Applied Mathematics 2

1 Introduction

What is applied mathematics? Many branches of knowledge (sciences, eco-
nomics...) can be expressed using mathamatical language. Mathematics and
other branches of knowledge have an interdependent relationship, in that each
is stimulated by the other. For example, calculus needed by Newton for gravity;
Dirac delta function needed for quantum mechanics. Einstein used Riemann’s
theory of curved spaces (slightly modified) in his theory of gravity. Lorenz
discovered chaos by modelling climate.

Steps in doing applied mathematics

1. Formulate problem in mathematical terms

2. Solve maths problem

3. Interpret solution and compare with empirical results
4. Generate relevant new mathematics: new problems?

Give summary of course, homework, etc.

2 Dimensional analysis

2.1 Units and standards for M, L and T

Discrete quantities can be directly identified with integers (3 apples OK, 10?3
electrons not very useful if you can’t count them) but continuous quantities need
a standard for comparison (2.6 metres, 50 minutes). There are many units and
standards; for scientific use, SI units have standards for mass (kg), length (m)
and time (s) and a few others.

The standards (hence units) depend on measuring technology. For example,
there are actually 3 standards of mass (solar, kg, atomic) because astronomical
masses are measured using gravity (and G is not known well), ordinary masses
using delicate balances, and atomic masses using microscopic effects. When the
number of atoms in a macroscopic sample can be counted, the standard kg will
become redundent. Length and time are defined using microscopic effects, with
the speed of light defined exactly. This is because lengths are measured using
lasers of specified frequency.

There are prefixes for various powers of 1000, (TGMkmunp), cf the conver-
sions used in old units. In computers, these usually refer to powers of 1024 = 210,
Decimal time was attempted during the French revolution, but did not succeed.



2.2 Combining units

Thus, when we say a certain object has a mass of 3kg, we mean that it has a
mass equivalent to three standard kg masses (assuming mass, length and time
can be added and multiplied - obvious?). Anything with a value proportional
to a standard mass such as the kilogram is said to have dimensions of mass (M,
cf L, T). We can add two such objects:

Mi/kg + Ma/kg = (M1 + M2)/kg

but it doesn’t make sense to add objects defined with respect to different stan-
dards:
M /kg + My /lb =?

We can multiply or divide quantities to get a derived unit,

zfm _

e = vl (ms™)

and we say
[v] = LT
We can find dimensions of any quantity for which we have an equation, eg.
[T] = [mw?/2] = ML*T—?
[V] = [mgh] = M(LT %)L = MI*T2

The SI system gives names to the more important derived units, for example
Newton (N = kgms~2) as a unit of force, Joule (J = kgm?s~2) as a unit of
energy, etc. The symbols are capitalised because they are named after people.

Most other operations do not make sense, for example, taking an exponential:

eM/kg # eM/kg

or
eM/kS = 14+ M/kg+ M?/(2kg®) + ... =?

Logarithms may sometimes be OK in combination:
In(M; /kg) — In(M>/kg) = In(M; /M>)

and occurs when evaluating certain integrals.



2.3 Other units

Angle 0 is a pure number, usually measured in radians. Temperature © in Kelvin
(same as degrees Celsius, but with a zero at absolute zero, water freezes at
273K). Electrodynamic quantities have a number of different unit conventions,
for example, the electrostatic system (esu) uses the force between two charges

F=q¢/rm
to define charge in terms of M, L and T. This leads to the equation
V-E=4mp

where E is the electric field and p is the charge density.
In contrast, the SI standard is that charge is defined by a standard Coulomb,
so that
F =qE = ¢*/(4me)

where €y is a constant called the permittivity of free space, and the 4 is to
simplify the equation for the electric field E, that is

V-E=p/e

where p is charge density, charge per unit volume. In both cases other quantities
can be derived: Current (Ampere=Coulomb per second), Potential (Volt=Joule
per Coulomb), etc.

2.4 Dimensional analysis; scale models

Dimensions are very useful, even when very little is known about the mathe-
matical relationships between various quantities. Given the dimensions of all
the relevant quantities, we can

e Check the results of any calculations
e Construct the relevant dimensionless parameters
e Design scale models for experiments

Consider ship design. The relevant parameters are the size [L] = L, the velocity
[U] = LT, gravity [g] = LT 2, the power [P] = [E/t] = ML?>T~3, and the
properties of water, in particular its density [p] = [M/V] = M L~3 and viscosity
[v] = L?T~" (given). The power is an unknown function of the other variables:

P = f(L,U,g,p,v)

If we have
P = CLangcpdVe



ML2T—3 — MdLa+b+c—3d+2eT—b—2c—e

Thus
d=1
a+b+c—3d+2e=2
b+2c+e=3

Fixcand e, thenb=3—-2c—eand a4+ 3 —2c— e+ c— 3 + 2e = 2, that is,
a=24c—e. Thus
P = CL2+c—eU3—2c—egche

P = CL*U3p(Lg/U?)*(v/LU)®

Since the powers of Lg/U? and v/ LU are arbitrary, these must be dimensionless.
The are directly related to the Froude and Reynolds numbers respectively, and
both are very important in the theory of fluids.

Fr=U/+/gL
Re=UL/v

Finally, the power must be
P = L*U3pf(Fr, Re)

where f is an arbitrary function. There are many possible ways of writing this
result, for example, the dimensionless variables could be Fr x Re and F'r/ Re; the
important fact is that there are two independent dimensionless parameters. The
prefactor could also be multiplied by a dimensionless parameter, for example,
multiplying by Fr* we get

P =U"p/g*F(Fr, Re)

where the new function is related to the old one by f(Fr, Re) = Fr*F(Fr, Re).

Now we hope to calculate this unknown function of 2 variables using a scale
model with L' = L/100, so to keep F'r the same, need U’ = U/10, and to keep
Re the same, need v’ = v/1000. Impossible: no such liquid. Fortunately viscous
effects are often unimportant in ship design, so a slightly smaller Reynolds num-
ber can also work. It is much easier to experimentally measure this function of
2 variables than the original function of 5 variables. If we do make a theoretical
estimate using more knowledge of the equations, we should check to make sure
the dimensions are correct.



2.5 scaling

We can use dimensional analysis to scale differential equations in order to sim-
plify them and extract the important parameters for approximations. Example:
particle projected from the Earth,

dy _ gR®
dt2 ~  (y+ R)?
y(0)=0
dy B
%(0)_1/

where R is the radius of the Earth, using inverse square law; g is the acceleration
when y = 0. We have three parameters, [R] = L, [g] = LT 2 and [V] = LT~!.
A natural unit of time is R/V, so a dimensionless time is

and a dimensionless distance,
y1 =y/R
S0
dy _ pdndh
dt — dty dt O dh
Py _ i( @)% _ V2 dn
2 dt; > dty’ dt R dB?
and hence
V2dy, _ gR?
R dt?  (y1R+R)?2
€d2y1 _ 1
dt; (g1 +1)?

with € = V?/(gR) a dimensionless parameter. We also have

dy:
e = = ]_
O =V/V

y1(0) =0

Notice that the solution of the original problem involves three parameters {g, R, V'}
while the scaled version has only a single parameter €. This means that the so-
lution in the original variables only involves the combination € = V2/gR. We
are expressing the problem in terms of the natural length R and natural time
R/V.



For example, suppose we want to find the time at which the projectile reaches
maximum height, ™. This occurs when

dy

%'t:t”’ =0
dy:
d_t1|t1=t11‘/’ =0

but since y; is a function of ¢; and ¢, the solution can only be of the form
t" = t/'R/V = f(V*/gR)R/V

Experimentally, a plot of +}/ vs e should all lie on the same curve (draw like
'z with a vertical asymptote), using data from different planets (R and g) and
projectiles (different V).

The above scaling is not unique: another unit of time is /R/g (using R and
g instead of R and V). So we could use

to = t\/g/R

y2=y/R
Now we get
d%ys _ 1
3~ (g2 +1)?
y2(0) =0
dy2 1/2
d_tz(o) =€/

where € = V?/gR as before. The parameter has now moved into the initial
condition, but the solution is still a function of the same parameter €, so we

have
t" =t3'\/R/g = F(V?/9R)\/R/g

which is equivalent to what we had before:
f(V?/gR)R|V = F(V*/gR)\/R/g
f(V?/gR) = F(V*/gR)\/V?/gR

Note that this solution is exactly what we would find if we applied dimen-
sional analysis (as with the particle of given energy and mass, etc.) without
knowing the equation or initial condition, if we assume that t¥ depends only
on g, R and V. That is, we look for a combination

[gavac] — La+b+cT72afc

Then ¢ = —2a—1 and b = —a — ¢ = a+ 1: The f solution is a = 0, b = 1,
¢ = —1; the F solution is a = —-1/2,b=1/2, ¢ =0.



2.6 Approximations

Using two different scalings, we have replaced

d?y gR? dy
W——m, Z/(O)—Oa E(O)—V
by
d2y1 1 dyl
edt% __(y1+1)27 yl(o)_07 E(O)_]‘
and d? 1 d
Y2 _ Y2 o\ _ 1/2
- ey PO 5O
where

e:V2/gR, y1 =y/R, t1=tV/R, y2=y/R, t2=1t\/gR

Now suppose € < 1 (for example V = 100, g = 10 and R = 6 x 10® in SI
units: € ~ 10~%). Note that only a dimensionless quantity can be compared
with 1. If we ignore € in each of the above equations, disaster!

1 dy:
0=—— . 0)=0, —L0)=1
GrrTE MO=0 GO
and d? 1 d
Y2 Y2
= — = e =0
dt% (y2 + 1)27 Y2 (0) 0, dt2 (0)

The first equation is contradictory, the second gives a negative solution.
Solution: Scale so that the terms in the equation are the same order of
magnitude. For small velocities, we know the solution, since the acceleration is
simply —g:
dy

y=Vt—gt?/2
The time to maximum height is t = V/g and this height is y™ = V2/2g. Thus

the times and distances are of the order of magnitude defined by these quantities.
This time and length gives a new scaling:

ys = yg/ V2
t3 = tg/V
in terms of which the equations are
d*ys —gR? dys



that is,
d*ys 1 dys
= - 0)=0 —=(0)=1
dt% (]. + €y3)2 y3( ) dt3 ( )
Now, neglecting € gives sensible results, and we can attempt a perturbation
theory.

2.7 Regular perturbations
Define y3 = z and t3 = 7, so we have

d?z 1 dz

where € = V2 /gR < 1. We seek an expansion in powers of €, so substitute (also
can use z(?) notation)

2(7) = 20(7) + €21(1) + €22(1) + O(€?)

The binomial theorem gives

(14+e2)™2 = 1—2ez+ 3222 +0(e%)
= 1—2e2 +€* (325 —221) + O(€%)
The LHS is 2 P2 P2 2
_Z _ 20 z1 9 z9 3
dr? dr? te dr? te dr? +0(<)

We can set € to zero and solve for zj, then divide the remaining equation by €
to solve for z; etc. This is the same as equating coefficents of e:

d2
2 _ 4
dr?
d221
a2
d2
FZ; = 22’1 — 323

Each equation only involves the previous solutions, so should be easy to solve.
We need the initial conditions: At 7 = 0, we have

0:z:z0+ez1+62z2+...

SO
0220221:2’2:...

Also p d d p
__Z= 20 21 o 22
1_d7' dr +€dT te d7'+”'



so
dZ() -1 o le o de
dr 7’

Now we are ready to solve:

Tdr T dr T

20 = —7'2/2+T

Thus
n=-7"/124+7°/3
and 1n, 11
2z1 — 3z§ = —ET4 + 373 - 372
2= — g 115 1,

360 T60° 14

to go further, enlist the help of a computer algebra package such as Maple.
Thus
2=7—7/24+€(13)3—T4/12) + ...

Time to max height? Need dz/dr = 0, thus
0=1-7+¢€T*-7/3)+...

This is a cubic, but as above we can expand the solution in e. We have

™ =1 +en+...

leading to the equations
0=1- 70

O=-m+78—75/3

Thus
T0 = 1

T = 2/3
™ =142¢/3+...
Max height is found by substituting (again to order ¢):

M = (1+2¢/3) — (1 —4€¢/3)/2+€(1/3 — 1/12) + O(€?)
M=1/2+¢€/4+ O(e?)
The maximum height can be found exactly:

dv dv 1

ar ~"de T (I fe2p



withv =dz/dr,at T=0: 2=0,v=1.

vdv = dz
(1 +e2)?
1
2
2=———+C
v’/ 6(1—|—62)+
Using initial condition
1/2=1/e+C
1 1 z
1—v?)/2=-(1- =
( v/ e( 1+ez) 1+ez
So v = 0 means
oM
1/2=——
/ 14+ exM
1 1 € 1 €
M ~1
= =—(1-= =—4+-4...
=g =almg) =gt

This expansion converges for € < 2, which is in fact the whole range of validity
of z2M. The solution in terms of time is given by a difficult (elliptic) integral, so
the expansion is useful in this case.

