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We characterize a transition from normal to ballistic diffusion in a bouncing ball dynamics. The
system is composed of a particle, or an ensemble of non-interacting particles, experiencing elastic
collisions with a heavy and periodically moving wall under the influence of a constant gravitational
field. The dynamics lead to a mixed phase space where chaotic orbits have a free path to move along
the velocity axis, presenting a normal diffusion behavior. Depending on the control parameter, one
can observe the presence of featured resonances, known as accelerator modes, that lead to a ballistic
growth of velocity. Through statistical and numerical analysis of the velocity of the particle, we are
able to characterize a transition between the two regimes, where transport properties were used to
characterize the scenario of the ballistic regime. Also, in an analysis of the probability of an orbit
to reach an accelerator mode as a function of the velocity, we observe a competition between the
normal and ballistic transport in the mid range velocity.

PACS numbers: 05.45.Pq, 05.45.Tp

I. INTRODUCTION

In 1949, Enrico Fermi [1] proposed a mechanism to
explain the origin of the high energies of the cosmic rays.
Fermi claimed that particles, which interacted with os-
cillating magnetic fields present in the cosmos, would on
average exhibit a gain of energy. This unlimited growth
of energy was denoted Fermi acceleration (FA), and is
mainly associated with normal diffusion in phase space,
where there is gain of kinetic energy [2]. One may find
in the literature examples of FA that may present trans-
port distinct from the normal diffusion, as exponential
[3–6], ballistic [7, 8] or even slower growths [9, 10]. Also,
interesting FA applications can be found in research ar-
eas such as plasma physics [11, 12], astrophysics [14, 15],
atom-optics [16, 17], and especially in billiard dynamics
[18–22].

The impact system under study in this paper is the
so called bouncer (bouncing ball) model. Going back to
Pustilnikov [23] the dynamics of the system is composed
of a particle suffering elastic collisions with a vibrating
platform under the influence of a constant gravitational
field. The dynamics of the bouncing ball model has been
studied for many years considering either non-dissipative
and dissipative dynamics [24–28]. For the non-dissipative
version, the system basically behaves like the standard
map in a local approximation [2, 9], where some of the
previous findings concerning the ballistic transport and
accelerator modes (AM) in the standard map, serve as
motivation background for this paper [29–35]. Yet, de-
spite the simple dynamics, interesting applications for
this system can be found in dynamic stability in hu-

man performance [36], vibrations waves in a nanometric-
sized mechanical contact system [37], granular materials
[38], experimental devices concerning normal coefficient
of restitution [39], mechanical vibrations [40, 41], anoma-
lous transport and diffusion [42], thermodynamics [43],
crisis between chaotic attractors [44], chaos control [45],
among others [46, 47].

In the FA regime, the particle’s velocity diffuses due
to effectively random phases at which it reaches the plat-
form. However, for certain values of the oscillation ampli-
tude, it comes close to an attracting periodic orbit called
an AM, in which the particle reaches the platform at the
same phase, leading to linear growth of the velocity with
the number of collisions. Recent studies [7, 8] have con-
sidered the nature and focused on the localization (range
of the control parameter) of the AM (ballistic modes),
roughly described as featured resonances in the phase
space.

In this paper we seek to understand the role of the ac-
celerator modes in a transition from normal to ballistic
diffusion in the dynamics of the bouncing ball model. We
focus in the description of the transport analysis and in
the probability of an orbit to reach an accelerator mode
(AM), emphasizing the transition from normal to ballis-
tic diffusion. Through the analysis of the dispersion of
the root mean square velocity, diffusion coefficient and
the deviation of the mean square velocity by iteration,
we were able to characterize a diffusive transition in a
range where a period-1 AM is active. Considering trans-
port properties, such as the survival probability and es-
cape rates for different velocity ranges, a description of
the ballistic scenario for the AM was achieved. Also, an
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analysis of the probability of an orbit to reach the AM
as a function of the velocity leads us to observe a com-
petition between normal and ballistic diffusion in a mid
velocity range. The results obtained in this work and
the numerical procedures can be extended to other simi-
lar dynamical that present AM or superdiffusion in their
dynamics.

