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1. Today: Dispersing (Sinai) Billiards

e in 2D: uniform hyperbolicity, strong ergodic properties

e in 3D: similar phenomena, but serious technical
complications

Summary
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Plan

1. Today: Dispersing (Sinai) Billiards

e in 2D: uniform hyperbolicity, strong ergodic properties

e in 3D: similar phenomena, but serious technical
complications

2. Tomorrow: Planar billiards with intermittency.

e billiards with cusps and tunnels: WIP with Chernov and

Dolgopyat
e comparisions: stadia, infinite horizon...

Summary
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Outline for Lecture |

Planar dispersing billiards
Results
Phenomena

Dispersing Billiards in 3D
Results
Phenomena

Singularities in 3D dispersing billiards
Unbounded curvature
Example with exponential complexity

Summary



Billiards in 2D
Q =T2?\ UI|<<:1 Cy strictly convex scatterers

e Billiard flow : St : M — M, (q,v) e M =Q x St, [v| =1
Uniform motion within Q, elastic reflection at the
boundaries

mmmmmmm



Billiards in 2D
1 Ck strictly convex scatterers

K
k=

Q=T2\U

K
k=1 Mk

=U

e Billiard map phase space: M

P

R
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Q =T2?\ UI|<<:1 Cy strictly convex scatterers

o Billiard map phase space: M = | J_; Mk
e (r,¢) € My, r: arclength along 9Cy, ¢ € [-7/2,7/2]
outgoing velocity angle
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Billiards in 2D

Q =T2?\ UI|<<:1 Cy strictly convex scatterers

o Billiard map phase space: M = | J_; Mk

e (r,¢) € M, r: arclength along 9Cy, ¢ € [-7/2,7/2]
outgoing velocity angle

e invariant measure du = c cos¢drd¢

Summary
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Sinai billiards in 2D

Cy are C® smooth and disjoint (no corner points):;
finite horizon: flight length uniformly bounded from above

e Billiard map is ergodic, K-mixing (Sinai '70)
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Sinai billiards in 2D

Cy are C® smooth and disjoint (no corner points):;
finite horizon: flight length uniformly bounded from above

e Billiard map is ergodic, K-mixing (Sinai '70)

e EDC:f,g : M — R Hélder continuous, [fdu = [gdu =0

let Cn(f,g) = pu(f -goT"), then |Cy(f,g)| < Ca" for
suitable C > 0and oo < 1

Summary
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Cy are C® smooth and disjoint (no corner points):;
finite horizon: flight length uniformly bounded from above

e Billiard map is ergodic, K-mixing (Sinai '70)

e EDC:f,g : M — R Hélder continuous, [fdu = [gdu =0
let Cn(f,g) = pu(f -goT"), then |Cy(f,g)| < Ca" for
suitable C > 0and oo < 1

e Young '98 — tower construction with exponential tails,
e Chernov & Dolgopyat '06 — standard pairs



Planar dispersing billiards Dispersing Billiards in 3D Singularities in 3D dispersing billiards Summary

Sinai billiards in 2D
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e Billiard map is ergodic, K-mixing (Sinai '70)

e EDC:f,g : M — R Hélder continuous, [fdu = [gdu =0
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e Chernov & Dolgopyat '06 — standard pairs

crucial: Growth Lemma on unstable curves
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Sinai billiards in 2D

Cy are C® smooth and disjoint (no corner points):;
finite horizon: flight length uniformly bounded from above

e Billiard map is ergodic, K-mixing (Sinai '70)

e EDC:f,g : M — R Hélder continuous, [fdu = [gdu =0
let Cn(f,g) = pu(f -goT"), then |Cy(f,g)| < Ca" for
suitable C > 0and oo < 1

e Young '98 — tower construction with exponential tails,
e Chernov & Dolgopyat '06 — standard pairs

crucial: Growth Lemma on unstable curves

e CLT:letSyf =f +foT +...+foTN1 then

S L5 N(0,0) where o = [f2d i+ 2 z Cn(f, ).
n=1
Bunimovich & Sinai '81
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Sinai billiards in 2D