In original variables y = 2V2/g, t = 7V/g

242 2
gt Vel gt gt
o/ v? =gtV - 5 - L | s - yz) .
V2 g2t3 g3t4
=Vt—gt?/2+ — |Z= —
y=Vv g/+gR[3V 12V2]+
Vo 2v?
M=l 2
g( 3R T )
V2 V2
M
= (It ...
y 2g( ot )

3 Conservation and linear first order PDE prob-
lems

3.1 Flow from an axisymmetric container

...an important idea pervading applied mathematics... involves identifying a
measurable quantity and tracking its creation and disappearance during a pro-
cess. For example, consider a container of axisymmetric shape A(h). Conserva-
tion of volume (uniform density)

dV/dt =0- Q = —Ao’U()

10



since there is no addition and the volume moving out is vgAgdt. But

dV = A(h)dh

(small slice at the top), so
_ oo
dh/dt = Am)

We need to know how vg depends on h: Conservation of energy. A mass dm =
pA(h)(—dh) has been removed, losing potential energy dmgh and gaining kinetic
energy mv3 /2 (ignore velocity at top) so

muvg /2 = mgh

vo = v/ 2gh

Actually, losses at base, so assume

vo = ay/2gh
for0<a<1. So " .
_ _adov2gh

dh/dt = )

If we have a circular cylinder (except for outlet at bottom), A(h) = A, so

dh/dt = —a(Ao/A)\/2gh

/dh/\/__ a(Ag/A) /dt

—2vVH = —a(Ao/A)\/ 29t
Vv2H
t = ——(A/Ao)
o/
Check dimensions.
Now, if dh/dt = —u constant velocity, we have

h) = ado\/2gh/u

so the radius is

a1/2A(1)/221/4g1/4h1/4

r(h) = /A(R) 7 = —
(diagram). The total time is then
vH
= Hju= T (AH) /40

half the length of time as before.

11



3.2 1D conservation equation

Suppose we have a conserved quantity S in one dimension, eg. along a pipe.
Let the density or concentration of S per unit length be P(z,t) eg. mass per
unit length, number of molecules per unit length, number of cars per unit length
in traffic model. Thus P(z,t)dz is the amount of S contained between x and
z + dz at time ¢.

Let the flow rate or flux of S per unit time be Q(z,t). Thus Q(x, t)dt is the
amount of S passing through the point z in time dt.

We derive a relation between P(z,t) and Q(z,t) as follows: at fixed ¢, flow in
is Q(z,t) and flow out is Q(z + dz,t). The amount in this interval is P(z,t)dz.
Thus

ds o0

> _p - -
il (z,t)dr = Q(z,t) — Q(x + dzx,t)
But 9
Q(z + dz,t) = Q(z,t) + dxaQ(:c,t) + O(dz?)
so, dividing by dx and taking the limit dz to zero, we get:

0 0
EP(SE,t) + %Q(JE,t) =0

Alternatively, we can work in a finite volume. Amount of S in region z; to
@2 is [,° P(z,t)dz. Rate of change is

ds _d [* 2
G- Pend= [T Sp@ i =0 - Qe
But w2 g
| 500 0dz = QG D]z = Qlaz,t) - Qe
SO

= (9P 3Q\ ,
/m (E a)dm—o

Provided P and () are sufficiently smooth, since this holds for any interval
(z1,22), the integrand must vanish, and

P+Q,=0
In general we can consider a source R(x,t) of S, leading to
P+ Qz =R

(problem 3.1).

Suppose that there is a velocity field U(x,t) at which S is transported.
Consider the amount of S between x and z + dx, Pdx. This is transported in
a time dt = dz /U, thus the flux is Q = Pdz/(dz/U) = PU, ie

12



3.3 Flow of chemical down a pipe

A fluid pouring down a pipe of area A(z) carries a chemical with concentration
c(z,t) with velocity u(z,t). The flux is Q = Auc and the density is P = Ac
(diagrams), note that ) = Pu. Thus

0="P; + Qs = (Ac)t + (Auc),
In a uniform pipe, A is constant, so
0=rct+ (uc),

This is a first order linear pde for ¢ once u is given.
Now consider conservation of mass for the fluid. The fluid has density p, so
mass dm = Pdx = pAdz. The mass flux ) = Pu = pAu, so

(pA): + (pAu), =0
If p is constant, and A and u do not depend on time, we have
(Au), =0

SO
Au = const = Agug

Substituting into our previous equation,we have
A(z)er + Agugey =0

so we can now solve for ¢(z,t) given A(z).
Now if A is constant, so is u, and we have

¢+ ucy; =0

with initial conditions c¢(z,0) = co(x). Consider the lines in the z — ¢ plane of
constant ¢, say given by X (¢). This means

_d,
T dt

Thus we must have X'(t) = u the constant velocity. Thus X (t) = ut + £ where
¢ is the value of z at t = 0. These lines are called characteristic curves, and
play an important role in the solution of many pdes. Thus

c(z,t) = ¢(§,0) = co(§)

along the curve z = ut + £. Thus

0 (X(1),t) = et + X' (t)eo

c(x,t) = co(x — ut)

13



The characteristics carry the initial conditions forward in time with speed u,
which is not constant in general (later). Draw picture of wave moving with
speed u, unchanged since v is constant.

Note that we can specify “initial” data on any curve in the z — ¢ plane
that contains only point along the characteristics - no point and the solution
is undefined, more than one point and the solution is multiply defined. For
example we could specify data at u(0,t) and u(z,0) for ¢ > 0 and z > 0
respectively, but not for ¢ > 0 and = < 0 (diagrams).

3.4 Traffic low

We are going to develop a continuum model, dealing with average values rather
than the properties of individual cars. We look from the side of the road (Eule-
rian description), rather than from one of the cars (Lagrangian description). We
define traffic density p(z,t), (mean) traffic speed u(x,t) and traffic flux ¢(z,t)
as before. The highway is of uniform width, and has no entrances or exits.

At fixed time, count the number of cars dN in an interval z to = + dx;
this is dN = p(z,t)dz, then take the limit dz to zero. Similarly, at a fixed
position, count the number of cars dM passing in the interval ¢ to ¢ + dt; this is
dM = q(z,t)dt then take the limit d¢ to zero. After time d¢, a typical car covers
a distance dx = udt. During this time dN = pdx cars pass a point, so the flux
at that point is measured as ¢ = dN/dt = pu as before.

Conservation of cars is (from above)

pt+qz:0

pt + (pu)s =0

How does the flow rate ¢ depend on p? Clearly it does, for example, we expect
the speed u to decrease as p increases, and ¢ = pu. Let

q=f(p)

4z = fl(p)piv

What is the relation f(p)? First consider the velocity u. It takes a maximum
value U4, at p = 0 and decreases to zero at a maximum density pn,q.- We can
do observations to establish these parameters.

Multiplying by u to get f(p) = ¢ = p(u)u we see that f(p) should start at
zero at u = 0, rise to a maximum, and return to zero at p,;4,. Call the density
at which the flux is maximum p*, that is

f(p*)=0

There are two values of the density, a high density and a low density for each
value of the flux below this maximum.

14



The speed of travel u is f(p)/p, in other words the gradient of the line joining
the origin with the point (p,q = f(p)) on the graph. The quantity f'(p) also
has dimensions of velocity, and turns out to be the signal speed (ie gives the
characteristics). The signal speed is positive for low densities and negative for
high densities.

We can see this for the case f'(p) = ¢ a constant (only true if u is constant
in general). Then

pt +cpz =0
and we get back to the same equation as for the chemical flowing through the
pipe. p is constant along lines such that  — ct is constant, that is

p(x;t) = po(x — ct)

if p(z,0) = po(x). The argument is the same as we used before: find the lines
X (t) along which p is constant; these lines must satisfy

dp

0=—
dt

=p+ X' (t)pz
hence X'(t) = ¢, X(t) = ct + &.
Digression: If, in general, we have p(z,t) we can describe it in two ways,
either as a surface in (p, z,t) space, eg. a hemisphere
PP+ +t? =d’

corresponding to
p=Va2—z2 -2

or as contour lines of constant p in (z,t) space, here circles.
P =a = p?
which we can write as X (¢):

X@t)=%va?—p? -t

Thus d
0= —2p(X(),1) = pe + X' (V)
Check:
pt=—t/p
pz = —x/p
X'(t) = —t/x



4 Quasilinear first order PDE problems
4.1 Traffic again

Returning to the problem of traffic flow, we have

pe+ f'(p)pa =0

with f(0) = f(pmasz) =0, f(p) > 0for 0 < p < pmas and f'(p*) = 0. Any
function p(z,t) will remain constant along paths z = X (t) provided

d

0= —2p(X(),0) = pe + X' (V).

It follows that p is constant along curves x = X (t) defined by

L= X0 = 1)

but since p is constant, so is f'(p), and we can integrate to obtain p(z,t) = p(£,0)
along

z(t) — &= f'(p(&0)t = f'(po (&)t

Given the initial conditions along t = 0, we can draw straight lines, characteris-
tics, from the value of f'(p(z,0)) at each point. If f'(p) = 0 the line is vertical
(constant x). Thus we have shown that f'(p) is indeed the signal speed. The

car speed u = f(p)/p > f'(p).
Note that if we can solve

z— &= f'(po(§))t
for £ in terms of z and ¢, we would then have the solution
p(z,t) = po(§(x,t))
which says that since the density p is the same along each of the characteristic

lines, we need to find which initial point £ leads to the particular point (z,t) at
a velocity f'(p).

4.2 The parabolic model
The simplest form for f(p) satisfying the conditions is

q=f(p) =Cp(1 —p/pmaz)

where C' is a constant. Then

u=gq/p=C(1—p/pm)

16



When p =0, u = C so the constant C' = Uy q4-

f(p) = umazp(l - p/pmaz)
fl(p) = umaz(l - 2p/pmaw) =0

when
p= P* = pmaz/2
gmal = Umampmaz/4

For example, at traffic lights that turn green at ¢ = 0, the density is described
by

Pmazx .’L'SO
p(x,0) = Pmaz(l —z/€) 0<z<e€
0 T>€

where the small quantity e is introduced to ensure that the density is continuous.
Using the parabolic model we find

0 z<0
w(2,0) = um(1 — p(2,0)/pmaz) = { Umazz/€) 0<z <€
Umaz T 2>e

At z < 0 before lights, cars at rest at maximum density, after which speed
increases rapidly to maximum.
The characteristic lines of constant p are given by (from above)

z— &= f'(po(§))t

T — & = Unmazt(l — 2p/pm)
¢ is the value of x at ¢ = 0, and the lines are straight since p is constant. We
sketch these lines as follows: for £ < 0 we have po(€) = pmaz and hence

T =& — Umazt
For £ > e we have po(£) = 0 and hence
T =&+ Upqut
For 0 < £ < € we have pg(§) = pmaz(1 — £/epsilon) and hence
& = €+ Umart(26/e — 1)

(Diagram). There is a characteristic of infinite slope f'(p) =0 at z = €/2.
In order to write down the solution explicitly, we need to solve these equa-
tions for &(z,t), that is,

T+ Umazt T < —Umaat
mazt
§ = % _umaz-t <xr< ’U/mazt + €
T — Umazt T > Umazt +€

17



then using the initial conditions for p,

Pmazx T < _umaz‘t
p(.’lf,t) = po(f(.’ﬂ,t)) = pmaz(l - % _umazt <z< Umawt +e€
0 T > Umazt + €

We can check this solution at ¢ = 0 to make sure it reduces to the initial
conditions. We can also plot p and u at different times, both of which have a
smaller gradient at later times. The point z = €/2 at which the signal speed is
zero corresponds to the point at which neither p nor u depend on time.

Example 2: Lane narrowing.

Suppose at z = 0 endless roadworks causing lane narrowing and loss of
speed. Assume the initial velocity is

Um z <0
w(r,0) =< up(l—(1-a)z/a) 0<z<a
QU z>a

for some 0 < a < 1. Then since p = ppm (1 — u/um)

0 z<0
plpm =4 (1—a)z/a 0<z<a
l-a T>a

Draw diagrams of u and p. We have

T =unt(l —2p/pm) + &

as the characteristics, solutions when p is constant. So

Umt + & £E<0
2= unt(l—-2(1—a)é/a)+¢& 0<&<a
Umt(2a — 1) + ¢ E>a

If 1/2 < a < 1, the characteristics to the right move with positive, but smaller
velocity, while if 0 < @ < 1/2 they move with negative velocity. Either way they
collide with the characteristics moving with velocity u,, from the left. Diagrams.