The paper is organized as follows: In Sec.II we de-
scribe the details of the bouncing ball mapping and some
chaotic properties. Section III is devoted to the statis-
tical analysis of the transition from normal to ballistic
diffusion. In. Sec.IV we focus on the transport proper-
ties of the ballistic diffusive regime, where a competition
between normal and ballistic diffusion was characterized.
Finally, in Sec.V we draw some final remarks, conclusions
and perspectives.

II. THE MODEL, THE MAPPING AND
CHAOTIC PROPERTIES

This section is devoted to describing the impact
system under study, the so called bouncing ball model,
which consists of the motion of a particle that suffers
elastic collisions with a heavy and periodically oscillating
platform, under the presence of a constant gravitational
field. The dynamics of the system is described by a non-
linear mapping [9] for the variables velocity of the particle
v and time t immediately after the nth collision of the
particle with the moving wall.

There are two distinct versions of the dynamical de-
scription: the complete one, which consists in considering
the complete movement of the time-dependent platform,
and the simplified, that is often used to speed up nu-
merical simulations, where the vibrating platform is set
to be fixed, but the particle exchanges momentum and
energy with it, as if the platform were moving normally
[48]. Both approaches produce a very similar dynamics
in both conservative and dissipative cases [49, 50]. We
consider in this paper the complete version, whose vibrat-
ing wall position is given by yw(tn) = ε coswtn, where ε
and w are respectively the amplitude an the frequency of
oscillation.

Considering the flight time, which is the time that
the particle goes up, stops with zero velocity, starts
falling and collides again with the vibrating wall, we de-
fine some dimensionless and more convenient variables:
Vn = vnw/g, ε = εw2/g, where Vn is the “new dimen-
sionless velocity”, g is the gravitational field and ε can be
understood as the ratio between the vibrating wall and
the gravitational accelerations. Also, measuring the time
in terms of the number of oscillations of the vibrating
wall, as φn = wtn, we finally end up with the following
mapping

T :

{
Vn+1 = −(V ∗n − φc)− 2ε sin(φn+1)
φn+1 = [φn + ∆Tn] mod(2π)

. (1)

The expressions for V ∗n , ∆Tn, and the collision time
defined as φc depend on what kind of collision happens:
(i) multiple collisions and; (ii) single collisions, where in
both cases a transcendental equation is obtained for the
condition that the position of the particle is the same
as the position of the moving wall at the instant of the
impact. For a more detailed description of Eq.(1), please
check Refs.[9, 49].

In the case of multiple collisions we have the sce-
nario that after the particle enters in the collision zone,
yw(tn) ∈ [−ε,+ε] and hits the moving platform, before
it leaves the collision zone, the particle suffers a second
collision. It is also possible, depending on the combina-
tion of Vn and φn, that the particle suffers many multiple
collisions [51]. In this case, the expressions for both V ∗n
and ∆Tn are given by V ∗n = Vn and ∆T = φc. The nu-
merical value of φc is obtained as the smallest solution of
an equation G(φc) = 0 with φc ∈ (0, 2π], where

G(φc) = ε cos(φn + φc)− ε cos(φn)− Vnφc +
1

2
φ2c . (2)

If the function G(φc) does not have a root in the interval
φc ∈ (0, 2π], we can conclude that the particle leaves the
collision zone and a multiple collision no longer happens.

FIG. 1: Phase space for the complete dynamics of the bouncing
ball model. In (a) and (c) ε = 0.71, in (b) and (d) ε = 1.71.
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The same discussion used for the function G(φc) also
holds when we consider the case of single collisions. If
the particle leaves the collision zone after a collision,
goes up, reach null velocity (stops), and falls for an an-

other collision we have V ∗n = −
√
V 2
n + 2ε(cos(φn)− 1)

and ∆Tn = φu + φd + φc. Here φu = Vn denotes the
time spent by the particle in the upward direction up to
reaching the null velocity, φd =

√
V 2
n + 2ε(cos(φn)− 1)

corresponds to the time that the particle spends from the
place where it had zero velocity up to the entrance of the
collision zone at ε. Finally, φc is numerically obtained
as the smallest solution of the equation F (φc) = 0 with
φc ∈ [0, 2π] where

F (φc) = ε cos(φn+φu+φd+φc)− ε−V ∗n φc+
1

2
φ2c . (3)

The dynamics of the system undergoes some transi-
tions as the control parameter ε changes [2, 9], similar
to the transitions found in the standard mapping. For
ε = 0, the system is integrable, and when ε is increased
there is a transition from integrability to local chaos. In
this range there is no FA, since the local chaotic sea is
limited by invariant curves. If the control parameter goes
beyond the critical one εc ≈ 0.2425 [9], the system faces
a transition from local to global chaos. Such transition is
crucial for the FA phenomenon to occur. Here, we have
the destruction of the invariant spanning curves, allowing
the union of the local chaotic seas, so a chaotic orbit has
a “free path” to diffuse along the velocity axis [9].

