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1 Introduction

1.1 About this course

Lecturer: Carl Dettmann, contact info at
https://people.maths.bris.ac.uk/~macpd/

18
18

18
19

22
22
23
24

Unit home page: See
https://people.maths.bris.ac.uk/~macpd/ads/

Small

examinable material. It will improve your understanding of the rest

text (including footnotes) 1is supplementary mnon-

of the course material.

1.2 Books etc

None are essential, and there are very many other good
books and internet resources available.

e J. C. Sprott, “Chaos and time series analysis,” OUP
2003. Applied and computational approach, also with
detail on a very large number of example models ap-
pearing in the literature.

e R. L. Devaney “An introduction to chaotic dynam-
ical systems,” Westview Press 2003. More rigorous,
focused on discrete dynamical systems.

e B. Hasselblatt and A. Katok, “A first course in dy-
namics,” CUP 2003. Also more rigorous. Leads to
the more advanced “Introduction to the modern the-
ory of dynamical systems” by the same authors.

e P. Cvitanovi¢ et al “Classical and quantum chaos”
www.chaosbook.org. A free online book detailing
periodic orbit methods for classical and quantum
chaos; we are mostly interested in the introductory
section (Part I).

e G. Teschl “Ordinary differential equations and dy-
namical systems” available online at
www.mat.univie.ac.at/"gerald/ftp/book-ode/

You may also want reference/revision works on program-
ming and numerical methods; online information and
workshops in Bristol are available at
https://www.acrc.bris.ac.uk/acrc/training.htm .

Finally, some of the footnotes refer to the primary re-
search literature (journal articles etc). These may be
accessed by searching for the journal website and then
searching or browsing. Many require a subscription, so
must be accessed from a university computer. Arxiv
preprints are always available free, but may not (yet) have
been refereed. A reference arxiv:1234.5678 refers to the url
arxiv.org/abs/1234.5678 .

1.3 Introduction

If there is a central idea in dynamical systems, it is prob-
ably that rather than describing the, often irregular, be-
haviour x(t) of some real world variable in time directly,
scientific laws often correspond to determining how the
state of the system varies, in the form

%= f(x)
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for continuous time ¢t € R (the dot denotes differentiation
with respect to time ¢), or

Xt+1 = ‘I)(Xt)

for discrete time t € Z. We can then hope to understand
how the complicated function x(t) arises from the explic-
itly known f(x) or ®(x).

Dynamical systems really go back to Newton’s laws of
motion and gravitation (late 17th century), which cor-
respond to ordinary differential equations describing the
motions of N massive bodies such as planets:

. Gmym;
mi; = Z PRE (a5 — ai)

where the index i is over masses, each q; € R3 and |- | is
Euclidean distance on R?. G is a Newton’s gravitational
constant. Any second order equation can be written as
coupled first order equations by making dq,/dt a separate
variable. In mechanics we typically specify an initial value
problem giving positions q; and velocities q; or momenta
m;q; at the initial time. Newton’s equations are an ex-
ample of Hamiltonian dynamics, which has a number of
consequences such as a conserved quantity (the energy)
that we will discuss towards the end of the course.

The two body problem (eg sun and earth) has an exact
solution, which describes well the main features of plan-
etary motion (elliptical orbits etc). Laplace (early 19th
century) realised some philosophical implications of such
an approach:

“We may regard the present state of the universe
as the effect of its past and the cause of its future.
An intellect which at a certain moment would
know all forces that set nature in motion, and
all positions of all items of which nature is com-
posed, if this intellect were also vast enough to
submit these data to analysis, it would embrace
n a single formula the movements of the great-
est bodies of the universe and those of the tiniest
atom; for such an intellect nothing would be un-
certain and the future just like the past would be
present before its eyes.”

Mathematically, we could support this by noting that
the ODEs together with initial conditions on positions and
velocities satisfy conditions for the existence and unique-
ness of solutions, at least for short times:

Definition 1.1. A function f M — M is Lip-
schitz continuous if there is a constant \ so that

d(f(x), f(y)) < Md(z,y) for all z and y.

Here, M is a metric space with distance d(z,y); if M =
R", d is usually Euclidean distance. If we want to be more
precise, we can describe f as A-Lipshitz.

Theorem 1.2. Picard-Lindel6f theorem: Given the
initial value problem z'(t) = f(z(t),t), z(0) = zo € R™,
if f is Lipshitz continuous in x and continuous in t, there
exists € > 0 so that the solution exists and is unique for
t € [—e €.

Thus, given regular initial conditions (ie masses at dis-
tinct locations), we are guaranteed to have a unique so-
lution until/unless either there is a collision or particles
escape to infinity at some finite time.! For more than
two masses the solutions seemed more difficult to find. In
1887 the king of Sweden offered a prize for the solution to
the three body problem, which was won by Poincaré who
demonstrated its intractability, in the process developing
many of the ideas of modern dynamical systems.?

The mathematics of dynamical systems continued to
develop throughout the first half of the twentieth cen-
tury, but the impetus for applications was the advent of
computer simulation and visualisation. Lorenz (1963) ob-
served for a simple model of the atmosphere, the Lorenz
equations
z=uxy— Bz

t=o(y—=z), g=xlp—2)—v,

with constants o = 10, § = 8/3, p = 28 that a small
change in initial conditions led to drastic changes in be-
haviour at later times, the so-called “butterfly effect” in
which a butterfly flapping its wings in Brazil may cause a
hurricane some weeks later in Texas.3

Mitchell Feigenbaum, using only a hand-held calcula-
tor, discovered in 1975 the existence of new mathematical
constants controlling the transition from regular to un-
predictable behaviour in a whole class of discrete time dy-
namical systems, including the extremely simple-looking
(and simplified) model arising from population biology,
the logistic map

Tpt1 = rZn(l — xy)

while in the same year, Li and Yorke published a paper?
in which they showed

1Escape to infinity in finite time was shown to be possible for five
or more masses in Z. Xia, Ann. Math. 135, 411-468 (1992).

2Sensitivity to initial conditions was previously articulated by
Maxwell in his 1873 essay on determinism and free will: It is mani-
fest that the existence of unstable conditions renders impossible the
prediction of future events, if our knowledge of the present state is
only approximate and not accurate. Now, we understand that equa-
tions of motion such as those of Newton approximate a probabilistic
quantum theory, which prevents exact initial conditions of position
and velocity in principle, although classical equations are still a very
good approximation for many processes involving more than a few
elementary particles and many systems with a few particles can be
partly understood “semi-classically,” that is, by relating them to
corresponding classical systems, the field of quantum chaos.

3The Lorenz equations are still under active investigation, for
example new results for the mixing properties (covered later in this
course) are found in V. Araujo, I. Melbourne and P. Varandas, Com-
mun. Math. Phys. 340, 901-938 (2015).

4T.-Y. Li and J. A. Yorke, “Period three implies chaos” Amer.
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Figure 2: The bifurcation diagram of the logistic map

Theorem 1.3. Period three theorem: If I C R is an
interval and ® : I — I is continuous and has a period
three point, then ® has periodic points of all periods.

Here, we use notation ™ to indicate the n-fold compo-
sition ® o ® o ... P, so PV is the identity transformation
and ®' = ®. A periodic point z is a point such that
®P(z) = x, and its period is the smallest such p > 1.

This last theorem suggests that chaos is not only pos-
sible, it is pervasive. Ulam is quoted as saying

Using a term like nonlinear science is like refer-
ring to the bulk of zoology as the study of non-
elephant animals.

Math. Month. 82, 985-992 (1975). The title is the first use of
“chaos” in a dynamical context. Later, they discovered that their
result was a special case of a result proved in O. Sharkovsky, Ukr.
Mat. Zh. 16, 61-71 (1964).

In fact, very few systems of at least this minimal size -
three dimensions in continuous time, one in discrete time
- are completely regular, although such solvable systems
dominate many introductory courses in mechanics and
other fields. A few other systems are completely chaotic,
that we will discuss. Much useful understanding can be
gained from small perturbations about both of these lim-
its. But the “generic” situation of mixed regularity and
chaos, is very incompletely understood.

In the same way as for dynamical systems, geometric
structures now associated with chaotic systems were pro-
posed by mathematicians in the late 19th century; note
particularly Cantor sets, such as the set of real numbers
of the form 3°;a;377 with a; € {0,2}, which is uncount-
able, zero measure, nowhere dense, closed and totally dis-
connected. According to most methods of defining non-
integer dimensions, it has dimension In2/In3 ~ 0.631.
Similarly the Koch snowflake (1904) is a nowhere differen-
tiable continuous curve with infinite length and dimension
In4/1n3 ~ 1.262. The relevance to many physical and bi-
ological phenomena was appreciated and popularised by
Mandelbrot in the 1960s, again with the aid of computer
graphics; he also coined the term fractal.

We discussed astronomy, meteorology and population
biology as having examples of dynamical systems with
interesting behaviour. Many of these have in fact many
degrees of freedom, as do systems of many atoms (molecu-
lar biology and nanotechnology) and “complex systems”®
such as social and financial networks. These kinds of sys-
tems can involve low dimensional dynamics at two lev-
els - where they are built from microscopic interactions
(although may have different collective behaviour), and
where the macroscopic behaviour can be well described
using only a few well-chosen variables. There is both
theoretical and experimental evidence for this, for exam-
ple “centre manifold theory of infinite dimensional sys-
tems”® and Libchaber’s experiments in the early 80s on
Rayleigh-Benard (convective) fluid systems, confirming
Feigenbaum’s theory for a transition to turbulence.”

Thus low dimensional dynamical systems is strongly rel-
evant to current research in

e theory - mathematics, theoretical and computational
physics

e few degree of freedom systems - astronomy, popula-
tion biology

5Note “complex dynamics” often refers to dynamics on C. This
leads to such interesting objects as the Mandelbrot set, but occurs
relatively rarely in applications and unfortunately we will not have
time to discuss it. There is some discussion in the recommended
texts.

SM. Haragus and G. Iooss, “Local bifurcations, center mani-
folds and normal forms in infinite-dimensional dynamical systems”
Springer, 2010.

7A Libchaber, C Laroche, S Fauve. “Period doubling cascade in
mercury, a quantitative measurement”, Journal de Physique Lettres,
43, 211-216 (1982).

Page 3. (©University of Bristol 2017. This material is copyright of the University unless explicitly stated otherwise. It is
provided exclusively for educational purposes at the University and the EPSRC Mathematics Taught Course Centre and is to
be downloaded or copied for your private study only.



1.3 Introduction 1 INTRODUCTION

e small quantum systems - quantum chaos

e effectively small systems - transition to turbulence,
meteorology, chaotic lasers for secure communication
and random number generation

e complex systems - nanoscience, biological, social, fi-
nancial and communications networks

This is a too-brief summary. For example, biology is a
vast source of dynamical problems at all levels consider-
ing interaction and movement of atoms, proteins, cells,
tissues, organs, organisms and entire species.

In this course we will pose and answer some of the ques-
tions: Why does chaos appear in one-dimensional discrete
time systems, but need three dimensions if the time is con-
tinuous? Why are some systems regular, while others are
chaotic? How do fractals arise from dynamics and how
to characterise them? What practical analytical and nu-
merical methods are there for understanding dynamical
systems and fractals?

Finally, we return to the fundamental questions about
determinism and predictability. For regular systems a
small perturbation of the initial conditions leads to only
to bounded or slowly growing deviations in the trajectory,
while for strongly chaotic systems the deviation grows ex-
ponentially. However if we consider not the trajectory it-
self but its average properties, these are perturbed for the
regular system, but typically unchanged for the chaotic
system. Thus a problem with weather prediction is the
presence of chaos, while a problem for climate change pre-
diction is the presence of regularity.
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2 Dynamics and time

2.1 Maps and flows

We have seen two types of dynamical systems so far, dif-
ferential equations such as Newton’s or Lorenz’s equa-
tions, and discrete time systems, such as the logistic
map. In each case there is a on-parameter family of maps
! : X — X on the space X (say R?) which moves for-
ward the dynamics in time by an amount ¢ for any initial
time s:8
x(s + 1) = 0 (x(s))

In the map case t € N and ®! = ® is just the original map,
while for differential equations, (d/dt)x = f(x), t € R and
the ®' is a called a flow, found (if possible) by solving the
differential equation for arbitrary initial condition x:

L pi(x) = f o b'(x)
dt ’
Example 2.1. For the harmonic oscillator (d/dt)(xz,v) =
(v, —x) we have ®(z,v) = (z cos(t) +vsin(t), —z sin(t) +
vcos(t)).

P(x) =x

We can easily see that for either a map or flow, ® sat-
isfies the semigroup property:

(I)S o (I)t _ (I)s+t

and hence

®0(x) =x
Saying a map is invertible means that ®~! : X — X
is uniquely defined, so the ®! form a group under com-
position.? Normally, flows are invertible from the Picard-
Lindel6f theorem.'® For either invertible or non-invertible
maps, ®~! is a function on sets A C X

P HA)={z € X : ®(x) € A}

giving the pre-images of a point or larger set.!! Invert-
ible systems may also be (time)-reversible; this means
that there is a transformation ¢ : X — X satisfying

iodloj=0"

8We assume here that the system is autonomous; more generally
we could consider ® a function of both s and ¢. Generalising dy-
namical results to non-autonomous systems is a popular source of
research problems. In some cases it is useful to add the time as an
extra variable.

91t is also possible to use a semi-group larger than N or R as a
“time” variable; this comes under the name of “group actions,” also
a popular research topic. A famous example is Furstenberg’s conjec-
ture that the system ®(%9)(z) = 23z (mod 1) has no nontrivial
invariant measures. H. Furstenberg Mathematical Systems Theory
1 1-49 (1967).

10Pjecewise smooth flows, which need not be invertible, form an-
other rich source of research problems. See for example M. di
Bernado and S. J. Hogan, Trans. Roy. Soc. A 368, 4915-4935
(2010).

1Sometimes set-valued dynamics is considered in the forward
time direction, too.

Setting t = 0 we note that 72 is the identity, that is, 7 is an
involution (hence the notation). For example, Newton’s
law of gravitation is reversible, with i reversing all the
velocities. 2

Often a system can have more than one description,
using either a map or a flow. These can be related as
follows: A time-one or stroboscopic map is obtained by
considering a flow ®¢ and treating ®! (or more generally
some ®2!) as a map in its own right. An alternative,
and probably more useful approach is the Poincaré map,
defining a hypersurface Y and stopping whenever this is
reached. If the time from one event to the next is

i . ®t
7(y) = min{t : '(y) € Y}
the Poincaré map can be defined as

F(y) =2 ™)(y)

The reverse process is called a suspension: Given a map
F:Y — Y and “roof function” 7 :Y — (0,00), we can
construct a flow on the space X = {(y,s) :y € Y,0< s <
7(y)} in the natural way - increase s until 7(y) is reached,
then apply F and set s = 0.