Consider the characteristics from the middle, 0 < £ < a. If the coefficient of
& from the first term becomes exactly —1, it cancels with the second term - the
position z no longer depends on £, and all the characteristics have collided at a
single “event” (point in space and time). We need

umt2(l —a)/a=1

which occurs when a
t=t, = —
T 2u(1 - )
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At this time, we have

1-2(1-a)/a a

et =0 T T

= xs
independent of £&. Are there any other intersections? No, because all of the
“middle” characteristics have collided at (xs,ts), and the other characteristics
run parallel to the outermost of the middle characteristics. Diagram of charac-
teristics.

The solution is given as before by solving for £ as a function of z and t. We
have

T — Uyt T < Ul
—_ mt
g: m umt<:c<a+umt(2a—1)
T — umt(2a — 1) z > a+ upt(2a—1)
then
0 T < Uyt
p(,t)/ pm = po(§(z,1))/ pm = a/(lz_;iq% Upt <2 < a+upt(2a —1)
l1-a x>a+upt(2a—1)
The velocity is
1 T < Uyt
Wty =1 = p/pm = l—a/(l“”_’ai’)“"_;w Ut < T < a+ upt(20— 1)
a x> a+ upt(2a —1)

Note that at the time ¢ = t; above, the denominators become zero in the
middle region. Also, the middle region shrinks to zero, as seen by setting both
boundaries of the region equal. This can be seen on diagrams of p and u -
the functions become discontinuous. For o > 1/2 both boundaries move to the
right, while for @ < 1/2 the right boundary moves to the left. In particular, the
intersection, which occurs at

2(1-a)

Ty =
is to the left of a for oo < 1/2 and to the right of a for a > 1/2.

4.3 Shock waves

How can we understand what happens after the characteristics collide? Several
options:

1. Give up - apply the equation only to smooth situations. The fact remains
that shocks do exist (with large but not infinite gradients) and we should
try to model them.
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2. Something completely different takes over. For example, in the case of the
traffic, we could say that the drivers can see some distance ahead, and so
vary their speed according to p, as well as p, which will lead to a p;, term
in the equation. If this term has a very small coefficient, the solution may
be similar to the first order problem, but may “smooth” the solution in
the vicinity of the shock. (Problem D5).

3. The differential equation doesn’t make sense - but perhaps we can use the
integral form of the conservation law to continue the solution. In this case,
we are finding a “weak solution” of the original equation.

4. We expand the space of functions to include the derivative of a discontinu-
ity, the Dirac delta “function”. In this expanded function space, perhaps
the original equation still makes sense.

Let us look at option 3 - using the integral equation. When we derived the
differential equation
pt+ 4z = 0
one of the derivations used the integral form
ds r2
T [ pdn=ae) o)
dt o
We then wrote the RHS as an integral over ¢, said the equation holds for all
z1 and z2, and so derived the differential form of the conservation law. Since it
is not clear that we can define p;, we should now write
d [**
— dr = q(x1) — q(z:
i =) —a@)
Since characteristic lines are converging towards the shock, and p is constant
on both sides of the shock (in our example), we assume that this remains true.
In particular, the solution of the equation away from the shock demands that p
remain constant. In general, the solution will be given by the same expression
away from the shock as before the shock, since it is unique. If we write x = X(t)
for the position of the shock, we have

/ pde = (& — 21)p— + (22 — )y

1
where p_ and p4 are the densities to the left and right respectively. Thus we
have
Xy(p- —pt) =a- — a4
since in our example ¢(z1) = ¢ as long as x1 < z, ie ¢ does not depend on x

away from the shock. In more complicated problems we would make z; and z2
very close to the shock, and obtain the same result. We have ¢ = f(p) so,

Xy(p- —p+) = fp-) — f(p4)
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pP—— P+
Note that it has dimensions of velocity. In this case (p and ¢ constant on either
side of the shock), the velocity does not depend on time, so we can write

T — 25 = us(t —ts)

where z; and t; are the beginning of the shock. Returning to the example of
the lane narrowing, we have

p—=0
p+=(1—a)pm
q- = f(p-) =0

4+ = f(p+) = umpm(l — a)a
_ Umpm (1l — a)a
° (1—a)pm
In other words, the shock moves at the slower speed of the cars, which makes
sense - the density to the left is zero, so the last car will travel with this velocity.
Diagrams (both a > 1/2 and a < 1/2, characteristics, p and u). In general, us
is the gradient of the chord joining the points p_ and p, on a graph of f(p), and
can be either positive or negative. Diagram, showing the chord, the velocities
and the signal velocities.
Now we can write down the full solution. For ¢ < t, the solution is given
above. For t > t; we have

= Uy = Uy

_ 0 T < us(t—ts) + x5
p/pm—{ 1—a z>ug(t—t;)+x,

1 z<us(t—ts) + s
i = { a x> us(t—ts)+ s
We remark again that, as in ODE problems, PDEs that are perfectly well de-
fined, and have smooth initial conditions can develop discontinuities at finite
time.

4.4 The Dirac delta

We have continued the solution beyond the appearance of the shock, but at the
expense of reverting from the differential form of the conservation equation to
the integral form. We now try to make sense of the differential equation. At
the shock, the density changes suddenly from p_ to py. Its space derivative
appears to be infinite at the shock and zero elsewhere. We have that

/EZ pzdz = p(z2) — p(21)

Z1
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so p, must be a function which when integrated gives a finite value if the limits
of integration include the shock and zero otherwise. We can consider a shock
of unit strength at the origin, and call it §(x), the Dirac delta “function”. In

other words
5 )do = 1 1 <0< 29
otherwise

It can be considered the hrmt of a function that gets steeper and narrower so
that the total integral remains constant, for example, a step function

§W(z) = { 60 |z| > €/2

1z < €/2
or a Gaussian,

e—e?/(26%)

V2

in the same way that a step function can be considered as a limit of smooth
functions. The difference is that only integrals of the delta function make sense,
not the function on its own. It is thus called a “generalised function” or a
“distribution”. The integrals themselves would be defined rigorously using limits

like
/f w—m/f

and then it is found that a variety of approximation functions d.(z) give the
same answer, which is f(0) if ;1 < 0 < z3. In any case, we will omit the proofs
- it turns out that standard manipulations give the right answer.

Other examples include

/?mwm—awxz/f@+m&m=fm)

where we have substituted y = =z — a.

[ 1@bes)s = [ fu/200)dy/2 = 10)/2

where y = 2z. We can write this directly as §(2z) = §(z)/2. This makes sense:
we have §(2z) as a step function with half the width, thus it gives an area of
1/2. In general, a change of variable gives

/6 dm—/zS |—|dy

where y = g(z). Now dy/dz = ¢'(z), so dz/dy = 1/¢'(x). We get a contribution
from every point where g(x) = 0, so the result is

/if@“”:,z;|¢an

o) (z) =




For g(x) = 2 — 1 we have z = +1 and ¢'(z) = 2z = £2, so the integral comes
to 1. For g(z) = 2%, x = 0 and ¢'(2) = 0 so we get oco.

Using integration by parts, we can also deal with derivatives of delta func-
tions:

/ F@)8 (z)dz = 0 — / F(@)d(z)dz = —f'(0)
[ 1@ @)z = 10)

What is the dimension of a delta function? We have [d(z)dz = 1 so é(z)
must have the same dimensions as 1/z. This applies to any dimensional quantity
z (which could be time, etc.)

Returning to the problem of shocks in traffic modelling, we conclude that

gz = (Q-i- - q_)d(x - Xs(t))
at the shock. Also
pr = (p— — p4)0(t — Ty(z))

assuming a positive velocity of the shock. To linear approximation (eg when
the shock has constant velocity)

Xo(t) = ms + (t — )X

Ts(z) = ts + (z — z,) /X,
Thus
pr+ s = (p— — p4)0(t —ts — ( — 2s) /X)) + (g4 — ¢-)0(z — 25 — (t — 1) X)
But we can multiply the argument of the first delta function by the constant

X! and divide the coefficient, giving

oot g = PP 4 (g~ g )lo(a — 2y — (- 1K)

8

This will be zero, thus satisfying the equation, if the coefficient is zero, that is,

X;= q9— — 4+
P— =P+

the same equation we derived using the integral approach.
Dirac delta functions have many other applications, for example, if we want
to describe the mass density of a point mass in three dimensions, we would write

p(x) = md(x —x¢) = md(z — 20)d(y — yo)d(z — 20)

so that the integral of the mass density is m, the mass, and all of the density is
concentrated at the point (o, Yo, 20)-
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4.5 Characteristics in general first order quasilinear equa-
tions

The traffic flow problem is a special case of the equation
aug +bus = ¢

where a, b and ¢ are all functions of z, ¢t and . (If @ and b do not contain
u, and c is linear in u, the equation is linear, not just quasilinear). In traffic
flow b =1, ¢ = 0 and a = a(u). Again, we consider u = u(z,t) as a surface
in three dimensions. We can express this as F'(z,t,u) = u(x,t) —u = 0. For
example, the hemisphere z2 + t2 + u? = R? has u(z,t) = VR2 — 22 — 2 and
F(z,t,u) =vVR?> — 22 — 2 —u.

Now consider the gradient vector VF = (F,, Fy, F,,): this is in the direction
normal to the surface F' = 0. Since F(z,t,u) = u(z,t) —u, VF = (ug,us, —1).
In the hemisphere example,

—T —t
\/R2—a:2—t2’\/R2—a:2—t2’_

explicitly from F(z,t,u), and also using u(z,t). This is normal to any vector
tangent to the surface. For example, at x = t = 0 we have u = a, and any
vector in the z — t direction, ie of the form (p, g,0) is normal to VF. If we have
z & R but t = 0, the z component of VF gets very large, so any vector (0, q,r)
is (nearly) normal to it.

Now we write the PDE as au, + buy — ¢ = (a,b,¢) - (ug,us, —1) = 0, so
that (a,b,c) at every point (z,t,u) is normal to VF, and hence tangent to the
surface u = u(z,t) whenever VF # 0. The vector (a,b,c) thus determines a
characteristic direction that is defined for all (z,¢,u), and that lies in the tangent
plane to the surface u = u(z,t).

If we have a curve parametrised by s, ie z = x(s), t = #(s), and u = u(s), the
tangent vector of the curve is (dz/ds, dt/ds, du/ds). In the hemisphere example
we could have z = Rsins, t = 0 and v = Rcoss with —7/2 < s < 7/2.
Then the tangent vector is (Rcoss, 0, —Rsins) which is clearly orthogonal to
the outward pointing vector (Rsin s,0, R cos s).

The characteristic curves will thus be defined by a = dz/ds, b = dt/ds,
¢ = du/ds. Note that, in contrast to traffic flow, the characteristic curves no
longer have constant 4 when c is not zero. However, in the case of traffic flow,
we have dz/dt = a/b = f'(p) along the characteristic curves, ie they reduce to
the curves we discussed previously. As long as a, b and ¢ are sufficiently smooth
and not all zero, it can be shown that there is a unique characteristic curve
passing through each point (zo, to, uo)-

The initial value problem for the PDE consists of a given function u(z,t)
along a given curve C in x — t space. The curve C' is called the initial curve.
Starting on C' we pass a characteristic curve through each point on C. The
surface generated is our solution F'(z,t,u) = 0.

VF = ( 1)
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Theorem: Let a, b, ¢ have continuous partial derivatives in z, ¢, u. Suppose
C is given by x = z(7), t = t(7), u = u(7) has a continuous tangent vector and

A(r) = Sale (), 1), u(r)] ~ Cbfa(r), tr),u(r)] £ 0
T T
Then there exists a unique solution u(z,t) defined in some neighbourhood of C
satisfying the equation and the initial data.
The proof is constructive - we will see how to solve the equations. The proof
is not examinable, but you need to know the method of solution. The procedure
for solving quasilinear equations is as follows:

1. Parametrize the initial curve C using a parameter 7: = = z(7), t = t(7),
u = u(7). For example, choose 7 = .

2. Write down the characteristic equations

dz

i a(z,t,u)
% = b(z,t,u)
& = oo, t,u)

and try and solve for ¢ = X(s,7), t = T(s,7), u = U(s,7) with the
initial conditions X (0,7) = z(7), T(0,7) = t(r), U(0,7) = u(r). From
the theory of ODEs, the solution is unique under the stated conditions (ie
that a, b and ¢ have continuous derivatives).

3. Invert x = X(s,7), t = T(s,7) to get s and 7 as functions of z and ¢. This
is only possible if the Jacobian is nonzero, ie if

A(s,T) =

89X 89X

B

Os or

is nonzero at s = 0, then this inversion can be accomplished in a neigh-
bourhood of s = 0. At s =0, A(s,7) = adt/dr —bdz/dr, thus it is nonzero
by the stated condition. Of course, this makes no guarantee about how
far the solution can be extended.