Cy are C® smooth and disjoint (no corner points):;
finite horizon: flight length uniformly bounded from above

e Billiard map is ergodic, K-mixing (Sinai '70)

e EDC:f,g : M — R Hélder continuous, [fdu = [gdu =0
let Cn(f,g) = pu(f -goT"), then |Cy(f,g)| < Ca" for
suitable C > 0and oo < 1

e Young '98 — tower construction with exponential tails,
e Chernov & Dolgopyat '06 — standard pairs

crucial: Growth Lemma on unstable curves
e CLT:letSpf =f+foT+...+foT"1 then

S 2 N(0,0) wherea—ffzdu+2nzlcn(f F).

Bunimovich & Sinai 81
e Billiard flow: F,G : M — R, C(F, G): stretched
exponential bound, Chernov '07 (not optimal?)
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Unstable curves
Neutral (or convex) wavefront —
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Unstable curves

Neutral (or convex) wavefront — Convex front

Definition
U-curve W: Trace of a convex front on M.

e Increasing in the r, ¢ coordinates.

Summary
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Unstable curves

Neutral (or convex) wavefront — Convex front
Definition
U-curve W: Trace of a convex front on M.

e Increasing in the r, ¢ coordinates.
e Invariant and expanding under T. In particular:

3JA > 1 such that p(Tx,Ty) > Ap(X,y), YW,VX,y € W

Summary
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Singularities
Sn =T "Sg where Sy is the tangency

Summary
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Singularities

Sn =T "Sg where Sy is the tangency
Discontinuity set for T": S = U s;

Summary
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Singularities

S, = T "Sy where Sy is the tangency
Discontinuity set for T": S( = un_s;

e The S, are smooth Decreasing curves in the r, ¢
coordinates.

Summary
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Singularities

S, = T "Sy where Sy is the tangency
Discontinuity set for T": S( = un_s;

e The S, are smooth Decreasing curves in the r, ¢
coordinates.

« S(M fills M more and more densely as n increases.

Summary
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Evolution of u-curves

W (sufficiently small) u-curve

Summary
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W (sufficiently small) u-curve TW

e increases in length
e partitioned by the singularities
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Evolution of u-curves

W (sufficiently small) u-curve TW
e increases in length
e partitioned by the singularities

Expansion prevails fractioning: “Most” components of W are
Hlong"

. s
JN T
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000®000

Evolution of u-curves

W (sufficiently small) u-curve TW
e increases in length
e partitioned by the singularities

Expansion prevails fractioning: “Most” components of W are
Hlong"
How to quantify this?

. s
JN T
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The Growth Lemma

e W is small u-curve, my Lebesgue measure on W.
e G.: set of points in W that are at most € from the boundary:

G.={XeW|p(x,0W) <e}.

e H.: set of points in W that will be at most ¢ from the
boundary.

H. = {x € W | p(Tx,d(TW)) < ¢} .
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The Growth Lemma

e W is small u-curve, my Lebesgue measure on W.
e G.: set of points in W that are at most € from the boundary:

G.={XeW|p(x,0W) <e}.

e H.: set of points in W that will be at most ¢ from the
boundary.

H. = {x € W | p(Tx,d(TW)) < ¢} .

If there were no singularities: my (H:) < mw (G, /p)-
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The Growth Lemma

e W is small u-curve, my Lebesgue measure on W.
e G.: set of points in W that are at most € from the boundary:

G.={XeW|p(x,0W) <e}.

e H.: set of points in W that will be at most ¢ from the
boundary.

H. = {x € W | p(Tx,d(TW)) < ¢} .

If there were no singularities: my (H:) < mw (G, /p)-

Lemma
There exists a constant A < A, independent of W, such that
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Complexity of the singularity set

Definition
Kn(X), n-step complexity of a point x € M: number of different
symbolic collision sequences that can be observed in the

vicinity of x.