Example 2.2. For the harmonic oscillator above, and the
Poincaré section (hypersurface) x = 1 the Poincaré map
is F(y) = —y (taking y = v), but note that not all tra-
jectories of the original flow reach it.'> The roof function
18

2 arctan |y| y>0
T(y) = 2 y=0
27 — 2arctan |y| y <0

A dynamical billiard consists of a point particle that
moves freely except for mirror-like reflections with the
boundary, that is, angle of reflection equals angle of inci-
dence. The flow is discontinuous (in the momentum vari-
able) at collisions, so it is natural to consider a Poincaré
section consisting of the boundary.

An induced map is obtained starting from a map
®: X — X and a subset Y of full dimension, and pro-
ceeding in the same manner. This can help if (almost)
all orbits pass through Y and the induced dynamics has
more uniform properties.

Example 2.3. The Farey map is
(I)(x):{ £ o <1/2

— 4> 1/2
which has very slow behaviour near x = 0. Iterating the
left branch we find for small x
P2(g) = == 7
£(@) 1- 2z

J
1_17w

=
88

x

12More on dynamical reversibility can be found in J. A. G. Roberts
and G. R. W. Quispel, Phys. Rep. 216, 63-177 (1992).

I31f you start on the Poincaré section, there are often results that
show you almost certainly return, for example the Poincaré recur-
rence theorem discussed in chapter 6.
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o3 (1) =
L(l’) 1—3z

x
O (1) = —
1(z) 1= ne
Suppose we induce on the right branch, ie Y = [1/2,1).
We take T iterations to return to the right branch, ie

1—y

Fly) = @57 (®r) = =g =

1-y
Ty—(r—1)

Equivalently since we have alternating strings of T — 1
iterations of @y, followed by a single ®r we can consider
the dynamics immediately after the right branch iteration,
e

L= _ 1

G(x) = 2p(P](2)) = )

= -7
1—(r—1)x

This the famous Gauss map, and the T values give the
continued fraction expansion of x. It is much faster to
calculate, and mo longer has a region near zero that be-
haves very differently to the rest of the map, however we
have replaced a map with two branches by one with an
infinite number.

2.2 Numerical considerations

If we have an explicit equation for a map, it is straightfor-
ward to simulate it numerically, although there are issues
to do with instability and finite precision that we will dis-
cuss later.

Similarly, a flow (ordinary differential equation) can be
simulated using standard numerical techniques, which ef-
fectively approximate the stroboscopic map using small
step size, for example the simplest (Euler) method for ap-
proximating x = f(x) is

Ty = o + hf(xy)

This requires extremely small step size for accuracy (which
then takes longer, and suffers from round-off error); a
slightly better algorithm is the midpoint method, which
(approximately) calculates the derivative from the mid-
point of the interval

Tpypn = ¢ + hf(z + gf(xt))

There are a variety of more accurate and reliable meth-
ods discussed in texts on numerical analysis and used by
numerical software.

14 Accuracy is improved by combining linear combinations of the
function evaluated at different times, the Runge-Kutta methods.
Stability is improved by including x4 on the RHS, requiring New-
ton’s method or similar at each step, the implicit methods. Often
these approaches are combined.

In order to compute a Poincaré map, we need to do
more work, however. We need to simultaneously solve the
differential equation, and an algebraic equation in a single
variable, the time. Fast methods for algebraic equations
g(t) = 0 include Newton’s method

tn—i—l =tn —

— another source of discrete dynamical systems. This
converges quadratically (double the number of digits at
each step) for good initial guesses, but no guarantee of
convergence otherwise.'® If there is a change of sign,
g(t1)g(t2) < 0, the bisection method is guaranteed to find
a solution, with linear convergence. There may however
be several changes of sign in the initial interval. So, ide-
ally there should also be a rigorous lower bound on the
time.

Example 2.4. Find the smallest positive solution of at =
sint for 0 < a < 1. Choose tg to be a small positive value.
Since g(t) = sin(t) — at, we know ¢"(t) > —1 and so,
integrating twice

g(t) = = (t = ta)?/2+ (t = tn)g' (tn) + g(tn)

Thus the desired solution of g(t) = 0 is greater than the
smallest root (greater than t,) of this quadratic equation.
Also, since we match both the value of g(t,,) and its deriva-
tive, the iteration will be quadratically convergent like the
Newton method.

An alternative approach is a simple change of variable.
Suppose we have a system with d variables, and we can
write the system in the form

d

di.i :fl(gﬂx27"'7md)
dx; .
T;ij(gvx27'~'vxd)a .722

where the Poincaré section is at ¢ = 0. Then, making g
the independent variable we have

a1
dg fi

dry _ dejdt _ J;

dg dt dg f

In this form we can integrate directly to g = 0.

5Intriguingly, multiplying the last term by a random variable
may sometimes be guaranteed to converge almost surely: H. Sumi
arxiv:1608.05230.
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3 Local dynamics

3.1 Linearised dynamics

Start with the orbit of a one dimensional map, z(n+1) =
®(z(n)), assumed to be smooth. We consider a perturbed

orbit z(n + 1) + é(n + 1) = ®(x(n) + 6(n)). A Taylor
expansion gives
Oz + ) = &(x) + &' ()0 + O(6%)
and so to linear order in 6(0)
5(n+1) = ' (a(n))3(n)
n—1
s(n) = | JI @0 |60
3=0
n—1 .
= H ¢/ o @J |:1:(0) (5(0)
3=0
= (D®")]4(0)6(0)
Where D®" is the derivative of ®".
We can do this also in d dimensions: z;(n + 1) =

®;(x(n)), je€{l,..,d}. A Taylor expansion gives

D (x+6) = +Z ]5 +0(5?)

and so (again to linear order)

5(n+1) = (D®)é(n)

5(n) = (D®)lxtn-)--.
— (D3 |x(0)3(0)

(D(I)) |x(1) (D(I)) |x(0)6(0)

Now D® is the Jacobian matrix of derivatives evaluated
along the orbit, with the sum over 4 giving matrix multi-
plications.'® Note the convention (D®);; = 9;9;.

In the case of a fixed point, we multiply by the same ma-
trix each time, giving (D®)™. If all the eigenvalues of D®
are of magnitude less than one, it can be shown that the
fixed point is asymptotically stable (see the textbook
K&H, Lemma 3.6), that is, all orbits in a neighbourhood
of it approach it. Note that D® need not contract all
vectors, but sufficiently high powers of it do.

Example 3.1. The matriz
1 -1
M= < 12 0 )

16Hence a connection with another active research area, products
of random matrices

has eigenvalues
144

2

which are both of magnitude less than unity. However it
expands the vector (1,0)T to (1,1/2)T, where superscript
T denotes transpose.

)\:

This can be expressed concisely in terms of the spectral
matrix norm

M| = sup |Mv]|

v:|v|=1

where v is a vector. This norm also gives the square-root
of the largest eigenvalue of M7 M.

We see that ||M]| > 1 but |M™| < 1 for all sufficiently
large n.'7

Example 3.2. Find the fized points and corresponding
linearised dynamics for the logistic map ®(z) = ra(1 —x)
and determine their stability. A fized point satisfies x =
®(x) so we have

x=rz(l —x)

2

re‘ —re+x=0

—1
sz,r

A small perturbation around fixed point x* evolves to lin-

ear order as
5(n) = @' (2*)"6(0)
We have ®'(x) = r(1—2x). For x* = 0 we have ®'(z*) =

r so it is stable for —1 < r < 1 (normally we consider only
0<r<4). Atr = =1 the fized point is “marginal” and
we cannot determine its stability from a linear analysis.
For |r| > 1 it is unstable; 6(n) grows exponentially, until
it is large enough for the linear theory to break down. For
x* = (r—1)/r we have ®(x*) = 2 —r. Thus it is stable
for 1 < r < 3. We see that at r = 1 both fixed points
coincide at x* = 0 and change their stability; this is an
example of a bifurcation.

In the case of a periodic point of order p, we can ap-
ply the same analysis to ®P, the p-composed map, thus
we need to study D®P. Note that eigenvalues are in-
variant under cyclic permutations of matrix products, so
we get similar behaviour starting from any of the points
{x, ®(x), ®%(x),... PP~ 1(x)}.

For a flow x = f(x) the same analysis gives, again to
linear order in §(0)

5
0 =
which may be integrated (analytically or numerically) to

5(t) =

17In this situation a natural approach is to redefine the norm to
align with the eigenvectors.

(Df)o(t)

(D84)3(0)
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where ®! is the corresponding flow. Its derivatives satisfy
the matrix differential equation

i(DCI)t) = (Df o ®")(D®")

Do% =71
dt

which in general must be integrated along the trajectory,
an extra d? equations.

We can similarly specialise to the case of fixed points
(®'(x) = x for all t). Here, we see that

DO = exp(t(DJ))

so that the eigenvalues of D®! are the exponentials of
those of Df.

We can also consider periodic orbits (®7(x) = x and
the period is the smallest positive such T'). A (non-fixed)
periodic orbit may be analysed using D®7, which always
has one eigenvalue equal to one corresponding to the flow
direction. If all other eigenvalues are of magnitude less
than one, the periodic orbit is asymptotically stable and
is called a limit cycle (K&H, Sec 2.4.3).

Actually, linear and nonlinear dynamics are related for
many unstable situations also:

Definition 3.3. Two dynamical systems (either flows or
maps) with ®* and W are conjugate if there is an invert-
ible function h satisfying

hod®'=Ttoh

Topological conjugacy requires that h and its inverse
be continuous. Smooth conjugacy requires that h and
its inverse be differentiable (eg C*). Local conjugacy
requires that the relation holds only in the neighbourhood
of a specific point. A related concept is

Definition 3.4. Two flows ®¢ and ¥t are orbit equivalent
if they are related by

(@' (™ (x))) = ) (x)
for h invertible and o an increasing function of t.

Theorem 3.5. (Hartman-Grobman theorem) If a differ-
ential equation has a fized point with Jacobian Df hav-
ing all eigenvalues with non-zero real part (“hyperbolic”),
there is a local topological conjugacy between the linear
and nonlinear flows.'8

Notes: The change of variables is continuous (normally
Holder continuous) — but derivatives may not match or
even exist.'® The non-zero real part is equivalent to D®*

18See Teschl; also note that global versions exist, for example in
P. Zgliczynski arXiv:1405.6733

19Tn two dimensions, life is generally C1 smooth, though: See D.
Stowe J. Diff. Eq. 63, 183-226 (1986) for this, and also a discus-
sion of the resonance conditions (relations between eigenvalues) that
inhibit smoothness.

for the flow having magnitude not equal to one. The
equivalent statement also holds for diffeomorphisms (ie
differentiably invertible maps).

Warning: The word hyperbolic is used in several dif-
ferent senses in dynamical systems and between authors.
The most common other usage would require eigenvalues
with real part less and greater than zero, or magnitude
less and greater than one, as appropriate.

We can also relate the stability of a flow ®!(x) to its
Poincaré map ®7)(x). The chain rule gives

G = 3 e ()i )

> @)+

3@;]
x(n)

8%

The second term evolves the system by a fixed 7, however
T is in general a function of x so this is adjusted by the
flow term f to project the perturbation to the Poincaré
surface Y.

Example 3.6. If we consider the previous examples, har-
monic oscillator with Poincaré section atx =1, y = v, we
have as before, ®*(x,y) = (x cost+ysint, —z sint+y cost)
and 7(y) = 2arctany, y > 0. Using the y-component of
®! and substituting r = 1 we find

5(n+1) dr d d
St 20T T
d(n) dy dr () + dy )
2

= 71+y2(—1COST—ySinT)+1COST
_ 2 1—y? 29/ 1— g2
I T T 1492
= -1

which is just
—y.

the derivative of the Poincaré map F(y) =

If the surface Y is given by the solution of
g9(x) =0

we can find the above derivatives of 7 by implicit differ-
entiation of
g™ (x)) =0

with respect to the coordinates.?? It is clear that (assum-
ing Y is transverse to the orbit and smooth) exponential
growth or decay of a perturbation of a periodic orbit of
the flow evolves at the same rate for the fixed point of the
corresponding Poincaré map.

20 An example where the equation for 7 is not analytically solvable,
but the Jacobian may be obtained by implicit differentiation is given
in J. Lloyd, M. Niemeyer, L. Rondoni and G. P. Morriss, Chaos 5,
536-551 (1995).
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3.2 Linear dynamics

Having seen we can approximate dynamics in the vicinity
of fixed (and periodic) points by linearisation, we now
need to classify such behaviour.

Consider the map

Xi+1 = Axy

where A is a d X d matrix. We can change coordinates
x = Cy (with C invertible) so that

Yitr1 = By

with B = C~'AC. We choose C so that B is in Jordan
normal form, that is, zero except for eigenvalues on the
diagonal, with possibly 1’s immediately above the diag-
onal where there are equal eigenvalues. Specifically, the
columns of C' are right eigenvectors of A, solutions of

(A= X)v=0

If the algebraic multiplicity is greater than the geometric
multiplicity, ie not enough linearly independent eigenvec-
tors exist, we find generalised eigenvectors using

(A — )\I)Vj+1 =CVj

to give a ¢ above the diagonal. The standard Jordan
normal form has ¢ = 1, but it is also convenient to use
¢ = A. Finally if there are complex conjugate eigenvalues
and eigenvectors it is convenient to use the real combina-
tions (v+v*)/2, (v—v*)/(2¢) which lead to a 2 x 2 block

in B of the form
a b
-b a

Alternatively, we can consider the differential equation
y =Dy
with D in real Jordan normal form, having the solution
y(t) = e’y (0)

where the matrix exponential can be defined using the
usual power series. Putting t = 1 we arrive back at the
map case. The exponential of a matrix in Jordan block
form can be found explicitly, for example

. Moot [ M ot
AV 0 e

Thus we reduce to the map case, with the main difference
being that the solution is continuous in t. The boundary
between stable and unstable for a flow is where the eigen-
values of D cross the imaginary axis, while for a map it is
the exponential of this, ie the unit circle.

Case: d = 1. A = X (scalar) and so z; = A\"zg. The
fixed point at 0 is stable if |A| < 1, marginal if |A\| = 1 and

Figure 3: Node

unstable if |A| > 1. The orbit remains on one side of the
fixed point if A > 0 and flips if A < 0.
Case: d = 2, distinct real eigenvalues A and g with

|A| > |p]. We have
A0
B_<0 u)

y1(n) = A"y1(0), y2(n) = pn"y2(0)
thus points lie on the invariant curves

y2| = C|Z/1|1n|“|/1n|/\|

with
c= yQ(O)yl(O)ln [ke]/In [ A

in the map case, and consist of a branch of these curves
(ie choice of signs) in the flow case. These are named

e |\ > 1,|u| > 1: Unstable node
o |\ >1,|pu] < 1: Saddle
e |\ < 1,|p| < 1: Stable node

When one of the eigenvalues has magnitude one, the in-
variant curves become parallel.

Case: d = 2, complex conjugate eigenvalues A\e™". In
this case we use the real form of the Jordan normal form.