4. Substitute these values into u = U(s,7) = U(s(z,t), 7(,t)) = u(z,t), the
solution

Example 1: u; — u¢ = 1 with v = z? on z = t. Parametrise initial curve C,

egz=7,t=71,u =72 Char. eqs are dr/ds = 1, dt/ds = —1, du/ds = 1. Thus
we have z = X(s,7) =7+s,t=T(s,7) =7—3,u=U(s,7) = 72 + 5. We also
check A = adt/dr — bdz/dr = (1)(1) — (=1)(1) = 2 # 0. Solve for s, 7 in terms
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of z,t: 7= (z+1t)/2, s = (x — t)/2. Diagram of characteristics. So u(z,t) =
U(s(z,t),7(x,t)) = (x +t)%/4 + (x — t)/2. We check: u, = (z +1)/2+1/2,
ug = (x+1)/2—1/2, up, —uy = 1 as required, also u(z,z) = z? satisfies the
initial data.

Example 2: zu, + tu; = u? with u = 22 on z +t = 1. Initial curve C: z = T,
t=1—7u=r7% Char. eqs: dz/ds =z, dt/ds = t, du/ds = u®. Thus we have
z=71e’ t=(1-1)e’,

ds = du/u?
s=-1/u+C
u=-1/(s=C)

u=7‘2/(1—s7'2)

Characteristic lines radiate out from the origin (diagram). To invert we check
A = adt/dr — bdz/dT = —x —t = —1 # 0, then write

z+t=¢€°

s=In(z+1t)
x
T+t

_ 1 _ 1 _ 2 . _
So finally u = —— = (215)2 e = (z+t)2_wwz EEE Check: onz +t =1,

u =22 Write D = (z +t)2 — 22 In(z + t) as the denominator. Then

T=ge ° =

2z(x + )2 — 223 In(z +t) — 22%(z + t) + 223 In(z + t) + 2/ (z + 1)

Uy = IE
2@+ t) (@ +tx—a®) +at/(x+ 1)
Uy = g
2zt(z +t) + 2t /(z + 1)
Uy = g
—22%(z +t) + 2t /(z + 1)
Uy = D2
_z
Tuy + tug = Dz u

Example 3: u; + cuy, = 0, u(z,0) = f(z). Initial curve is z = 7, t = 0,
u = f(r). A = adt/dr — bdz/dr = ¢(0) —1(1) = —1 # 0. Char. eqns:
dx/ds = ¢, dt/ds =1, du/ds =0. Thusz =cs +7,t = s, u = f(7). We have
T=x—cs=x—ct,s0u= f(x— ct) as before. Diagram of characteristics.

Example 4: u; + uu, = 0, u(z,0) = f(z). Initial curve as in 3, above.
A = adt/dr —bdx/dr = 0—1(1) = —1 # 0. Char. eqns: dz/ds = u, dt/ds =1,
du/ds = 0, thus u = f(7) (constant), z = f(7)s+7,t =s. Thust =z—sf(1) =
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z —tf(7), u = f(x — tu) must be solved implicitly. This means that the speed
of the characteristics (ie the wave) is given by the height of the wave, thus the
wave will eventually break if du/dx < 0 at any point. Diagram of a stretched
pulse. Actually we can calculate the time to breaking: u, = f'(x — tu)(1 — tu,)

thus
f'(@ —tu)
Uy = ————
1+ tf'(z — tu)
which becomes infinite when t = —1/f'(x — tu), so breaking occurs for the

smallest such value.

5 Waves

5.1 definitions

We have seen that the equation

us + cuy =0
with ¢ constant has the solution

u= f(z—ct)

for any function f, which gives a wave moving with speed c in the positive z
direction. Diagram of propagating wave. Similarly,

ug — cuy =0

has solution
u= f(z+ct)

which is a wave moving in the negative x direction.

One such solution is a sinusoidal wave u = sin k(z —ct) satisfying us+cuz =0
(check). Diagram of u(z,0). We can also write this as u = sin(kxz — wt) where
w = kc. We know that sin is a periodic function, so sin(¢ + 27) = sin ¢.
Thus the wave solution is periodic in space at fixed time t, ie u(z + 27/k,t) =
sin(k(z + 27/k) + wt) = sin(kz + wt + 27) = sin(kz + wt) = u(z,t). We write
A =27 /k and call it the wavelength (mark on diagram). We call k = 27/ the
wave number, because k/2x is the number of waves per unit length.

Now at fixed position z we also have u(z, t+27/w) = sin(kz+w(t+27/w)) =
sin(kz + wt + 27) = sin(kz + wt) = u(x,t). We write T' = 27 /w and call it the
period of the wave, the time for one complete wave to pass the fixed point z. We
define f = 1/T = w/2w as the frequency, the number of waves passing per unit
time, with unit Hertz (Hz) = s~!. We callw = 27 f = 27 /T the radian frequency
or angular frequency. We call ¢ the phase velocity, equal to ¢ = w/k = fA.
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If we have u = Asin(kz — wt), A is the amplitude and 2A is the height, from
the crest to the trough.

Notice that the equations u; + cu, = 0 are linear and homogeneous. Thus
the sum of two solutions is a solution. We could have

u = Asin(kz — wt) + B cos(kx — wt)

as a solution of u; + cu, = 0.
Phase: Let
uy(z,t) = Acos(kz — wt)

uz(x,t) = Acos(kz — wt + €) = Acos(k(z + €¢/k) — wt)

In both cases the amplitude is A and the speed is ¢ = w/k, but us is shifted
by a distance —e/k in the x-direction relative to u;. We call e the phase of the
wave. For example if € = 2m,4x,... the waves are exactly in phase, while if
€ =m, 3w, ... they are exactly out of phase and the sum cancels to zero.

5.2 Complex notation

Consider u(z,t) = acos(kx —wt+¢€), a wave travelling in the positive z direction
with phase € and amplitude a. We can write this as

u(z,t) = Re(ae™e!k7=w1)

using the relation et® = e%® and e = cosf + isinf. The wave can thus be
written '
u(z,t) = Agilkz—wt)

A = ae*

is complex; the real part is understood to be taken at the end of the calculation.
Note that |A| = |a| is still the amplitude and arg A = € is the phase. In the
negative z direction we have

u(z,t) = beos(kx + wt + &) = Re(be®)eikz )

u(w, t) — Bei(kw-i—wt)

with the real part understood. Note that we now have et®?! rather than e~ %,
We can keep both as e~** by writing

u = Blef’i(kz-{—wt)
B' =be ¥
and taking the real part. In general we have written a sinusoidal wave

u(z,t) = acos(kr F wt + €)
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in complex form as
w= Aei(ﬂ:kx—wt)

with
A = getie

and |A| = a, arg A = *e, and a real part implied at the end of the calculation.
For example,

u(z,t) = acos(kr — wt) + bsin(kz — wt)
’LL( ) — Re[aei(k:c—wt) + b(_i)ei(ka:—wt)]
u(z,t) = Re[(a — bi)eikz=w1)]

This is a single sinusoidal wave with amplitude p = |a — bi| = va? + b? and
phase § = arg(a — bi) = tan"1(b/a), ie

x
T,t

u(z,t) = pcos(kr — wt + §)

we could also obtain this by assuming the above form, expanding out the cosine
of a sum, and solving for p and ¢ in terms of a and b. The wave has the same
period and wavelength, but a different amplitude and phase to its constituents.
The complex form has the advantage that it is easier to do this addition calcu-
lation to find the amplitude and phase of the sum of two or more constituents.
We can also take partial derivatives:

u(z,t) = Aeilkz—wt)
%u(m, t) = ik Aeilkz—wt)

0 .
v — _iwA i(kz—wt)
6tu(a:, t) iwAe

This makes sense: the derivative of a cosine is a sine and vice versa; this is taken
care of by the factor of i, which singles out the sine or cosine when the real part
is taken. For example

u(z,t) = acos(kzr — wt) = Reae' ke~
ug (z,t) = —aksin(kz — wt) = Reaike! ko=t

since aike!**=“t) = gik(cos(kx — wt) + isin(kx — wt)) = aik cos(kx — wt) —
ak sin(kx — wt). These calculations work because

Re(Z1 + Z2) = Re(Z1) + Re(Z2)
Re(Z') = Re(Z)’
however we cannot multiply two such waves:
Re(Z1Z2) # Re(Z1)Re(Z2)
in general (for example: —1 = Re(i7) # Re(i)Re(7) = 0).
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5.3 Waves on strings

We want to model the wave motion of a stretched string (guitar string, skipping
rope, cables supporting Clifton suspension bridge, ...). Assumptions:

1. y = 0 in equilibrium

Transverse motion only (ie in y direction)

Large tension T', so the string is straight in equilibrium.

Uniform properties eg, mass per unit length p, constant small thickness.
No forces except tension (ignore gravity, air resistance, ...)

Position of string defined by y = u(z,t)

N o e W

Slope of string Ou/dx small

Aim: to find simplest theory which is close to observed behaviour; we can add
the other effects later as perturbations.

Consider a small piece of string (see diagram) ds of mass pds. The force
in the y direction is Tp sin(¢) + 69) — Tpsine) = TO% sinYéx + O(6x?) from a
Taylor expansion of ¢ as a power series in . The slope of the string at z is
Uy = tant thus siny = u,/v/1+u2 = u, since u, < 1 by assumption. So
the net force is Touz,dx which is mass times acceleration, pdsuy. But ds =
V22 + du? = /1 + u2dz ~ dz (diagram). So we have uy,0z = pustdz, or

2
Uty = C Ugy

with ¢ = Ty/p. This second order equation is called the 1D wave equation.
Like the first order equations we considered, it is also linear and homogeneous,
so the sum of two solutions is a solution.

5.4 Solutions of the wave equation

We can factorise the differential operator as follows:

82, 82 8 8.8 0
(g~ g2 = (gp T3 5 ~ o)

This works because the partial derivatives commute, ie we can take them in
either order. In this form, it is clear that any solution of u; — cu, = 0 will
be a solution of the wave equation, that is, any function u(z,t) = g(x + ct)
corresponding to a wave moving to the left.
On the other hand, we can write the factors in the opposite order,
0? , 07 0 0.,0 0

(5~ g2 = (g; ~°5.) 5 + 55

u
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showing that any solution of u; +cu, = 0 is also a solution of the wave equation,
that is u(x,t) = f(x — ct) corresponding to a wave moving to the right.
From linearity we can write a solution as

u(z,t) = f(z —ct) + g(z + ct)

This is in fact the general solution because it requires two arbitrary functions and
the equation is linear and second order. This is called D’Alembert’s solution. It
is a superposition (sum) of two waves moving in opposite directions with speed
C =1/ T(]/p

An alternative method of finding this solution and showing its generality:
transform to new variables £ = x — ¢t and n = x + ct. We write u(z,t) = U(£,n)
Then uy = Uele +Upne = Ug + U, and uy = Ueéy + Uyny = —cUe + cU,. We can
now write down the solutions of the first order equations: 0 = u; 4 cu, = 2¢U,
so U does not depend on 7, but may be any function of £ = x — ct. Similarly

0 = u¢ — cuy = —2cU¢ so U does not depend on &, but may be any function of
n=x+ct.
Taking a second derivative, we get
0 0
Uzz = (8_5 + 8_77)([]5 + Up) = Uge + 2Uen + Upyy
similarly
Uy = 02(—3 + 2)(—Ug +Uy,) = EUge — 2Ugy + U,
ac " oy n n n
thus
Uy — gy = —4C2UEW
SO

Ugp =0

This means that Ug does not contain n, call it an arbitrary function f'(§).
Integrating, we find that U = f(£) + g(n) where g is another arbitrary function.
It is clear using this method that no other solutions are possible.

5.5 Waves on an infinite stretched string

Case 1: Suppose that a string is initially at rest u;(x,0) = 0, with transverse
displacement u(x,0) = ¢(z) for some function ¢ (Gaussian type graph). What
happens subsequently? D’Alembert’s solution is

u(z,t) = f(z —ct) + g(z + ct)
so substituting these conditions we find

up = —cf'(x —ct) +cg'(x—ct) =0
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utli=0 = —cf'(x) +cg'(z) =0
uli—o = f(z) + g(z) = ¢(z)
Integrating we find
—cf(z) +cg(x) =A

where A is a constant. Thus
flz) —g(x) =—-A/c
f(@) + g(z) = ¢(z)

and we find

g(z) = (¢(z) + A/c)/2
thus

w(z,t) = f(z—ct)+g(z+ect) = (p(z—ct)—A/c) 2+ (d(z+ct)+A)e) /2 = (p(z—ct)+P(z+ct)) /2

so the constant A is irrelevant. We could also have removed it by adding it to f
and subtracting it from g, noting that there is ambiguity of an additive constant
in the definition of these functions. Thus the initial hump splits into two pieces,
one travelling in each direction (diagram).

For example, suppose

_ 0 |z| > /2
d(z) = { Acos’z |z| < m/2

Find displacement at times ¢t = 7 /4¢, 7/2¢,7/c. We have

u(z,t) = (¢(x — ct) + ¢(z + ct)) /2

At time t = m/4c the two waves are a distance 7/2 apart, so they add to a
constant A/2 for |z| < 7/4 with tails on either side (diagram). At time t = 7/2c
the two waves just separated, and at time ¢ = 7 /c there is a gap of m between
them (diagrams).

