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Abstract

The three gap theorem states that for any α ∈ R and N ∈ N, the number of different
gaps between consecutive nα(mod1) for n ∈ {1, ..., N} is at most 3. Biringer and Schmidt
(2008) instead considered the distance from each point to its nearest neighbour, generalising
to higher dimensions. We denote the maximum number of distances in Td using the p-norm
by ḡdp so that ḡ1p = 3. Haynes and Marklof (2021) showed that each example with arbitrary α
and N gives a generic lower bound, and that ḡ22 = 5 and ḡd2 ≤ σd + 1 where σd is the kissing
number. They gave an example showing ḡ32 ≥ 7. Our examples that show ḡ32 ≥ 9 and also
ḡ42 ≥ 11, ḡ52 ≥ 13 and ḡ62 ≥ 14. Haynes and Ramirez (2021) showed that ḡd∞ ≤ 2d +1 and that
this is sharp for d ≤ 3. We provide a numerical example to show ḡ4∞ ≥ 15, and a proof that
ḡd∞ ≥ 2d−1 + 1 in general. Results for p = ∞ and σd imply that ḡdp depends on p for d ≥ 11
and we conjecture this for d ≥ 4. For d ≤ 3 we expect that ḡdp = {3, 5, 9} for d = {1, 2, 3}
respectively, independent of p. For d = 1 this is trivial, for d = 2 we show that ḡ2p ≥ 5 and for
d = 3 we provide numerical examples suggesting that ḡ3p ≥ 9.
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1 Introduction

What is the maximum local complexity for equally spaced points on a torus Td (defined in Sec. 2)?
Equally spaced refers to the set {nα}1≤n≤N for fixed α ∈ Td. Local complexity refers to the number
of different neighbourhoods of each of the points, suitably defined; see for example [KLS15]. The
three gap theorem states that if d = 1 and the local complexity refers to the smallest distance to a
point on the right, that is, gap distances between consecutive points, the maximum local complexity
is three. It was proved by Sós [Sós57, Sós58] and independently by Swierczkowski [Świ58] and has
many alternative proofs and generalisations.

Biringer and Schmidt [BS08] noted that a slightly weaker version, the three distance theorem,
applies if the gap (distance to the right) is replaced by the nearest neighbour distance, and that this
has a natural generalisation to higher dimensions. They then considered Riemannian manifolds,
where the equally spaced points could generalise to isometries of the manifold, or equally spaced
points on a geodesic. In our case (the torus) they give an upper bound ḡd2 ≤ 3d + 1, where
distance is induced from the usual Euclidean metric. We use the notation ḡdp (with (p ∈ [1,∞])

for the maximum number of distinct distances for the p-norm on Td and gdp(α,N) for the number
of distinct distances for a particular α and N . See Sec. 2 for the precise definitions. Note that
Biringer and Schmidt start their sequences from zero rather than one, so their N values (denoted
n in their paper) are one smaller.

Haynes and Marklof [HM22] proved that ḡ22 = 5, ḡ32 ≥ 7 and ḡd2 ≤ σd+1 where σd is the kissing
number, the maximum number of equal radius balls that can touch a single ball in d dimensions.
In the dimensions considered in our examples, it is known that σ3 = 12, σ4 = 24, 40 ≤ σ5 ≤ 44
and 72 ≤ σ6 ≤ 78 [dLL22, MdOF18]. See also Lemma 3 below.

Haynes and Marklof also showed in their Theorem 2 that

lim sup
i→∞

gd2(α
′, Ni,Λ

′) ≥ sup
N

gd2(α,N,Λ) (1)

for all α, all non-degenerate lattices Λ and Λ′, all subexponential sequences {Ni} and almost all
α′. Thus an example for Td (based on the cubic lattice Zd) with arbitrary α and N gives a generic
lower bound for tori based on all lattices.

This theorem in Ref. [HM22] uses the Euclidean norm. However, its proof relies on showing
that there is an open set of lattices which obtain the upper bound on the number of distances.
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This is a topological property of the space and the functions involved and it is not hard to see
from this point of view that the same proof will work, with only minor modifications, for any norm
which induces the same topology, including the maximum norm and other p-norms (Alan Haynes
and Jens Marklof, private communication).

Our numerical methods for finding these examples and hence lower bounds on ḡdp are as follows:

Random search We sample about 1012 values of α uniformly in Td and find most of the examples
presented here.

Rational search We can exhaustively search α with denominator up to some limit, around 2000
for d = 3 and 200 for d = 6.

Lattice search Searching near a known solution extended the number of distances for p = 2,
d = 6 from 13 to 14. In addition, evaluating the number of distances on a lattice in α in the
vicinity of a solution is used to estimate the d-volume of the domain of that solution.