Figure 1 shows the phase space for two different val-
ues of ε, for 100 different initial conditions iterated up
to 103 collisions. The initial conditions were selected in
an uniform distribution inside the range V0 ∈ [π, 2π] and
φ0 ∈ [0, 2π). In Fig.1(a) we have ε = 0.71, and one can
see a phase space with mixed properties and an increas-
ing velocity, that is roughly uniformly distributed along
the phase (φ) axis. One may also notice that the island
structures repeat themselves according a π-size step [7–
9]. This repetition is more clear in Fig.1(c), where the
same phase space of Fig.1(a) is plotted with the velocity
axis mod 3π.

Analyzing Fig.1(b), where ε = 1.71, we can also see an
increase in the velocity, but now there is a preferential
phase, which dominates the dynamics, and the velocity
reaches much higher values than Fig.1(a). The behav-
ior illustrated by Fig.1(b) is the typical scenario of the
influence of an accelerator mode (AM) in the dynamics,
which causes a ballistic increase of the velocity. Figure
1(d) shows that this ballistic increase also obeys the re-
peating structure of the π-step size, where their position
are represented by the darker regions where φ ≈ 5. Also,
one could see in the anti-symmetric position of the AM
some empty regions. Those are the decelerator modes
(DM), which are unstable orbits in the sense that no
typical initial condition can reach them, since they are
repelling fixed points [7].

The difference between the two velocity regimes lies in
the vibrating platform. For the regular FA (normal dif-

fusion), the impacts sometimes occur when the platform
is moving downwards, leading to an instantaneous loss of
energy, but on average after several impacts a growth is
observed. In contrast, for the AM (super diffusion) there
is a periodic sequence of collisions with an overall gain
in energy due to collisions when the platform is moving
upwards.

Another interesting fact about the system dynam-
ics, concerns the determinant of the Jacobian matrix,

det(J) = Vn+ε sin(φn)
Vn+1+ε sin(φn+1)

in the phase space. Since det(J)

can be greater or less than one, the map is not not sym-
plectic in these coordinates [7, 9]. Note however that this
gives us

[Vn+1+ε sin(φn+1)]dVn+1dφn+1 = [Vn+ε sin(φn)]dVndφn ,

which is equivalent to dEn+1dφn+1 = dEndφn, in terms
of the energy-like quantity En = [Vn + ε sin(φn)]2/2. For
our impact system model, the existence of a set of vari-
ables in which the dynamics is area preserving is some-
what paradoxical, since this seems to rule out attracting
periodic orbits such as accelerator modes. Similar be-
haviour regarding this non-symplectic properties can also
be found in the non-equilibrium Lorentz gas [52, 53]. The
point is that for a translating (ballistic) periodic orbit,
the periodicity of the system is expressed in terms of vari-
ables (Vn, φn) in which the dynamics is not area preserv-
ing. Here, of course the periodicity is only approximate,
improving as V increases.

To illustrate the contrast the AM plays in the dy-
namics, Fig.2 displays the behavior of an average over
the value of the final velocity for an ensemble of 1000
initial conditions, at the end of 108 iterations. One
can see several distinguished peaks along the range of
ε, where each one of them represents an AM. Here,
we show a range of interest in the dashed box includ-
ing the first period-1 AM, which the stability is in a
range of ε ∈ [π/2,

√
1 + π2/4] according to [7–9], and

will be the range of ε in focus from now on. Also, if
by any chance we could consider the dynamics without
the AM influence, one could obtain a quadratic fit re-
garding the range of ε and the final velocity according to
Vfinal = 676.88− 9, 741.8ε+ 27, 423ε2.

