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Escape through a time-dependent hole in the doubling map

André L. P. Livorati,"-2"" Orestis Georgiou,2 Carl P. Dettmann,? and Edson D. Leonel®
Unstituto de Fisica, IFUSP, Universidade de Sdo Paulo, USP Rua do Matéo, Tr.R 187, Cidade Universitdria, 05314-970, Sdo Paulo, SP. Brazil
2School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
3Departamento de Fisica, UNESP, Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP, Brazil
(Received 25 December 2013; published 23 May 2014)

We investigate the escape dynamics of the doubling map with a time-periodic hole. Ulam’s method was used to
calculate the escape rate as a function of the control parameters. We consider two cases, oscillating or breathing
holes, where the sides of the hole are moving in or out of phase respectively. We find out that the escape rate is
well described by the overlap of the hole with its images, for holes centered at periodic orbits.
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I. INTRODUCTION

A recent problem of interest among both physicists and
mathematicians is the study of dynamical systems with
holes [1]. Escape occurs when trajectories enter some prede-
fined subset of the phase space called a hole. This “leaking” of
trajectories can happen in bounded [2,3] as well in unbounded
domain systems [4—6]. A natural observable which allows the
study of statistical properties of this escape, is the probability
(given a suitable distribution of initial conditions) that an
orbit does not escape until a time n. This raises the natural
question of the decay rate of p(n). The most important aspect
of this analysis is that the escape rate is very sensitive to the
system dynamics. For strongly chaotic systems the decay is
typically exponential [7], while for systems that present mixed
phase space (e.g., elliptic islands and a chaotic sea), the decay
can be slower, presenting a mix of exponential with a power
law [8,9] or stretched exponential decay [6]. Indeed, when a
nonexponential decay is observed, the dynamics would require
a long-range correlation, such as a consequence of stickiness
influence [8]. An equally important aspect is that the escape
rate can have a strong dependence on the position and size
of the hole [3,10]. Applications of leaking systems can be
found in a great variety of fields, including plasmas [11,12],
acoustics [13,14], optics [15,16], and fluids [17], among others
(see Ref. [1] for a recent review).

While in most mathematical formulations of leaking sys-
tems the hole is static (and typically small relative to the phase
space), in this paper we undertake a new approach and study
escape through a time-dependent hole. Namely, we propose
and investigate the escape properties of a chaotic leaking
system where the hole position and hole size vary with time.
Motivation for studying such problems can be traced back to
the early 1950s concerning Moshinsky’s shutter problem of
“diffraction in time” [18]. More recent applications can by
found in quantum mechanics [19,20] and in atom optics and
ultra-cold atoms experiments [21-24]. Further motivation for
studying time-dependent holes stems from chemical reactions
and hydrodynamical flows (see, for example, the blinking
vortex system [25]).

We restrict our investigations of time-dependent holes to
the well-studied and understood case of the open doubling
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map (defined in the next section) [3,26-32]. What is
particularly attractive about this map is that it is uniformly
expanding with a uniform invariant density distribution and
also has a well-understood structure of periodic orbits due
to the correspondence between the dynamics and the binary
representation of phase space points. We aim to understand
the role of these periodic orbits in the case of escape through
a time-dependent hole, once they can play an important role
in other dynamical systems [33,34]. To this end, we present
extensive numerical investigations and construct accurate
analytical predictions for p(n).

The remainder of the paper is organized as follows: In
Sec. Il we describe how the time-dependent hole is introduced
and some properties concerning the escape rate and the
periodic orbits. The numerical and analytical results are shown
in Sec. III. Finally some final remarks and conclusions are
drawn in Sec. IV.

