζ[f_, if_, fmx_, n_] :=
Module{iter = 100, k, ζ, tfactors}, ζ = Prepend[ConstantArray[0, n], 1];

DoFortfactors = -−
1

Abs[monodromy[f, #, k]]
& /∕@ Select

unimodalPO[if, #, fmx, iter] & /∕@ IntegerDigits[removeCyclic[k], 2],
NumberQ, tfactors ≠ {}, tfactors = Rest[tfactors],

ζ += Take[PadLeft[ζ First[tfactors], n + 1 + k], n + 1], {k, n};
Rest[ζ]

In[35]:= pcinvζ[f_, if_, fmn_, fmx_, n_] :=
Module{iter = 100, k, ζ, tfactors}, ζ = Prepend[ConstantArray[0, n], 1];

DoFortfactors = -−
1

Abs[monodromy[f, #, k]]
& /∕@ Select

unimodalPO[if, #, fmn, fmx, iter] & /∕@ IntegerDigits[removeCyclic[k], 2],
NumberQ, tfactors ≠ {}, tfactors = Rest[tfactors],

ζ += Take[PadLeft[ζ First[tfactors], n + 1 + k], n + 1], {k, n};
Rest[ζ]
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In[36]:= pcinvζdz[f_, if_, fmx_, n_] :=
Module{iter = 100, k, ζ, tfactors}, ζ = Prepend[ConstantArray[0, n], 1];

DoFortfactors = -−
1

Abs[monodromy[f, #, k]]
& /∕@

SelectunimodalPO[if, #, fmx, iter] & /∕@ IntegerDigits[discardZero[k], 2],
NumberQ, tfactors ≠ {}, tfactors = Rest[tfactors],

ζ += Take[PadLeft[ζ First[tfactors], n + 1 + k], n + 1], {k, n};
Rest[ζ]

In[37]:= escapeRateζ[f_, if_, n_] := Logx /∕. FindRoot1 + pcinvζ[f, if, n].xRange[n], {x, 0}

In[38]:= escapeRateζTable[f_, if_, n_] := Module{sd}, sd = 1 + pcinvζ[f, if, n].xRange[n];
Log[x /∕. FindRoot[Take[sd, # + 1], {x, 0}]] & /∕@ Range[n]

In[39]:=

In[40]:= dynAvg[b_, f_, if_, fmx_, n_] :=
Module{iter = 100, k, ζ, da, na, xp, tfactors, bterms},
ζ = Prepend[ConstantArray[0, n -− 1], 1];
na = da = ConstantArray[0, n];
DoForxp = SelectunimodalPO[if, #, fmx, iter] & /∕@

IntegerDigits[removeCyclic[k], 2], NumberQ;

tfactors = -−
1

Abs[monodromy[f, #, k]]
& /∕@ xp;

bterms = Total[b /∕@ NestList[f, #, k -− 1]] & /∕@ xp;,
tfactors ≠ {}, tfactors = Rest[tfactors];
bterms = Rest[bterms], da += Take[PadLeft[da First[tfactors], n + k], n] -−

Take[PadLeft[First[bterms] First[tfactors] ζ, n + k -− 1], n];
na += Take[PadLeft[na First[tfactors], n + k], n] -−

Take[PadLeft[k First[tfactors] ζ, n + k -− 1], n];
ζ += Take[PadLeft[ζ First[tfactors], n + k], n], {k, n};

Accumulate[da]

Accumulate[na]


In[41]:= dynAvg[b_, f_, if_, fmn_, fmx_, n_] :=
Module{iter = 100, k, ζ, da, na, xp, tfactors, bterms},
ζ = Prepend[ConstantArray[0, n -− 1], 1];
na = da = ConstantArray[0, n];
DoForxp = SelectunimodalPO[if, #, fmn, fmx, iter] & /∕@