B:/\< S w )
COs w

+iw

cosw
—sinw
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Figure 4: Saddle

B — \n ( sin nw )
cos nw
The invariant curves are spirals, and the fixed point is
called a (stable or unstable) focus. If A = 1, the map is
a rotation by angle w and is called a centre. In this case
its properties depend sensitively on w: If w is a rational
multiple of 7, all orbits are periodic, while if not, all orbits

fill the invariant curves densely and uniformly.
Case: d = 2, Equal eigenvalues, proportional to the

identity
A0
o-(0 1)

The map now just scales all directions equally, and the
invariant curves are directed radially.
Case: d = 2, Equal eigenvalues, otherwise.
transform the problem to
A A
0 )

B:<

from which we find
n __\n 1 n
ror(3 1)

y1(n) = A"(y1(0) + ny2(0))
y2(n) = A"y2(0)

so that
CoS nw
— sin nw

We can

Thus

Solving the second equation for n and substituting into
the first, we find

y1(0)
yg(O)

which is a (stable or unstable) degenerate node. When
A = %1 we have (solving from the beginning again)

y1(n) = (£1)"41(0) + ny2(n)

which is a shear.
A similar analysis can be carried out in higher dimen-
sions.

+ In(y2(n)/y2(0))

y1(n) = y2(n) 5\

Example 3.7. Classify the fized point of the map
(x1,22) — (Bx1 + w2, 20 — x1) and give an explicit ex-
pression for the nth iterate. We have

(A

There is a repeated eigenvalue N\ = 2 but only a single
eigenvector vi = (1,—1). Thus we find a generalised
eigenvector

(A= A)vy =2vy

(4 2)w=(5)

for example vy = (2,0)T. Thus we can use

(4%)

C:

Figure 5: Focus
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Figure 6: Centre

Figure 7: Degenerate node

which reduces the problem to:

B=C1'AC = (

2 2
0 2

)

The general solution is (similar to above)
nf 1 n
v =2 (g )y
Using C and C~' to transform back, we find

x(n) = 271 ( n+2 _nn+2 )x(O)

—n
This is a degenerate unstable node.

Example 3.8. Classify the fized point of the damped har-
monic oscillator £ = v, ¥ = —x — av for each possible

«. The matriz
0 1
o= %)

has eigenvalues A = (—a £ Va2 — 4)/2.

For a = 0 we have the undamped harmonic oscillator,
which is a centre. For 0 < a < 2 (underdamped) we have
two complex conjugate eigenvalues with negative real part;
this is a stable focus. For o > 2 (overdamped) we have two
negative real eigenvalues, a stable node. For o =2 (crit-
ical damping) we have both eigenvalues equal to —1. We
need to check the geometric multiplicity. An eigenvector
satisfies

We see there is only a single eigenvector (1,—1)T. Thus
we have a stable degenerate node. For negative o (unphys-
ical) we have similar but unstable behaviour: An unstable
focus for —2 < a < 0, an unstable degenerate node for
a = —2 and an unstable node for a < —2.

3.3 Local bifurcations

Generically we expect the eigenvalues of D®! for a fixed or
periodic point to be hyperbolic, ie differ from magnitude
one, and hence expect node, saddle and focus behaviour
unless there is a good reason, eg a symmetry in the model.
An important exception to this, namely, Hamiltonian dy-
namics, will be considered at the end of the course.

Hyperbolic fixed or periodic points have the impor-
tant property of structural stability, that is, all suf-
ficiently small perturbations?! the perturbed system is lo-
cally topologically conjugate to the original for maps, or
orbit equivalent for flows. More precisely, consider a map
D, R? — R depending on a parameter p € R and C! in
x and . Then, by applying the implicit function theorem
to the equation ¥(x, 1) = ®,(x) —x = 0 we have

2lin a specified topology; we need at least C! to ensure the Jaco-

bian exists and is close to that of the unperturbed system.
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Theorem 3.9. (Lack of bifurcation) Suppose xo is a
hyperbolic fized point of a map ®,, (all eigenvalues of
D®,,, have magnitude different from wunity), then there
are neighbourhoods U of pyg and V of xy and a map
X :U =V sothat x € V is a fized point of ®, if and
only if v = X ().

Apparently the implicit function theorem is only con-
cerned with eigenvalues equal to one, however a change in
stability can be associated with any eigenvalue of magni-
tude one, and we also want to describe higher iterates of
the map, for example an eigenvalue of —1 may be asso-
ciated with a period doubling (below). For a flow, fixed
points may have hyperbolic eigenvalues, however for limit
cycles there is always a unit eigenvalue corresponding to
the flow direction. In this case it is possible to apply the
above theorem to a transverse?? Poincaré map; the period
of the orbit will in general vary with pu.

Conversely, cases where one or more eigenvalues has
magnitude one are sensitive to small effects due to non-
linearity or varying a parameter. As mentioned before,
bifurcations are variations in qualitative behaviour of a
dynamical system due to variation of a parameter. Local
bifurcations are due to eigenvalue(s) of D®* for a fixed or
periodic point reaching magnitude one.

In order to analyse bifurcations, we perform Taylor se-
ries expansions®® in both the dynamical variable(s) (eg x)
and parameter (eg pt), locating the fixed point without loss
of generality at « = 0 for all 1 and the bifurcation point at
1t = 0. As with the linear maps above, coordinate changes
(in general nonlinear) can be used to reduce many prob-
lems to certain “normal forms”, including forcing higher
order terms to vanish.2*

Now, we restrict to one-dimensional maps and flows.
The most fundamental bifurcation is that of the fold (also
called tangent bifurcation) with normal forms

i =p—a?

2
Tntl —Tp = 4 — Ty

for flow and map respectively. Here p is the parameter.
For p < 0 there are no fixed points, while for u > 0 there
are two, at z = £,/p. Differentiating the right hand sides,
we find to linear order

0= —-2x8

6n+1 = (1 — 237)(5n

22That is, not parallel to the flow.

23We assume here that the dynamical system has sufficient
smoothness (continuous derivatives). An active area of study is
that of bifurcations for non-smooth systems, see eg di Bernado and
Hogan, Phil. Trans. Roy Soc A 368, 4915-4935 (2010).

24Mathematical justification for this kind of approach comes from
centre manifold theory; see Wiggins, Introduction to applied nonlin-
ear dynamical systems and chaos, Springer 2003

u
Figure 8: The fold bifurcation. Here, and in the later
figures, solid lines indicate stable fixed points and dotted
lines unstable fixed points.

Thus the fixed point at = ,/u is stable, while the fixed
point at x = —,/u is unstable.

This bifurcation is itself structurally stable: A smal
perturbation in the family of systems can be mapped back
to the original by a topological conjugacy together with a
reparametrisation of y. Its generality is represented by a
theorem, proved using the implicit function theorem:26

125

Theorem 3.10. (Fold bifurcation) Suppose
1. ©,,(0)=0
2. @, (0)=1
3. @5 (0) #0
4 5% (0)#0

O Ho
Then there is an interval I about zero and a smooth func-
tion p: I — R such that

Q) () =2
as well as p(0) = po, p'(0) =0, p"”(0) # 0.

Thus for every x close to the bifurcation value (here,
zero) there is a p giving = as a fixed point. The function
has a quadratic shape, giving no fixed points on one side of
1o and two on the other. Notice we have used the implicit
function theorem with different variables here - for the
“no-bifurcation” theorem we could vary p and always find
a fixed point x, while here we vary x and find a parameter
p = p(x) for which it is fixed. As we know, the p on one
side of pg have no fixed points.

The transcritical bifurcation has normal form

& = px — x>

25That is, C?
26See eg Devaney.

Page 12. ©University of Bristol 2017. This material is copyright of the University unless explicitly stated otherwise. It is
provided exclusively for educational purposes at the University and the EPSRC Mathematics Taught Course Centre and is to
be downloaded or copied for your private study only.



3.3 Local bifurcations

3 LOCAL DYNAMICS

u
Figure 9: The transcritical bifurcation.

Tn+l — Tpn = Bp — Ii
from which we find fixed points at * = 0 and = u, which
coincide at p = 0. To linear order we have

6= (u—22)d

Ons1 = (14 p —2x)d,

so that x = 0 is stable for p < 0 while z = p is stable
for 4 > 0. The two fixed points thus switch stability at
the bifurcation. This bifurcation is not structurally stable
unless restricted to dynamics exhibiting a fixed point for
an interval around p = 0.

The supercritical pitchfork bifurcation has normal
form

i = px — 2>

3
T+l — Tp = UTn — T,

from which we find fixed points at z = 0 and (for p > 0)
+,/pt. To linear order we have

6= (u—3z2)6
Ong1 = (1 4+ p—322)8,

so that = = 0 is stable for ¢ < 0 and the two other fixed
points are stable for p > 0. The subcritical case has a
plus in the first equation, leading to two fixed points that
are unstable and exist at u < 0. This bifurcation is not
structurally stable unless restricted to systems with odd
Symimetry.

In addition, maps can have fixed points with eigenvalue
—1 which has no analogue for flows. This leads to a bifur-
cation unique to maps (or Poincaré sections of flows), the
flip or period doubling bifurcation, with normal form

_ 3
T4l — Tn = UTn — Ty

Note the extra minus on the left hand side. Again, there
is a fixed point at x = 0 which is stable for y < 0. There

u
Figure 10: The supercritical pitchfork bifurcation. With
the solid curves as period two orbits, it represents a period
doubling bifurcation. With the solid curves as stable limit
cycles, it represents a Hopf bifurcation.

u

Figure 11: The subcritical pitchfork bifurcation (or period
doubling, or Hopf, as in Fig. 10).

are no other fixed points, however the twice iterated map
gives

Tpyo = (14 p)2en — (L4 p) (2 + 20+ p°)a;, + O(x7)

which is the correct form for a pitchfork bifurcation. Thus
there is a period two orbit present and stable for pu >
0. This bifurcation is structurally stable; in particular a
quadratic term can be removed by a conjugation of the
form h(z) =z + ax® + .... A relevant theorem is thus

Theorem 3.11. (Period doubling) Suppose

1. ©,(0) =0 for all p in an interval around py.

2. @, (0)= -1
(@3’
3. Z5E(0) £ 0.

Ho

Page 13. ©University of Bristol 2017. This material is copyright of the University unless explicitly stated otherwise. It is
provided exclusively for educational purposes at the University and the EPSRC Mathematics Taught Course Centre and is to
be downloaded or copied for your private study only.



3.4 Local bifurcations in the logistic map

3 LOCAL DYNAMICS

Then there is an interval I around zero and a function
p: I — R such that

Qo) () # 2,

Note that in the period doubling bifurcation, the fixed
point changes stability without another fixed point being
created or destroyed; the object created is a period two
orbit.

There are higher dimensional analogues of these bifur-
cations, for example adding an expanding or contracting
direction as with § = cy with ¢ # 0 (and similarly for
a map) to the fold gives a generic saddle-node bifurca-
tion in which a saddle and node are created. Sometimes
the one-dimensional fold is called a saddle-node for this
reason.

There is also one different and commonly encountered
bifurcation found in higher dimensional flows.2” The
Hopf (or Poincaré-Andronov-Hopf) bifurcation has nor-
mal form in polar coordinates

Py (@) =

P =r(p—r?)
0=1
We see that in the r variable this is just a pitchfork bifur-
cation, however r > 0 is no longer a point, it is a circle.
Hence the stable focus at ¢ < 0 has become a limit cy-
cle. As with the pitchfork, there is a subcritical version

obtained by changing the sign. This bifurcation is struc-
turally stable.

Theorem 3.12. (Hopf bifurcation) Suppose a flow in R?
x = fu(x) satisfies f,(0) = O for all p and that Df,
has eigenvalues a(p) £ i6(pn) with a(0) = 0, B(0) # 0,
a’(0) # 0, then any neighbourhood of the origin contains
a nontrivial periodic orbit for some p.

Example 3.13. Consider the linear flow

. 1
= (1)

Then o« = p and B = 1. The conditions of the theorem
are satisfied, but we find that the periodic orbits exist only
for p = 0 (harmonic oscillator). This is equivalent to
replacing v — 2 by u in the normal form.

Example 3.14. The van der Pol oscillator (used for ex-
ample in electric circuits) has equations

F4+bz?—1Di+2=0
Writing y = & we have

T=y

27The map version is called a Neimark-Sacker bifurcation, but it
is significantly more complicated due to resonance phenomena, in
particular if the eigenvalue is a kth root of unity for k < 4.

-05 + 4

-1 I I
-1 -0.5 0 0.5 1

Figure 12: The logistic map ®,. for r = 0.7, 1, 1.3 illustrat-
ing the transcritical bifurcation.

g=b(l—a*)y—u

This has a fixed point at the origin with derivative

pr=(50)

and hence o = b/2, § = /1 —b%/4. Thus there is a

periodic orbit near b = 0. Note however that again this
corresponds to b = 0 exactly (harmonic oscillator). For
b > 0 there is a limit cycle in this system, but it is a finite
distance from the origin, and so not directly related to the
Hopf bifurcation.

3.4 Local bifurcations in the logistic map

The logistic map rz(1 —z) provides examples of several of
these bifurcations. As discussed previously, there are two
fixed points, x = 0 and « = (r — 1) /r with stability eigen-
values r and 2—r respectively. Both are non-hyperbolic at
r = 1 so we consider the dynamics in that region, writing
r=0,u=r—1

(1 + /'4)671(1 - 671)
= (1+p)dy — & +O0(ndy. 5,)
which corresponds to a transcritical bifurcation.
There is another non-hyperbolic point at » = 3. Here
we have for x = 2* 4+ 6, 2* = (r—1)/r, u=r—3:
O, (2" +0) = z* = (1+p)d — (3+ p)o?
2 (2" +0) = a*+ (14+p)?6 —p(l+p)(3+p)o*+...

5n+1
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so we can see the conditions of the period doubling the-
orem are satisfied, and we have created a stable period 2
orbit. Analysing this orbit in the same way, we find that
it too undergoes a period doubling bifurcation to a period
4 orbit at r = 1 + /6.28

This mechanism explains the appearance of the periodic
orbits which are powers of two, but not the others, for
example the period 3 window. The map ®2 has, for large
r, maxima corresponding to orbits that reach the highest
point of the map in the third iteration: zg — x; — 1/2 —
r/4. The largest value of z¢p ~ 0.9. As r increases, this
peak rises until a point near is top is tangent to the line
y = x, making a fixed point of ®3 which is thus a period
3 orbit of ®. Beyond this point, the peak intersects the
line twice, making a stable and an unstable fixed point of
®3: A fold bifurcation. The relevant parameter value is
r=1+8%

It is helpful to analyse the behaviour of orbits close to
these periodic points. In the case of a stable periodic
orbit, 0 < |D®?| < 1, we know that the perturbation
O0p = T, — x* evolves as

Sntp = (DBP)6,(1 4+ O(6,,))

28Tt might be best to enlist the aid of a computer algebra package
such as maple or mathematica for this.

29This is not easy to derive; if you want to give up, read J. Bech-
hoefer, Math. Mag. 69, 115-118 (1996).