II. THE MAPPING, PROPERTIES, AND
TIME-DEPENDENT HOLE

The dynamical system under study here is the doubling map
modulo one, also known as the Bernoulli shift, represented by
the recurrence relation

Xpt1 = 2x, mod (1). ey

The phase space is shown in Fig. 1. Because of the
simple nature of the dynamics when we consider the binary
notation [3], it is easy to categorize the dynamics based on the
initial condition. If the initial condition is irrational, which
are almost all points in the unit interval, the dynamics is
nonperiodic, which follows directly from the definition of an
irrational number as one with a nonrepeating binary expansion.
However, if x( is rational, the image of x( contains a finite
number of distinct values within the interval [0,1) and the
forward orbit of xq is eventually periodic, with period equal
to the period of the binary expansion of xy. In particular, if
the initial condition is a rational number with a finite binary
expansion of k bits, then after k iterations the iterates reach
the fixed point 0; if the initial condition is a rational number
with a k-bit transient (k > 0) followed by a p-bit sequence
(p > 1) that repeats itself infinitely, then after k iterations the
iterates reach a cycle of length p. Thus cycles of all lengths
are possible [3]. Another way of representing the periodic
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FIG. 1. Phase space for the doubling map.
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where ¢ € Z and p is the period of the periodic orbit. So,
for example, if we choose an initial condition with ¢ = 8 and
p = 4, it would be a period-4 orbit with dynamics evolving as
8/15 > 1/15 - 2/15 — 4/15 — 8/15.

Once the main properties of the mapping are known, let us
now introduce the escape in the dynamics, by considering a
time-dependent hole, i.e., a hole whose position and/or size is
varying periodically.

Define the closed domain map as

f 10,11 = [0,1], 3)

where f is the application of the mapping in Eq. (1). The open
map is given by

J [0,1\H, — [0,1], “)
where H,, C [0,1] is the hole at time #. Points within the hole
are deemed to escape and are not considered further.

We set a mean fixed position for the hole to oscillate, X, that
could be in the neighborhood of a short periodic orbit, or even
the periodic orbit itself. Choosing the mean position around a
periodic orbit allows us to compare the results we obtain with
the results already known in the literature for the fixed hole
position [10,30-32].

So, once the mean position is set up, we may define the
hole size. Since this value should vary with time, we can work
with an average size of the hole, which we will name h. So
two fixed positions for the hole to oscillate were set. These
positions represent the hole boundaries, and we define them as
the hole boundary at the right %, and the hole boundary at the
left A;; and they are set as

hy
h =

Bl

+

I
=1

/2
/2.

The expressions given in Eq. (5), are saying that we have a
hole with size , and its position is symmetric centered in .
When we introduce the time dependence on the hole, we
must deal with a discrete recurrence relation (7), and not a
continuous one as time (¢). So, with a periodic oscillation, the
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FIG. 2. (Color online) Evolution of the time-dependent hole for
two combinations of the initial phases for a value of t =20 and a
mean value around a period-4 orbit located in (8/15). In (a) both £, (n)
and A, (n) are in phase with each other, so the size of the hole is kept
constant during the dynamics and only its position is moving. In (b),
h;(n) and h,(n) are not in phase, so the size of the hole is varying,
but the average hole / is constant by period of oscillation. /;(n) is
represented by the black line with bullets, and 4, (n) shown as the
red line with squares. The green dashed lines are the escape allowed
region.

expressions of Eq. (5) can be written as

h,(n) = h, + € cos(wn + ¢,)

(6)
hi(n) = h; + € cos(wn + ¢;),

where € is the amplitude of oscillation of the holes, w = 27 /1)
is the frequency of oscillation, and ¢; and ¢, are the initial
phases of oscillation. The behavior of each boundary of the
hole according to as n evolves is illustrated in Fig. 2.

The value of the phases ¢; and ¢,, in particular, whether
they are equal or not, will influence the value of the amplitude
of oscillation €, that may be chosen in order to keep the left and
right boundaries of the hole defined in Eq. (6) in the x-axis
domain. Figure 2 shows how the hole would oscillate as n
evolves for a mean position at a period-4 orbit. If ¢; and ¢,
are in phase as shown in Fig. 2(a), the position of the hole is
moving as n evolves, but it remains with the same size; here
we have no limit for the value of ¢, provided that is inside the
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domain of the doubling map. However, if ¢, and ¢, are not
in phase, as shown in Fig. 2(b), the hole size is moving, in a
breathing way. Here we have the limit breathing case, that is,
€ < h/2. In this limit, we have a tangency between A;(n) and
h,(n), when the period is complete, where the hole vanishes
momentarily. If we go beyond this limit, there would be some
prohibited regions for the escape, and we are not considering
this case in this paper.