In general, a wave of initial size L will completely separate when the right
edge of the left-moving wave touches the left edge of the right moving wave, ie
after a time t = L/2¢ (here L = ).

Case 2: Waves with zero initial displacement and given initial velocity. That
is u(z,0) = 0 and us(z,0) = ¥(z). We use the D’Alambert solution,

u= f(z —ct) + g(z + ct)
we find
uli=0 = f(z) +g(z) =0
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so
9(z) = —f(z)
we also have
utli=o = —cf'(x) + cg'(x) = ()
Integrate:

£@) = gla) = 20 (0) = =1 [ w(s)as

for some constant a. Thus
1 xr
f@) = =g() = 5 [ v(s

substituting back we have

x—ct xr+ct x+ct
u(e t) = —— Y(s)ds + o / Y(s)ds = o / (5)ds

2c a —ct

where again the unknown constant a drops out. We check the solution:

u(z,0) = /w Y(s)ds =0

1
u(2,0) = - (cy(z + ) + ey(z — ct)) = 9(2)
We have used the derivative of an integral with respect to its bound:
g9(t)

f) = P(s)ds

a

£ = 558 = vla®)g'®

In this case it is the velocity that separates into two halves which propagate in
each direction. We can now solve the more general case by superposition:

u(z,0) = ¢(z)
uy(z,0) = ¢(z)

has solution
x+ct
(o, t) = %(qﬁ(x — o) + $lz +ct) + %/_ s

by superposition (linear and homogeneous equation).
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Example: Suppose we have ¢(x) = 0 and ¥ (z) = f'(x). Then

x+ct
w(at) = ~ / ['(8)ds = —[f (@ + ct) — f(z — ct)]

2_C T—ct 2c

This corresponds to two waves which are equal and opposite, moving in each

direction. If ] /
0 z| > 7m/2
flo) = { Acos’z |z| <m/2

we can find the displacement for times m/4c, 7/2¢, 7 /c as before:

0 |z| > 37/4
) Acos®(z+7/4)/2¢ -3r/A<z < —m/4
w@ T4 =9 foos(2(w +1/4))/2c  —m)d< 7 < 7/A
—Acos’(x —7w/4)/2¢ 7w/4<z < 3n/4
0 |z| > 7
uw(z,m/2c) = Asin®z/2c —-T<z<0

—Asin’z/2¢c 0O<z<m

Graphs, also for t = 7/ec.
Example: What initial conditions produce a positive wave only? In the
solution, the parts that give x + ¢t must be constant, ie

¢(n)/2 + 2ic /niﬁ(s)ds = const.

where n = x + ct. Differentiating, we find

#0)/2+ 5 () =0
thus
b(m) = —c¢'(n)

This is clearly necessary. Also sufficient since subsituting back into the equation
we find

z+ct

u(e,t) = 500 — ct) + dlo+ )] + 5. [ (et (9)ds = oz~ )

z—ct

5.6 Semi-infinite problems

Case 1: reflection at a fixed end. Suppose a string in z < 0 is fixed at x = 0, ie
u(0,t) = 0 for all ¢. We know the general solution is

u(z,t) = f(z — ct) + g(z + ct)
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thus
0 =u(0,t) = f(—ct) + g(ct)

If we write £ = ct we have g(£) = — f(—¢), thus
u(z,t) = f(z — ct) — f(ct — z)
Now the initial conditions are
u(z,0) = fz) — f(-2z)
u(z,0) = —c[f'(z) + f'(—=)
so for example take

Acos?’z |z —m| <7/2

f(“‘"):{ 0 x>0

Diagrams of an initial hump moving to the right, and being inverted (ie the
negative part reaches the left half plane).
Another example: f(z) = Acoskz. We have

uw(z,t) = f(x —ct) — f(—(z + ct)) = Acos(kz — wt) — Acos(kz + wt)

where w = kc as before and we have used the even property of the cosine
function. We can expand the cosines to give

u(z,t) = Alcos kz cos wt+sin kx sin wt]— A[cos kz cos wt—sin kz sin wt]] = 24 sin kx sin wt

This is a standing wave (diagram); a similar result occurs if f(z) = Asinkz.
We can also do this calculation using the complex representation:

f(z) = Ae™
'LL(.’L',t) — Aei(szwt) _ Ae*'i(kz+wt) — A(eikz _ efz'kz)ef'iwt — 92iAsin kxefiwt

from which the real part is the same as before.

Reflection at a boundary:

Suppose u(x, t) satisfies uy; = c?uz, for t > 0, x < 0 with u(z,0) = a(z) and
ug(z,0) = b(z) with £ < 0. Extend a and b to the whole real axis and let v(z,t)
be the solution, ie

a(z) =b(z) =0 z>0

then
v(z,t) = f(z — ct) + g(z + ct)

with
$O =a(@)/2+ 5, [ b
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and Lo
96 = a(©)/2= o [ He)da

for £ < 0, otherwise both these functions are zero.
Now we apply boundary conditions at z = 0. Let our solution be

u(z,t) = v(z,t) + F(z — ct) + G(z + ct)
Then the initial conditions give
a(x) = u(z,0) = a(z) + F(z) + G(z)

b(z) = ug(z,0) = b(z) — cF'(x) + cG' (x)

These give
Fz)+G(z)=0

F'(z) -G'(z) =0

for £ < 0. Thus
Flz)=G'(z) =0

for x < 0, and F and G = —F are constants for x < 0. This constant is
arbitrary since the initial definition of F' and G allows an arbitrary constant;
thus set F' = 0 for its argument less than zero. We have

Flx—ct)=0

for z — ¢t < 0, or z < ct. But this includes the whole domain z < 0. Thus we
have
u(z,t) = fx —ct) + g(x + ct) + Gz + ct)

where G(z + c¢t) = 0 when z < —ct. This result can be interpreted as an
incoming and outgoing initial waves f and g together with a reflected wave G
(show z,t plane with validity).

Now at z = 0 we have

u(0,t) = f(—ct) + G(ct)

since g(ct) = 0 since ¢t > 0 (see above for definition of g). In general we can
ignore g; the interest is in the relationship between f and G. Note that f is
defined for negative values of the argument, and G is defined for positive values
of the argument.

For example, we considered a fixed end, and have already found that

G =—f(=9)
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leading to inversion upon reflection of the wave (diagram). A free end has
0 = u(0,t) = —cf'(—ct) + ¢G'(ct) so we find

G(©) = f(=9)
A damped end has a combination of space and time derivatives zero:
Ruy(0,t) + Tug(0,t) =0
for some constants R and T (think reflection and transmission) leading to
G (&) = fracT — c¢RT + cRf(£)

Case 2: Suppose at z = 0 we have a ring of mass M which can slide up
and down the y-axis without friction. The condition at z = 0 is the equation of
motion of M:

Mu(0,t) = —Tosiny) ~ —Touy(0,1)

Mutt + T()uw =0
at z = 0 for all £. Suppose there is a wave incident from z = —oo

Aei(kw—wt)

(with w = kc and real part assumed). We expect a reflected wave of the form
Be—i(km+wt)

that is, with the same time dependence (otherwise we will not satisfy the bound-

ary condition) moving in the opposite direction. Recall that the complex num-

bers A and B contain information about both amplitude and phase. Because

the string is no longer fixed, we do not expect simply B = — A as we had before.
So we have

u(z,t) = Aeilbe—wb) 4 Be-iltkatwt) _ (gpika | po-ika),ivt
and hence
Mugt + Toug = (—Mw?)(Ae*® + Be~ @) e=wt L kT, (Aet® — Be=th)e—iwt
at z = 0 this is
0= (—Mw?(A + B) + ikTo(A — B))e !

or
B(Mw? + ikTy) = A(—Mw? + ikTp)
B kT, — Mw? 1—ia

A ikTo+ Mw? 1+ia
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where a = kTy/(Mw?) = To/(Mkc®) = p/Mk = pA\/(2mr M) is the dimensionless
ratio relating the mass M and the mass of one wavelength pA.
We have |A| = |B| since

+1

1 -«
1+ia

so there is no change in amplitude. The change in phase is
B/A =¢®
where

1+ia™!
0 = arg 1:% =arg(l+ia™') —arg(l —ia™') =2tan "o~ !

So for example if A is real, we have
u(z,t) = ReA(eiho—wt) 4 o—ilkztwi)+io)

u(z,t) = Acos(kx — wt) + Acos(kx + wt — 6)

We check the limits: M — oo leads to @ = 0, and § = 7 which is what
we expect - for a fixed end, there is a change of sign, equivalent to a change of
phase of m. m — 0 leads to & = oo and § = 0 corresponding to the free end.

Case 3: String on the other side of the ring. Now the boundary condition is

Muy(0,t) = Toug (01,¢) — Tous (0, 1)

Why is the slope discontinuous at z = 0?7 Otherwise there would be no net
force to produce the acceleration of the mass. Note that we can combine this
condition and the wave equation valid elsewhere as

+ Mé(x
Ugy = p#o()u“

that is, the point mass has a density of M§(x) in that it is concentrated at the
origin and has total mass M.
The displacement itself is continuous,

u(0F, 1) = u(07, 1)
In the region to the right, we expect only a wave travelling away from the origin:

Aei(k::cfwt) +Be*i(kw+wt) r<0
u(;z:,t) = Cei(ka:—wt) x>0

Real parts are assumed, with the same time dependence.

Continuity of u gives
A+B=C
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while the derivative condition gives
~Mw?C = ikTy(C — A + B)

A-B=CQ1—-iat)
(recall @ = Ty /kc®*M). Adding we find

24 =02 —ia™")

2
A= ——
cf 2 —4a~t
The modulus squared |C/A] is the transmission coefficient. Subtracting we find
2B = Cia™!
S0
BjA=B/CC/A= 0
B T 2—jat

The modulus squared |B/A|? is the reflection coefficient.
Taking the limits: M = oo and a™! = oo we find B = —A and C = 0,
as expected. In the limit M = 0 and @' = 0 we find B =0 and C = A as

expected. We also have
)

B2/A? = 2
1B/ A = o
4
2 2|
C/AT = o=

These add to one, perhaps indicating some kind of conservation law...

5.7 Energy in waves

The kinetic energy of an element ds of the string is
1 1
§p53uf ~ 5putzész:
so that the total kinetic energy is
1
/ 2 puzdx
and the kinetic energy per unit length is

1
K= 5!’“?
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The potential energy is the work done in extending the element from dx to ds.
This is force To multiplied by distance ds — dz = (/u2 + 1 — 1)dz ~ tuéz.
Thus we have total potential energy

1
/ ETOuﬁda:

1
V = SToug

and potential energy density

What is the total energy of a travelling wave?
u(z,t) = f(z — ct)
I Y 2 1 21 _ 1 2
K+V= §[pc filx—ct) + Tof'(xz — ct)’] = Tof'(z — ct)

since ¢ =T'/p.
What about the general case

u(z,t) = f(z — ct) + g(z + ct)

1
K+V = §[p02(f'2—2f'g'+g'2)+To(f'2+2f'g'+g'2)] :To(f/2+g/2)

and there is no cross term. This is natural because the waves are not actually
interacting with each other.

Energy flow: The wave carries energy from one part of the string to another,
because each part doing work on another part. At = 0 the string to the left
exerts a force Tp at angle 1 on the string to the right (diagram). The rate of
work done (power) is force times velocity, ie

=Ty sinYpug(0,t) = —Tougzug

Of course the same argument holds at any point, not just zero. This is the
amount of flow of energy (flux) to the right. For example, a wave moving to the
right

u(z,t) = f(z - ct)

~Tougus = (=To) f'(z — ct)(—c) f'(x — ct) = T f'* > 0

positive as expected. This is also just velocity ¢ times energy density the same
as the flux of other conserved quantities. The flux divided by the density is the
speed at which energy is transported, called the group velocity. In this case it
is just the speed of the waves ¢, but this is not true in other wave problems. In
the general case we have

u(z,t) = f(z — ct) + g(z + ct)
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~Tougus = (=To)(f' + ¢')(—cf' +cg') = To(f* - g*)

again there is no interaction between the two.
Sinusoidal waves: We have

u(z,t) = Aellke—t)
real part assumed. Thus
u(z,t) = acos(kx — wt + 9)

where a = |A|. Thus the kinetic and potential energies are

1 2,,2

K= _pul = rw psin2(kx—wt+6)
2 2
1 2K2T,

V= ST} = a . % sin?(kz — wt + 6)

that is, they are equal. It is usual to consider the average energy, obtained by
integrating over time or space of one period;

1 b+m . 9 1 b4m 1 1 . b 1
—/b sin 0d0—§/b (l—cos20)d0—%[0—§sm20]b =3

s

SO average energy is
_ 1 |A|2w?p
E== 2,2 _ A F
g WP 2

Similarly, the energy flux is just the energy times ¢, so it averages to
cE

Both of them are proportional to the square of the amplitude a.
Recall the discussion about the mass at £ = 0: we observed that the incoming
wave A led to a reflected wave B and transmitted wave C' such that

IBJA]® + |C/A]> =1

We could write this as
|B” +|C|> = |A]?

and since the radian frequency w and the density is the same, it is clear that
this is just conservation of mean energy, that is, the flux is balanced.