III. TRANSITION FROM NORMAL TO
BALLISTIC DIFFUSION

In this section we consider a statistical analysis for
the dynamics of the bouncing ball model focusing in the
transition from normal to ballistic diffusion. We evalu-
ate numerically and analytically the root mean square
velocity, the diffusion coefficient and the dispersion of
the mean squared velocity by collision, for a range of the
control parameter ε where the period-1 AM is active.

Let us start by evaluating numerically the behavior of
the root mean squared velocity, which is made by con-
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FIG. 2: (Color online:)Final velocity after 108 collisions as
function of the control parameter ε, where the several peaks
denote the AM. The range of the first period-1 AM is depicted
inside the dashed box. Also, if we did not had any AM in the
dynamics, a quadratic curve seems to fit well the dependence
of the final velocity as function of ε.

sidering VRMS =
√
〈V 2〉, where

〈V 2〉 =
1

M

M∑
i=1

1

n

n∑
j=1

(Vi,j)
2
, (4)

M is the ensemble of initial conditions, and n is the
number of collisions (iterations). The average is taken
along the orbit and along the ensemble of initial condi-
tions. The initial conditions were chosen in the chaotic
sea with velocity V0 = π and the initial phase distributed
uniformly in φ0 ∈ [0, 2π). We took care to exclude any
initial condition inside a stability island.

One can see Fig.3(a) that two distinct regimes of
growth can be experienced by the dynamics. (i) the
Regular Fermi Acceleration (RFA), and (ii) the Ballis-
tic Fermi Acceleration BFA. In the RFA, the root mean
square velocity curves grow according to

√
n, while in

the BFA the VRMS curves obey a linear growth, reaching
higher velocities for very long times.

In order to obtain a contrast, we decided to compare
the VRMS curves with the diffusion coefficient along the
dynamics given by

D = lim
n→∞

Dn

2n
, (5)

where

Dn = lim
M→∞

M∑
i=1

< (V in − V i0 )2 > . (6)

Here, M is the size of the initial conditions ensemble
and n refers to the iteration number. We decided to
stop the simulation at n = 107 collisions and considered
M = 1000 initial conditions, following the same line as
the initial ensemble for the VRMS curves, since a higher
value of M would lead to similar results.

After considering the numerical evaluation of the
curves of D vs. n in Fig.3(b), we obtained by a power
law fit, a value of the exponent α, expecting Dn ∼ nα.
According to the literature, the α exponent defines what
kind of diffusion we have in the system [54]. For α < 1,
we have a sub diffusive regime, if α = 1 the normal dif-
fusion (random walk) takes place, and finally if α > 1 we
have the super diffusive regime.

Figure 3(b) shows the behavior of D as function of the
number of collisions n, for the same values of ε of Fig.3(a).
One can see that for the control parameters where the
curves present RFA, the diffusion coefficient has a linear
behavior as n evolves, with α ≈ 1, which is in agreement
with the normal diffusion theory. On the other hand, for
the control parameters that present BFA, the diffusion
coefficient has a tendency to grow faster, with α ≈ 2,
indicating a ballistic diffusive regime in the dynamics.

One can see analyzing Figs.3(a,b) a transition from
normal diffusion to ballistic diffusion in the dynamics,
when the first period-1 AM acquires stability. To illus-
trate such transition, let us study another variable of in-
terest, which is the dispersion of the mean square velocity
[54] by collision iteration, that is given by

〈(∆Vn)2〉 = lim
M→∞

1

M

M∑
i=1

(V in+1 − Vn
i)2 , (7)

where again M is the same ensemble of initial conditions,
the index i denotes the M particles and Vn is the velocity
after n iteration of the ith particle.

The expressions hold in Eqs.(6) and (7) look like the
same, but they differ in the way the averages are evalu-
ated. In equation (6) we consider the average over the
initial condition V0, while in Eq.(7) the average is taken
over the difference between the velocities Vn and Vn+1 at
each iteration.

Figure 3(c) shows the behavior of 〈(∆Vn)2〉 as func-
tion of the number of collisions n, for the same values
of ε of Figs.3(a,b). One can see that for the control
parameters where the curves presents RFA, the curves
establish themselves in a constant plateau after a few it-
erations. On the other hand, for the control parameters
that present BFA, the curves have a tendency of growth
for short and medium times, and then bend towards a
higher constant plateau for very long times. In particu-
lar, we can see a transition from normal to ballistic dif-
fusion when ε = 1.75 and ε = 1.90, where the plateaus
are nearly constant until 106 iterations, and then they
bend towards a growth regime to the same region where
the other curves of 〈(∆Vn)2〉 converged when the BFA is
active.