III. METHODS, RESULTS, AND DISCUSSIONS

In this section we will present analytical and numerical
methods to evaluate the escape through the time-dependent
hole. We investigate how the escape rate varies with the control
parameters €, T and the combination of initial phases ¢; and
¢,. We also make frequent comparison with the static hole
case.

A. Ulam’s method and escape rates

We make use of Ulam’s method to calculate the escape rates
for the time-dependent hole. Ulam’s method is a numerical
scheme for approximating invariant densities of dynamical
systems that can be made rigorous [35-39]. The phase space
is partitioned into connected sets, and an interset transition
matrix is computed from the dynamics; an approximate
invariant density is read off as the leading left eigenvector
of this matrix. When a hole in phase space is introduced, one
instead searches for conditional invariant densities and their
associated escape rates [36—43]. In other words, we divide the
space X into a fine partition X; and assume that the probability
of a transition from i to j is given by the proportion of X; that
is mapped into X ;, that is,

1Xi 0 f71(X))
ij=——g
| X

If we consider the static hole case, given that the doubling

map has exponential decay of correlations, it seems clear that

the survival probability should be exponential exponential,

with a rate depending on the hole position and size, as studied

previously [3,30-32]. For the same doubling map, the escape
rate is

)

1
y = — lim — In p(n). )
n—-oon

For a time-dependent hole, we may find an exponential
decay related as suggested by Eq. (8), but the time dependence
can also have a superimposed periodic oscillation, as discussed
in Sec. III C.

We are considering the two different cases of initial phases
of ¢; and ¢,, as shown in Fig. 2 in a separate way. Initial
conditions used to calculate the survival probability for both
kinds of holes were chosen equally split in the interval [0,1].
Let us first address the case ¢; = ¢, where only the hole
position is moving and its size / is kept constant. Figure 3
shows how these escape rates behave for some different
average hole sizes, different values of amplitude of oscillation
€, and different values of 7. For this figure, we decided to keep
the mean value of the hole position ¥ = 8/15. In later sections,
we address other mean values of the hole ¥. As expected
in Figs. 3(a) and 3(c) with an average hole of & = 0.1, we
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FIG. 3. (Color online) Survival probability curves for different
values of the average moving hole with equal initial phases. In (a)
and (b) we have T = 20, and in (c) and (d) T = 7. Also, we ranged
the value of the amplitude of oscillation € and made a comparison
with the fixed hole case. Depending of the combination of € and t
we may have faster or slower escape.

have a much faster decay than in Figs. 3(b) and 3(d), where
the average hole is h = 0.01. However, one can also notice
that depending on the combination of € and t parameters,
we may have a faster or slower escape, as shown in Figs. 3(a)
and 3(c), for a bigger value of € = 0.4 which basically contains
the whole domain of the doubling map. Also, one can notice
that the labels of the p(n) axis in Fig. 3 are very small. This
precision is a result of the application of Ulam’s method, which
can be very accurate depending on the number of partitions.
In Table I one may find the value of the escape rate for some
combinations of values of T and €.

One can see that the value of y is proportional to the
average hole size, which would be roughly expected according
to Refs. [3,10,29,32], but there are also significant changes,
depending on the combinations of the control parameters. In
order to understand better how the escape rate varies with €
and 7, we plotted the value of the escape rate y versus t
for several values of €, as shown in Fig. 4. Here we keep
the average hole size 7 = 0.01 and consider three different
mean values for the hole to oscillate (X¥) about three different
periodic orbits. We see that for small values of 7, there is
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TABLE I. Value of the escape rate y for a combination of € and
t for two different hole sizes.

h T € y

0.1 7.0 0.4 0.1004784(1)

0.1 7.0 0.01 0.1468975(5)
0.1 20.0 0.4 0.1061757(6)
0.1 20.0 0.01 0.1473164(5)
0.1 0.0 Fixed hole 0.1418285(1)
0.01 7.0 0.4 0.01024197(3)
0.01 7.0 0.01 0.01030896(5)
0.01 20.0 0.4 0.01020202(1)
0.01 20.0 0.01 0.0103262(1)
0.01 0.0 Fixed hole 0.0100119(1)