0.8 r .

0.6 J

04 r .

0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Figure 13: The map ®2 for r = 2.8, 3, 3.2 illustrating the
first period doubling of ®,., which is a pitchfork bifurcation
of ®2.

0.8 .

0.6

0.4

0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Figure 14: The map ®7 for » = 3.8,1 + V/8,3.856 illus-
trating the birth of a stable and unstable pair of period
three orbits in a fold bifurcation.
Iterating this we find

Onp = (DPP)"60(1 + O(do))

where the coefficient of the correction term is a convergent

Figure 15: The period 3 window in the logistic map
(blowup of Fig 2), together with the unstable period 3
orbit (dotted line).
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geometric series.
If D®P = 0 (that is, 1/2 is one of the points in the orbit)
we have a superstable orbit;?? typical behaviour is

Onsp = COL(1+ O(0,))

leading to quadratic convergence, similar to the Newton-
Raphson method:

dnp = exp[2"™ Indo (1 + O(do))]

If D®P = 1, we have two cases. In the transcritical
bifucation at r = 1 and later fold bifurcations we have

Bnsp = 0p — 62

This decreases to zero (the fixed point is still marginally
stable), but not exponentially. We see that the equation
can be satisfied order by order with

Sp=cn"' +0(n?)
At the left of each period doubling interval we have
Sntp = On — Oy +O(05)
which is satisfied by

1
V2en

These effects are important for numerical simulation.
If we simulate the map directly with double precision
(roughly 16 digit) arithmetic, we cannot expect to get
closer than about 107163 ~ 1075 at period doubling
parameters, since the increments §2 are smaller than
the roundoff. Even getting this far will take of order
072 ~ 10! iterations. If the application allows super-
stable parameter values instead, these are clearly prefer-
able.

571 - + O(n_3/2)

3.5 General one dimensional maps

The logistic map is interesting as the quadratic (hence
perhaps simplest nonlinear) example of one dimensional
maps, but it is important to know how many of its proper-
ties apply to other examples. The answer is, surprisingly
many. We already met the period three theorem in the
introduction. For the remaining results the main property
we need is that of negative Schwarzian derivative:

Definition 3.15. The Schwarzian derivative of a func-
tion f(x) is

@) 3 @)

fix) 2 f(x)?
30We can generalise superstable orbits to study orbits for which
the critical point is pre-periodic rather than periodic. See R. V.

Jensen and Christopher R. Myers. “Images of the critical points of
nonlinear maps.” Phys. Rev. A 32 1222-1224 (1985).

S[f]

If a map ® has negative Schwarzian derivative (this
statement always means for all z), so do all its iterates
®" for n > 2. Using this condition we have

Theorem 3.16. (Singer) If ® is piecewise monotonic
with 1 intervals and has negative Schwarzian derivative
within each interval, ® has at most [4+1 stable or marginal
periodic orbits, obtained as limits of the orbits of its | 4+ 1
local extrema.

For the logistic map, the stable/marginal periodic orbits
are either the fixed point at zero (found from iterating the
endpoints of the interval) or at most one found by iterating
the critical point = 1/2.

Another interesting feature is that of Feigenbaum uni-
versality. The period doublings in maps with negative
Schwarzian derivative and a single quadratic critical point
occur at shorter and shorter intervals in r, such that the
ratio of consecutive intervals
—Tn—1

. Tn
6 = llm _—
n—00 I'pt1 — Tn

exists and is equal to 4.6692.. ., independent of the map.
The reason is that at the endpoint, the map ®,__ tends,
under the operation of doubling and scaling, to a univer-
sal function, the fixed point of the functional dynamical
system

R® = a®?(za)

for a universal constant @ = —2.5029 . ... This fixed point
(the solution of R® = &) has a single unstable eigen-
value given by . The remaining infinitely many dimen-
sions are contracting (hence stable). Thus the fixed point
may be reached by varying the single parameter r. Rig-
orous proofs of these statements exist, but are technical
(see K&H, section 11.3). Maps with higher order critical
points, such as r[1/2% —|1/2 — z|*], k > 2 have a separate
universality class (hence ¢ and « constants) for each k.
Note that this terminology, “universality,” “renormalisa-
tion,” comes from an analogy with the physics of phase
transitions.

Example 3.17. The map ®(x) = rsinwx has negative

Schwarzian derivative and a single quadratic critical point
on [0,1] forr € (0,1].
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Figure 16: The main bifurcation cascade of the logistic
map (blowup of Fig. 2).
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4 Global dynamics

4.1 Stable and unstable manifolds

The behaviour of orbits close to nodes and focus points
(ie with eigenvalues all stable or all unstable) is straight-
forward. However for saddle points we want more precise
understanding than provided by the Hartman-Grobman
theorem. The following applies to either invertible maps
or flows:

Definition 4.1. The stable manifold of a point x is
W (x) = {y : |2"(y) — @' (x)| = 0,¢ — oo}
while its unstable manifold is
W (x) ={y :[2~"(y) = @ (x)| = 0,¢ — oo}

For linear maps these are linear subspaces E° and E"
of dimension given by the number of stable and unsta-
ble eigenvalues respectively, and the rate of convergence
is exponential. The linear spaces are spanned by the rele-
vant eigenvectors and (in the degenerate case) generalised
eigenvectors. Given a neighbourhood U of a fixed point,
we define local stable and unstable manifolds as

Definition 4.2. The local stable manifold of a fixed point
X 18
Wie(x) = {y:[®'(y) — ®'(x)| = 0,t — o0;

'(y) € U,t > 0}
while its local unstable manifold is
Wige(®) = {y:[@7"(y) = 27" (x)] = 0,¢ — oo
o !(y) e U,t > 0}

We have

Theorem 4.3. (stable manifold theorem) Each hyper-
bolic fized point x has a neighbourhood in which W _(x)

is a manifold of the same dimension as, and tangent to,
E*(D®|y).

Reversing time, we obtain the same result for unstable
manifolds. For non-hyperbolic fixed points, there is also
a centre manifold tangent to the corresponding linear
subspace. It is however in general less smooth than the
dynamics, and may not be unique. However the Taylor
expansion is unique - centre manifolds may only differ by
an amount smaller than any power of distance (eg expo-
nential). The centre manifold is important as it controls
bifurcations and its Taylor series expansion is used to de-
rive normal forms for these.

A manifold is a set which has locally the same topolog-
ical and differential structure as Euclidean space. We can
apply the dynamics to obtain global manifolds from the

local ones, however the theorem does not guarantee these
sets to be smooth or continued indefinitely (and hence
they may not be manifolds in the usual sense). The global
manifolds may also be dense in X.

Example 4.4. The map ®(z,y) = (z/2,2y—1523/8) has
a fized point at (x,y) = (0,0). Its linearisation is

(4 2)

thus it is a saddle point. We have W*(0,0) is the y-azis,
and W#(0,0) is the curve y = x3, which is tangent to the
x-aris, which is the stable space.

Note that while the definitions of manifolds apply
equally to invertible maps and flows, in the map case a sin-
gle orbit gives only a discrete set of points on the manifold,
while for a flow it traces out a one dimensional manifold.
This is similar to the invariant curves we saw in the case
of linear dynamics. Numerically, a one-dimensional un-
stable or stable manifold can be estimated by (forward or
backward) numerical integration of points near the fixed
point, but higher-dimensional manifolds often need more
specialised methods>!

The definitions for stable and unstable manifolds can be
applied to more general sets than fixed points and periodic
orbits. The linearised map gives an x-dependent linear
map D®|x on perturbation vectors. A hyperbolic set
A C X is a set for which each point € A has stable and
unstable spaces of perturbations®? £/ (x) which span the
full space of perturbations, and for which perturbations in
these spaces decay exponentially (in positive or negative
time, respectively).>> An Anosov map is one for which
the whole space X is a hyperbolic set, and a an Anosov
flow is one for which there is also a one-dimensional centre
space corresponding to the flow direction.?*

4.2 Homoclinic and heteroclinic orbits
and bifurcations

A homoclinic orbit is one contained in both the sta-
ble and unstable manifolds of a single fixed point, thus
it approaches the fixed point for both limits ¢ — +oo0. A
homoclinic point is a point on such an orbit. Similarly a
heteroclinic orbit is one that approaches different fixed

31See B. Krauskopf, H. M. Osinga, E. J. Doedel, M. E. Henderson,
J. Guckenheimer, A. Vladimirsky, M. Dellnitz and O. Junge, Intern.
J. Bifur. Chaos, 15, 763-791 (2005).

32Technically, sub-bundles of the tangent bundle.

33From this definition it follows that the spaces depend con-
tinuously on x and are invariant under the dynamics, that is,
(D®)xES = E(‘%(x) and the same with s replaced by w. For more
details, see the scholarpedia article on hyperbolic dynamics.

34 Anosov systems are rare in physics; the first mechanical example
was probably the triple linkage: T. J. Hunt and R. S. MacKay,
Nonlinearity 16 1499-1510 (2003); M. Kourganoff, Commun. Math.
Phys. 344 831-856 (2016).
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points for ¢ — 400, a heteroclinic point is a point on
such an orbit, and a heteroclinic cycle is a sequence
of homoclinic and/or heteroclinic orbits returning to the
first fixed point. The consequences of these orbits differ
substantially between maps and flows. We have

Theorem 4.5. (Poincaré-Bendizson tricotomy) For
flows in R%: Suppose a forward orbit {®'(x),t > 0} is
contained in a compact set containing a finite number of
fized points. Then its w-limit set is either

o A fixed point
e A periodic orbit
e A finite or countable heteroclinic cycle

Here, the w-limit set is the set of accumulation points
of the forward orbit; the time reverse is called the a-limit
set. Thus flows on the plane cannot be chaotic. The
countable case is pathological — very mild conditions are
needed to ensure a fixed point has only finitely many ho-
moclinic orbits. Notice that a heteroclinic cycle is not an
orbit of the system, however it can be the limit of a orbit
that approaches it from the outside or inside. Such an
orbit spends increasingly long near the fixed points, and
so will have average behaviour - if the relevant limits exist
- that is related to these fixed points.

On higher genus surfaces, such as the torus, more com-
plicated behaviour can occur, for example an irrational
translation ((£,y) = («, () with « and § incommensu-
rate) leads to a dense future orbit, so the w-limit set is
the entire torus.?® On the other hand, for a map a sin-
gle homoclinic point with transverse stable and unstable
manifolds is sufficient to generate a chaotic “homoclinic
tangle”; see Fig. 17.

Many homoclinic and heteroclinic orbits are not struc-
turally stable - a small perturbation will cause the orbit
to miss its intended fixed point, or cause the stable and
unstable manifolds of a homoclinic point to become trans-
verse: These lead to various kinds of global bifurcations,
ie changes to the structure of orbits over a wide region as
a result of a parameter change.

Example 4.6. The Duffing oscillator is given by
i+bi+ (23 —x)=0

It has fized points at x = —1,0,1. The fized point at z = 0
s a saddle. The fized points at x = £1 are stable foci for
b > 0 and unstable foci for b < 0. At b =0 the fized point
at x = 0 has a pair of homoclinic orbits encircling each of
the other fixed points, which become heteroclinic orbits for
b # 0. The structure of the orbits is topologically distinct
forb>0 and b <O0.

35Dynamics of translations on flat surfaces of higher genus (ie with
singular points) is a popular research field, related to that of billiards
in polygons with angles that are rational multiples of 7.

!

Figure 17: Stable and unstable manifolds for the map
O(x,y) = (3(x + (x —y)?), (y + (z — y)?)/3) with inverse
& Yx,y) = (/3 — By —=x/3)2,3y — (3y —x/3)?), showing
a homoclinic tangle.

Instead of a focus, the trapped part of the manifold
could also approach a periodic orbit or heteroclinic cycle.
Thus a homoclinic bifurcation may also arise as a collision
of a periodic orbit and a saddle point. For maps and for
d > 3 flows a wider variety of possibilities occurs.

Example 4.7. The driven pendulum (&,0) =
(v,—w?sinz + AsinQt) ezhibits qualitatively differ-
ent behaviour for zero and non-zero driving coefficient

A. For A = 0 there is a homoclinic connection from
x = 7 to the equivalent version x = —m. For non-zero
A we can consider the stroboscopic t = 2rQ~' map,

which is mow an autonomous two dimensional map.
Typical perturbations of the homoclinic connection leads
to transverse manifolds and chaos in the vicinity of this
orbit for arbitrarily small A.

Remark: The existence of connections in unperturbed
versions of both Duffing and pendulum models is because
they are Hamiltonian and so have a conserved energy. The
level curves of energy are invariant under the dynamics,
so that homoclinic orbits are typical.

4.3 Attractors and crises

A final category of global bifurcations is where the change
is related to larger attractors than stable fixed points or
limit cycles (recall the Lorenz attactor, Fig. 1); these are
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called crises. There are varying definitions of attractor in
the literature®®

Definition 4.8. Attracting set: A compact invariant set
A C X that has a neighbourhood U such that A =
N2 24 (V)

If ®'(U) C U for all t > 0 for a compact set U then the
above intersection will always lead to an attracting set.
Attracting sets are robust: A map ® which is uniformly
close to ® has an attracting set A c U which is close to
A, similarly obtained by taking the intersection of forward
images of U.

Definition 4.9. Attractor: An attracting set containing
a dense orbit.

This means an attractor does not contain other attrac-
tors. Attractors may be (marginally) stable fixed points
or limit cycles. They can also be more complicated chaotic
and fractal objects such as the Lorenz attractor, and then
are often called strange attractors. They are chaotic
in that there is still sensitive dependence on initial condi-
tions: Any periodic orbits within the attractor will have
both stable and unstable directions. The basin of at-
traction B(A) is the set of points whose w-limit set is
contained in A. The basin boundary is its boundary
OB(A).

Similarly

Definition 4.10. Repelling set: A compact invariant
set R C X that has a neighbourhood U such that R =
N @ 4(U).

Definition 4.11. Repeller: A repelling set containing a
dense orbit.

Note that a repeller for non-invertible map may contain
other repellers, for example a chaotic repeller may contain
repelling periodic orbits. On the other hand for reversible
dynamics the involution maps attractors to repellers and
vice versa.

A rough classification of crises is given by

Boundary crisis An attractor touches its basin bound-
ary; beyond this crises orbits will eventually leave the
attractor.

Interior crisis An attractor touches an unstable peri-
odic orbit within its basin of attraction, and expands
in size.

Attractor merging crisis Two or more attractors
touch an unstable periodic orbit on their mutual
basin boundary.

36See the scholarpedia entry on Attractor

The logistic map has examples of the first two of these.
The set displayed on the bifurcation diagram for 0 < r < 4
is the attractor, whether a stable fixed point or periodic
orbit or chaotic set. For 1 < r < 4 the set U may be taken
to be an interval of the form [1 —€,1 + €]. At the Feigen-
baum transition point, the set is uncountable.?” Beyond
this point, if the attractor is a chaotic set it contains a zero
measure set of unstable periodic orbits (there are other or-
bits, eg = 0 that are not contained in it, however). The
set of periodic orbits is countable, but the closure of the
set includes uncountably many aperiodic orbits, some of
them dense in the set (we will see this in the following
sections). We see that for a map, an attractor need not
be connected. For a flow, it is, since it must be invariant
under the dynamics.