Example: Suppose that the string has two different densities, p_ for z < 0
and p; for £ > 0. What are the reflection and transmission coeflicients for a
sinusoidal wave entering from the left?

The different densities will give rise to different speeds ¢2 = Tp/p<+, however
the time dependence e~**! must be the same, as it is the time dependence of the
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point z = 0. This means that the values of k3 = w/c4 and hence the wavelength
A+ = 27 /ky will be different on each side of z = 0. The displacement v and its
derivative u, must match up, otherwise there would be a finite force, leading to
infinite acceleration of this point. Hence we have

Aei(k_z—wt) +Be—i(k_m+wt) r<0
u(mat) = { Cez’(k+z—wt)

with both » and its x derivative matching at the point = 0. These conditions
give
A+B=C

ik_(A - B) = ik,C

or

k
A-B=-1t
T C
Adding we find
24=(1+ k—+)c
k_
2k_
C/A=
/ k- +ky
Subtracting we find
k.
2B=(1-—)C
(-5
k- —kt
/A= (BIOVCI4) = 1
In the original notation we have (if A is real)
(2,1) = A(cos(k_z — wt) + ::;21 cos(k_x +wt) <0
= Ak_%T‘k+ cos(kyr — wt) z>0

The reflection coefficient is |B/A|? = (k— — k4)?/(k— + k4)? and the trans-
mission coefficient is |C/A|? = 4k® /(k— + k4 )?. We note that in the limit that
the two densities are equal, B = 0 and C' = A; in the limit that the right density
is infinite, and hence ky = oo, B = —A (inversion at a fixed end) while C = 0;
in the limit that the right density is zero, k. = 0, B = A and C = 2A. Note
that the transmitted amplitude can be larger than the incident amplitude.

We check that energy is conserved: the average energy flux is

~ 1 .
Qin = §|A|2w2p,c,
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for the incoming wave, and

2k

ko —ky _
k_+ k.

M= M2
k,-+k+) p—c—+(

_ 1 1
Qout = §w2(|B|2P—C—+|C|2P+C+) = §W2A2((

since p = p_k3 /k? and ¢ = c_k_/k;.

Example: energy loss.

Consider a mass M at x = 0 subject to a resistance force —ugy which changes
the energy at a rate of force times velocity, —ug?. If we have z < 0 only, we
have at £ = 0,

Muy = —Touy — puyg

We have ' |
U((B,t) = Aez(kw_“’t) + Be—l(kz-l—wt)
thus
B(M(,ﬂ +ikTy + iwp) = A(_sz +ikTy — iwp)
1-i(a—p)
T+i(a+h)

where a = Ty/kc> M = p/MFk gives the ratio of the single mass to the mass in
a wavelength as before, and f = p/Mw compares the time scales of 1/w and
M /p. The reflection coefficient is now

B/A =

|B/A|2: 1+(Ot—,3)2
1+

less than one unless 8 = 0. The rest,

4a
1-|B/AP = ————
B/l = T+ 87
gives the proportion of the energy that is lost at z = 0.
In particular, the average energy flux incident (from A) is

A%W2pe)2
assuming A real. The rate of energy loss at z = 0 is

2x

puf = (R~ Aicae 80— Bitoe HH D)) = s 42 (Re et

efz'wt)2

This is )
@ 5 (cos(wt) — (a + B) sin(wt)?

2 12
A T T B
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Averaging over a period we find

24202

4A%0?
? 2(1+(a+5)2)/2zﬂw2m

o+ @+ B2

Dividing this by the total incident energy, we have

7 4a?
pcl+ (a+ B)?

Now p = fMw = Bwp/ak = Bep/a so we have finally

4o
1+ (a+B)?

as required.

5.8 Waves on a finite stretched string

This has been omitted from the course this year as it overlaps with DE2.
The basic ideas are as follows. Using the technique of separation of variables,
u(z,t) = X (x)T'(t) we arrive at the standing wave solution obtained by reflect-
ing a sinusoidal wave from a boundary. We can then match this solution to
fixed boundary conditions, for example ensuring that the sine or cosine function
is automatically zero at the boundaries when the boundaries are fixed, and so
on. We get an infinite number of such solutions, given by various numbers of
wavelengths in the finite region. These solutions can be combined using super-
position to obtain a general solution. The solution given the initial state of the
string is obtained by writing the function as a Fourier series, and hence as a sum
of the solutions found above. It is also instructive to study energy conservation
in this system.

6 Revision of 3D vector calculus

6.1 Scalar and vector fields

A scalar field is a function ¢(z,y, z) defined at each point of space. For example,
temperature at each point in a room (may also depend on time ¢, but still a
scalar). We construct the surfaces along which ¢ is constant, the level surfaces.
Different values of ¢ give different level surfaces. In 2D the level surfaces look
like coutour lines on a map.

A wvector fieldis a vector F(z, y, z) defined at each point of space. For example
velocity in a liquid varies in both speed and direction from point to point.
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6.2 Curves in R3

We have a parametric representation
r = X(¥)

for a < t < b; this is actually three equations

r = Xl(t)
y = Xo(t)
z = X;3(t)

and t is a parameter. For example
r = acosti+ asintj+ btk

is a helix (diagrams).
The tangent at point P is the vector PQ as dt — 0 (diagram). But this is

just the derivative:
X(t +dt) — X(¢t)

li =X
i, 5t ®)

_dr
T dt

so the tangent vector to the curve X(t) is X'(¢) and the unit tangent vector is
X'(t)/1X' (1)

Note that we could have the same curve with a different parameter u which
is a function of ¢. In this case we get

dX _ dudX
dt — dt du
so the tangent vector has the same direction but a different magnitude. The

unit tangent vector would then be the same.
The length of a curve between a and b is

b b
I(a,b) = / X! (1)t = / | at

for example the helix,

d
d_; = —asinti + a costj + bk

I, B) = /ﬂ V@ 1 BRdt = (8- a)Va + 12
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The arc length is

s(t) = t IX'(7)ldr

() = X'(0)
drdr/dt  X'(t)
ds = dsjat ~ @]~ T

the unit tangent vector to the curve. For example, the helix has
s'(t) =1X'(t)| = Va? + b2
s(t) = (t —to)Va® + b2

so the arc length is proportional to ¢ but not equal to it. But

@_ —asinti+ acost - b X
s~ Ve1p Vet Jeip

is of unit magnitude since r and s are both distances.

6.3 Line integrals

Let F(r) be a vector field defined in some region of R? containing a simple
smooth curve C: a < t < b defined by r = X(¢). The line integral of F along C
is defined by

b dr
W:/OF(r)-drz/a F(X() - St

For example if F is the force in moving a particle from A to B, W is just the
work done in going from A to B.

6.4 Field lines

A picture of a vector field is obtained from field lines. Given a vector field F(r)

a field line is a curve whose tangent at any point P is in the direction of F at
P. Let
r=X@)i+Y®)j+ Z(t)k = X(¥)

be the field line at P. Its tangent vector at P is

@—d_Xi_*_d_Y'_Fd_Zk—d_X
dt  dt @t T at

so we must have for some constant A,

dX
&% R
dt !
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L \F
dt 2
dz

2 _\F
a M

at P, where
F(r) = Fi(r)i + F>(r)j + F3(r)k

It follows that
dX day az

Fi(z,y,2)  Fa(,y,2)  F@y,2)
determine the field lines. If F is the velocity vector field of a fluid, the field lines
are called stream lines. For example

F=—yi+aj
lines are
do_dy _d:
-y x 0
s0 z is constant, xdx = —ydy, 2 + y? = const, lines are concentric circles with

anticlockwise arrows.

6.5 The vector gradient and directional derivative

Consider two neighbouring level surfaces S and S”: f, f + §f of a scalar field
f(z,y,2z). We have a point P on S and a point P’ on S’ so that OP=r = (z,y, 2),
PP’=dr = dsa where ds = |0r|. We also have a point M on S’ such that PM is
perpedicular to S’, and the angle MPP’ is 8. We have PM=dnn where n is a
unit vector. As S’ approaches S, PM becomes normal to S, so n becomes a unit
normal to S at P. Going from P to P’ we have

6 _ bt on
ds  6nds
but én = dscosf so we take the limit S’ to S and P’ to P,
of _ of
5g = 008 9%

so the maximum rate of change takes place when cosf = 1, ie along direction
n, perpendicular to S at P. We define

_of
Vf= "
the vector gradient of f at P. We have
of
Vi=I5
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is the maximum rate of change of f.
Now n -a = cosf so
of _,.n0f

of _ _
%_cos o a-n%_a Vf

which is called the directional derivative of f in the direction a.
Example: if a =i, s=x,
of

2 iV
oz f
and similarly for y,z directions. This means that we can write the gradient
explicitly as
of. of. of
Vf=5-i+0+ 4+
1= 375

Example: find the directional derivative of f = 222 —3zy +9z—2 at (1,0, 0)
in the direction specified by (2,—2,1).

Vf=(4z —3y)i— 3zj + 9k

at the point (1,0,0) this is

4i — 35+ 9k
The unit vector
(27_271)
a=-——>"
3
i of 2,-2,1)
2. = (4. — LB TS 9373
5, =2 VI =(4-39) "= /

Example, find V(1/r) where r = (z,y,2) Method 1: write ¢ = 1/r so the
level surfaces are spheres r constant.

_0¢ _0¢r_ _r

Vo = — - _
¢ on orr r3
Method 2: write
1 1
¢ e e ——
T 2?4+ y?+22
-z
¢z = 7'_3

and similarly for y and z, so

rit+yj+z2k  -r
T3 T3

V¢ =
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6.6 Surfaces and normals
We can represent a surface in two ways, as an equation
F(z,y,2) =0
for example
F(:c,y,z) = .’11'2 +y2 +Z2 _0’2

gives a sphere of radius a. A normal to the surface is given by VF' and unit
normals by +VF/|VF|. For example, the sphere:

22 + 203 + 22k
s ) B, ST P

2/ +y>+22 @

where the plus sign corresponds to an outward normal.

Alternatively, a surface can be represented as a vector function r(u,v) of
two parameters 4 and v. As v and v vary a point P traces a surface in R3. For
example spherical polar coordinates for the sphere:

r=zxi+yj+zk

T = rsinu cosv
y =rsinusinv
Z=TCcosu

Diagram showing 0 < r < 00, 0 < u < 7 and 0 < v < 27. Usually, u = 6,
v = ¢, (the reverse is possible - beware!). Fixing r = a traces out a sphere.
The inverse equations are (taking care with the signs):

r=/z?+y?+ 22
cosu = z/\/x? +y? + 22

tanv = y/x

Now we know that dr/du is a tangent vector to a line formed by r(u,v) with
v fixed, and dr/dv is a tangent vector to a line formed by r(u,v) with u fixed,
thus both of these are tangent to the surface, and a normal to the surface is

dr | dr
du dv
We can check the normal to the sphere:

dr
— = acosucosvi+ acosusinvj — asinuk

du
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dr . .. . .
i —a sinu sin vi + a sin u cos vj
v

dr dr . . o . oo
— x— = a”sin® u cos vi+a? sin u sin v.H—a2 sin u cos u cos® vk+a? cos u sin u sin® vk
du dv
which simplifies to

asinu(zi+ yj + zk)

Surface integrals:
Consider a surface S and its projection on the z,y plane, so we have

0=F(z,y,2) =2 — f(z,y)

If the surface has more than one part projecting on the same part of the z,y
plane, we consider each separately. A small element of surface dS (unit normal
n) is projected on an element dA (unit normal k). We have

dS|cosy| =dA

where 7 is the angle between n and k. So we have (taking limits as the elements
get small):

/ o(z,y,2)dS = / &(z,, (@,y))| sec 1]dA
S A

integrating over the projected area in the z,y plane.
But
VF -k =|VF|cosy

SO we can write

|secy| =

2 2 2
vr|  \/F2+F2+F; A
VAL _ =1+ 2+

[VF k| ||

/5 o(z,9,2)dS = /A oy, F@ )1+ 12+ fdudy

For example, if we want to calculate the area of a surface, we use ¢(z,y, z) =
1. In the case of the sphere we have

SO

z=a2 — 32 — 2

fo = —af V@
o=~y =

where r = \/z2 + y2. Thus
z? y? a
\/1+f””2+f?/2:\/1+a2—r2+a2—r2: PR

50




Thus

27 a a
dS:/,/1+ 2 + f2dxd :/ /7dd0
/s A fo + Tydady o Jo v@—r2 "

27ra/ dr—27ra va? —r2)g = 27ma?
Va2 —r? =

which is indeed the surface area of the hemisphere.