As an attempt to explain the convergence plateaus and
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FIG. 3: (Color online:)In (a) the root mean square velocity for two regimes of velocity growth defined as regular Fermi acceleration
and ballistic Fermi acceleration. In (b) the diffusion coefficient, given by Eq.(5) for the same values of the control parameter ε
of (a), where the normal and ballistic diffusion behavior are depicted. In (c) we show the dispersion of the mean square velocity
by collision iteration given by Eq.(7), and in (d) we illustrate the final plateau of (c) as a function of ε.

the transitions from normal to ballistic diffusion, let us
made an analytical analysis of the statistical properties
of the velocity. One can consider the recurrence ex-
pression for the velocity of the mapping (1), and take
the square of both sides of it, obtaining then Vn+1

2 =
V ∗n

2 − 2Vnφc + φc
2 − 4ε sin(φn+1)(−V ∗n + φc)

+ 4ε2 sin2(φn+1). Since when the AM is active, we
have only the case of single collisions with the mov-
ing platform [7], so the term φc of the mapping (1)
should be obtained from F (φc) on Eq.(3), where φc =

V ∗n ±
√
V ∗n

2 − 2ε[cos(φn+1)− 1] is obtained from solving

a quadratic equation and should be replaced in the above
expression. After straightforward algebra and evaluating
an average over all terms in the interval φ ∈ [0, 2π], where
for the terms depending of the phase, we have zero for
sin(φn+1) and sin(φn), and 1/2 for sin2(φn+1), we finally
end up with

〈(∆V )2〉 = 2ε2 , (8)

where 〈(∆V )2〉 = (Vn+1)2 − (Vn)2.
Combining the results obtained in Eq.(7), with the ex-

pression hold in Eq.(8), we achieve that in the normal dif-
fusion regime we have 〈(∆Vn)2〉 ∝ ε2. Figure 3(d) shows
the behavior of the final plateau established by 〈(∆Vn)2〉
according Eq.(7) as function of an extensive range of the
control parameter ε. One can see that as far ε grows,
the value of the dispersion of the mean square velocity
also grows. If we consider the evolution of 〈(∆Vn)2〉 vs. ε
disregarding the AM, we obtain a power law fitting ac-
cording to 〈(∆Vn)2〉 = y(ε) = 1.0266(1)ε1.9758(5), which
is very close to the expected theoretical result where
〈(∆Vn)2〉 ∝ ε2.

IV. TRANSPORT AND SURVIVAL
PROBABILITY

In this section we address the transport of orbits for the
range of ε when the AM is active, i. e., when the system is
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under a ballistic diffusive regime of dynamics. A natural
observable allowing the study of the statistical properties
of the transport, in particular ρ(n), the probability (given
a suitable distribution of initial conditions) that an orbit
does not escape through a hole until a time n. Here, the
hole is defined as a predefined subset of the phase space.
The most important aspect of this analysis is that the
escape rate is very sensitive to the system dynamics [55,
56]. For strongly chaotic systems the decay is typically
exponential [57–59], while systems that present mixed
phase space the decay can be slower, presenting a mix
of exponential with a power law [9], or even stretched
exponential decay [60].

Since for our modeling the FA phenomenon is inher-
ent in the system dynamics, we consider that an initial
condition had escaped through the hole if its velocity is
equal, or higher than V = Vhole. Then, we save in a vec-
tor the iteration in which the orbit had escaped, and then
we build a frequency histogram for the escape, according
the escape iteration. Here, the hole is set as a ’line’ in
the velocity axis, with arbitrary phase.

The survival probability, described in terms of escape
formalism [54–56], is then obtained by the integration of
this escape frequency histogram, as

ρ(v, n) =
1

M

M∑
j=1

Nrec(j) , (9)

where the summation is taken along an ensemble of M =
106 initial conditions chosen along the chaotic sea. Here,
v is set as the escape velocity, or the hole position in the
velocity axis. The term Nrec(j), denotes the number of
initial conditions that did not escape through the holes
until the j-th collision [54]. The initial conditions were
set as: the initial velocity was always the same as V0 =
π, and the initial phase φ0 was distributed along φ0 ∈
[0, 2π), where we took an extra care to not chose any
initial phase that could belong to a stability island, or
otherwise the statistics would be damaged.