Boundary crisis At r = 4 the attractor fills the whole
interval [0, 1] and hence touches its basin boundary. Be-
yond this, orbits will remain in the interval only if they
avoid the interval mapping above one, ie

11 r—4<<1 14 r—4
2 r . 2 T

Preimages of this “hole” cover the interval densely, how-
ever none of the (now unstable) periodic orbits have been
destroyed, so there is a zero measure set of orbits that
never escape. The set, now a repeller, is uncountable and
comprises the closure of these orbits. It contains contains
other repellers, for example the individual unstable peri-
odic orbits. This repeller, and many others, is an example
of a hyperbolic set.

Interior crisis Similarly, the period 3 “window” ends
at r ~ 3.8568 with an interior crisis - the 3-fold attractor
touches the unstable period 3 orbit that was created with
the fold bifurcation at r = 1 + v/8 &~ 3.8284 and expands
to fill the entire region. The unstable period 3 orbit is
in fact the edge of a repeller comprised of the closure of
the remaining infinitely many unstable periodic orbits, so
this crisis may also be viewed as a collision between an
attractor and a repeller.

Attractor merging crisis The attractor merging crisis
is also called a symmetry breaking crisis as normally
the two attractors are symmetrically related. For exam-
ple, the antisymmetric logistic map ®(x) = rz(1 — |z|) on
behaves like two separate copies of the logistic map for
r < 4, with opposite signs. These merge at r = 4, lead-
ing to a single attractor located in |z| < (r + 1)/r up to

37Feigenbaum attractor is a fractal with Hausdorff dimension ap-
proximately 0.538. Hausdorff dimension is discussed in chapter 6.
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r=2++8 = 4.8284, at which point the orbits of the
critical points z = 4-1/2 start to leave the system.38

38 A more subtle example is given by the Lorentz gas in C. P.
Dettmann and G. P. Morriss, Phys. Rev. E 54 4782-4790 (1996).
Here the attractor and its time reverse (repeller) both collide with
a periodic orbit and merge.
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5 Symbolic dynamics

5.1 The binary shift

The special case 7 = 4 of the logistic map, or the equiva-
lent 1 — 222 on [—1, 1] is sometimes called the Ulam map.
We note the similarity with the second Tchebyscheff3?
polynomial T5(x) = 222 —1. In general Tchebyscheff poly-
nomials are defined by the (rather un-polynomial looking)
T, (x) = cosnarccos(z), that is, it gives the formula for
cosnz as a polynomial in cosz. This suggests a trigono-
metric conjugation; for the logistic version we see that if

Tn+1 = 41:7),(1 - mn)
is transformed according to z,, = sin®(my, /2), we find

220 = sin®(ny,)

Tpy1 = 4sin® %(1 — sin
Thus

Yn+1 = £2y, (mod 1)

If we take the usual arcsin of a positive number, so in the
range [0,7/2] we find from this

. T
Ynt1 = rmin(yn, 1 —y,) = 5(1 — 2y — 1)

which is called the tent map, for r = 2.4 We will keep
r = 2 for the tent map for the rest of this section. An even
simpler related map is the doubling map (also called
Bernoulli map)

Ynt1 = {2Yn}

where {} denotes the fractional part.
Consider the binary representation of the point y €

[0,1),*!
y= Z ij*(jJrl)
3=0

where the symbols w; € {0,1}. The doubling map just
ignores wy and shifts all the other w; by one. The tent map
does the same, but if wg = 1 all symbols are flipped as well
as shifted. In each case the sequence of wqy values, which
denotes the “rough location” of the point with respect
to the partition {[0,1/2),[1/2,1)} is called the symbol
sequence.

We see there is (almost) a 1:1 correspondence between
y and {w;}, with the minor exception being the case of

39There are other spellings; the initial ‘T’ makes sense in terms of
the usual notation T, ()

40The tent map is also topologically conjugate to the Farey map
introduced in chapter 2 using as the conjugation the “Minkowski
question mark function”. The latter has the property that periodic
continued fractions (ie quadratic irrationals) get mapped to periodic
binary expansions (ie rationals).

41The j 4 1 is so that j starts at zero, for consistency with the
literature for symbolic dynamics.

trailing repeated 1s, a countable set. Thus the dynamics
® :[0,1) — [0,1) is conjugate to the shift ¥ : QFf — QF
where QF is the set of “right” sequences of two symbols.
The set 2y denotes bi-infinite sequences j € Z, and is
useful for invertible maps. The metric, ie distance between
two sequences can be defined as*2

d({w;}, {¢;}) = 27 mintlilkws#os}

which then defines a topology in which ¥ is continuous.
This topological conjugacy between the shift map and
doubling or tent maps (and hence also the Ulam map)
has some immediate consequences:

e Periodic points are countable and dense.

e There is a dense orbit; this property is called topo-
logical transitivity®?

e There are orbits that are neither periodic nor dense.

Example 5.1. List and concatenate all possible finite
symbol sequences {0, 1,00,01,10,11,000,...}:

0100011011000001010011100101110111 ...

FEach finite symbol sequence appears infinitely often, so the
orbit generated by this sequence is dense.

Example 5.2. Any aperiodic sequence of 00 and 10 gives
a nowhere dense orbit since there are real numbers with
binary expansions containing 11 arbitrarily close to any
real number.

This should be compared with the Devaney definition

of chaos:**

e Periodic points are dense
e The system is topologically transitive
e There is sensitive dependence on initial conditions.

The last condition is that in every neighbourhood of a
point, there are initial conditions that eventually separate
to a specified distance. It turns out*® that the last con-
dition follows from the first two. Thus the doubling, tent
and Ulam maps are chaotic according to this definition.
We get more specific information about the periodic
points — there are clearly 2" symbol sequences with peri-
ods a factor of n for each n, and a dense set of preperiodic

42There are many equivalent metrics used in the literature.

43Sometimes the definition is that for any open sets U
and V, there is an n > 0 so that ®"”(U) N V is non-
empty. For a discussion of when these are equivalent, see
http://www.scholarpedia.org/article/Topological_transitivity

44From his textbook, A first course in chaotic dynamical systems
first published in 1992. This is a popular definition but other defi-
nitions are useful in different contexts.

45]. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey, Amer.
Math. Mon. 99, 332-334 (1992).
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points for each periodic point. Starting from any finite
symbol sequence, say 001, we can construct a periodic
symbol sequence 001 and hence calculate its correspond-
ing point in the doubling map y = 0.001, = 3272, 27% =
1/7 where the subscript denotes binary. For the tent map
we ensure that the flips are taken into account, giving y =
0.0011105 = 143777, 27% = 2/9. Thus the corresponding
point in the Ulam map is 2 = sin® m/9 =~ 0.116978.

The stability of a periodic point D®P = 2P for the dou-
bling map and +2P for the tent map depending on the
parity of the number of 1s in the symbol sequence. We
can see that the conjugation relating the tent and Ulam
maps preserves this: If ¥ = h~! o ® o h for some conju-
gating function h, we see that ¥? = h~! o ®? o h and so
for a fixed point z of WP and corresponding y = h(z) of
®P we have

DW?|, = (Dh™'|,)(D®7],)(Dhl,) = D3|,

since the first and last terms in the product cancel, as-
suming both are non-zero. Thus we have WP = £2P for
the Ulam map also, except for the fixed point x = 0 (at
which the conjugation is singular) which has DW¥ = 4.46

Remark: The doubling map is particularly bad to sim-
ulate directly on a computer, since most software uses a
binary representation of real numbers. After a very small
number of doublings the result is zero. It is much better to
simulate a (pseudo-)random sequence of binary symbols.

Remark: Sequences with trailing 1s are equivalent in
the binary representation to others with trailing 0s. They
are just pre-images of the two fixed points 0 and 1 which
are identified for the doubling map. Thus there are actu-
ally 2"~! points of period a factor of n for the doubling
map. In contrast, these are all distinct for the tent and
Ulam maps.

5.2 Open binary shifts

For the logistic map with r > 4 and tent map for r >
2 there are intervals around 1/2 that map out of [0, 1].
However the image of the interval [0,1/2] still includes
the whole space [0, 1], as does the image of [1/2,1]. Thus
for any point z € [0,1] we can construct two preimages
®, ' (z) and ®;*(2) and hence 2" preimages of order n,
one for each sequence of n symbols. It can be shown (using
the Schwarzian derivative property for the logistic map)
that this leads to a 1:1 correspondence between the set of
points that remain forever in [0, 1] and the binary shift.

Example 5.3. Consider the case r = 3 for the tent map.
The intervals [0,1/3] and [2/3,1] are each mapped to [0, 1],

46The argument can often be reversed - if all the periodic points of
two hyperbolic dynamical systems have the same spectra (eigenval-
ues of D®P), they can often be shown to have a smooth conjugation.
See for example Thm 20.4.3 in A. Katok and B. Hasselblatt, “Intro-
duction to the modern theory of dynamical systems.” (Cambridge
University Press, 1997).

so that the shift corresponds to the ternary representation

o0
= Z 2w;377t
=0

This is the middle third Cantor set.

Properties of these sets follow easily from the shift rep-
resentation: They are uncountable, complete, nowhere
dense and totally disconnected (any two points are in dif-
ferent components). Also, the Cantor set itself is struc-
turally stable - perturbing r does not affect any of these
properties.

All the periodic orbits remain unstable as r is increased,
so we can use the method of inverse iteration to locate
them: Start at a convenient point (say, z = 1/2) and apply
a periodic sequence of ®_!(x) until the result converges.

A natural higher dimensional version of the open binary
shift is called the Smale horseshoe. If a (roughly rectangu-
lar) set is mapped to a “horseshoe” shaped set that covers
the full width of the original in two places and for which
the original covers the full width of the horseshoe, then
the set surviving for infinite time is a Cantor set (labelled
as above by the symbol sequence) in the unstable direction
and smooth in the stable direction. The set surviving for
both positive and negative infinite time is the intersection
of two Cantor sets, itself a Cantor set, and labelled by the
shift on the full space Q2. Again, it is structurally stable.

An important result is that a homoclinic tangle, ie map
with a homoclinic point at which the stable and unsta-
ble manifolds are transverse, has horseshoe dynamics in
a sufficiently high iterate of the map, and hence the full
complexity of the binary shift dynamics. Recall Fig. 17.

Example 5.4. The Henon map, (z,y) — (1 — az? +
y,bx),*" has a good example of a Smale horseshoe. For
parameters a = 12, b = 0.8 it has the form shown in
Fig. 18, leading to a Cantor set of points that never escape.
For other parameter values, such as the original a = 1.4,
b = 3 it behaves like the logistic map for r < 4, having an
attractor of a fixed point or a fractal. It is closely related
to the logistic map, but less well understood and also an
active subject of research.

Example 5.5. A billiard system consisting of three cir-
cular scatterers with a “non-eclipsing” condition (no scat-
terer intersects the convex hull of the others) has a trapped
set with complete binary symbolic dynamics, with symbols
denoting which of the other two scatterers is encountered
next. 8

47Other trivial variations of the equations can be found in the
literature

48The dynamics of this system was studied rigorously in A. Lopes
and R. Markarian, Siam J. Appl. Math. 56 651-680 (1996). But
it had appeared previously in the physics literature — see chaos-
book.org of Cvitanovic et al, where it is called three disk pinball
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Figure 18: The Henon map, a = 12 and b = 0.8

If there are both expanding and contracting directions,
as in these two dimensional examples, we cannot use in-
verse iteration to locate the periodic orbits numerically.
In boundary value problems in ODEs there are two com-
mon approaches: Shooting and relaxation.*® A shooting
method involves finding an approximate initial condition,
evolving the system to the end point, and checking the fi-
nal boundary condition (here, that it is equal to the initial
condition). In chaotic systems this is problematic since
orbits are often exponentially unstable. Thus we usually
need an approximation to the whole orbit, either by run-
ning a long trajectory and looking for near recurrences
(for example if the periodic orbit is embedded in an at-
tractor) or using known symbolic dynamics. Then we can
refine it using one of the following methods:

Damped Multipoint Newton method For a cycle of

— and a quantum version had been considered rigorously in S.
Sjostrand, Duke Math. J. 60 1-57 (1990). The latter proposed what
is now called a fractal Weyl law, relating the fractal properties of
the classical trapped set to the distribution of quantum resonances.

49W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flan-
nery, Numerical Recipes (Cambridge University Press, 1992) gives
advice on which of these to try first: “Shoot first, and only then
relax.” But if the shooting is chaotic, this may not be the best
strategy.

length p we seek a zero of the function F' : RP — RP

T x1 — P(zp)
F To _ To — (I)(.Tl)
Lp Ty — Y(wp-1)

The multidimensional Newton formula, found by tak-
ing the Taylor expansion around the zero to linear
order, gives

(DF)(Xn+1 - Xn) = _’YF(X)

where a damping parameter 0 < v < 1 is added by
hand to increase the basin of attraction; the usual
Newton method is v = 1. Here we have (writing
' (xp) = 1)

1 7@; Aﬂfl
—Cbll 1 AZ’Q
-o, , 1 Ax,
Fy
Fy
- 77 DR
FP
Row reduction gives
: o (e
1 —®, P Az
-0, 0] ... 0 Az,
Iy
— F+ 9 7
Fp+@, (Fp i+ .+ . ®F

from which the solution may be found by dividing
through by the last diagonal element and back sub-
stituting. Note that the matrix manipulations have
been done explicitly - we need only store the vectors
used in the intermediate steps.

Variational method Write an action function such as
S = |F|? and minimise using standard multidimen-
sional minimisation routines.®® In the open billiard
example, there is a natural action given by the sum
of the path lengths.

5.3 Subshifts

The period three window of the logistic map has an infi-
nite set of unstable orbits, including all the periodic orbits

50However standard, routines for multidimensional minimisation
are not guaranteed to work unless you know a lot about your system.
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5 SYMBOLIC DYNAMICS

from the original bifurcation cascade, that persist with-
out any bifucations in this parameter region. The period
three points delineate two regions, roughly 0.15 < = < 0.5
which belongs to the left branch of the map (symbol ‘0”)
and 0.5 < z < 0.95 which belongs to the right branch
(symbol ‘1’). Points in ‘0’ map to ‘1’ while points in ‘1’
may map either to ‘0’ or ‘1’. Thus we have a symbolic
dynamics in which only some of the possible transitions
occur; here we specifically exclude the sequence ‘00.’

If there are a finite?’ number of exclusion rules, this
is called a subshift of finite type or Topological
Markov chain. This will occur in a one-dimensional map
which is expanding (®'(xz) > 1) if there is a partition of
the space for which each element (corresponding to a sym-
bol) is mapped to a union of elements (modulo boundary
points); this is called a Markov partition®? In the case
of the logistic map, the derivative ®'(z) is not always less
than one, so the conjugacy with a symbolic system needs
justification, and clearly fails for some of the stable orbits.