a large variation in the escape rate for all values of the mean
hole, considering some high values of € (say, above ¢ = 0.001,
which is 10% of the average hole size). These fluctuations can
be explained: once € is big enough and t small, the hole
is moving up and down really fast as the dynamics evolves,
and during this movement, it can intercept several different
periodic orbits, which may be one of the explanations for the
variation of the escape rate. However, for high values of 7, the
escape rate stays almost constant. This should be expected,
since for high values of t, the hole takes a time much longer
then other time scales in this problem to change its position.
Also, if we look for the curves with small values of ¢, one can
see that they stay in a constant regime for all values of t, as
once € — (, the moving hole starts to behave like a fixed hole.
Comparing the limit of € — 0 for Figs. 4(a)-4(c), we can see
that the plateau where the escape rate establish itself changes,
when we consider a different periodic orbit. Indeed, as shown
previously [3,10,31,32] the escape occurs faster through a
hole which contains long periodic orbits and is slower if the
hole contains short periodic orbits. Recall that, according to
the literature [3,10,32], the escape rate through a small hole
covering a short periodic orbit is approximately given by

y =h(1—A"Y, €))

where A =27 and p is the period of the periodic orbit,
represented by dashed lines for all the periodic orbits in Fig. 4.
We also observe higher order corrections to the expression
presented in Eq. (9). These higher order corrections are specif-
ically detailed in Refs. [10,32], and we think that if they were
taken into account together with Eq. (9), there would be a good
agreement between them. Also, one could ask, by choosing a
mean position for the hole to oscillate as an irrational number,
if there would be any different result. We think that the results
would be basically the same. The escape rate must be in
somehow proportional to the hole size and present itself as
an exponential decay. Perhaps a small difference would be
the analytical treatment concerning the corrections related to
periodic orbits, as the first order correction in Eq. (9).

B. Overlap holes

We now develop an analytic approach where both ¢; and ¢,
are equal, as a function of the control parameters 7 and €, using
the overlap of the periodic orbits with the p application of the
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FIG. 4. (Color online) Variation of the escape rate y as function
of 7 for several values of €. Here the average hole is fixed at 1 = 0.01,
and we considered three different periodic orbits for the mean hole
position. In (a) ¥ = 1/3, a period-2 orbit, in (b) ¥ = 3/7, a period-3
orbit, and in (c) ¥ = 8/15, a period-4 orbit. Notice that for high
values of €, for a small T regime, the escape rate varies a lot, and as
T increases it bends towards an almost constant regime. For the limit
€ — 0, the escape rate behaves closer as the one expected for a fixed
hole, for all values of t. The dashed lines represents the first order
approximation of the fixed hole escape rate, according to Eq. (9).

mapping in Eq. (1). The motivation for this kind of attempt
came from Ref. [26], where an extensive analytical analysis is
made concerning the escape rate on the doubling map. What
the overlap hole approach does is basically a “correction”
of Eq. (9), concerning the moving hole. Considering these
overlaps, we can write the escape rate as

[ 1 S HE) N Hiy
m—h[ _?;—W(H,»n .30

where the index oh means the overlap holes, H; is the hole
size in the ith iteration, and H;, , is the hole size considered
on the i + p-th iteration.

We make a comparison of the results obtained considering
the numerical simulations using Ulam’s method and an
analytical approach by the formula expressed in Eq. (10), for
three different periodic orbits of low period and for two values
of the average hole. The numerical data are represented by the
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full lines, and the analytical approach is given by the dotted
lines. Although both data follow a similar behavior, as we
increase the value of 7, one can see in Fig. 5 that there is still
a gap between the numerical data and the analytical approach.
We can attribute these gaps to higher order corrections; for a
fixed hole the escape rate should follow y = (1 — A) + o(h),
where the corrections may lie on the form 4% In# [32]. The
analytical data plotted in Fig. 5 are hence adjusted according
to

N[Yon(D)] = Yon(t) + ya(00) — Yo (00), Y

where N[y,;(7)] is the normalized escape rate considering
the overlap holes approach, y,,(7), is the analytical approach
for the escape rate concerning the overlap holes according
to Eq. (10), y,, is the numerical escape rate obtained by
Ulam’s method. The argument 7 — oo is taken along an
average between 7 = 100 and T = 1000, once the escape rate
for this case is almost constant. So, with this correction, the
higher order effects are taken into account, and the matching
between the numerical and the analytical approach concerning
the overlap holes in Egs. (10) and (11) occurs. However, one
can still see small discrepancies for small values of 7, where the
hole is moving too fast. These still need further investigation.
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C. Breathing hole