IntegerDigits[removeCyclic[k], 2], NumberQ;

tfactors = -−
1

Abs[monodromy[f, #, k]]
& /∕@ xp;

bterms = Total[b /∕@ NestList[f, #, k -− 1]] & /∕@ xp;,
tfactors ≠ {}, tfactors = Rest[tfactors];
bterms = Rest[bterms], da += Take[PadLeft[da First[tfactors], n + k], n] -−

Take[PadLeft[First[bterms] First[tfactors] ζ, n + k -− 1], n];
na += Take[PadLeft[na First[tfactors], n + k], n] -−

Take[PadLeft[k First[tfactors] ζ, n + k -− 1], n];
ζ += Take[PadLeft[ζ First[tfactors], n + k], n], {k, n};

Accumulate[da]

Accumulate[na]
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In[42]:= dynAvgDZ[b_, f_, if_, fmx_, n_] :=
Module{iter = 100, k, ζ, da, na, xp, tfactors, bterms},
ζ = Prepend[ConstantArray[0, n -− 1], 1];
na = da = ConstantArray[0, n];
DoForxp = SelectunimodalPO[if, #, fmx, iter] & /∕@

IntegerDigits[discardZero[k], 2], NumberQ;

tfactors = -−
1

Abs[monodromy[f, #, k]]
& /∕@ xp;

bterms = Total[b /∕@ NestList[f, #, k -− 1]] & /∕@ xp;,
tfactors ≠ {}, tfactors = Rest[tfactors];
bterms = Rest[bterms], da += Take[PadLeft[da First[tfactors], n + k], n] -−

Take[PadLeft[First[bterms] First[tfactors] ζ, n + k -− 1], n];
na += Take[PadLeft[na First[tfactors], n + k], n] -−

Take[PadLeft[k First[tfactors] ζ, n + k -− 1], n];
ζ += Take[PadLeft[ζ First[tfactors], n + k], n], {k, n};

Accumulate[da]

Accumulate[na]


In[43]:=

In[44]:= survIntervals[if_, n_] :=
Partition[#, 2] &@Sort@Fold[if[#2, #1] &, 0., #] & /∕@ Tuples[{0, 1}, n]

In[45]:= itinerary[bits_List] := Module[{w = bits},
Do[If[w[[i]] ⩵ 1, w[[i + 1 ;;]] = 1 -− w[[i + 1 ;;]]], {i, Length[w]}];
w]

In[46]:= survPlot[f_, if_, ng_, ns_] :=
Show[Plot[f[x], {x, 0, 1}, PlotStyle → Black], NumberLinePlot[

Table[Interval @@ survIntervals[if, d], {d, ng}], Spacings → {-−0.2}],
Table[ListPlot[Partition[NestList[f, unimodalPO[if, #, 100], k], 2, 1] & /∕@

IntegerDigits[removeCyclic[k], 2], Filling → -−1,
PlotStyle → ColorData[97][k + 1]], {k, 1, ns}], Graphics[Table[MapThread[
Text, {StringJoin /∕@ Map[ToString, itinerary /∕@ Tuples[{0, 1}, k], {2}],
Outer[Sequence, Mean /∕@ survIntervals[if, k + 1], {-−.2 k -− .15}]}],

{k, ns}]], PlotRange → {-−0.2 (ng + 1), 0.9}]

In[47]:= rectPlot[f_, if_, ng_, ns_] :=
ShowPlot[f[x], {x, 0, 1}, PlotStyle → Directive[Thin]], NumberLinePlot[

Table[Interval @@ survIntervals[if, d], {d, ng}], Spacings → {-−0.2}],
Table[ListPlot[Partition[NestList[f, unimodalPO[if, #, 100], k], 2, 1] & /∕@

IntegerDigits[removeCyclic[k], 2],
Filling → -−1, PlotStyle → ColorData[97][k + 1]], {k, 1, ns}],

