Lecture I: Dispersing billiards in 2D and 3D

Péter Bálint

Institute of Mathematics Budapest University of Technology and Economics

Mathematical Billiards and their Applications University of Bristol, June 2010

Today: Dispersing (Sinai) Billiards

- in 2D: uniform hyperbolicity, strong ergodic properties
- in 3D: similar phenomena, but serious technical complications

Today: Dispersing (Sinai) Billiards

- in 2D: uniform hyperbolicity, strong ergodic properties
- in 3D: similar phenomena, but serious technical complications
- 2. Tomorrow: Planar billiards with intermittency.
 - billiards with cusps and tunnels: WIP with Chernov and Dolgopyat
 - comparisions: stadia, infinite horizon...

Outline for Lecture I

Planar dispersing billiards

Results

Phenomena

Dispersing Billiards in 3D

Results

Phenomena

Singularities in 3D dispersing billiards

Unbounded curvature

Example with exponential complexity

Billiards in 2D

- Billiard flow: $S^t: \mathcal{M} \to \mathcal{M}$, $(q, v) \in \mathcal{M} = Q \times S^1$, |v| = 1Uniform motion within Q, elastic reflection at the boundaries
- Billiard map phase space: $M = \bigcup_{k=1}^{K} M_k$
- $(r,\phi) \in M_k$, r: arclength along ∂C_k , $\phi \in [-\pi/2,\pi/2]$
- invariant measure $d\mu = c \cos\phi dr d\phi$

Billiards in 2D

- Billiard flow: $S^t: \mathcal{M} \to \mathcal{M}$, $(q, v) \in \mathcal{M} = \mathbb{Q} \times \mathbb{S}^1$, |v| = 1
- Billiard map phase space: $M = \bigcup_{k=1}^{K} M_k$
- $(r,\phi) \in M_k$, r: arclength along ∂C_k , $\phi \in [-\pi/2,\pi/2]$
- invariant measure $d\mu = c \cos\phi dr d\phi$

Billiards in 2D

- Billiard flow: $S^t: \mathcal{M} \to \mathcal{M}$, $(q, v) \in \mathcal{M} = \mathbb{Q} \times \mathbb{S}^1$, |v| = 1
- Billiard map phase space: $M = \bigcup_{k=1}^{K} M_k$
- $(r,\phi) \in M_k$, r: arclength along ∂C_k , $\phi \in [-\pi/2,\pi/2]$ outgoing velocity angle
- invariant measure $d\mu = c \cos\phi dr d\phi$

Billiards in 2D

- Billiard flow: $S^t: \mathcal{M} \to \mathcal{M}$, $(q, v) \in \mathcal{M} = \mathbb{Q} \times \mathbb{S}^1$, |v| = 1
- Billiard map phase space: $M = \bigcup_{k=1}^{K} M_k$
- $(r,\phi) \in M_k$, r: arclength along ∂C_k , $\phi \in [-\pi/2,\pi/2]$ outgoing velocity angle
- invariant measure $d\mu = c \cos\phi dr d\phi$

 C_k are C^3 smooth and disjoint (no corner points); finite horizon: flight length uniformly bounded from above

- Billiard map is ergodic, K-mixing (Sinai '70)
- EDC: $f, g: M \to \mathbb{R}$ Hölder continuous, $\int f d\mu = \int g d\mu = 0$

• CLT: let $S_n f = f + f \circ T + ... + f \circ T^{n-1}$, then

• Billiard flow: $F, G : \mathcal{M} \to \mathbb{R}, C_t(F, G)$: stretched

 C_k are C^3 smooth and disjoint (no corner points); finite horizon: flight length uniformly bounded from above

- Billiard map is ergodic, K-mixing (Sinai '70)
- EDC: $f, g: M \to \mathbb{R}$ Hölder continuous, $\int f d\mu = \int g d\mu = 0$ let $C_n(f,g) = \mu(f \cdot g \circ T^n)$, then $|C_n(f,g)| \leq C\alpha^n$ for suitable C > 0 and $\alpha < 1$

• CLT: let $S_n f = f + f \circ T + ... + f \circ T^{n-1}$, then

• Billiard flow: $F, G : \mathcal{M} \to \mathbb{R}, C_t(F, G)$: stretched

 C_k are C^3 smooth and disjoint (no corner points); finite horizon: flight length uniformly bounded from above

- Billiard map is ergodic, K-mixing (Sinai '70)
- EDC: $f, g: M \to \mathbb{R}$ Hölder continuous, $\int f d\mu = \int g d\mu = 0$ let $C_n(f,g) = \mu(f \cdot g \circ T^n)$, then $|C_n(f,g)| \leq C\alpha^n$ for suitable C > 0 and $\alpha < 1$
 - Young '98 tower construction with exponential tails,
 - Chernov & Dolgopyat '06 standard pairs

- CLT: let $S_n f = f + f \circ T + ... + f \circ T^{n-1}$, then
- Billiard flow: $F, G : \mathcal{M} \to \mathbb{R}, C_t(F, G)$: stretched