X \% AC BC
A B /
BC
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Complexity of the singularity set

00000 e0

Definition
Kn(X), n-step complexity of a point x € M: number of different
symbolic collision sequences that can be observed in the

vicinity of x.
n-step complexity of the singularity set: K, = sup, . Kn(x)

Cc

X \% AC BC
A B /
BC
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Subexponential complexity

subexponential growth of complexity:

3C > 0and X < A such that K, < CA"

Summary

ABC
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Subexponential complexity
subexponential growth of complexity:

3C > 0and X < A such that K, < CA"

Lemma

Bunimovich, 1991: In 2D Sinai billiards (finite horizon, no
corner points) K,, grows at most linearly.

Summary

X WACBC
G

ABC




Summary

Singularities in 3D dispersing billiards

Dispersing Billiards in 3D
®0

ar dispersing billiards

Billiard dynamics in 3D

e M: hemisphere-

- bundle,
dmM =4
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Billiard dynamics in 3D

e M: hemisphere-
. u bundle,
dmM =4
e convex fronts —
u-manifolds
dimw =2




Singularities in 3D dispersing billiards

Planar dispersing billiards Dispersing Billiards in 3D
®0

Billiard dynamics in 3D

e M: hemisphere-
. — bundle,
dmM =4

e convex fronts —
u-manifolds
dmW =2

e singularity set —
codimension 1
dimS, =3

Summary
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History: 3D dispersing billiards

e Sinai & Chernov 1987
e Ergodicity

Summary
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History: 3D dispersing billiards

e Sinai & Chernov 1987
e Ergodicity

¢ local ergodicity theorem — many further applications:

semi-dispersing billiards hard ball systems, Simanyi

Summary
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History: 3D dispersing billiards

e Sinai & Chernov 1987
e Ergodicity

¢ local ergodicity theorem — many further applications:

semi-dispersing billiards hard ball systems, Simanyi
e Chernov, Szasz, Téth & B. 2002
e unbounded curvature for S,, n > 2
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History: 3D dispersing billiards

e Sinai & Chernov 1987
e Ergodicity
¢ local ergodicity theorem — many further applications:
semi-dispersing billiards hard ball systems, Simanyi

e Chernov, Szasz, Téth & B. 2002

e unbounded curvature for S,, n > 2
o proof of ergodicity reconsidered, algebraic scatterers

e T6th & B. 2008 — Assuming sub-exponential complexity
e Growth Lemma, Young tower, EDC, CLT
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History: 3D dispersing billiards

e Sinai & Chernov 1987
e Ergodicity
¢ local ergodicity theorem — many further applications:
semi-dispersing billiards hard ball systems, Simanyi
e Chernov, Szasz, Téth & B. 2002
e unbounded curvature for S,, n > 2
o proof of ergodicity reconsidered, algebraic scatterers
e T6th & B. 2008 — Assuming sub-exponential complexity

e Growth Lemma, Young tower, EDC, CLT
e with Bachurin: Growth Lemma implies Ergodicity
e counterexample with exponential complexity

Summary



Planar dispersing billiards Dispersing Billiards in 3D Singularities in 3D dispersing billiards

(ele] 00 0000
0000000 L o] 000

What is responsible for all this...

e Unbounded expansion near singularities
(highly nonlinear, applies to 2D)

Summary
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What is responsible for all this...

e Unbounded expansion near singularities
(highly nonlinear, applies to 2D)

¢ in 3D highly anisotropic expansion near singularities
cf. astigmatism

Summary
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Growth Lemma

W is a small u-manifold (2 dimensional)

Summary
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Growth Lemma

W is a small u-manifold (2 dimensional)

G.={xeW|p(x,0W) <¢e}.

Summary
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Growth Lemma

W is a small u-manifold (2 dimensional)

G.={XxeW|p(x,0W) <e}.

He = {x e W | p(Tx,9(TW)) < ¢&}.

Summary
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Growth Lemma

W is a small u-manifold (2 dimensional)

G:.={xeW|p(x,0W) <¢e}.
He = {x e W | p(Tx,9(TW)) < ¢&}.