At first, we selected two escape velocities as Vhole =
1000 and Vhole = 2000, and evaluated the dynamics for
the range of the control parameter ε where the AM of
period-1 is active. Figure 4(a) shows the behavior of
ρ(v, n) for a few values of ε for both holes. One can see
basically an exponential decay as

ρ(v, n) = A exp(−ζn) , (10)

where the value of ζ may depend on ε and the selected
hole. Here the iterations were evaluated up to 106 colli-
sions.

In Fig.4(b) we display the behavior of ζ for two values
of the escape velocity hole considering the whole range
of ε ∈ [1.5, 2.0], which includes the first AM of period-
1. One can see that the peaks scenario for both holes is
quite similar to the range of variation of Fig.2, indicating
in which range of the control parameter ε the AM has
more influence in the dynamics.

FIG. 4: (Color online:)In (a) we have the behavior of ρ(v, n)
for a range where the AM is active for two different holes,
where all the decays are exponential. In (b) we have the ζ
exponent for both holes as function of ε.

In order to understand better the influence of the es-
cape velocity, we have selected now 20 different holes,
equally split among two decades between Vhole ∈
[10, 1000] in the range of ε where the first AM of period-1
is active. For all holes for the whole range of ε we ob-
served an exponential decay rate of ρ(v, n), just like the
ones observed in Fig.4(a). So, in Fig.5(a) we show the
behavior of every escape rate ζ for the 20 different veloc-
ity holes, for the same values of ε, where a power law of
the type

ζ ∝ (Vhole)
γ , (11)

is the best fitting in the numerical data.
Figure 5(b) shows the behavior of the γ exponent as ε is

ranged. One can see there is a slight decay in the value of
γ in the range of ε when the AM is active. Also, the plot
of γ vs. ε is similar in a upside down manner to Fig.4(b),
indicating where the AM is stronger and weaker.

The results provided in Figs.4 and 5 are in good agree-
ment with the results obtained in [7, 8], where an analy-
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FIG. 5: (Color online:)In (a) escape rate ζ for the 20 different
velocity holes for some values of ε, where a power law seems
to be the best fit. In (b) the power law exponent γ obtained in
(a) as function of ε.

sis of the nature and the bifurcation process of the first
period-1 AM was made. The peaks represent the regions
where the AM is stronger and more active, while the
valleys are related with bifurcations and suddenly lost of
stability. An example is the period-3 catastrophe [30, 31],
for ε ≈ 1.75. However, there are some issues that one
could argue about the AM dynamics. For instance, how
do we know if an orbit reached the AM? What about the
dependence on the velocity? These questions will be the
focus of the paper from now on.

Let us start by defining a criterion for the convergence
to the AM. Since we are interest in the range of ε where
the first period-1 AM is active, we already know from
[7, 8] and from Fig.1(b,d) there is a step-size of π for
the AM, and from Fig.3(a), we know there is a linear
growth of the VRMS . So, a linear regression of the type
Vn = an + b should provide us a ≈ π. In order to con-
sider this criterion, we evaluated a linear regression in
the dynamical evolution at every 30 steps of n, with a
tolerance of δ = ±0.001, in order to have a better statis-
tics for our analysis. Figure 6(a) displays the behavior of
a as n evolves, for a few orbits considering ε = 1.61, and
in Fig.6(b) there is a zoom-in window for a ≈ π. Both
figures show for long times the linear coefficient converg-
ing to π. So, using this convergence scenario seems a

FIG. 6: (Color online:)In (a) the linear coefficient a as func-
tion of n, and in (b) a zoom-in in the convergence to π region.

good criterion to establish if an orbit reached the AM of
period-1.

Moving forward, we are now interested in investigate
the dependence on the velocity for an orbit that reached
an AM. Using the linear regression convergence criterion,
we created histograms of frequencies as a function of the
velocity of the orbit for two different dynamical cases:
(i) before reaching the AM, which we label as N (for
normal diffusion), and (ii) when the orbit is at the AM,
which we label as A (for accelerator mode). Each labeled
vector has a range from V ∈ [−ε, 20000], and this range
was split in 105 equal parts (boxes).