Normal flux of a vector over a surface:

Let F(r) be a vector field defined in a region, and a volume V bounded by a
surface S=JV. Consider a small element of area dS at the point P on S having
unit normal n out of V. Then

This is

dS = ndS

is the vector area element of the surface.
The normal flux of F across element dS is

Fcosf8dS =F -ndS =F -dS

Over the whole of S the normal flux of F is

/Fcos@dS:/F-ndS:/F-dS
S S s

This leads us to the idea of the divergence of a vector field F.

6.7 Divergence of a vector field

Let AV denote an element of volume of space containing a point P, and enclosed
by a closed surface AS. Let n be the unit normal at any surface elemene
ds € AS drawn outwards from AV. Then the total normal flux of F over AS

is
/ n-FdS = F.dS
AS AS

and the outward normal flux of F per unit volume is

1
— [ F.
AV /AS nds

Keeping P fixed, we shrink the volume, so that AV — 0 and AS shrinks to
the point P. Then we define the divergence of F at P as

. 1
divF = llrgo AV F -ndS

if the limit exists. In words, the divergence of a vector field is the outward flux
of the vector field per unit volume at each point.
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In cartesian coordinates we calculate as follows: The components of F are
F =Fi+ Fj+ Fsk
Let P be at the centre of a cuboid with sides Az, Ay, Az. That is
AV = AzAyAz
Towards the positive x direction we have a side where
AS = AyAzi
and so the flux through this side is
F-AS = F1AyAz

This side is at z + Az /2, so we expand to linear order to get
OF,
The opposite side is at £ — Az/2 and has

AS = —AyAzi
so it contributes

F}
[F-AS],- = —(Fi(z,y,2) — Aw%(m,y,z)/Z)AyAz

The sum of these two contributions is

[F-AS], = %(w,y,z)AxAyAz

Adding the contributions from y and z we find

O0F, OF, OF;
ds = (L L 92 L OISy AL AyA
/AstS (8x+8y+8z)xyz

so we have
O0F, OF, OF;

divF=—+—+—=V_-F
iv o + By + B \Y%
if we recall that 5 5 5
;2 19 9
v Yor +']6y + 0z
Examples: 1. F =r = zi + yj + zk. Then
or Oy 0z
F=_"4+22 4% _3
v or + oy + 0z

52



2. Suppose there exists a scalar function ¢ so that F = V¢. Then

00p O00¢p 0O 0¢

F=_—— A —_—— = — 2
v 8w6m+6y6y+6zaz Guz + Gyy + G2 =V

where V2 = V - V is called the Laplacian operator.

If V2¢ = 0 then ¢ is said to be a harmonic function at to satisfy Laplace’s
equation.

For example, prove that ¢ = 1/r is harmonic (except at the origin).

V¢ = —r/r

1
Vip=-V-r/r’= —T—3V-r+ (Vr_3) -r
we have used the product rule
V-(¢F)=¢V-F+V¢-F

Now 9
v(@/r?) = 5(1/7‘3)(?/7‘) = =3r/r’

SO 3 3
2, rr
We could also do this calculation in Cartesian coordinates:
6= 1
- ($2 +y2 + z2)1/2
—
bz = 2 2\3/2
(22 + y2 + 22)3/
bow = —1(z% + y* + 2?) + 322
rr (x2 + 92 + Z2)5/2
so that

¢zz + ¢yy + ¢zz =0

6.8 The divergence theorem

Let S denote a closed surface containing a volume V. Divide V into many ele-
mental volumes 6V, using cartesian coordinate planes. Then each element 6V
will either be a cuboid dzdydz or a fraction of one, cut by the surface element
0S.

If F is a differentiable vector field defined in V and on S, then

divFéV = F - ndS
AS
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where AS is the total surface of the volume element. Summing over all such

oV, to get
divFéV = lim / F -ndS

In the interior, contributions from neighbouring cells cancel (diagram), so this

1S
divFéV = lim Z/ F-ndSz/F-ndS

which is the divergence theorem.

v

6.9 Change of coordinates

An important technique in applied mathematics is choosing coordinate systems
to suit the problem, for example using spherical coordinates when there is a
sphere, cylindrical coordinates when there is a cylinder. We need to be able
to express the gradient and divergence in terms of these and other coordinate
systems. Then we have V2 = V-V which appears in many important equations.

We introduce curvilinear coordinates (u, v, w) which are related to Cartesian
coordinates (z,y, z) by

= f(u7 U7 w)

y =g(u,v,w)
z = h(u,v,w)

for example, in the case of cylindrical polar coordinates these are

T = uCcosv
y = usinv
z=w

where 0 < u < 00, -7 < v <7, —00 < w < o and more usual notation is
u=p,v=0,w=z.

Holding two of the (u,v,w) constant and varying the other, we have a coor-
dinate curve. There are three families of these curves obtained by varying u, v
and w respectively. If

r=zi+yj+ 2k = f(u,v,w)i+ g(u,v,w)j+ h(u,v,w)k

then the vectors Or/du etc. are tangent vectors to the coordinate curves. From
these we define unit tangent vectors, (e, ez, e3), that is,

@ = h1e1

ou
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etc. where 5
r
hy =|—
Ou
etc. and the chain rule says that

dr = @du + gdv + gdw = hidue; + hodves + hzdwes
ou ov ow

Suppose that the unit vectors are orthogonal. That is,

1 i=j

This is the Kronecker delta, and is a discrete version of the Dirac delta, ie

compare
E az-&ij = aj
i

/ f@)b(x - y)dz = f(y)

Then the length ds of an arc between points (u,v,w) and (u+ du, v+ dv, w+dw)
is
ds* = dr - dr = hidu® + hidv® + hidv®

using the chain rule equation. In particular the arc length along coordinate
curves is given by one of

d81 = hldu
d82 = thU
dss = hadw

Example: cylindrical polar coordinates.

r = ucosvi + u sin vj + wk

or .
— =cosvi+sinvj = hiey
ou
or
hi=|=—|=1
! |0u|
or L .
— = —usinvi + ucosvj = hoey
ov
_|3r|_u
27 oy~
or
—=k=nh
ow 3€3
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so we have hy = hs =1 and hy = u.
e1; = cosvi + sinvj

ey = —sinwvi + cosuj
e3 = k
Note that e; - e; = 0 if 4 # j, so this coordinate system is orthogonal. The arc
length is
ds® = (hdu)? + (hadv)?® + (h3dw)? = du® + v’dv® + dw®
that is,
ds?® = dr? + r2d6® + dz*

The gradient in orthogonal curvilinear coordinates:
We have that
_of

~ Os

where s is arc length along a curve, a is a unit tangent vector, and f is a scalar
field. If we choose a as the three unit vectors in turn,

af af af

= 6—8191 + 8—32e2 + 6—5393

Vf-a

vV

6_f = lim f(u+6u7v7w) - f(u,v,w) _ ia_f
681 a du—0 h15u - h1 ou

and similarly with v, w. So we have

usually written

0 10 0
Vf= 6—£er+;6—£e9+8—£ez

The divergence in orthogonal curvilinear coordinates

We evaluate limav o Al—V / A F-dS on the (almost) rectangular box bounded
by the surfaces u, u + du, etc. with F = Fy(u,v,w)e; + .... Diagram, showing
box with side lengths h;du etc.
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The area of the surface in the u direction is approximately hodvhzdw, so the
flux on this surface is approx — Fy hadvhzdw (minus sign because flux is inward).
The flux on the u + du surface is approx

F1h25Uh35w|u+5u = F1 h26vh35w + %(Fl h2h3)5u5v5w

so the net flux from both of these is

0
—(F
au( 1h2h3)5u51)5w

and similarly for the other two pairs of faces. The volume is

AV = h1 hg h36u5v5w

Thus
im - [ Feds = — 1 [ 2 (Fihohe) + 2 (Bahshy) + - (Fyhiho)]
AV=0 AV Jag T hihghg u 0 T gy AT gy TR

This is the divergence V - F in the new coordinate system.
We can also write down the Laplacian,
hshi 0¢ 0 ,hihy 0¢

10 hohs 06, O 3

2=V -Vo = o “ho v T Ow' he
Vig=V- V¢ hihahs Ou” hy 3u)+6v( ha 6v)+5w( hs 871))]

Example: cylindrical polars:

_ 1.0 8¢ 9,104, 3 ¢
Vie = la

_ 0% 104  10% 0%
o) T 200 T3 "a:) "o Tror TRee o2

Example: spherical polars: £ = rsinfcos¢, y = rsinfsin¢g, z = rcosé.
This leads to hy = 1, ho = r, hg = rsinf. Hence
of 0, .
o %(Sm %)+8_¢(sin96_¢)]

1 .9,
snglar " Sn

Vif= ) +

0%f 20f 10%*f cotfof 1 0%*f
2 _ «9r L 297 —
Vif= or?2 + rOr r2 062 r2 00 + r2sin® 0 02¢

6.10 Conservation in 3D

In 1D we had P(xz,t) density, per unit length and Q(z,t) flux, per unit time. In
3D length becomes volume, so P(x,y,2,t) is density of the conserved quantity
per unit volume, and Q(z,y, z, t) is flow of the quantity per unit time through a
surface. It is a vector in the direction of the flow. We can also have R(z,y, z,t)
as the rate of generation per unit volume.
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Consider a volume V bounded by a surface S. The rate of change of substance
in V is equal to the amount flowing in through S [plus any sources or sinks]. At
time ¢, the amount of the substance in V is

/VP(r,t)dV:///P(w,y,z,t)da:dydz:///P(r,&,z,t)rdrdé’dz

in cartesian or cylindrical coordinates respectively. For a fixed volume V,

d oP
P -
- dV = /V o dv

The total flux out of V through S is

/SQ-dS:/SQ-ndS

—dV— /Q ndS = — /V QdvV

SO

using the divergence theorem. Hence we have

P
/(at +V-Q)dV =0

(or fv RdV if there is a source) for any volume, hence,

opP
8t+v Q=0

(or R). This is the 3D statement of conservation.

For example a fluid of density p and velocity u has flux Q = pu. We can
see this as follows: Align the motion with the z-axis. The amount passing
through a surface dydz in time &t has thickness dz = udt, so the amount is
pdxdydz = pudydzdt.

Conservation of mass is

dp
6t+v (pu) =0

also called the equation of continuity. If the fluid is incompressible, p is constant,
and we have simply
V-u=0

Our main application is the flow of heat...
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7 Heat Conduction

7.1 The heat equation

Diffusion: A process by which a (conserved) substance is transported from one
place to another by random molecular motion. For example a container with
iodine (brown) on the bottom and water on the top, will lead after time to a
blurred boundary, and then completely mix (three diagrams).

Heat conduction is a process in which heat flows in a solid from regions of
higher to lower temperature by diffusion. Specific heat capacity c is the amount
of heat required to raise a unit mass of a substance one degree in temperature.
(Warning: heat capacity can be measured in terms of number of particles or
moles of a substance instead of mass). We use symbols ¢, ¢, to denote heating
at constant pressure and volume respectively for a gas (solids and liquids are
typically at constant pressure). Since heat is a form of energy,

[e] =

It follows that the total heat per unit volume is

energy
mass X degrees

P = pcu(r,t)

assuming that ¢ doesn’t depend on temperature - should be good for small tem-
perature ranges at least. p is mass per unit volume. Here, u is temperature,
measured with respect to some reference temperature, say u = 0 at large dis-
tances. Since we are talking about transfer of heat energy, rather than the total
amount of heat energy, we can add a constant to u (and hence to P) without
changing anything.

Heat flow in most isotropic, homogeneous media obeys Fourier’s law: heat
flow proportional to the temperature difference. In 3D the heat flow per unit
time per unit area is

Q(r,t) = —kVu(r, 1)

The minus sign ensures that heat flows from higher to lower temperature regions,
and k is the thermal conductivity of the medium.

Note: we ignore heat flow due to convection which would give a contribution
pcuv where v is the velocity. Heat can also travel via radiation, in a medium
or in vacuum.

Conservation of energy (in the form of heat) is thus

oP
— 4+ V- =R
ot Q
R gives the sources of heat, amount of heat generated per unit volume per unit
time. We usually take p and ¢ constant, and R = 0. Thus
ou

— =kVu

ot
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where k = k/(pc) is the thermal diffusivity. This is called the heat equation, or
more generally the diffusion equation and is relevant to many other processes
involving diffusion.
Medium | p c k K
Water 998 3900 0.591 0.015x 10°°
Some typical values: Air 1.29 993 0.024 1.87x107°

Glass | 2600 670 1.0 0.057 x 1073

Iron 7700 450 100 29 x107°

Boundary conditions: At a boundary separating two regions of different
thermal conductivity k, we usually have 1. Temperature continuous, ie u; = us,
and 2. heat flux q- n continuous, ie (—kVu) -n is continuous, hence kidu/dn =
kadu/dn.