GraphicsTableColorData[97][k + 1], Line /∕@

tangentf, #,
0.5

2k
 & /∕@ Partition[NestList[f, unimodalPO[if, #, 100], k],

2, 1] & /∕@ IntegerDigits[removeCyclic[k], 2] , {k, 1, ns},

Graphics[Table[MapThread[Text, {StringJoin /∕@ Map[ToString, itinerary /∕@
Tuples[{0, 1}, k], {2}], Outer[Sequence, Mean /∕@ survIntervals[if, k + 1],

{-−.2 k -− .15}]}], {k, ns}]], PlotRange → {-−0.2 (ng + 1), 0.9}

In[48]:= pruneIntervals[if_, fmx_, n_] :=
Catch[{#, Fold[imapInterval[if, #2, #1, fmx] &, {0, fmx}, #]}] & /∕@
Tuples[{0, 1}, n -− 1]
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In[49]:= prunePlot[f_, if_, fmx_, ng_, ns_] :=
Module[{symbols, intervals, po}, Do[{symbols[k], intervals[k]} =

Transpose[SortBy[#[[2, 1]] &]@Cases[pruneIntervals[if, fmx, k], _List]];
po[k -− 1] = Select[unimodalPO[if, #, fmx, 100] & /∕@

IntegerDigits[removeCyclic[k -− 1], 2], NumberQ], {k, 2, ng}];
Show[Plot[f[x], {x, 0, 1}, PlotStyle → Black], NumberLinePlot[

Table[Interval /∕@ intervals[k], {k, 2, ng}], Spacings → {-−0.2}], Table[
ListPlot[Partition[NestList[f, #, k], 2, 1] & /∕@ po[k], Filling → -−0.2 (ng -− 1),
PlotStyle → ColorData[97][k + 1]], {k, 1, ns}], Graphics[Table[
MapThread[Text, {StringJoin /∕@ Map[ToString, Reverse /∕@ symbols[k + 1], {2}],

Outer[Sequence, Mean /∕@ intervals[k + 1], {-−.2 k + .05}]}],
{k, ns}]], PlotRange → {-−0.2 (ng), 1.0}]]

In[50]:=

In[51]:= lo[x_] := {σ (-−x[1] + x[2]), r x[1] -− x[2] -− x[1] x[3], x[1] x[2] -− b x[3]}

In[52]:= lofp = Solve[MapThread[#1 ⩵ #2 &, {lo[x], {0, 0, 0}}], Array[x, 3]]

Out[52]= {x[1] → 0, x[2] → 0, x[3] → 0},

x[1] → -− b -−1 + r , x[2] → -− b -−1 + r , x[3] → -−1 + r,

x[1] → b -−1 + r , x[2] → b -−1 + r , x[3] → -−1 + r

In[53]:= lojac = Grad[#, Array[x, 3]] & /∕@ lo[x]

Out[53]= {{-−σ, σ, 0}, {r -− x[3], -−1, -−x[1]}, {x[2], x[1], -−b}}

In[54]:= lopar = σ → 10, b →
8

3
, r → 28;

In[55]:= unstable = Drop[Eigenvectors[lojac /∕. lofp[[2]]] /∕. N[lopar], 1]

Out[55]= {{-−0.370014 + 0.410184 ⅈ, 0.0446719 + 0.79125 ⅈ, 1},
{-−0.370014 -− 0.410184 ⅈ, 0.0446719 -− 0.79125 ⅈ, 1}}

In[56]:= us1 = Chop[-−ⅈ (Subtract @@ unstable)]

Out[56]= {0.820369, 1.5825, 0}
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In[57]:= usmPlus = Moduleσ = 10, b =
8