Summary
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The pathological intersection |

So: tangency, S; = T 1Sy, S, = T —2S,
e in 2D: S; NS, is single point
e in 3D: S; NS, has structure, dim(S; N'S,) =2

Summary
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Singularities in 3D dispersing billiards
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Dispersing Billiards in 3D

Planar dispersing billiards

(ele]

[e]e]

0000000

= TiZSO

150, Sz

e in2D: S; NS, is single point

T

The pathological intersection |

Sp: tangency, S;

=2

e in 3D: S; N'S; has structure, dim(S; N S;)
e S, terminates on S; typically tangentially,

e transversally in a one dimensional pathological set

PcSinNS,

ne
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Pathological intersection Il
=2 CAgE 3
LwH=4 = S Ng HAS STRUCTURE
I “TyPcAL' CASE
"PATHOLOGICAL" CARE

l
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Pathological intersection Il
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Analogy: Whitney Umbrella
WHITNEY - anQRELCA

&

(H»\LF of 'THE) WHITMEYT - UHRRELLA W:((m'q[ xz‘:,lj
=NO HANi foLD STRULTURE AT P
—MNO CHRVATURE RouND NEAR P
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The example

Xg € M singular periodic point
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The example

Xg € M singular periodic point
Po: plane spanned by x and the centers of the “small”
scatterers
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The example

Xg € M singular periodic point

Po: plane spanned by x and the centers of the “small”
scatterers

P. || Po of distance ¢ from Pg

X. € M starting || Xo in P
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Symbolic sequences in P,

Collisions on the “small” scatterers: strong expansion —-
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Symbolic sequences in P,

Collisions on the “small” scatterers: strong expansion —-
Trajectory may collide at either of the two scatterers from each
pair, i.e.




Singularities in 3D dispersing billiards

oeo

Symbolic sequences in P,

Collisions on the “small” scatterers: strong expansion —-
Trajectory may collide at either of the two scatterers from each
pair, i.e.

e-close to x.: 2" distinct collision sequences of length 2n
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Back to the 3D example

Orthogonal to Py: moderate expansion —-

Summary
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Back to the 3D example

Orthogonal to Py: moderate expansion —-
¥n and e, 35 such that T¥x; € P., for some g, < ¢

Summary
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Summary and outlook

e 2D Sinai billiard maps: strong ergodic and statistical
properties

Summary
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Summary and outlook

e 2D Sinai billiard maps: strong ergodic and statistical
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Methods e key phenomena: growth of u-curves
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properties
Methods e key phenomena: growth of u-curves
e approaches: Young tower, coupling, ???
Applications (Chernov-Dolgopyat)
slow-fast systems, eg. Brownian Brownian
motion
Open problems EDC for the flow
e 3D dispersing billiards: analogous phenomena, but
technically more involved
e genericity of subexponential (finite) complexity?
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Summary and outlook

e 2D Sinai billiard maps: strong ergodic and statistical
properties
Methods e key phenomena: growth of u-curves
e approaches: Young tower, coupling, ???
Applications (Chernov-Dolgopyat)
slow-fast systems, eg. Brownian Brownian
motion
Open problems EDC for the flow
e 3D dispersing billiards: analogous phenomena, but
technically more involved
e genericity of subexponential (finite) complexity?
o statistical properties of example with exponential
complexity?
e so far: Young tower. Alternative methods?
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Further reading

[@ N. Chernov & R. Markarian
Chaotic billiards
Mathematical Surveys and Monographs, 127, AMS, 2006

@ N. Chernov & D. Dolgopyat
Hyperbolic billiards and statistical physics
in ICM Proceedings, EMS, 2006

[ P Balint & I.P. Toth
An Application of Young’s Tower Method: Exponential
Decay of Correlations in Multidimensional Dispersing
Billiards
Erwin Schrodinger Institut preprint No. 2084, 2008
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Thanks

Thank you for your attention!

Summary
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