Such a system can be represented as a directed graph
with adjacency matrix A with entries zero or one to denote
whether a transition is possible, and a symbol space

Qs ={we W|(A)w,w.y, =1 for nelZ}

It is easy to show that the number of possible paths of
length m from symbols ¢ to j are given by the entry (A™);;
of the matrix A™. In particular, the number of periodic
points of length m is the trace of A™.

We can get from ¢ to j iff (A™);; > 0 for some m > 0,
and write ¢ — j, or j is accessible from i. We have i — i
automatically. If i — j and j — ¢ then ¢ and j commu-
nicate; this is an equivalence relation, so partitions the
symbols into disjoint classes. On the other hand, if there
is a j so that ¢ — j but j /4 i then i is inessential. If all
symbols are essential, ie there is a single communication
class, the system® is irreducible and topologically tran-
sitive. In this case we also have a dense set of periodic
orbits and hance chaos in the sense of Devaney.

The period of a symbol 7 is the greatest common divi-
sor of the times m at which the dynamics can return to

51There are some simply defined generalisations with an infinite
number of rules, such as the even shift, in which each 0 is followed by
an even number of 1’s. This is not a subshift of finite type, but is in
a larger category called sofic shifts, represented by directed graphs
in which the same symbol may appear in more than one place. So
here we allow transitions 0 — 0,0 — 11 — 1/, 1" — 1,1’ — 0
and disallow all others. Many typically encountered shifts of infinite
type from dynamical systems do not have a simple representation,
however.

52Markov partitions (with a more involved definition) are also used
in higher dimensional dynamics; note that the boundaries can be
fractal, see eg Arnoux, Pierre, and Shunji Ito. “Pisot Substitutions
and Rauzy fractals.” Bulletin of the Belgian Mathematical Society
Simon Stevin 8 181-208 (2001).

53 «system” depending on context refers to any of the matrix A,
the topological Markov chain, the directed graph, the symbolic dy-
namics, and the original dynamical system.

i, that is, when (A™);; # 0, and infinite if A7Y = 0 for
all m > 0. For example if the directed graph is bipartite,
all states have even periods. The period is constant on
all communication classes. If all symbols have period one,
the system is aperiodic. If it is both irreducible and ape-
riodic, then for all sufficiently large m, all entries of A™
are positive, and the system satisfies a stronger property
that topological transitivity:

Definition 5.6. A system is topologically mixing if
for any two open sets U,V , ®1(U)NV is nonempty for all
sufficiently large t.

Clearly topological mixing implies topological transitiv-
ity.

In this case we can use
Theorem 5.7. Perron-Frobenius theorem: For a matriz
A with non-negative entries, such that some power A™ has
all positive entries, there is an eigenvector with positive
entries with corresponding eigenvalue real, positive, simple
and greater in magnitude that all other eigenvalues.

Finally the growth of symbol sequences and periodic
orbits are both controlled by this largest eigenvalue of A:
If A is irreducible and aperiodic we have

1 1
lim —1 A™); = lim —1 A = In Apax
Jm, 2 (A = Jlim Tin D (A% = In
where Anax is the largest eigenvalue.

For a general dynamical system we can define

Definition 5.8. Let N(e,T) be the smallest number of
points xy such that for any © € X we have |®'(z) —
D' (z1)| < € for all 0 < t < T and some k. Then the
topological entropy is®*

hiop = Tlgnoo lirenjélp % log N (e, T)

The base of the logarithm is arbitrary, often given as
2. The topological entropy is invariant under topological
conjugacy, and in the case of an irredicible and aperiodic
symbolic system is given by log Ay ax.

If the largest eigenvalue of a matrix A is unique and
simple, as in the irreducible and aperiodic case, it may be
found with the power method: Apply A repeatedly to
an arbitrary positive vector and normalise. The normal-
isation constant will converge exponentially to Apax at a
rate determined by the spectral gap (difference in magni-
tude between the largest and next largest eigenvalue(s)).
The method does not require any reduction of the matrix,
and hence can be used with very large sparse matrices.?®

54Lim is equivalent to limsup in this definition, however the same
is not true of some alternative but very similar definitions: see
arxiv:1707.09052

551t is reputedly used in Google PageRank and Twitter Who To
Follow algorithms.
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The map ®g(xr) = {Bz} is called the beta-
transformation (Renyi 1957). For § an integer, we have
a (full) shift on B symbols as in the previous section. For
other values, dividing the unit interval using multiples of
B! gives the “greedy” representation of a number in in-
verse powers of 3:

T = Z wjﬂ*(]”rl)
§=0

For some algebraic values of 3, the boundary of the final
partition element, 1 maps onto a multiple of 8~ and we
have a Markov partition.

Example 5.9. 8 = g = (1 ++/5)/2, the golden ratio.
P5(1) = {9} = (V5 —1)/2 = g~ ! and so we have the
transitions 0 — 0, 0 — 1, 1 — 0 analogous to the period
three window of the logistic map. The transition matrix is

11
(1)
The higher powers are given by
n __ Fn+1 Fn
AT = < Fn anl >
where F,, is the Fibonacci number, satisfying F1 = Fo =

1, F, = F,_1 + F,_2. This recurrence may be solved
explicitly to find

Fo=—7=("-(=9)™")

Thus the number of fized points of order n is P, =
Foi1+ Fh—1. Note that because a matrix satisfies its own
characteristic equation we have

A2—A—-T=0

Multiplying by an arbitrary power of A and taking the trace
we have
P,=P, 1+ P, 2

which may be solved together with P| = 1, Py, = 3 with-
out determining A™ for general n directly. Finally, note
that as with the doubling map, the symbolic dynamics s
not quite 1:1: The discontinuity x = g~ has two symbol
sequences 10 and 01; similarly for its preimages.

Example 5.10. Another system with this symbolic dy-
namics is giwen by the doubling map x — {2z} but en-
forcing escape for any x with symbol sequence 11, corre-
sponding to the points x € [3/4,1].
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6 Statistical properties

6.1 Probability measures

We now consider statistical properties of dynamical sys-
tems. Since for chaotic systems there is sensitive depen-
dence on initial conditions, and it is not practical in phys-
ical systems to specify or measure the initial conditions
exactly, we can take an approach specifying only the prob-
ability that the system is in a given region A C X at any
time, using a probability measure pu:

B(x € A) = p(4)

for which the main properties are that 0 < u(A) < 1
with u(X) = 15 and p(U;4;) = Y, u(4;) for a finite
or countable collection of disjoint sets A;.°7 Often, the
measure is given by a density p

n(4) = [ oo

however we have already met some sets, namely Cantor
sets, in which a density does not exist. We can include the
deterministic case using the Dirac measure d,(A) which is
1if x € A and zero otherwise.

A map or flow ®' then causes the probability measure
to evolve according to the transfer operator

B! (1)(A) = (@ (A))

where we recall that for noninvertible maps the inverse can
be defined on sets. The * is conventional but is sometimes
omitted. In terms of densities we have

) = 3 o= [ st

yed—!(x)

The transfer operator is a (generally infinite dimensional)
linear operator on measures or densities. Fixed points
of the transfer operator, that is, eigenvectors with eigen-
value one, are called invariant measures. They satisfy
!y = p, or equivalently pu(®~*(A)) = u(A). Any convex
(ie normalised positive linear) combination of invariant
measures is an invariant measure.

dy
| det(D®t],)] DtI>t ()

Example 6.1. The map x — {3z} has many invariant
measures. The uniform measure p =1 is invariant, since
each point has three pre-images and the Jacobian factor is
1/3 everywhere. Fach periodic orbit gives invariant delta
measures, for example

1
1(51/10 + 93710 + 0910 + 07/10)

56 An important area of research is that of dynamics with infinite
measures, in which u(X) = oco instead.

57Measure theory requires some more technical properties, partic-
ularly that we define p(A) only for some subsets, called measurable
sets, which normally include all Borel sets, obtained by complements
and countable intersections and unions of closed and open intervals.

There are also fractal measures, for example the uniform
measure on the middle third Cantor set that gives each
included interval of size 37" a measure 27™.

Do invariant measures exist in general? If for a given
initial point x the average rate of landing in a (sufficiently)
arbitrary set A exists, it generates a measure:

hm —ZXA o' (x

Here x 4(x) is the characteristic function of A, equal to 1
if z € A and zero otherwise. Linear combinations of these
can approximate any continuous function ¢ : X — R,
giving an expression for the time average, also called
Birkoff average of the function with initial point x:

pa(A) =

We thus have a measure pu, defined so that

— / (y)dpa(y) = / o(y)p(y)dy
X X

where the second equality holds if u, has a density.

All continuous maps on a compact space have at least
one invariant measure, obtained by taking a subsequence
in the limit. An important result is the Birkoff ergodic
theorem which states that for any invariant measure g,
the set of x for which the time average does not exist is
of zero p-measure. The time average may still depend on
x, however we have

/ P(z)dp(x

/¢T )dp(x

Example 6.2. The map © — {3z} + [z] (where square
brackets indicate integer part) on [0,2) has an invariant
density p(x) = 1/2. But for ¢(z) = x we find

12 z<1

d’T(m):{ 3/2 x>1

for almost all x. We have

/¢>T x)dr = /xp(m)dﬂc =1

as expected.

An important case is that of C? expanding circle maps
(for example perturbations of the doubling map that con-
tinue to identify 0 with 1 and satisfy |®'(z)| > 1 every-
where): Here an invariant density exists and is unique.

Note that by introducing probability some philosoph-
ical issues have crept in: The deterministic system with
uncertain initial conditions now has behaviour that is in-
distinguishable from a fair die.
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6.2 Markov chains

A piecewise linear map with Markov partition can be rep-
resented as a topological Markov chain with corresponding
symbolic dynamics of finite type, as we saw before. The
transfer operator gives further information: Any density
which is constant on the partition elements, p(x) = p; for
x € X; evolves to another density of the same type. In
particular, we have

piAij
—~ | D®;]

(Pup)j =

or in terms of the total mass in each partition element
m = pu(Xi) = pil Xil

7Tj = E WiPij
i

with the transition probabilities
Ay X5

p.— 2wlAgl
Y D@ X

This leads to dynamics on a directed graph, with transi-
tion probabilities given by the F;; matrix, which, like A;;,
satisfies the Perron-Frobenius theorem in the irreducible
aperiodic case. In a closed system, probabilities add to

one, so we have
E Pij =1
J

This ensures the leading eigenvalue is 1, with left eigen-
vector m™ giving the invariant measure corresponding to
the limiting state, with

Jim (P =

a projection onto that state.

Example 6.3. The golden mean beta map {gx} above has
partition elements Xo = [0,971), X1 =[g71,1). We find

-1 -2
_( 9 g
(%)
and hence ™ = (g,9 ") /V/5.

Even when there is no Markov partition, a useful numer-
ical technique called Ulam’s method can approximate
the transfer operator using a similar approach.’® Divide
the space into a fine partition, and assume that the proba-
bility of a transition from ¢ to j is given by the proportion
of X; that is mapped to X}, that is

XN (X))
! | X

58Ulam’s method gives as a basis, piecewise constant functions
on the X;. If there is reason to assume the invariant density is
smooth, alternative methods can be developed using polynomial or
trigonometric basis functions.

Then (for a closed system) these probabilities add to one
and if the matrix is irreducible and aperiodic, there is a
single invariant measure given by the left eigenvalue. The
power method applies here also: Starting with a positive
vector 7, repeated multiplication by P will then converge
to this measure exponentially fast.

6.3 Measures in open systems

In the case of open systems, probability is not conserved,
but we may want to know the probability conditional on
remaining within the system. Thus the (normalised) mea-
sure evolves according to

_ ‘I’iﬂo
M B

A fixed point of this operation is called a conditionally
invariant measure® and in this case the total probabil-
ity decays exponentially

p(OH(X)) = e
with escape rate
7=—In®lu(X)

The value e can be considered an eigenvalue of the
transfer operator ®1.

Example 6.4. For the map = — {3z} with hole
[1/3,2/3], the uniform measure is conditionally invariant
with @, u(X) = 2/3.

It is also useful to consider (fully) invariant measures in
these systems, for example supported on the trapped set.

6.4 Fractal dimensions

Measures can also be used to describe the size of frac-
tals such as the Cantor set and Lorenz attractor. The
d-dimensional Hausdorff measure® is defined by

/2
HYA) = —— i inf |
W)= sy o ;'UJ
A cCuyU;

where we cover the set A with sets U; of maximum diam-
eter d, take the infimum over covers and the limit § — 0.
The normalisation constant ensures that for d an integer
we get the usual Lebesgue measure. For ordinary sets
such as lines, we have that the length may be finite, but

598ee for example, M. F. Demers and L.-S. Young, Nonlinearity
19, 377-397 (2005).

60Mark Pollicott has a nice set of lecture notes on fractal dimen-
sions: http://homepages.warwick.ac.uk/ “masdbl/preprints.html
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the number of points (zero dimensional measure) are infi-
nite and the area (two dimensional measure) is zero. This
behaviour applies more generally, and we can define the
Hausdorff dimension:

dp(A) = sup{d : HY(A) = oo} = inf{d : HY(A) = 0}

Note that H?(A) may be zero, finite or infinite. The
Hausdorff dimension behaves nicely under finite or count-
able unions

d(UiA;) = sup dp (Ag)

and in particular, the Hausdorff dimension of a countable
set is zero.

If we insist that all covering sets are the same size, we
arrive at a different quantity, the Minkowski or box di-
mension: o N ()

. In
Dp(4) = (%1_1)1(1) Ind
if the limit exists, where N(§) can be either the number of
balls or cubes needed to cover A, or the number of cubes
containing A in a grid of box length e. If the limit is
not defined, the limsup and liminf give upper and lower
Minkowski dimensions, respectively. In general we have

Dy (A) < Dp(A)

Example 6.5. The set 1/n forn € {1,2,3,...} is count-
able, so it has Hausdorff dimension zero, but requires of
order §~1/2 bozes to cover for small 5. Thus it has box
dimension 1/2.

In the case where the set is a finite union of similarf!
contracted copies of itself, as with the trapped sets of
piecewise linear open maps,

A =U;fi(A)
with | f;(x) — fi(y)| = ri|x — y| for all x and y and with
r; < 1, and there is a nonempty open set V satisfying
V. CUifi(V)
with the union disjoint, the open set condition, we have
Dg(A) = Dy (A) = Ds(A)

where the similarity dimension Dg(A) satisfies

> =
i
Note that the maps f; here are contractions; in dynamical
contexts they typically correspond to inverse branches of
an expanding map P.

Example 6.6. The middle third Cantor set consists of
two copies of itself scaled by 1/3. Thus its dimension sat-
isfies
o2

In3
61The case of affine maps, where the contraction rates differ in

different directions, is more complicated and a subject of current
research.