Mathematica was used to verify solutions; see the Appendix. It was also used to find the area
of the pentagonal region of the example for p = ∞, d = 2. In addition, rigorous constructions
of solutions were used in the proofs of Theorems 2 and 5. Both the rational search and the
Mathematica verification may be considered rigorous claims, conditional on the software being
free of bugs that materially affect the results. The author’s own code was written in C++, in some
cases extended to GPU code by Mark Pearson (see the acknowledgements).

For the Euclidean norm, we provide new examples for 3 ≤ d ≤ 6 that were obtained numerically,
hence improving the lower bounds for ḡd2 . We also note that any example in a given dimension
d is also an example for any larger dimension, that is, ḡd2 is a non-decreasing function of d. In
summary:

Theorem 1.

ḡd2 ≥


9 d = 3
11 d = 4
13 d = 5
14 d ≥ 6

(2)

Remarks:

1. The examples for 4 ≤ d ≤ 6 were found using Mark Pearson’s code (see the acknowledge-
ments).

2. Whilst a significant improvement on the previous bound ḡd2 ≥ 7 for these dimensions, there
is still some distance between these and the upper bound σd + 1.

3. Since all lattices can be used for finding examples, it is possible to consider lattices of higher
symmetry. We have tried the F4 lattice for d = 4, that is, the lattice with an extra point
at the centre of every 4-cube. However this does not seem to be more efficient in finding
examples.

4. The case of few distances has also been studied: Weiß [Wei22] found α ∈ Td for d = 2, 3 for
which gd2(α,N) = 1 for infinitely many N .

Haynes and Ramirez [HR21] consider instead the maximum metric, that is, based on the ∞-
norm. These authors give an upper bound ḡd∞ ≤ 2d + 1 for the equivalent maximum number of
distances and show it is sharp for d = 2, 3 (as well as d = 1). They did not find any examples to
show ḡ4∞ > 9. We can improve this as follows, using a numerical example for d = 4 and a general
construction for d ≥ 5:

Theorem 2.

ḡd∞ ≥
{

15 d = 4
2d−1 + 1 d ≥ 5

(3)

Now we obtain a closed form bound on the kissing number

Lemma 3.

σd<
d(d− 1)2d/2

(
√
2− 1)

√
π
, d ≥ 3 (4)
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Figure 1: The best current upper and lower bounds for the maximum number of distances in the
Euclidean norm (ḡd2 , purple) and the maximum norm (ḡd∞, green) as a function of the dimension.

This is not a particularly tight bound or difficult to prove, but we include it here as the bounds
we found in the literature involved integrals or special functions, so it may be of independent
interest.

Combining Theorem 2 and Lemma 3 we show

Theorem 4.
ḡd∞ > ḡd2 , d ≥ 11 (5)

Remarks:

1. For the dimensions in which Theorem 4 holds, this shows that ḡdp depends on p.

2. We conjecture that Theorem 4 holds for d ≥ 4. For d < 4, see below.

The new lower bounds on ḡd2 and ḡd∞ together with previously known upper bounds are illus-
trated in Fig. 1.

Finally, we consider general p-norms in low dimension and can show

Theorem 5. For all p-norms with p ∈ [1,∞], g2p ≥ 5.

Remark: We also have examples (presented in Sec. 8) giving numerical evidence that g3p ≥ 9 for
all p. We conjecture that g2p = 5 and g3p = 9, independent of p, in contrast to higher dimensions.

In Section 2 we define the torus and its norms and metrics. We also recall the calculation of the
number of distances from Ref. [HM22]. In Section 3 we give examples for the Euclidean norm for
1 ≤ d ≤ 6, including those needed to prove Theorem 1, as well as some others of minimal length
and/or denominator. In Section 4 we give examples for the maximum metric. In Section 5 we
prove Theorem 1, then, in Section 6 we provide the example and proof for Theorem 2. Section 7
provides the proofs of Lemma 3 and Theorem 4. Finally, for general p-norms, Theorem 5 for d = 2
is proved, and the examples for d = 3 are presented in Section 8.
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2 Preliminaries

The torus Td = Rd/Zd is the d-dimensional Euclidean space, identifying each point x ∈ Rd with
its lattice translates x+ Zd. It is easy to see for x, y ∈ Td and n ∈ Z that nx, x+ y and x− y are
well defined under this identification.

The p-norm on Rd for p ∈ [1,∞], denoted | · |p, is defined as

|x|p =

{ (∑d
j=1 |xj |p

)1/p

p < ∞
max1≤j≤d |xj | p = ∞

(6)

For p = 2 this is the Euclidean norm, whilst for p = ∞ it is the maximum norm.
This induces the following norm on Td:

∥x∥p = min
z∈Zd

|x− z|p (7)

that in turn induces the metric

dp(x, y) = min
z∈Zd

|x− y − z|p = ∥x− y∥p (8)

giving our notion of distance on the torus. When d = 1 and when considering a single component
in higher dimensions, all the norms and distances are equivalent, so the p will be omitted from the
notation. When d = 2, the “disk” of fixed radius for p = 1 and for p = ∞ is a square, and these
correspond to the same metric in different lattices, thus ḡ21 = ḡ2∞.