 C_k are C^3 smooth and disjoint (no corner points); finite horizon: flight length uniformly bounded from above

- Billiard map is ergodic, K-mixing (Sinai '70)
- EDC: $f,g:M\to\mathbb{R}$ Hölder continuous, $\int f d\mu = \int g d\mu = 0$ let $C_n(f,g) = \mu(f\cdot g\circ T^n)$, then $|C_n(f,g)| \leq C\alpha^n$ for suitable C>0 and $\alpha<1$
 - Young '98 tower construction with exponential tails,
 - Chernov & Dolgopyat '06 standard pairs

crucial: Growth Lemma on unstable curves

- CLT: let $S_n f = f + f \circ T + ... + f \circ T^{n-1}$, then $\frac{S_n f}{\sqrt{n}} \stackrel{\mathcal{D}}{\Longrightarrow} \mathcal{N}(0, \sigma)$ where $\sigma = \int f^2 d\mu + 2 \sum_{n=1}^{\infty} C_n(f, f)$
- Billiard flow: $F, G : \mathcal{M} \to \mathbb{R}$, $C_t(F, G)$: stretched exponential bound. Chernov '07 (not optimal?)

 C_k are C^3 smooth and disjoint (no corner points); finite horizon: flight length uniformly bounded from above

- Billiard map is ergodic, K-mixing (Sinai '70)
- EDC: $f, g: M \to \mathbb{R}$ Hölder continuous, $\int f d\mu = \int g d\mu = 0$ let $C_n(f,g) = \mu(f \cdot g \circ T^n)$, then $|C_n(f,g)| \leq C\alpha^n$ for suitable C > 0 and $\alpha < 1$
 - Young '98 tower construction with exponential tails,
 - Chernov & Dolgopyat '06 standard pairs

crucial: Growth Lemma on unstable curves

• CLT: let $S_n f = f + f \circ T + ... + f \circ T^{n-1}$, then $\underbrace{\frac{S_n f}{\sqrt{p}}} \stackrel{\mathcal{D}}{\Longrightarrow} \mathcal{N}(0, \sigma)$ where $\sigma = \int f^2 d\mu + 2 \sum_{n=0}^{\infty} C_n(f, f)$.

Bunimovich & Sinai '81

• Billiard flow: $F, G : \mathcal{M} \to \mathbb{R}, C_t(F, G)$: stretched

 C_k are C^3 smooth and disjoint (no corner points); finite horizon: flight length uniformly bounded from above

- Billiard map is ergodic, K-mixing (Sinai '70)
- EDC: $f,g:M\to\mathbb{R}$ Hölder continuous, $\int f d\mu = \int g d\mu = 0$ let $C_n(f,g) = \mu(f\cdot g\circ T^n)$, then $|C_n(f,g)| \leq C\alpha^n$ for suitable C>0 and $\alpha<1$
 - Young '98 tower construction with exponential tails,
 - Chernov & Dolgopyat '06 standard pairs

crucial: Growth Lemma on unstable curves

• CLT: let $S_n f = f + f \circ T + ... + f \circ T^{n-1}$, then $\frac{S_n f}{\sqrt{n}} \stackrel{\mathcal{D}}{\Longrightarrow} \mathcal{N}(0, \sigma)$ where $\sigma = \int f^2 d\mu + 2 \sum_{n=1}^{\infty} C_n(f, f)$.

Bunimovich & Sinai '81

• Billiard flow: $F, G : \mathcal{M} \to \mathbb{R}, C_t(F, G)$: stretched exponential bound, Chernov '07 (not optimal?)

Unstable curves

Neutral (or convex) wavefront → Convex front

- Increasing in the r, ϕ coordinates.
- $\exists \Lambda > 1$ such that $\rho(Tx, Ty) \geq \Lambda \rho(x, y), \forall W, \forall x, y \in W$

Unstable curves

Neutral (or convex) wavefront → Convex front

- Increasing in the r, ϕ coordinates.
- $\exists \Lambda > 1$ such that $\rho(Tx, Ty) \geq \Lambda \rho(x, y), \forall W, \forall x, y \in W$

Unstable curves

Neutral (or convex) wavefront → Convex front

Definition

U-curve W: Trace of a convex front on M.

- Increasing in the r, φ coordinates.
- Invariant and expanding under T. In particular: $\exists \Lambda > 1$ such that $\rho(Tx, Ty) \geq \Lambda \rho(x, y), \forall W, \forall x, y \in W$

Unstable curves

Neutral (or convex) wavefront → Convex front

Definition

U-curve W: Trace of a convex front on M.

- Increasing in the r, φ coordinates.
- Invariant and expanding under T. In particular: $\exists \Lambda > 1$ such that $\rho(Tx, Ty) \geq \Lambda \rho(x, y), \forall W, \forall x, y \in W$

Preimages of tangencies: T discontinuous, S^t

Preimages of tangencies: T discontinuous, S^t non-differentiable

$S_n = T^{-n}S_0$ where S_0 is the tangency

- The S_n are smooth Decreasing curves in the r, ϕ
- $S^{(n)}$ fills M more and more densely as n increases.