Now we address the case where ¢, = 0, and ¢; = 7, shown
in Fig. 2(b), where the hole size is in constant change. Now,
the hole is increasing and decreasing in a periodic way as
n evolves, in a breathing way, but the average hole size is
the same over the period of oscillation. Figure 6(a) shows
the escape rate curve for this kind of moving hole, for some
values of T for a hole centered in a mean position of ¥ =
8/14. We can see that, in general it decays as an exponential
envelope, but with a peculiarity: it decays in steps. The step
obeys the period of oscillation of the moving hole, as shown
in the comparison made in Figs. 6(b) and 6(c). The steps can
be basically explained by this comparison. Once the hole is
increasing and decreasing, the rate of orbits that escape through
it varies according to its size. So, when we have a tangency
between both hole sides h; and 4,, none of the orbits are
escaping, and then we have a constant plateau of p(n). On the
other hand, when the hole is in its fully open size, we have
a faster escape. Here we used the value of € = h/2, that is,
the limit case for an instantaneous prohibited escape zone. If
we had a smaller value for €, these steplike decays would be
smoother, and in the limit that ¢ — 0, it would behave as a
completely exponential curve decay.

An attempt for an analytical approach for the breathing hole
can be made. We have that the hole is h(n) = h,(n) — h;(n),
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FIG. 5. (Color online) Comparison between the numerical data and the analytical approach for the overlap holes, given by Eqgs. (10)
and (11). In (a), (c), and (e) the average hole is h = 0.01, and in (b), (d), and (f) we have 7 = 0.001. Also, the numerical data are given by the
full lines, and the analytical approach is given by the dotted lines. Red squares represent ¢ = 0.05, green diamonds € = 0.01, blue up triangles
€ = 0.005, and purple down triangles € = 0.001. The matching is really good for high values of t, where the hole is moving slowly, but for
low values of 7, where the hole is moving faster, there is still a gap between them.
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FIG. 6. (Color online) Steplike decay behavior for the probability
curves when ¢, =0 and ¢, = m. We kept the average hole size
constantin 7 = 0.01 and € = 0.005, which is € = /1/2.In (a) we have
7 = 200 and r = 500. One can notice that the steplike decays of the
survival probability follows the period of oscillation in a exponential
envelope. In (b) and (c) we have a comparison of the hole behavior
with the probability decays. When the hole is fully open, we have a
faster escape, and when the hole is fully closed (tangency), we have
a constant plateau, where no orbits are escaping. The zoom window
in (c) shows better this steplike behavior.

where h,(n) and h;(n) are given by Eq. (6), where the initial
phases are ¢, = 0 and ¢ = 7. So we may say that the hole
size obeys

h(n) = h + 2¢ cos(wn), (12)

where @ = 2 /7 and € must not be bigger than //2.

Now that the hole size is known we may propose
the following expression where the decay of the survival
probability as function of n, as shown in Fig. 6, is
given by

dp

i —p{[h + 2¢ cos(wn)] x P(noh)}, (13)
n

where P(noh) is the probability of a point in the hole not
overlapping with the hole on the (n 4+ p)-th iteration, just like
we did for the the moving hole case, where again p is the
period of the periodic orbit where the hole is centered. This
probability is given by
h+2 1
Pnohy = F2ecoslon+ pI 1 (14)
h + 2€ cos(wn) A
Replacing the above expression and solving the separable
equation, we have the following expression:

o(n) = exp {—En(l —A7H

_ % [ sin(on) + Solel + p)l p)]]}. (15)

A

In the above expression, the term An(l — A~') can be
named y (n). Let us do an attempt to improve this expression

PHYSICAL REVIEW E 89, 052913 (2014)

making use of second order approximations. If we consider
a fixed hole, the escape rate considering second order ef-
fects [26,32] can be given by

Vixed = h(1 — A™") + a,h* In(h), (16)

where a, is a constant that may depend on the p-periodic
orbits. In order to find the a, value, we simulated for the
several values of the fixed hole and compared the numerical
resultof y = —lim,— % In p(n) with the analytical approach
of Eq. (16), and found an average value for a,: a, ~ 1.812,
az ~ 2.055, and a4 ~ 2.331. We stress that the p-periodic
orbits considered for the hole to be centered were the same
ones used in the previous section.