We also define Nn,j to be the distance to the nearest integer (that is, the norm on T1) of nαj ,
where αj is the j-th component of α, so that

∥nα∥p =

{ (∑d
j=1 N

p
n,j

)1/p

p < ∞
max1≤j≤d Nn,j p = ∞

(9)

We are interested in the distance (according to dp) from the point iα to its nearest neighbour
where 1 ≤ i ≤ N , that is

dnnp (α,N, i) = min
1≤j≤N

j ̸=i

dp(iα, jα) (10)

the number of distinct nearest neighbour distances

gdp(α,N) = #
{
dnnp (α,N, i) : 1 ≤ i ≤ N

}
(11)

and its maximum value
ḡdp = max

α,N
gdp(α,N) (12)

Given that dp(iα, jα) = dp(0, |j− i|α) = ∥|j− i|α∥p it is easy to see (and noted in Ref. [HM22])
that this is

dnnp (α,N, i) = min
1≤k≤n

∥kα∥p ≡ δp(α, n), n =

{
N − i 1 ≤ i ≤ N+1

2

i− 1 N+1
2 ≤ i ≤ N

(13)

where k = |j − i|. Now, as i ranges from 1 to N , δp(α, n) has its largest value for n = ⌊N
2 ⌋ and

decreases as n is increased to N − 1. The number of distinct nearest neighbour distances is thus:

gdp(α,N) = #

{
n :

⌊
N

2

⌋
+ 1 ≤ n ≤ N − 1, δp(α, n) < δp(α, n− 1)

}
+ 1 (14)

All but one of the minimum distances occur for n > N−1
2 , which implies that

N ≥ 2gdp − 1. (15)

for all α. For examples where this bound is sharp, see Sections 3.7 and 4.5.
Where possible, we seek the simplest examples, which are hopefully also the most illustrative.

So, for each d, we seek the largest gdp(α,N), then the smallest N , then the α with the smallest
denominator. Symmetry allows us to permute the coordinates and to replace αi by 1− αi so each
solution belongs to an equivalence class of d!2d solutions (or fewer if it has symmetry). Henceforth
we assume without loss of generality that 0 ≤ α1 ≤ . . . ≤ αd ≤ 1/2.

4



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.1  0.2  0.3  0.4  0.5

α
 0  0.2  0.4  0.6  0.8  1

1 2 34 5

x1

Figure 2: Left: Plot of g1(α, 5). Right: The Kronecker sequence for α = 0.28, showing three
shortest distances, d(α, 5α) < d(2α, 5α) < d(2α, 3α).

3 Examples for the Euclidean norm

3.1 d = 1

We have ḡ1 = 3 as previously reported and can achieve N = 5, the minimum possible value from
Eq. 15. The only possible decreasing sequence of distances is min(∥α∥, ∥2α∥) > ∥3α∥ > ∥4α∥ which
yields easily the solution set 1/4 < α < 2/7 of size 1/28 ≈ 0.0357 (ignoring the α > 1/2 region
as noted above). The simplest rational example is α = 3

11 (found by exhaustive rational search,
numerically or manually) for which ∥nα∥ = 1

11{3, 5,2,1} for n = {1, 2, 3, 4} respectively, with the
relevant distances in bold. A plot of g1(α, 5) and example with three distances is shown in Fig. 2.
There are no examples with smaller denominator but higher length N .

3.2 d = 2

As noted in Ref. [HM22], we have ḡ22 = 5, and can achieve N = 9 with α = (0.132, 0.38) (see their
Fig. 2). Again, this is the minimum possible N according to Eq. 15. Numerically, this example is
in the only region where this N exists (modulo symmetry), a roughly triangular region with area
about 1.5109× 10−6; see Fig. 3. The solution with minimal denominator for this length is:

α =

(
15

113
,
43

113

)
which has a decimal approximation (0.1327 . . . , 0.3805 . . .). For this example we find ∥nα∥2 =
113−2{2074,1629, 2281, 5725,1563,1553,1508,74} for 1 ≤ n ≤ 8, with the relevant distances in
bold. The boundary of the region occurs when any of the inequalities ∥2α∥ > ∥5α∥ > ∥6α∥ >
|7α∥ > ∥8α∥ is broken. Here, ∥8α∥ is much smaller than ∥7α∥, so that the boundaries of the region
are the circular arcs defined by ∥2α∥ = ∥5α∥, ∥5α∥ = ∥6α∥ and ∥6α∥ = ∥7α∥. See Fig. 4.

A rational solution with minimal denominator (but not length) is g22(α, 12) = 5 with α =
(3, 8)/29.

A solution where the region is a (curvilinear) quadrilateral rather than a triangle is g22(α, 14) = 5
with α = (0.09, 0.381) or α = (5, 21)/55. In this case, the boundary curves are ∥2α∥ = ∥8α∥,
∥3α∥ = ∥8α∥, ∥10α = 11α∥, ∥11α = 13α∥. So, the longest of the five distances is either ∥2α∥ or
∥3α∥ for different parts of the solution region.