3
, r = 28, fpPos, nudge = 0.01, us1, td = 65., usm,

refine, usm1, usm2, nr = 0, fpPos =  b (r -− 1) , b (r -− 1) , r -− 1;
us1 = Chop[-−ⅈ (Subtract @@ unstable)];
usm = Select[Reap[NDSolve[{x'[t] ⩵ σ (-−x[t] + y[t]), y'[t] ⩵ r x[t] -− y[t] -− x[t]

z[t], z'[t] ⩵ x[t] y[t] -− b z[t], x[0] ⩵ fpPos[[1]] + nudge us1[[1]],
y[0] ⩵ fpPos[[2]] + nudge us1[[2]], z[0] ⩵ fpPos[[3]], WhenEvent[
z[t] ⩵ r -− 1, Sow[{x[t], y[t]} -− Take[fpPos, 2]]], WhenEvent[x[t] < 0,
"StopIntegration"]}, {}, {t, 0, td}]][[-−1, 1]], Positive[Total[#]] &];

Whilenr++ < 450 && refine = First@FirstPosition[Total[(#[[2]] -− #[[1]])] & /∕@
Partition[usm, 2, 1], _?(# > 0.01 &), {"None"}] ≠ "None", usm1 =

SelectReapNDSolvex'[t] ⩵ σ (-−x[t] + y[t]), y'[t] ⩵ r x[t] -− y[t] -− x[t]

z[t], z'[t] ⩵ x[t] y[t] -− b z[t], x[0] ⩵ fpPos[[1]] +
1

2
usm〚refine -−

nr + 1, 1〛 + usm〚refine -− nr, 1〛, y[0] ⩵ fpPos[[2]] +
1

2
usm〚refine -−

nr + 1, 2〛 + usm〚refine -− nr, 2〛, z[0] ⩵ fpPos[[3]], WhenEvent[
z[t] ⩵ r -− 1, Sow[{x[t], y[t]} -− Take[fpPos, 2]]], WhenEvent[x[t] < 0,
"StopIntegration"], {}, {t, 0, td}[[-−1, 1]], Positive[Total[#]] &;

usm = Sort@Join[usm, usm1];
usm;

In[58]:= iUsmPlus = Interpolation[usmPlus]

Out[58]= InterpolatingFunction Domain: {{0.00869, 8.01}}
Output: scalar



In[59]:= lomap[xi_?NumericQ] := Moduleσ = 10, b =
8

3
, r = 28, fpPos, td = 65.,

lx, ly, lz, gr, usm, refine, usm1, usm2, nr = 0, yi, yi = iUsmPlus[xi];

fpPos =  b (r -− 1) , b (r -− 1) , r -− 1;
ReapNDSolvex'[t] ⩵ σ (-−x[t] + y[t]), y'[t] ⩵ r x[t] -− y[t] -− x[t] z[t],

z'[t] ⩵ x[t] y[t] -− b z[t], x[0] ⩵ fpPos[[1]] + xi, y[0] ⩵ fpPos[[2]] + yi,
z[0] ⩵ fpPos[[3]], WhenEventz[t] ⩵ r -− 1 && x[t] > fpPos[[1]] || x[t] <

-−fpPos[[1]], Sow[If[x[t] > 0, x[t] -− fpPos[[1]], -−x[t] -− fpPos[[1]]]];
"StopIntegration", {}, {t, 0, td}[[-−1, 1, 1]]

In[60]:= lomapt[xi_?NumericQ] :=

Moduleσ = 10, b =
8

3
, r = 28, fpPos, td = 65., lx, ly, lz, gr,

usm, refine, usm1, usm2, nr = 0, yi, yi = iUsmPlus[xi];

fpPos =  b (r -− 1) , b (r -− 1) , r -− 1;
ReapNDSolvex'[t] ⩵ σ (-−x[t] + y[t]),

y'[t] ⩵ r x[t] -− y[t] -− x[t] z[t], z'[t] ⩵ x[t] y[t] -− b z[t],
x[0] ⩵ fpPos[[1]] + xi, y[0] ⩵ fpPos[[2]] + yi, z[0] ⩵ fpPos[[3]],
WhenEventz[t] ⩵ r -− 1 && x[t] > fpPos[[1]] || x[t] < -−fpPos[[1]], Sow[t];
"StopIntegration", {}, {t, 0, td}[[-−1, 1, 1]]
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In[61]:= switchRate[td_, xi_] :=