In the breathing case, the hole size is in constant change as n
evolves, so we must assume that the escape rate is not constant
either, as one can see in Fig. 6. So, according to Egs. (12)
and (16), we may set

y = h(n)(1 — A~ 4 a,h(n)* In[h(n)]. (17)

Once we have an average value for the hole as &, we can
consider also an average over the escape rate as

y=— ydn. (18)
2 0
Replacing Eq. (12) and evaluating this average on Eq. (18),
one can obtain

Y =h(1— A" +a,{h[3u — h(31n4)] — €(21n 16)}

In(h + )
—

—2a,(2€* + h?) (19)

where p = +/—4€2+ h2. Now the steplike behavior of
p(n) can be analytically expressed by the combinations
of Egs. (15) and (19), where higher order effects are
considered:

sin[w(n + p)]) }

. Qhe [
p(n) = exp {—yn — —(sm(wn) +
w A

(20)

Figure 7 shows a comparison between the analytical (dotted
lines) and the numerical data (full lines) for T = 200, for three
distinct periodic orbits, concerning a hole size 4 = 0.01. One
can see that for the limit case € = //2 in Fig. 7(a), the steplike
decay in the exponential envelope is present according to the
hole period of oscillation, and the analytical approach matches
reasonably well. If we decrease the amplitude of oscillation, to
€ = 0.001 as shown in Fig. 7(b), the survival probability curve
presents a smooth behavior concerning the steplike decays,
and the exponential envelope is more dominant in the decay.
For this case of smaller € there is no longer a instantaneous
forbidden region in the hole evolution. However, concerning
the zoom-in windows in Figs. 7(c) and 7(d), there is still a little
gap between the numerical and analytical data. We believe
that this gap may be due to higher order effects, which may
be introduced in Eq. (17) in order to improve the analytical
expression.
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FIG. 7. (Color online) Comparison between the numerical steplike decays and the analytical approach given by Eq. (20) for ¢ = 200 and
h =0.01. In (a) € = 0.005, and in (b) € = 0.001. One can notice a remarkably good match between the numerical and the analytical data in
the amplifications in (c) and (d).

IV. FINAL REMARKS AND CONCLUSIONS holes, and it reasonably matches with the numerical data. Also,
in the limit e — O, the steplike is very smooth, and the survival
probability can be expressed as an exponential law.

We emphasize that the control parameters strongly affect
the escape rate, for the moving hole, considering a fast and slow
moving hole, or the breathing case. As a next step, we would try
to find the exactly higher order effects for the escape rate and
improve the analytical expressions for both hole cases. Also,
it would be interesting to see how the escape rate would vary
for periodically moving holes in more complicated systems,
such as with a mixed phase space, and for nonperiodic hole
perturbations, for example, random ones.

We investigated the escape dynamics of the doubling
map with a time-periodic hole with amplitude and period of
oscillation, € and 7, respectively. We considered two distinct
ways for the hole to oscillate: (1) keeping the same size and
changing its position and (2) breathing case. This two kinds of
hole are controlled by an initial phase ¢; and ¢, introduced in
the time-dependent perturbation.

Using Ulam’s method to calculate the probability of escape,
we found that it is basically exponential, and for case (1) it
depends on the value of 7 and €. If we had a low 7, the hole
is moving really fast, and we observe some fluctuations on
the escape rate y versus t curves. If the hole is moving more
slowly, the escape rate is correspondingly more slowly varying
with 7. Also, for some high values of €, the hole can intercept
many periodic orbits, which can add even more fluctuations
on the escape rate, and for € — 0, it reduces to a fixed hole.
In an attempt to explain these fluctuations, we introduced an
analytical approach related to overlap holes. We observed that
the numerical data and the analytical results have excellent
agreement if higher order effects are taken into account.
Considering case (2), we observed that the probability decays
according a steplike function in an exponential envelope,
which follows the value of period of oscillation t for the
breathing hole. We set up an analytical approach for the
steplike decay also considering the probability of overlap
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