3.3 d = 3

The following example is new (though its discovery was noted in Ref. [HM22]): g32(α, 58) = 9 with
α = (0.0203, 0.0727, 0.3853) or a close point with minimal denominator α =

(
27

1334 ,
97

1334 ,
514
1334

)
.

There are no other (longer) orbits with smaller denominators than this. The descending sequence
of norms is ∥nα∥2 = 1334−2{128674, 128218, 125054, 104720, 95916, 92468, 91544,
88338, 81774} with n = {13, 39, 41, 42, 44, 52, 54, 55, 57} and all other norms larger for 1 ≤ n ≤ 57.
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Figure 3: Upper left: Plot of g22(α, 9) in the α plane. The colour (black for 1 to yellow for 5)
indicates g22(α, 9), that is, the number of distinct shortest distances for N = 9, the given α and
Euclidean metric. The region with five distances is too small to be visible and shown in the upper
right panel. Lower left and right: Plots of g2∞(α, 11) in the α plane, that is, for N = 11 and the
maximum metric.
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Figure 4: Upper left: The Kronecker sequence for α = (0.132, 0.38), showing five shortest distances
in the Euclidean metric, d2(α, 9α) < d2(2α, 9α) < d2(3α, 9α) < d2(4α, 9α) < d2(5α, 7α). Upper
right: Formation of the curved triangle and other structure in the upper right panel of Fig. 3. Here,
the two components of α are plotted, with Cm,n the circular arc defined by ∥mα∥ = ∥nα∥ in the
Euclidean metric. Lower left: Kronecker sequence for α = (0.115, 0.314) showing the five shortest
distances in the maximum metric, d∞(α, 11α) < d∞(2α, 11α) < d∞(4α, 11α) < d∞(5α, 11α) <
d∞(6α, 5α). Lower right: Formation of the pentagon in the lower right panel of Fig. 3. For Nn,j ,
see Eq. (9). The boundary of the pentagonal solution set consists of line segments where various
combinations of these are equal.
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gd2(α,N) N α
2 3 1/2
3 5 3/11
4 7 (5,8)/24
5 9 (15,43)/113
6 11 (24,69,111)/232
7 13 (9,24,29,42)/89
8 15 (12,14,35,57,76)/158

Table 1: Examples where the bound Eq. 15 is tight for the Euclidean norm.

This set of solutions lies in a roughly tetrahedral region of volume close to 4.619× 10−13 bounded
by the surfaces ∥13α∥ = ∥39α∥, ∥44α∥ = ∥52α∥, ∥52α∥ = ∥54α∥ and ∥54α∥ = ∥55α∥. Symmetry
gives 2dd! = 48 copies of this set, so it requires close to 1011 random vectors to find. Note that
the upper bound for ḡ32 is σ3 + 1 = 13. However we conjecture that this example is tight, that is,
ḡ32 = 9.

3.4 d = 4

The following example is new: g42(α, 68) = 11 with α = (0.0182, 0.285725, 0.419, 0.47625). The
descending sequence of norms is ∥nα∥2 = 40000−2{211374125, 209588500, 209096500, 207136000,
204312500, 197266000, 196599125, 193378125, 189534125, 181227125, 131849125} with n = {7, 38, 46,
48, 50, 52, 53, 55, 57, 59, 67}. The 4-volume of the relevant region is about 3.70× 10−17.

3.5 d = 5

The example is g52(α, 205) = 13 with α = (0.10742, 0.11374, 0.25, 0.29918, 0.42596). The descending
sequence is ∥nα∥2 = 10−9{162780582, 161793408, 158326822, 158307200, 155630688, 154482518,
154184800, 122913878, 117497952, 117410262, 115212800, 85909382, 60563808} with n = {17, 104, 113,
120, 124, 131, 140, 141, 148, 157, 160, 167, 204}. The 5-volume of the relevant region is about 8.42×
10−21. That this region was found within about 1012 sample size, even taking into account the
symmetry factor 5!25 = 3840 suggests that there are many similar regions.

3.6 d = 6

The random algorithm discovered a solution with g62(α, 55) = 13, but searching (using a cubic lat-
tice) in the vicinity of this solution improved it to g6(α, 55) = 14 with α = (0.02, 0.0715, 0.13, 0.167,
0.2672, 0.479). The descending sequence is ∥nα∥2 = 10−8{35113809, 33433369, 32828100, 32650449,
32540196, 32494400, 30172929, 30079076, 30014224, 27739844, 27655936, 25819536, 25809481, 22827044}
with n = {1, 29, 30, 31, 38, 40, 41, 42, 44, 46, 48, 52, 53, 54}. The 6-volume of the relevant region is
about 4.2× 10−23.