A solid may be bounded by (a) an insulating material, so no heat flow across
boundary, du/dn = 0; (b) a fluid such as air or water which transports heat
via convection, this can be strong, leading to a fixed temperature u = ug, or
moderate, described by Newton’s law of cooling,

q-n=—-kVu-n=—kdu/dn = A(u — uo)

ie the rate of heat loss is proportional to the difference in temperature. The
constant A is called the surface conductivity: the strong convection corresponds
to the limit A — oo, while the insulating material (although not convecting)
corresponds to the limit A — 0.

Initial conditions: The diffusion equation has only one time derivative, so
we usually take

u(r,0) = f(r)

a given function. Are these conditions sufficient for a unique solution?

Theorem: If u satisfies u; = kV?u in a domain V, with initial conditions
u(r,0) = f(r) given in V and either (i) u = g(r) given on S, or (ii) du/dn=0 on
S, or (iii) du/dn = —Au on S. Then the solution is unique.

Proof (sketch): Given two solutions, the difference ¢ = u; — us is a solution
with zero initial and boundary conditions (the condition (iii) is unchanged), so
we need to show that such a solution is always zero. We do this by considering

/ $2dV >0
Vv

%/Vqs%n/ = /V2¢86—fdv

/ 206V $dV
%4

But we also have

/V W[V - ($V) — (V)JaV
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< /V 26V - (pV)dV

:/2&¢V¢-ds
S
=0

where we used the diffusion equation and the divergence theorem. With zero
initial conditions, ¢ can only remain zero.

Solutions of u; = kV2u. An explicit solution is not known in general, but
there are some very important solutions known for some simple geometries.

7.2 Time independent solutions

A solution is said to be a steady state (or time independent) solution if 4 depends
only on r, not on ¢. This can occur in the limit that ¢ becomes large, the amount
of heat flowing into a region is balanced by the amount flowing out, and the
solution depends only on the boundary conditions, the initial conditions are
irrelevant. The full solution can then be expressed as the sum of the steady
state solution, and a decaying solution, the ‘transient’ solution.

Since u does not depend on t, u; = 0, so the equation becomes

Vu=0
We also know q = —kVu, so we can say
V-q=0
In 1D this is simply
Pu_,
dz?
u=Bx+C

Consider a rod of length [. The surface is insulated, so no heat flows into or out
of y or z direction. If (0,t) = uy and u(l,t) = ua the solution is clearly

u(z,t) = ur + (w2 — u1)z/l

q=—-kVu= —kd—ui =qi
dz

du k
—k—=—-(us —u
e AC
If uy > ws this is a positive quantity - heat is moving to the right. The same
equations hold for an infinite plate or slab held at u; and us at the ends.

q:
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The total heat in the bar is

l !
/ peudr = pc/ [ur+(ue—ur)z/l|dz = pcfurl+(ue—u1)l/2] = pc(ur+usz)l/2 = pclup,
0 0

where u,, is the mean temperature.
Hot water pipe (steady state): Radial flow only. We need the Laplacian in
cylindrical polar coordinates (r,6, z). It is (from before):

9 18 1 9 92

v2 — - - _

or?2  ror + r2 062 + 022
Diagram of concentric circles, radius a < b. The boundary conditions will be
u = wu; at r = a (strong convection of water), and du/dr = —A(u —wug) at r = b

(Newton’s law of cooling) - but choose ug = 0 without loss of generality (clearly
it is possible to add a constant to u and still satisfy the equation).

The solution will be independent of 6 and z (since the bc’s are and it is
unique), so we have

ou _ ﬂ(@ + 1@) = fﬁ(r@)
ot or2 ror’ ror or
In the steady state it is also independent of ¢ so we need to solve
1d, du
v ) =0
That is

A
Tdr

du A

dr v
u=Alnr+B
u= Aln(r/a) + B;

where B; = B + Alna for convenience. On r = a we have
u = Aln(l) + By = uy

SO
By =u
On r = b we have

d A
d—,:/ = ? = —\u= —)\(Aln(r/a) + Ul)

A(% + Aln(b/a)) = —Aur
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A= —/\ulb
" 1+bAIn(b/a)

SO
Ab

T+ oan(/a) 20/

Special case A = 0 (insulator) leads to u = u; as expected. The heat flow is
q=—kVu = —kOu/drt. Across a cylinder of radius r this is

u=u[l —

So the total rate of heat loss across a cylinder per unit length is

2w 2w
0 0 r

This is independent of r, because energy is conserved. In fact this argument
could be reversed to deduce that ¢ = C/r for some constant C. The time
independent heat equation is

190 104
V.-q= ;E(NIT) =———-=0

ror

We have
27rk)\bu1

1+ Abln(b/a)

For what value of b is the flux a maximum (eg to warm a room)? Write b/a =
z > 1 and Aa = « (these are both dimensionless).

Q=—2nkA =

z
= (2 _r
@ (ﬂ-kula)l—l-axlnx
(1+azlnz) —z(alnz + ) 1-oaz

Q'(z) = (2mku;a) = (2nku; @)

(1+ azxlnzx)? 1+ axlnz)?

which is zero when
r=a

Graph showing ) going from the constant 2wku;« either directly towards zero
(> 1) or via a maximum (a < 1).

Example: spherical heat source. Uranium pellets in a reactor: Total rate of
heat generation (@) in radius r < a, passive coating conductivity k£ in a < r < b,
fast moving coolant, u =0 at r = b.

Due to symmetry we have u(r) only. Flux through any radius a < r < b is
@ by conservation of energy. Flux is

Q= /q-dS =4nrlq = —47rr2k6—u
or

63



and since u =0 on r = b,

If b — oo we have

du _ Q
dr —  4nr2k

u = & + const

T dnrk

S Q (1 1
“—za(;‘z)

Q

u:u:47rrk

If @ — 0 this solution is still valid (does not depend on a), and so we have the
solution corresponding to a point source, ie

R =Qé(r) = Qd(x)d(y)d(2)

If the point source is at a point r; the solution is

Q

v 4rk|r — 4|

We could also have used the differential equation in spherical coordinates:

10, ,0u,
2o o) T

with C found using the flux @ and D found from the boundary condition at

r =b.

7.3 Unsteady problems - spherical symmetry

Omitted this year (involves Fourier series) - brief summary:

Suppose that the sphere 0 < r < a at initial temperature f(r) and surface
temperature U, constant. That is,

ou

e = kV2u
u(r,0) = f(r)
u(a,t) =U
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Since initial and boundary conditions are independent of 8, ¢, we have
19, ,0u
2or" ar)
This equation can be reduced to the 1D heat equation by the following trick:
Write

Vu =

u=v/r
Ou 10v 1
o ~ror 2V
P20
or or
d , ,0u v v v
o o) =T Yo "o o
Ov Ou 10, 6 ,0u 0%
=" o o) T oo
with v(r,0) = rf(r), v(0,t) = 0, v(a,t) = aU.
We then solve this like the finite string - separation of variables, v(r, )

R(r)T'(t), giving sinusoidal functions. The initial condition is expanded in a
Fourier series, leading to a superposition of these sinusoidal solutions.

- v

7.4 Similarity solutions

Consider an infinite slab, or an insulated rod, and look for a solution that varies
in z only (ie a 1D solution).
Ou 0%u

ot~ "oz
We have a concentrated source of heat at the z = 0, ie
u(z,0) = Qi(x)
mlgr;o u(z,t) =0
There is no natural length or time scale in the solution, so we are well placed to
use dimensional analysis. u = u(z,t,s,Q) where [z] = L, [t] =T, [k] = L*T!

(from the heat equation), [] = UL where U is dimensions of temperature
(recall [§(x)] = L~!). Dimensional analysis gives:

u=ztPrQ°
U= Lo+ H0rsy?
thusd=1,8=v, a=—-1—2y.

_Q—2'r
u—mn
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where n = z/v/kt and v arbitrary. We will write this solution as

The dimensionless variable 7 is called a similarity variable. Now we need to find
the function f(n) (from which we can find the solution u(z,t)). We substitute
the similarity solution into the equation

ou  0%u
at o2
ou Q
or Hf (n)
0? _ Q "
% - (mf)3/2f (77)
u 9, Q Q o On_Q f) fp —= . _ -@Q
i a(\/—ﬁ—t)f( )+mf (W)a = \/E(—2t3/2+ NG 2\/@) = 2m(f(n)+nf(77))
so we have
_Q /<;,Q

e )+ 0f () = Wf”(n)

1) + nf'(n) + f(n)

2 =0

Initial and boundary conditions:
The solution decays at infinity for fixed ¢ so we require

lim f(n) =0

n—o0

The initial condition is u(z,0) = Qd(z) which is zero if x # 0, so

0= 71i_r>r(1)u(ac,t) = }E,I(l) %(77)
S0
Tim (0f(n)) = 0
Finally,
1 u(z,t)dz =1 \/%f(n)(\/Edn) = Q[ f(n)dn
This is @ if

/O;f(n)dn =1
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Now the equation is
2

ISH
~

%w) ~0

DN | =

+

U

n2
af 1
_d'f] + Enf =C

The original problem is symmetric about x = 0, ie
u(—x,t) = u(z,t)

f(=n) = fn)
—f'(=n) = f'(n)
fl=0
thus C = 0. if

1
L L Inf=0
dn+2nf

4 _ _ndn

f 2
_,72
In|f] = 1 + const
f=Ae T/t
Clearly f and nf approach zero as n — oo as required.

1= A/ e /4y = A/ e V2dt = 247

where n = 2¢. Thus A = 1/(24/7). Proof:

oo [e9) [eS) e8] 2w poo e8]
/ e ? d:c/ e ¥ dy :/ / e~ @) dady :/ / e~ " rdrdf = 27r/ e’(ds/2) ==
—o0 —oo —oo J —o0 0 0 0

where s = 72.
We have f(n) =

2
e—m /4

NG and

Q _.2
u(:c,t) — me z* /(4kt)

This is the fundamental source solution in 1D. Diagram showing the Gaussian
spreading over time.
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7.5 Superposition

This fundamental solution can be used to solve more general problems. For
example suppose that the infinite slab has initial temperature profile u(z,0) =
ug(z). Now a solution is

Q - $—$l 2 K
u(z,t) = 2—7mte (z—x")"/(4rt)

for any fixed ' - this is just an initial point source at x = z' rather than z = 0.
From linearity, so is a superposition (sum, or in this case, an integral) of such
solutions at different z':

t (z—z')z/(4nt)dwl
u(@, 1) 2\/7m /
Write
. -z
2v/kt
dz' = 2V ktds

u(z,t) \/_/ uo(z + 25V kt)e ™

which as ¢ — 0 gives (not rigorously)

uo () / R
0) = e % ds=wug(z
u(we,0) =2 [ o)
that is, this solution satisfies the initial conditions. We could also have taken
the limit on the shifted solution to get d(z — '), with the same result.

For example, suppose

uo(x):{ 0 <0

ug x>0

diagram. From above, the solution is

t e —(z—2’ /(4nt)dwl
u(@,) 2\/7m
Put ,
_x—z
2kt
dz' = 2v/ktds
then -
u(z,t) = e~ ds
\/_ —-n/2
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where n = x/+/kt as before. Note that the solution is a function of only 7, as
there are still no length or time scales in the problem.
Definition: the error function erfy is

¢ 2 /y 2
erfy = — e % ds
VT Jo
We have erf(0) = 0, erf(o0) = 1,erf(—y) = —erf(y) (graph). So

1 erfy—l/oo—i/y—/ooe*;ds
V7 Jo V7 Jo y

2 ®
1—erf(—y)=1+erfy = ﬁ/ e °ds
~y

Hence

u(z, 1) = ' [1+ exf(n/2)]

This approches zero as n = —oo and ug as n — co. Diagram.
Example: suppose

u(@,0) = { 1?0 IiI zg
(diagram) then the solution is
u(z,t) = 0 ’ e (@=a")/(4x1) gt
" 2wkt -

which we can express in terms of the error function, as follows:
The solution to the first example is

U
v(z,t) = ?0[1 + erf(n/2)]
and satisfies the heat equation with initial conditions

0 z<0
ug >0

o(z,0) = {

Now
u(z,t) =v(z + a,t) —v(z — a,t)

satisfies the equation by linearity, and has initial conditions

0 r<-a
u(z,0) =v(z +a,0) —v(z —a,0)=¢ u —-a<z<a
0 r>a
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(diagram), ie is the desired solution.

u(z,t) = %[1 +erf((z + a)/(2VKt)) — 1 — erf((z — a)/ (2Vkt))]
= %[eff((w +a)/(2Vkt)) — erf((x — a)/(2Vkt))]

Diagram.

In summary, we have used a number of methods developed earlier in the
course to treat the heat equation: dimensional analysis to obtain the similarity
solution, conservation (or change of variable) to find the time indepedent solu-
tions, and superposition (as in the wave equation) to solve the general infinite
case.
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