2(1/3)P =1,

6.5 Ergodic properties

With respect to an invariant measure p we can define
properties analogous to topological transitivity and mix-
ing. The statements in this section hold for any positive
measure sets A, B C X as T — oo; for flows the sums
are replaced by integrals. We have in increasing order of
strength:
w(AN®tA) 40 Recurrence

Poincaré’s recurrence theorem states that all systems
with invariant probability measures are recurrent, an un-
expected result since it seems to imply history is (with
probability one) destined to repeat itself infinitely many
times.%2 Suppose we consider a container partitioned into
two sections, and N gas particles initially on the left. If
the dynamics is measure preserving (physically realistic,
as we will see), we might expect this event to re-occur
after roughly a characteristic time scale multiplied by the
inverse of the measure of this state, 2. However for
N 22 1023 this time is unphysically large; real physical ex-
periments do not have access to infinite time limits. Note
that in the context of nanotechnology, we often have only
a few particles, so timescales may be more reasonable.

T

|
—

WAN®'B) — u(A)u(B) — 0 Ergodicity

Nl =

t

I
o

For ergodic measures we have an important result relating
time and space averages:

or(@) = [ o)

for all x except a set of measure zero, and ¢ for which the
integral is defined. Thus in an ergodic system, varying the
initial conditions does not (with probability one) affect the
long time average, as claimed in the Introduction.

We can always decompose an invariant measure as
a (possibly uncountable) convex combination of ergodic
measures. However, it is important (and often difficult)
to know whether a natural invariant measure, such as
Lebesgue, is ergodic. Sinai showed in 1970 that two disks
on a torus is ergodic (on the set defined by the conserved
quantities such as energy), however a proof for arbitrary
number of balls in arbitrary dimension was finally pub-
lished by Simanyi in 2013.%% Since Boltzmann in the mid-
19th century, ergodicity has been assumed in statistical
mechanics to calculate macroscopic properties of systems
of many particles. Here, again, the question of time scales

62Recurrence is not guaranteed in infinite measure systems, for
example x — x + 1 with = € R. In such systems ergodicity, defined
as the statement that all invariant sets or their complements have
zero measure, implies recurrence under mild conditions, however
there is no generally agreed definition of mixing.

63N. Simanyi, Nonlinearity 26, 1703-1717 (2013).
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arises, and also the likelihood that many systems are not
quite ergodic, having very small measure regions in phase
space that do not communicate with the bulk.

T-1

1 _
7D ln(Ane ™ B)—p

t=0

(Au(B) — 0 Weak Mixing

Weak mixing is equivalent to the statement that the dou-

bled system on X x X, (x1,%x2) — (®(x1), P(x2)) is er-

godic.
w(AndTR)

—p(A)u(B) —0 (Strong) Mixing

Mixing is equivalent to correlation decay

| s60@ @ydn— [ sedn [ a0

for every square integrable f,g. The rate of decay (de-
pendence on t) is important, in that diffusion and similar
properties can be expressed as sums over correlation func-
tions. In general it depends on the functions, but it can
be shown for example that for systems conjugate to irre-
ducible aperiodi Markov chains, decay is exponential if f
and g are Holder continuous.

Example 6.7. Rotations © — {z + a} have a uniform
invariant measure. They are are ergodic iff a« ¢ Q. In
this case they are uniquely ergodic: There is only a
single invariant measure. They are not weakly mizing.5*

Example 6.8. Markov chains are not ergodic if reducible,
ergodic but not weakly mizing if irreducible but periodic,
and strong mizing if irreducible and aperiodic.

Example 6.9. The Chacon shift, generated recursively
by the substitution 0 — 0010, 1 — 1 and allowing any
finite sequence appearing there, is a notable system which
s weak mixing but not strong mixing.

The metric entropy or Kolmogorov-Sinai en-
tropy,% is defined using a finite partition & to define the
measure of initial conditions leading after n iterations of

® to a sequence of symbols w = wy ... wy:
h(¢) = lim — )1
() = Jim — }:At ) Inp(X,,)

Then the KS-entropy is

hks = sgp h(€) < hiop

64However, a generalisation of rotations, interval exchange
transformations are weakly mixing (but not strong mixing) for
almost all parameter values.

65Confusingly, measure-theoretic quantities are called metric
properties in dynamical systems, and various thermodynamic terms
(entropy, pressure) are used in ways that differ from their physical
usage. KS-entropy is more like an entropy per unit time.

The KS entropy of a Markov chain is

his =— Y _ m"P;lnP;

ij

Example 6.10. We find for the golden beta map x —

{gz}

—2

hks = g 'ng™"+ =g ?Ing

B [9 9
V5 V5
—1 —1
g g
+>—1lnl+ =—=01In0
V5 V5
14297t
= ———Ing

V5

= Ing

Note that 0ln0 = 0 (which is the limit as P;; — 0). Also
it turns out that all 3 expansions have tOpologzcal entropy
In 3, so in this case it reaches the mazximum.

This quantifies the maximum rate of information loss
in the system,%® but a positive value does not require er-
godicity. If however, all nontrivial partitions h(§) > 0, it
is equivalent to a condition stronger than mixing called
K-mixing (or Kolmogorov mixing).

The strongest ergodic property, beyond K-mixing is the
Bernoulli property, which states that there is a partition
with respect to which, elements at different times are com-
pletely uncorrelated:

p(Xi NOTEXG) — pu(Xi)u(X;) = 0

for all ¢ and j, and all ¢ > 0. Aperiodic irreducible Markov
chains and equivalent systems have this property. Thus we
have Bernoulli implies K-mixing implies strong mixing im-
plies weak mixing implies ergodicity. Although Bernoulli
is the strongest ergodic property, it is worth recalling that
systems containing a subset on which the dynamics is
Bernoulli are extremely prevalent, including in particular
Smale Horseshoes and therefore in homoclinic tangles.

6.6 Lyapunov exponents

67 Lyapunov exponents quantify the sensitive dependence
on initial conditions. We have already seen that the insta-
bility of periodic orbits is determined by the eigenvalues
of D®T where T is the period, and know that in general
these eigenvalues can vary widely between orbits. How-
ever in ergodic systems, a similar phenomenon occurs as
with time averages: Even though there is a wide variety
of possible values of the expansion rate, almost all (with
respect to the measure) orbits have the same values.

66For a recent generalisation see R. G. James, K. Burke and J. P.
Crutchfield, Phys. Lett. A 378 2124-2127 (2014).

67 A recent introductory survey on Lyapunov exponents is found
in A. Wilkinson, arxiv:1608.02843.
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For one dimensional maps we have for the exponential
growth rate of perturbations in the initial condition,

1
Ae = lim —In|DP"|,|
n—oo n
1 n—1
= nh_)n;oglnlj(:) |D®|gi,

n—1
1
= lim =) In[DP|gi,
=0

n—oo N 4

which is just an ordinary time average, and hence for an
ergodic measure given by

A= /ln |D®|dp

for almost all  with respect to pu.

In higher dimensions the evolution of the perturbation is
described by the product of the matrices along the orbit,
acting on a vector that gives the direction of the initial
perturbation; recall the discussion from section 3.1. It is
clear that the result is very different if the vector lies in
the local stable or unstable manifold. Results given by
the Oseledets theorem are that

1. |D®?
A(v) =limsup - In | vl

t—o00 |V‘

takes the same finite set of values for almost every x, called
Lyapunov exponents, giving the largest expansion rate
accessible to the linear space containing v: Typically a one
dimensional space in the stable manifold for the smallest
Lyapunov exponent, and almost the whole space for the
largest. The Lyapunov exponents may be found from

{Ai} = In{e-vals of lim (D®Y)* (D®?))'/2t}

where * denotes transpose and hence the eigenvalues are
all real. The matrix is of size d so there are d Lyapunov
exponents (counted with multiplicity). Similar to stability
eigenvalues of periodic orbits, the Lyapunov exponents are
invariant under smooth conjugations. Note, however that
unexpected phenomena can occur if the dynamics is time-
dependent.%3
We have

1
> ni= Jim —In | det(D®")|

In the case of Sinai-Ruelle-Bowen (SRB) measures
(that is, absolutely continuous on unstable manifolds), we
have the Pesin formula

> Xi=hxs

A >0

68G. A. Leonov and N. V. Kuznetsov, Time-varying linearization
and the Perron effects, Intl. J. Bif. Chaos 17, 1079-1107 (2007).

Example 6.11. Consider the open map x — {3z} with
escape from the middle third x € [1/3,2/3). The natural
measure in this case is the uniform measure on the non-
escaping set, which is the middle third Cantor set. We
have

hKS = In2
A = In3

v = I(3/2)
In2
= 13

This example strongly suggests the following relations:
hxs = Mg
This is a form of the Ledrappier-Young formula.
v=A—hgks

This is called the escape rate formula, generalising
Pesin’s formula. Both formulas have been shown under
more general conditions®

Calculation of Lyapunov exponents numerically typi-
cally uses the Benettin algorithm. Evolve both the
equations of the original system (x € R%)

d

Sx = J(x(1)

and the linearised equations (§; € R, i€ {1,2,3,...1}

d
—0; = (Df)|x(t)5i

dt
for as many perturbations [ as Lyapunov exponents are
required. Thus we solve d(l 4+ 1) equations altogether. As
some periodic interval T, apply a Gram-Schmidt orthog-
onalisation to the d; vectors,

n_ 01
fi=o o=
6/
Sy=0y— 010y O ==
15
6/ _5 _5// 5 _5// 5 5//_ 51/3
3— 93 1793 293 3 7 5/
[

then the largest [ Lyapunov exponents are approximated
by the sums

k
1 /

where 7 sums over the times the orthogonalisation is ap-
plied. Note that the vectors obtained are not directly

69Gee M. F. Demers, P. Wright and L.-S. Young, Ergod. Theor.
Dyn. Sys. 32, 1270-1301 (2012).
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6 STATISTICAL PROPERTIES

related to expanding or contracting spaces in the original
dynamical systems (which need not be orthogonal), and
that a similar algorithm applies to maps™

We see that the sum of positive exponents is related to
the KS entropy (above). The largest exponent is also im-
portant, giving the rate of fastest growth of perturbations.
Positivity is often a numerical signal of chaos (except in
the case of a single unstable periodic orbit as in the pen-
dulum).

In addition, the largest Lyapunov exponent can be used
to estimate the number of iterations before a perturba-
tion at the level of machine round-off (say, ¢ = 10716)
becomes of order unity, —(Ine)/A. In the case of the dou-
bling map, this is the extent to which a direct numerical
simulation gives typical behaviour (then reaching the fixed
point at zero and then remaining there). For hyperbolic
sets”! there are shadowing lemmas that guarantee the
existence of orbits close to approximate (eg numerical)
orbits, however they rarely say much about typical be-
haviour: In particular the numerical doubling map orbit
is an exact solution of the dynamics. Most systems do
however show good numerical convergence as precision is
increased, until a previously visited point is reached, lead-
ing to exact periodicity. In general we expect around e~¢
distinct points where d is a dimension of the attractor or
other invariant set. If these are assumed to appear ran-
domly, the time taken to reach a periodic cycle is around
¢~4/2. The addition of weak noise clearly prevents such
periodic cycles and presumably masks any effects due to
the finite precision.”

The entire Lyapunov spectrum is also a fruitful object
of study in many degree of freedom system, such as molec-
ular dynamics models of large numbers (hundreds or thou-
sands) of atoms.”

6.7 Cycle expansions

It is possible using the transfer operators discussed at the
start of this chapter, to calculate many statistical quanti-
ties including averages, escape rates and Lyapunov expo-
nents in terms of unstable periodic orbits, in some cases
to incredible accuracy. The presentation here is based on
chaosbook.org and restricted to the simplest systems (1D
maps); it is possible to extend to higher dimensional maps,
flows, semiclassical approach to quantum systems (see the

70 Also Poincaré sections, for example in billiards; see H. R. Dullin,
Nonlinearity, 11, 151-173 (1998).

711f hyperbolicity fails (as in almost all realistic systems), we can
no longer expect shadowing. This is the case even if all periodic
orbits are hyperbolic but they have different numbers of positive
Lyapunov exponents (J. A Yorke, private communication).

72Some recent discussion of these issues is in R. Lozi, “Can we
trust numerical computations of chaotic solutions of dynamical sys-
tems,” (unpublished?)

73H.-L. Yand and G. Radons, Phys.
(2008).

Rev. Lett. 100 024101

quantum chaos course), and to a more rigorous treatment,
especially for uniformly expanding or (in higher dimen-
sions) hyperbolic systems.™

We saw that e where + is the escape rate, can be un-
derstood as the leading (ie greatest magnitude) eigenvalue
of the transfer operator ®!. Treating this as a matrix,”®
the eigenvalues are inverses of solutions of

0 = det(l—2®})
exp(trin(1 — z®}))

2
P %(m«cpi — (tr®1)2) 4 ...

0o
= D Qn
n=0

where we have expanded in powers of z (since looking for
the smallest solution). Differentiating leads to the useful
relation

-1
1 n
Q, =~ (m«q):: -y thrcpzjm>
n
m=1
Now from the previous section we have

" (p)(x) = /5(96 — @"(y))p(y)dy

from which we see that
1

trd” = /6(30—@"(:5))6[95: Z Do —1]

:d" (z)=x z 1‘

which is just a sum over periodic points of length n, in-
cluding repeats of orbits with lengths that are factors of
n. Thus, truncating at some value of n, we obtain an nth
degree polynomial, whose roots give an approximation to
the spectrum of ®1. The escape rate is then estimated as

¥y=1Inz

where 27 is the root of smallest absolute value. We expect
good convergence when the system is hyperbolic (clearly
D®(x) = 1 is problematic above) and the symbolic dy-
namics is well behaved, so that long periodic orbits are
partly cancelled by combinations of shorter periodic or-
bits in terms like tr®? — (tr®L)2.

Example 6.12. Using cycle expansions to obtain the es-
cape rate of the open map ®(x) = 5x(l — x) we find
from the 8 periodic orbits up to length 4, the result v =
0.5527651, accurate to 7 digits.

74See for example “Rigorous effective bounds on the Hausdorff
dimension of continued fraction Cantor sets: A hundred decimal
digits for the dimension of E>,” O. Jenkinson and M. Pollicott,
arxiv:1611.09276.

"The Fredholm determinant is a precise formulation of determi-
nants of some classes of infinite dimensional operators.
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7 HAMILTONIAN DYNAMICS

7 Hamiltonian dynamics

7.1 Volume preserving systems

In the case of an invertible map or flow, it is easy to check
whether the uniform measure p = 1 is invariant. We just
need the Jacobian |det(D®!|,)| = 1, independent of x
and t. For the flow we can differentiate with respect to ¢
and set t = 0 to find tr(Df) = 0. Such systems are called
area or volume preserving. It is clear that there can be no
attractors in such systems: Any neighbourhood of such a
set will have larger volume and cannot shrink to it under
the dynamics. Also, we know from above that the sum of
the Lyapunov exponents must be zero.