3.7 Minimal length solutions

We have from Eq. 15 that N ≥ 2gd2 − 1. However, the above examples with d ≥ 3 have much
larger N . Table 1 gives examples we have found where this bound is sharp using the exhaustive
rational search method with d ≤ 6. It is open whether solutions exist for higher gd2 than presented
here. The example for N = 3 has a shortest distance of zero between the first and third points; if
a positive distance is desired, α = 2/5 provides the minimal denominator example for this case.

4 Examples for the maximum norm

4.1 d = 1

This case is identical to the Euclidean norm, Sec. 3.1.

4.2 d = 2

Ref. [HR21] shows that ḡ2∞ = 5 and gives the solution α = (0.115, 0.314) for N = 11. In contrast
to the Euclidean case, numerical simulations strongly suggest that this is the minimum N . The
maximum norm is in some ways simpler than the Euclidean norm as the solution regions are
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polytopes; see Figs. 3 and 4 which shows a non-convex pentagonal region for this value of N . A
rational solution with minimal denominator (at this length) is

α =

(
10

86
,
27

86

)
= (0.1162 . . . , 0.3139 . . .)

For this example we find ∥nα∥∞ = 86−1{27, 32, 30, 40, 37,26,17, 42,15,14} for 1 ≤ n ≤ 10 with
relevant norms in bold. As with the roughly triangular example in Sec. 3.2, the boundaries of this
region occur where one of the relevant inequalities ∥α∥∞ > ∥6α∥∞ > ∥7α∥∞ > ∥9α∥∞ > ∥10α∥∞
is broken. The maximum norm is, according to Eq. 9,

∥nα∥∞ = max (Nn,1, Nn,2) (16)

See the lower right panel of Fig. 4. The part of the boundary where ∥9α∥∞ = ∥10α∥∞ corresponds
to two components, N9,2 = N10,2 and N9,2 = N10,1, and similarly ∥7α∥∞ = ∥9α∥∞ corresponds to
two components N7,1 = N9,2 and N7,2 = N9,2. Finally, the other relevant component is ∥α∥∞ =
∥6α∥∞ corresponding to N1,2 = N6,1. Unlike the p = 2 norm, each of these components is a
straight line segment, yielding exact rational values for the locations of the vertices of the pentagon,
clockwise from the upper left:{(

13

114
,
6

19

)
,

(
11

95
,
6

19

)
,

(
19

160
,
5

16

)
,

(
13

112
,
5

16

)
,

(
7

61
,
19

61

)}
.

The area can be calculated exactly (using Mathematica) to be

24863

2367697920
≈ 1.05× 10−5

A rational solution with minimal denominator (but not length) is g2∞(α, 14) = 5 with α =
(4, 15)/47.

4.3 d = 3

Ref. [HR21] shows that ḡ3∞ = 9 and gives a solution equivalent to g3∞(α, 73) = 9 for α =
(0.0157, 0.0575, 0.23744). We have found the slightly simpler solution g3∞(α, 49) = 9 with α =
(0.0824, 0.3301, 0.4383) or with minimal denominator for this length,

α =

(
153

1857
,
613

1857
,
814

1857

)
= (0.08239 . . . , 0.33010 . . . , 0.43824 . . .)

The descending sequence of norms for the latter is
∥nα∥∞ = 1857−1{480, 469, 417, 415, 408, 406, 396, 390, 288} with n = {9, 25, 27, 34, 36, 37, 39, 46, 48}.
The volume of this region is around 2.45× 10−12.

A rational solution with minimal denominator (but not length) is g3∞(α, 181) = 9 with α =
(187, 190, 203)/468.

4.4 d = 4

We have the found the following example, of much greater length and distances than others:
g4∞(α, 1548) = 15 with α = (0.14216, 0.309579, 0.400742, 0.42857). The descending sequence of
norms is ∥nα∥∞ = 10−6{143310, 141620, 141570, 141560, 141510, 141260, 141200, 141150, 129726,
121600, 97200, 90740, 83448, 81287} with n = {317, 866, 901, 908, 943, 1118, 1153, 1160, 1195, 1253,
1260, 1295, 1470, 1512, 1547}. The 4-volume of this region is around 6.5× 10−21.

4.5 Minimal length solutions

As in Sec. 3.7 we seek solutions where the bound in Eq. 15 is sharp. For the maximum norm,
the example in the proof of Theorem 2 below shows that these exist for arbitrary gd∞ ≤ 2d−1 + 1.
Table 2 gives results from the exhaustive integer search, which suggests that this is close to the
best that can be obtained; the examples with gd∞ ∈ {2, 3, 4, 6} have gd∞ > 2d−1 + 1.