Moduleσ = 10, b =
8

3
, r = 28, fpPos, lx, ly, lz, gr, nr = 0, yi, yi = iUsmPlus[xi];

fpPos =  b (r -− 1) , b (r -− 1) , r -− 1;
NDSolve[{x'[t] ⩵ σ (-−x[t] + y[t]), y'[t] ⩵ r x[t] -− y[t] -− x[t] z[t],

z'[t] ⩵ x[t] y[t] -− b z[t], x[0] ⩵ fpPos[[1]] + xi, y[0] ⩵ fpPos[[2]] + yi,
z[0] ⩵ fpPos[[3]], WhenEvent[x[t] ⩵ -−y[t], nr++]}, {}, {t, 0, td}];

nr

td


In[62]:= lolyapunov[td_, xi_] := Module

σ = 10, b =
8

3
, r = 28, fpPos, lx, ly, lz, lv, lλ, gr, yi, lor, yi = iUsmPlus[xi];

fpPos =  b (r -− 1) , b (r -− 1) , r -− 1;
{lx, ly, lz, lv, lλ} = NDSolveValuex'[t] ⩵ σ (-−x[t] + y[t]),

y'[t] ⩵ r x[t] -− y[t] -− x[t] z[t], z'[t] ⩵ x[t] y[t] -− b z[t], λ'[t] ⩵
Log[Abs[v[t].{{-−σ, σ, 0}, {r -− z[t], -−1, -−x[t]}, {y[t], x[t], -−b}}.v[t]]],

v'[t] ⩵ {{-−σ, σ, 0}, {r -− z[t], -−1, -−x[t]}, {y[t], x[t], -−b}} -−
v[t].{{-−σ, σ, 0}, {r -− z[t], -−1, -−x[t]}, {y[t], x[t], -−b}}.v[t]
IdentityMatrix[3].v[t], x[0] ⩵ fpPos[[1]] + xi, y[0] ⩵ fpPos[[2]] + yi,

z[0] ⩵ fpPos[[3]], λ[0] ⩵ 0, v[0] == {1, 0, 0}, {x, y, z, v, λ}, {t, 0, td};
lλ[td]

td


In[63]:= ilomap = ListInterpolation[Array[lomap, 801, {0.0, 8}],
{0.0, 8}, InterpolationOrder → 3, Method → "Spline"]

InterpolatingFunction::dmval:
Inputvalue {0.} liesoutsidethe rangeof datain the interpolatingfunction. Extrapolationwillbe used. #

Out[63]= InterpolatingFunction Domain: {{0., 8.}}
Output: scalar



In[64]:= ilomapt = ListInterpolation[Array[lomapt, 801, {0.0, 8}],
{0.0, 8}, InterpolationOrder → 3, Method → "Spline"]

InterpolatingFunction::dmval:
Inputvalue {0.} liesoutsidethe rangeof datain the interpolatingfunction. Extrapolationwillbe used. #

Out[64]= InterpolatingFunction Domain: {{0., 8.}}
Output: scalar



In[65]:= iilomap[0] = Interpolation@Array[{lomap[#], #} &, 477, {0.0, 4.76}]

InterpolatingFunction::dmval:
Inputvalue {0.} liesoutsidethe rangeof datain the interpolatingfunction. Extrapolationwillbe used. #

Out[65]= InterpolatingFunction Domain: 3.56×10-−7, 7.85
Output: scalar



In[66]:= iilomap[1] = Interpolation@Array[{lomap[#], #} &, 800 -− 475, {4.76, 8.}]

Out[66]= InterpolatingFunction Domain: {{1.41, 7.85}}
Output: scalar



In[67]:= lomin = 1.41; lomax = 7.84;

30     cycles-lectures.nb