This condition, together with the fact that the entries
are real, implies that the product of the eigenvalues of D®
is &1 or equivalently (for the flow) that the sum of the
eigenvalues of Df is zero. For two dimensional systems,
this means that fixed points are generically saddles or cen-
tres, may also be one of the marginal cases such as shears,
but may not be a node or focus. Such fixed points are typi-
cally denoted “hyperbolic” (saddle), “elliptic” (centre) or
“parabolic” (shear). Bifurcations of volume preserving
(and specifically Hamiltonian) systems can be classified
accordingly.”® In two dimensions with det(D®) = 1, these
may be distinguished by the trace T' = tr D®, which is the
sum of the two eigenvalues: |T'| < 2 is elliptic, |T| =
is parabolic and |T| > 2 is hyperbolic. In the latter case
T < —2 is sometimes denoted inverse hyperbolic or
reflection hyperbolic. An important class of area pre-
serving maps is given by linear toral automorphisms,
x — T'x considered modulo one in both coordinates, with
T an integer matrix with unit determinant.

The condition det(D®!) = 1 in two dimensions is equiv-
alent to

S*JS=J

where the star indicates transpose, S = D® and

On ITL
J = < -1, 0, >
in dimension 2n, where 0,, and I,, are zero and identity
matrices respectively as given in the introduction. This
condition says the map ®! is symplectic,”” and D®? is
a symplectic matrix. We see that for general n, areas
of two dimensional spaces defined by the corresponding

variables are preserved. Symplectic matrices of a given
size form a group.

76Bifurcations, among others, include the saddle-centre, pitchfork
and Hopf bifurcations, roughly corresponding to the one dimensional
fold, pitchfork and Hopf bifurcations studied in chapter 3, but with
stable/unstable fixed points replaced by centres and saddles. See
the lecture notes “Symmetric Hamiltonian bifurcations,” by P.-L.
Buono, F. Laurent-Polz and J. Montaldi, LMS Lecture Notes 306
357-402 (2005).

7TSymplectic maps are reviewed in J. Meiss, Rev. Mod. Phys. 64
795-848 (1992).

For n > 1 the symplectic condition is stronger than unit
determinant. The characteristic polynomial of a symplec-
tic matrix S

p(A) = (
= det(JS —AJ)

= det(JS — \S*JS)
= det(=A"'J + S*J)det(—AS)

= A"det(S — A1)

= Ap(ATh)
noting that both S and J have unit determinant. Thus
the eigenvalue spectrum of a symplectic matrix splits into
pairs of inverses (quadruples of inverses and complex con-

jugates where complex). This implies that the Lyapunov
spectrum of ® is symmetric around zero.

o,

et(S — M)

7.2 Hamiltonian systems

Symplectic maps arise naturally in physical systems
that are derived from a Hamiltonian H(x) with x =
(q,p),q,p € R”, the coordinates and momenta respec-
tively. The integer n is the number of degrees of free-
dom. Note that in general, the Hamiltonian can de-
pend explicitly on time. The momentum variables, called
“canonical momenta” are not necessarily mass times ve-
locity, for example if one of the ¢; is an angle, the corre-
sponding p; could be an angular momentum.”®
Hamilton’s equations of motion are as follows:

% = JDy H(x)

where x = (q,p) € R?", Dy denotes the gradient, J de-
notes the block matrix

= (500)

where the zero and unit submatrices are here of size n.
For a system of N particles in three dimensions, n = 3NV.
The most common Hamiltonian function is of the form

p?
P)=2 5 TV(@

for particles indexed by i with masses m; moving with a
potential energy function V(q) that depends on the posi-
tions of all the particles, for example for Newtonian grav-
ity as discussed in the introduction, we have

Gmimj

Viq) =—
@ P—

i<j

"8The precise prescription, which we will not need, is as fol-
lows: For a given arbitrary set of coordinates g; which can be
any independent functions of positions and velocities, construct a
Lagrangian function L(q,q,t) equal to the kinetic minus poten-
tial energies. Then invert the expressions p; = 90L/d¢; to write
gi = fi(q,p,t) in terms of which the Hamiltonian is H(q,p,t) =

>ipifi(a,pst) — L(q,f(a, p, 1), ).
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Another example we have seen is the simple pendulum,
where ¢ represents the angle from the lowest position, p
the angular momentum, and

p?
H(q,p) = 5 — mglcosq

where [ is the length of the pendulum, m the mass of the
bob and g the acceleration of gravity.

Hamilton’s equations imply
Df = J(02H)
with 02H a symmetric matrix. Thus
(Df)*J +J(Df) =0

which then implies that D®? is a symplectic matrix for all
t, in particular that the dynamics is volume preserving and
the Lyapunov spectrum is symmetric. Also, the involution
i(q,p) = (q, —p) shows that the dynamics is reversible if
the Hamiltonian is even in the momentum H(q, —p) =
H(q,p).
Using Hamilton’s equations, the time dependence of any
phase variable f(x) is
df

=)

where

n
=20 20
< \0qi Op;  Op; Og;
is called the Poisson bracket.

It is easy to see that {H, H} = 0, so Hamiltonian sys-
tems have a constant of motion given by the Hamiltonian
function itself, normally corresponding to energy. Thus
they have at least two zero Lyapunov exponents, one cor-
responding to the flow direction, and one for perturbations
to the energy.

Hamiltonian systems may also have other constants of
motion. In the case of Newtonian gravity, the energy, total
momentum and total angular momentum are all constants
of motion. It follows directly from Hamilton’s equations
that if H does not depend on ¢; for some i, then p; is
constant. Then, properties such as ergodicity make sense
only on the invariant surfaces where all the constants of
motion are fixed. Also, there are zero Lyapunov exponents
corresponding to both the ¢; and p; coordinates: Varying
¢; leads to an identical system shifted in this coordinate,
while a perturbation in p; is unchanged.

A Hamiltonian with n degrees of freedom is called Li-
ouville integrable, if there are n conserved quantities
J; including the Hamiltonian itself, that are functionally
independent and have mutual zero Poisson brackets. In
this case, the Hamiltonian may be transformed so it is a
function only of the J; as momenta, and so the correspond-
ing coordinates have constant time-derivative. These are

called action-angle coordinates and if the energy sur-
face is compact, the dynamics in these coordinates is sim-
ply free motion on a torus.

A Poincaré section fixing a coordinate, say ¢, of a
Hamiltonian flow, and using a given constant energy F
to determine p,, at each iteration, also leads to a symplec-
tic map in the other variables. For example, a 2D billiard
map is symplectic using the arc length s and component
of the momentum parallel to the boundary, p| = |p|sin®,
where 6 is the angle between the particle direction follow-
ing a collision and the inward normal to the boundary,
and furthermore the normalisation constants are consis-
tent. This fact leads to an exact formula for the mean
free path in billiards. Let us calculate the total phase
space volume for the speed fixed to unity. Using the flow
invariant measure this is 27|D| where |D| is the area of
the billiard and the 27 corresponds to directions. This
must be equal to the same quantity calculated using the
above boundary invariant measure 27|0D| where the 2 is
the domain of sinf, 7 is the average time per collision,
and |0D] is the perimeter. Thus we have

27| D| B 7|D|
210D|  |0D|

T =

There are similar formulas is higher dimensions.
The most common Hamiltonian function is of the form

p?
H(q,p) = Z% +V(q)

for particles indexed by i with masses m; moving with a
potential energy function V(q) that depends on the posi-
tions of all the particles, for example Newtonian gravity as
discussed in the introduction. Another example we have
seen is the simple pendulum, where ¢ represents the angle
from the lowest position, p the angular momentum, and

2

H(g.p) = 5 7

where [ is the length of the pendulum, m the mass of the
bob and g the acceleration of gravity.

Numerical integration of Hamiltonian systems is most
commonly performed using symplectic integrators.
These use exactly symplectic maps that approximate the
true (symplectic) dynamics, and hence retain phase space
volume conservation, and conservation of a quantity very
close to the real energy. In a splitting method the
Hamiltonian is split into a sum of parts, for example ki-
netic (T') plus potential (V'), each of which can be inte-
grated by an exact symplectic map. The product of such
symplectic maps is also symplectic, and approximates the
true Hamiltonian dynamics.

If the time step is 7, a purely kinetic Hamiltonian (in
the usual form) gives

— mgl cos q

®7(q,p) = (@ + 7P/M,P)
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while a purely potential Hamiltonian gives

@7 (q,p) = (q,p — 7Vq4V)

For small time step, the combined evolution can be ap-
proximated in terms of these, for example the StGérmer-
Verlet algorithm

" ~ 01/ 0 B 0 B}/

7.3 The bouncer model

This was first introduced by Pustylnikov in 1983. Con-
sider a plate vibrating with vertical position yo(t) =
ecoswt and a particle that moves above it y(t) accelerat-
ing downwards due to a gravitational field —g and making
perfectly elastic collisions at times ¢, with the plate. If
the plate is assumed to have infinite mass, conservation of
energy and momentum at collision leads to the rule

g(tt) = —g(t™) + 250(t)

Scaling the position and time, we can set ¢ = w = 1,
leaving a single parameter e. We ignore air-resistance.

This system is non-autonomous, but the periodicity of
the vibrations allows us to use either a time 27 map or col-
lision map to reduce the problem to an autonomous map.
We take the latter approach, describing the collisions by
the phase at collision ¢,, = t,, mod 27 and velocity subse-
quent to collision v,, = y(t;).

The displacement from one collision to the next is

1
€COS P11 — €COS P, = VA, — §Ai

where A,, = t,+1 — t,. Also, the velocity decreases by
an amount A, during this time (since g = 1). Thus the
outgoing velocities are related by

Unt1 = —(vp — Ay) — 2€8in @11

These equations cannot be solved explicitly, since they in-
volve the intersection of a sinusoidal curve and a parabola.
Numerical methods can use a Newton-like iteration to
solve the equation numerically.”™

A simpler and numerically more efficient approach
makes an additional assumptions: Assume that v is much
greater than e. Then particle is moving fast enough so
that it cannot be overtaken by the upwardly moving plate
(no repeat collisions), and the distance it travels any time
it is near the plate is also much greater than that of the
plate. These constitute the static wall approximation.
Thus we find A,, =~ 2v,, leading to

Up41 = Up — 2€8in Py

7See for example C. P. Dettmann and E. D. Leonel, Physica D
241 403-408 (2012).

¢n+1 - ¢n + 2Un

Note the subscript n + 1 on the right hand side.

The original system appears Hamiltonian®® but we need
to check whether the symplectic (effectively just area pre-
serving) property holds under the static wall approxima-

tion (SWA):
( OPnt+1 OPnt1 >
P Ovy,
OVp 41 OVn41
Ovy,

O¢n

D =

1 2
o < —2ecos(¢p + 2v,) 1 — decos(dy, + 2v,) >

which we see has unit determinant as required. The trace
is 2 — 4ecos Pp 1.

Fixed points are of two types: For true fixed points we
have ¢ and v multiples of w. These are elliptic if € < 1
and ¢ is an even multiple of 7w, and hyperbolic otherwise.
Then, for € > 7/2 there are travelling fixed points, called
accelerator modes where v increases by a multiple of 7
at each step (if decreasing, clearly the SWA would become
invalid). Again, stability is determined by the trace and
may either be elliptic or hyperbolic. In the elliptic case,
there is very likely a positive measure set where v increases
without bound, the phenomenon of Fermi acceleration.

There are a number of similar systems in which a par-
ticle is injected into a periodically oscillating region after
a time dependent on its energy. These include the Fermi-
Ulam model of a particle between a fixed and oscillating
wall t ~ v~ !, and the Kepler model of a comet in an ec-
centric orbit that spends most of its time far from the sun
but is perturbed on its closest approach by Jupiter: The
diffusing quantity is energy E, with ¢ ~ |E|=3/2. Unlike
the bouncer model, however, the condition for stability
of fixed points (which then influences the rest of phase
space) in these models depends on the magnitude of the
energy.

7.4 The standard map

We can treat the post-collision velocity v in the SWA
bouncer model as an angle modulo 27. An advantage
of this is that the dynamical system now has a finite area
(hence normalised invariant measure). A change of vari-
ables, X,, = —¢n+1, Y, = —2v,, K = 4e leads to the
equations of the Standard map:®!

Xn+1 - Xn + Yn+1
Yoit1 =Y, + Ksin X,

For K = 0 the dynamics is a completely regular shear,
while for K — oo it appears (but has not been proven)

80We would need to check that the hard collisions make sense as
the limit of a sequence of time-dependent potential energy functions.

81B. V. Chirikov, Nuclear Physics Institute of the Siberian section
of the USSR Academy of Sciences Report 267 (1969).
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Figure 19: The Standard map, from left to right then top to bottom: K = 0.2,0.8,1.2,4,6, 8.
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that the dynamics is completely chaotic. The transition
to chaos occurs in several stages (see Fig.19).

At K = 0, Y is constant and the system is inte-
grable, with the orbits in X having a rotation number
w = Y/(2m): If this rotation number is rational m/n, the
orbits are n-periodic, while otherwise they are dense in
the invariant curve Y = const.

For small K, Kolmogorov-Arnold-Moser (KAM) theory
shows that most of the invariant curves remain, with ex-
ceptions only at resonances. To see this, consider both K
and Y small, and replace differences by derivatives:

X=Y
Y = Ksin X

This (with X = —0) is just a pendulum, with conserved
energy and Hamiltonian

Y2
H(X)Y)= 7+KCOSX

There are two fixed points connected by a separatrix of
width W = 4V/K in the Y direction. Similarly, we may
perturb around Y = 27m/n; this leads to island chains
of width W ~ K™/2. Inside the separatrices all orbits
have rotation number m/n. Around the separatrices are
chaotic regions arising from homoclinic tangles. Outside
the separatrices, there remain invariant curves with rota-
tion numbers that are badly approximable by rationals.5?

The most “irrational” number is the golden ratio g =
(14+/5) /2, so its invariant curve is the last to be destroyed
as K increases. The Chirikov criterion suggests that this
happens around when the main island chains overlap, that
is W =27 or K = 7?/4 ~ 2.467. This is however rather
inaccurate: The transition actually occurs at K ~ 0.9716.
Beyond this point, orbits in the chaotic regions can diffuse
throughout the system, and in the bouncer model, up to
arbitrarily high velocity.

The fixed point at zero becomes unstable at K = 4, and
beyond this point there are only small elliptic islands vis-
ible in phase space. For many large values of K there are
no islands visible, but there are many open questions,®3
for example

For any fixed K, show that there is a set
of positive measure of orbits with positive
entropy.

82These have continued fraction expansions with coefficients that
are not too large. See for example A. M. Rockett and P. Sziisz
Continued fractions (World Scientific, 1992).

83Gee for example A. Giorgilli and V. F. Lazutkin, Phys. Lett. A
272, 359-367 (2000). Note that it is possible to slightly perturb the
standard map to obtain positive entropy: P. Berger and D. Turaev,
arxiv:1704.02473
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