5 Proof of Theorem 1

Proof. For this theorem, we have p = 2 (Euclidean norm). We verify the examples in Sec. 3
computationally using exact arithmetic, and apply the result in Eq. 4. Mathematica code and an
example (d = 3 in the Euclidean metric) are given in Appendix A.
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gd∞(α,N) N α
2 3 1/2
3 5 3/11
4 7 (6,16)/35
5 9 (5,10,17)/36
6 11 (12,35,57)/118
7 13 (9,21,34,39)/80
8 15 (7,23,35,47)/96
9 17 (9,33,52,67)/136
10 19 (11,25,31,47,95)/192
11 21 (13,27,34,55,111)/224
12 23 (15,39,63,95,127)/256
13 25 (19,31,41,79,159)/320
14 27 (41,61,79,89,159)/320

Table 2: Examples where the bound Eq. 15 is tight for the maximum norm.

6 Proof of Theorem 2

For this theorem, we have p = ∞ (maximum norm). For d = 4, the example in Sec. 4.4 is verified
using the Mathematica code in Appendix A.

For d ≥ 5 (and for lower d, but in this case the bound is not optimal) we have the example
α = (1/2d − ϵ, 1/2d−1 − ϵ, . . . , 1/2− ϵ) with 0 < ϵ ≤ (2d(2d +2))−1. In the following, as just before
Eq. 9, a subscript indicates vector component. If n is odd, then (nα)d = 1/2 − nϵ. If n is even
but not a multiple of 4, then (nα)d−1 = 1/2 − nϵ and in general, if n is a multiple of 2k but not
2k+1 for 0 ≤ k < d then the d− k component of nα is 1/2− nϵ. For ϵ sufficiently small, this will
be the component with the largest distance, and hence give the ∞-norm. As ϵ is increased, the
first violation occurs for n = 2d−1 + 1 when (nα)1 = 1/2 + 1/2d − (2d−1 + 1)ϵ which has norm
greater than 1/2− nϵ for ϵ > (2d(2d + 2))−1, hence the above bound on ϵ. Finally, for n = 2d, all
components are −nϵ. Thus

∥nα∥∞ =

{
1/2− nϵ 1 ≤ n ≤ 2d − 1

nϵ n = 2d
(17)

which decreases monotonically, and so choosing N = 2d+1 gives 2d−1+1 distances as needed.
Remarks:

1. Choosing the maximum value of ϵ gives a rational solution with denominator 2d(2d + 2).

2. Choosing odd N ≤ 2d + 1 gives a solution with (N + 1)/2 distances, so that Eq. 15 is sharp.

7 Proof of Lemma 3 and Theorem 4

We use the bound on σd given in Eq. 2 of Ref. [Ran55], noting that the kissing number corresponds
to spherical caps of radius α = π/6 corresponding to β = π/4 in that paper.

σd ≤
Γ((d− 1)/2)

√
π/8

Γ(d/2)
∫ π/4

0
sind−2 θ(cos θ − cos(π/4))dθ

, d ≥ 2 (18)

For d ≥ 3 this can be simplified using Γ((d − 1)/2) < Γ(d/2) and for 0 < θ < π/4 comparing
two concave functions with linear functions between their end points: sin θ > θ2

√
2/π and cos θ −

cos(π/4) > (1− 1/
√
2)(1− 4θ/π). This leads to Lemma 3:

σd <

√
π/8∫ π/4

0
(θ2

√
2/π)d−2(1− 1/

√
2)(1− 4θ/π)dθ

=
d(d− 1)2d/2

(
√
2− 1)

√
π

≡ Rd, d ≥ 3 (19)

Now R21 < 220 and also Rd+1/Rd =
√
2(d+1)/(d− 1) < 2 for d ≥ 6. So by induction, Rd < 2d−1

for all d ≥ 21. Thus σd < 2d−1 for all d ≥ 21. Also, we note that σd < 2d−1 for 11 ≤ d ≤ 20 by
known bounds for these dimensions [MdOF18, dLL22].
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Thus for all d ≥ 11 we have ḡd∞ ≥ 2d−1 + 1 > σd + 1 ≥ ḡd2 where the first inequality is from
Theorem 2 and the last from Ref. [HM22]. This concludes the proof of Theorem 4.

8 General p-norms

8.1 d = 1

This case is identical to Sec. 3.1.

8.2 d = 2: Proof of Theorem 5.

We now prove Theorem 5, by giving an example with 5 distances in d = 2, valid for all p ∈ [1,∞].
More precisely, we will show that for all p we can define θmin(p) and θmax(p) so that when

θ ∈ (θmin(p), θmax(p)) there exists ϵ > 0 so that g2p(α, 19) = 5, where α depends on θ and ϵ.

Specifically, α = (6/25 + ϵ cos θ, 8/25 − ϵ sin θ), θmin(p) = arctan(s) and θmax(p) = arctan 9+12s
12−9s

where s = (3/4)p−1 ∈ [0, 1]. For p = ∞, we define these to take their limiting values, namely
θmin(∞) = s = 0 and θmax(∞) = arctan(3/4). In all cases 0 < θ < arctan(7) < π/2 so tan θ is
strictly monotonic.