For each initial condition starting with low velocity, we
do the following procedure: At each collision, we keep
adding unity to the relevant N box, until the linear co-
efficient reaches the value of a = π ± 0.001. After that,
we know the orbit reached the AM, then we add one to
the A box, stop the simulation and start a new initial
condition. The addition to the relevant N or A box was
made considering the convergence criterion at every 30
collisions.

Figure 7(a) shows the behavior of the probability
ρ(A/N), which is the ratio between the histograms for
Accelerated (A) and Normal (N) dynamics, already nor-
malized according the ensemble of initial conditions ver-
sus velocity for some values of ε. Here we can depict two
distinct regimes.

The first one is when the velocity is in a range about
V ∈ [100, 500]. One can see a peak in a Gaussian-like
shape, that does not seems to depend of ε (at least in
the velocity range). We believe in this range, there is
a competition between the normal diffusion N and the
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FIG. 7: (Color online:)In (a) the probability of an ensemble of
initial conditions to reach the AM as function of the velocity
for some values of ε. The first Gaussian-like peak represents
a competition between normal and ballistic diffusion, and the
maximum of ρ(A/N) denotes the critical velocity for which
the AM was finally achieved. In (b) the critical velocity Vc,
obtained in (a), as function of ε. The similar peaks scenario
with Fig.5(b) gives robustness to our probability analysis.

ballistic diffusion A, where some orbits may achieve the
AM really fast and others can take longer times.

The other scenario concerns the maximum of ρ(A/N),
which varies with ε. As far as we understand when the
maximum is reached, the respective velocity can be con-
sidered a critical one, where at this velocity we may know
that all orbits reached the AM. In particular, for ε = 1.81,
where the maximum of ρ(A/N) does not reach unity, a
possible explanation is that for this value of ε, the AM
is not so influential, as one can observe in the peaks of
Fig.3(d). Another possibility is that some of the orbits
might get trapped in a stickiness regime, and this anoma-
lous behavior would damage the statistics.

Considering now the value of the critical velocity,

where ρ(A/N) reaches its maximum, in Fig.7(b) we can
observe the same peaks scenario as observed in Fig.5(b),
as we range the control parameter ε, when the AM is
active. This result gives robustness to our analysis of
probability as function of the velocity.

V. FINAL REMARKS AND CONCLUSIONS

To summarize, we have investigated the dynamics of a
particle undergoing elastic collisions under the influence
of a constant gravitational field in a domain composed
by a heavy and periodic moving platform. A nonlinear
mapping was obtained and a mixed phase space was char-
acterized composed by a chaotic sea and KAM islands,
where the particle has a free path to diffuse in the veloc-
ity, leading the dynamics to exhibit unlimited growth of
energy (velocity), known as Fermi Acceleration.

Depending on the control parameter one may observe
regular and/or ballistic FA, where the RFA is originated
by normal diffusion in the chaotic sea, while the BFA is
due the presence of accelerator modes in the dynamics,
leading to ballistic behavior. We characterized a tran-
sition from normal to ballistic diffusion while the first
period-1 AM is active. Statistical and numerical analysis
for the root mean square velocity, the diffusion coeffi-
cient and the deviation of the mean square velocity by
iteration were evaluated. Also, a remarkable analytical
agreement was achieved regarding a dependence of the
square of the control parameter.

Considering transport properties, such as the survival
probability and escape rates for different velocity ranges,
a description of the ballistic scenario for the AM was
made, where we found that some ranges of control pa-
rameters are more influential than others, since the first
AM of period-1 undergoes a series of bifurcations and
loss of stability during this particular range. Also, an
analysis of the probability of an orbit to reach the AM
as a function of the velocity leads us to interpret a com-
petition between normal and ballistic diffusion in a mid
velocity range. As a next step, we intend to investigate
how different and higher periods of the AM influence the
transport properties and the transition from normal to
ballistic diffusion from local and global points of view.
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[48] André L. P. Livorati, Phys. Lett. A, 381, 2214, (2017).
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[59] J. A. Méndez-Bermúdez, A. J. Mart́ınez-Mendoza, A. L.

P. Livorati, and E. D. Leonel, J. Phys. A, 48, 405101,
(2015).

[60] E. D. Leonel, and C. P. Dettmann, Phys. Lett. A, 376,
1669, (2012).