To show that the interval in θ is well defined, note that

tan(θmax(p))− tan(θmin(p)) =
9(1 + s2)

12− 9s
> 0. (20)

Now consider nα for 1 ≤ n ≤ 16, in particular

9α =

(
54

25
+ 9ϵ cos θ,

72

25
− 9ϵ sin θ

)
≡

(
4

25
+ 9ϵ cos θ,−

(
3

25
+ 9ϵ sin θ

))
mod 1

12α =

(
72

25
+ 12ϵ cos θ,

96

25
− 12ϵ sin θ

)
≡

(
−
(

3

25
− 12ϵ cos θ

)
,−

(
4

25
+ 12ϵ sin θ

))
mod 1

13α =

(
78

25
+ 13ϵ cos θ,

104

25
− 13ϵ sin θ

)
≡

(
3

25
+ 13ϵ cos θ,

3

25
− 13ϵ sin θ

)
mod 1 (21)

16α =

(
96

25
+ 16ϵ cos θ,

128

25
− 16ϵ sin θ

)
≡

(
−
(

4

25
− 16ϵ cos θ

)
,
3

25
− 16ϵ sin θ

)
mod 1

For ϵ = 0 these four p-norms are equal:

∥nα∥p =

{
[(3/25)p + (4/25)p]

1/p
p < ∞

4/25 p = ∞
n ∈ {9, 12, 13, 16}, ϵ = 0. (22)

Furthermore, denoting the distance to the nearest integer of the components of nα as Nn,j (see
Eq. 9), we note that for n = 1 we have min(N1,1, N1,2) = 6/25 > 4/25 and for 2 ≤ n ≤ 16, n /∈
{9, 12, 13, 16}, max(Nn,1, Nn,2) ≥ 3/25+4/25 = 7/25 and min(Nn,1, Nn,2) > 0. Thus for ϵ = 0 and
these n, the p-norm is strictly greater than for n ∈ {9, 12, 13, 16} for all p ∈ [1,∞]. This remains
true for all sufficiently small positive ϵ.

For small positive ϵ, the ∥nα∥p for n ∈ {9, 12, 13, 16} will differ, and following the analysis in
Sec. 2, in order to obtain five distances, the minimum distance needs to decrease four times in the
range N−1

2 ≤ n ≤ N − 1, that is, we need

∥9α∥p > ∥12α∥p > ∥13α∥p > ∥16α∥p (23)

Now, we have two cases. First, consider p < ∞. For the first inequality we write ∥9α∥pp >
∥12α∥pp in full, to first order in powers of ϵ:(

4

25

)p

+ p

(
4

25

)p−1

9ϵ cos θ +

(
3

25

)p

+ p

(
3

25

)p−1

9ϵ sin θ

>

(
3

25

)p

+ p

(
3

25

)p−1

(−12)ϵ cos θ +

(
4

25

)p

+ p

(
4

25

)p−1

12ϵ sin θ +O(ϵ2) (24)

The constant terms cancel. We divide by pϵ(4/25)p−1 and neglect higher order terms in ϵ. Also,
recall that s = (3/4)p−1 ∈ (0, 1]. In this way we obtain

9 cos θ + 9s sin θ > −12s cos θ + 12 sin θ (25)
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p N α
1 148 (0.16915,0.1769,0.2109)
1.3 148 (0.16903,0.177,0.2109)
1.2 124 (0.009,0.06564,0.366233)
2 124 (0.0092,0.06572,0.3662)
1.9 58 (0.02035,0.0727,0.38535)
3 58 (0.0201,0.0728,0.3853)
2.5 94 (0.01217,0.35409,0.409912)
∞ 94 (0.0118,0.35395,0.41)

Table 3: Examples with g3p(α,N) = 9. Interpolating these solutions covers all p-norms.

and hence tan θ < 9+12s
12−9s = tan θmax. By a similar calculation, ∥12α∥p > ∥13α∥p is satisfied if

tan θ > tan θmin = s and ∥13α∥p > ∥16α∥p is satisfied if s ≥ 13/16 or tan θ < 16+13s
13−16s . For this last

inequality we have for θmin(p) < θ < θmax(p):

16 + 13s

13− 16s
− tan θ >

16 + 13s

13− 16s
− tan θmax =

75− 24s+ 75s2

(13− 16s)(12− 9s)
> 0 (26)

since the numerator is positive for all s, and the denominator is also positive when s < 13/16.
Thus, the inequality ∥13α∥p > ∥16α∥p is always satisfied when θmin(p) < θ < θmax(p).

To summarise, for θ ∈ (θmin(p), θmax(p)) the inequalities at first order in ϵ are satisfied, and
we can take sufficiently small ϵ to ensure that the higher order terms can be neglected.

The second case is p = ∞. Here we can write explicitly that ∥9α∥∞ = 4/25+9ϵ cos θ, ∥12α∥∞ =
4/25+12ϵ sin θ, ∥13α∥∞ = 4/25−13ϵ sin θ and ∥16α∥∞ = 4/25−16ϵ cos θ. The inequalities, Eq. (23)
are satisfied for 0 < tan θ < 3/4, which is again θ ∈ (θmin(p), θmax(p)).

Remark: It is an open question whether there are any α and N giving five distances for all p.
The above proof shows that solutions are in a small neighbourhood of the point (6/25, 8/25), but
the intervals in θ have no intersection: For p = 1 we need tan θ ∈ (1, 7) whilst for p = ∞ we need
tan θ ∈ (0, 3/4).

8.3 d = 3

We have numerical evidence that for all p ∈ [1,∞], there exist α and N such that g3p(α,N) = 9.
Our examples interpolate between the values of p for the four given in Tab. 3, covering the entire
domain in p. The regions in α vary slightly with p.

A Code to verify solutions

The following Mathematica code was used to verify all the examples given in this paper. Mathemat-
ica does arbitrary precision arithmetic and exact comparisons of expressions involving non-integer
powers, so it can be used for all values of p, entered as 13/10 rather than 1.3, for example. Following
the code, we present the output for three examples, found in sections 3.3, 4.4 and 8.3. Equivalent
code can be written in computer languages using fixed precision integers for integer or infinite p,
and denominators not too large.

Mathematica 11.0.1 for Linux x86 (64-bit)

Copyright 1988-2016 Wolfram Research, Inc.

In[1]:= !cat dists.m

Print["p-metric distances for exact p>=1 or Infinity"]

qreduce[a_,q_]:=Abs[a-q*Floor[a/q+0.5]]

distlist[alist_,q_,Nmax_]:=If[p==Infinity,

Table[Max[Table[qreduce[n*alist[[i]],q],{i,Length[alist]}]],{n,Nmax}],

Table[Sum[qreduce[n*alist[[i]],q]^p,{i,Length[alist]}],{n,Nmax}]]

dists[alist_,q_,Nmax_]:=(Print["p="<>ToString[p]<>", N="<>ToString[Nmax]<>","];\

Print["alpha="<>ToString[alist]<>"/"<>ToString[q]];\
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dl=distlist[alist,q,Nmax];min=Infinity;count=1;\

For[i=1,i<=Nmax-1,i++,If[dl[[i]]<min,min=dl[[i]];\

Print[ToString[i]<>" "<>ToString[InputForm[dl[[i]]]]];If[i>Nmax/2,count++]]];\

Print["Distances="<>ToString[count]])

In[2]:= << dists.m

p-metric distances for exact p>=1 or Infinity

In[3]:= p=2

Out[3]= 2

In[4]:= dists[{27,97,514},1334,58]

p=2, N=58,

alpha={27, 97, 514}/1334

1 274334

2 134188

13 128674

39 128218

41 125054

42 104720

44 95916

52 92468

54 91544

55 88338

57 81774

Distances=9

In[5]:= p=Infinity

Out[5]= Infinity

In[6]:= dists[{142160,309579,400742,428570},1000000,1548]

p=Infinity, N=1548,

alpha={142160, 309579, 400742, 428570}/1000000

1 428570

2 380842

7 194806

35 164735

77 162417

210 155820

317 143310

866 141620

901 141570

908 141560

943 141510

1118 141260

1153 141210

1160 141200

1195 141150

1253 129726

1260 121600

1295 97200

1470 90740

1512 83448

1547 81287

Distances=15

In[7]:= p=13/10

13



13

Out[7]= --

10

In[8]:= dists[{16903,17700,21090},100000,148]

p=13

--

10, N=148,

alpha={16903, 17700, 21090}/100000

1 17700*10^(3/5)*177^(3/10) + 16903*16903^(3/10) + 21090*21090^(3/10)

5 11500*2^(3/5)*5^(9/10)*23^(3/10) + 5450*5^(3/5)*218^(3/10) + 15485*15485^(3/10)

90 7000*7^(3/10)*10^(9/10) + 1900*10^(3/5)*19^(3/10) + 21270*21270^(3/10)

95 18500*2^(3/5)*5^(9/10)*37^(3/10) + 3550*5^(3/5)*142^(3/10) + 5785*5785^(3/10)

113 100*10^(3/5) + 16830*3^(3/5)*1870^(3/10) + 10039*10039^(3/10)

118 11400*2^(9/10)*5^(3/5)*57^(3/10) + 11380*2^(3/5)*2845^(3/10) + 5446*5446^(3/10)

119 6300*7^(3/10)*30^(3/5) + 11457*3^(3/5)*1273^(3/10) + 9710*9710^(3/10)

124 10400*2^(1/5)*5^(3/5)*13^(3/10) + 4028*2^(3/5)*1007^(3/10) + 15160*2^(9/10)*1895^(3/10)

142 13400*2^(9/10)*5^(3/5)*67^(3/10) + 5220*6^(3/5)*145^(3/10) + 226*226^(3/10)

147 1900*10^(3/5)*19^(3/10) + 230*230^(3/10) + 15259*15259^(3/10)

Distances=9
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