 $S_n = T^{-n}S_0$ where S_0 is the tangency Discontinuity set for T^n : $S^{(n)} = \bigcup_{i=0}^n S_i$

- The S_n are smooth Decreasing curves in the r, ϕ
- $S^{(n)}$ fills M more and more densely as n increases.

 $S_n = T^{-n}S_0$ where S_0 is the tangency Discontinuity set for T^n : $S^{(n)} = \bigcup_{i=0}^n S_i$

- The S_n are smooth Decreasing curves in the r, φ coordinates.
- $S^{(n)}$ fills M more and more densely as n increases.

 $S_n = T^{-n}S_0$ where S_0 is the tangency Discontinuity set for T^n : $S^{(n)} = \bigcup_{i=0}^n S_i$

- The S_n are smooth Decreasing curves in the r, φ coordinates.
- S⁽ⁿ⁾ fills M more and more densely as n increases.

W (sufficiently small) u-curve TW

- increases in length
- partitioned by the singularities

W (sufficiently small) u-curve TW

- increases in length
- partitioned by the singularities

W (sufficiently small) u-curve TW

- increases in length
- partitioned by the singularities

Expansion prevails fractioning: "Most" components of *W* are "long"

How to quantify this?

W (sufficiently small) u-curve TW

- · increases in length
- partitioned by the singularities

Expansion prevails fractioning: "Most" components of *W* are "long"

How to quantify this?

The Growth Lemma

- W is small u-curve, m_W Lebesgue measure on W.
- G_{ε} : set of points in W that are at most ε from the boundary:

$$G_{\varepsilon} = \{ x \in W | \rho(x, \partial W) \le \varepsilon \}.$$

 H_ε: set of points in W that will be at most ε from the boundary.

$$H_{\varepsilon} = \{ \mathbf{x} \in \mathbf{W} \mid \rho(\mathbf{T}\mathbf{x}, \partial(\mathbf{T}\mathbf{W})) \leq \varepsilon \}.$$

If there were no singularities: $m_W(H_{\varepsilon}) \leq m_W(G_{\varepsilon/\Lambda})$.

Lemma

There exists a constant $\lambda < \Lambda$, independent of W, such that

$$m_W(H_{\varepsilon}) \leq \lambda \, m_W(G_{\varepsilon/\Lambda})$$

The Growth Lemma

- W is small u-curve, m_W Lebesgue measure on W.
- G_ε: set of points in W that are at most ε from the boundary:

$$G_{\varepsilon} = \{ x \in W \mid \rho(x, \partial W) \leq \varepsilon \}.$$

• H_{ε} : set of points in W that will be at most ε from the boundary.

$$H_{\varepsilon} = \{ \mathbf{x} \in W \mid \rho(T\mathbf{x}, \partial(TW)) \leq \varepsilon \}.$$

If there were no singularities: $m_W(H_{\varepsilon}) \leq m_W(G_{\varepsilon/\Lambda})$.

$$m_W(H_{\varepsilon}) \leq \lambda \, m_W(\mathbf{G}_{\varepsilon/\Lambda})$$

- W is small u-curve, m_W Lebesgue measure on W.
- G_{ε} : set of points in W that are at most ε from the boundary:

$$G_{\varepsilon} = \{ x \in W \, | \, \rho(x, \partial W) \leq \varepsilon \}.$$

 H_ε: set of points in W that will be at most ε from the boundary.

$$H_{\varepsilon} = \{ \mathbf{x} \in W \mid \rho(T\mathbf{x}, \partial(TW)) \leq \varepsilon \}.$$

If there were no singularities: $m_W(H_{\varepsilon}) \leq m_W(G_{\varepsilon/\Lambda})$.

Lemma

There exists a constant $\lambda < \Lambda$, independent of W, such that

$$m_W(H_{\varepsilon}) \leq \lambda \, m_W(G_{\varepsilon/\Lambda}).$$

Complexity of the singularity set

Definition

 $K_n(x)$, n-step complexity of a point $x \in M$: number of different symbolic collision sequences that can be observed in the vicinity of x.

n-step complexity of the singularity set: $K_n = \sup_{x \in M} K_n(x)$

Complexity of the singularity set

Definition

 $K_n(x)$, n-step complexity of a point $x \in M$: number of different symbolic collision sequences that can be observed in the vicinity of x.

n-step complexity of the singularity set: $K_n = \sup_{x \in M} K_n(x)$

Subexponential complexity

subexponential growth of complexity:

 $\exists C > 0$ and $\lambda < \Lambda$ such that $K_n < C\lambda^n$

Subexponential complexity

subexponential growth of complexity:

 $\exists C > 0$ and $\lambda < \Lambda$ such that $K_n < C\lambda^n$

Lemma

Bunimovich, 1991: In 2D Sinai billiards (finite horizon, no corner points) K_n grows at most linearly.

Billiard dynamics in 3D

- M: hemispherebundle, $\dim M = 4$
- convex fronts –
- singularity set –

Billiard dynamics in 3D

- M: hemispherebundle, $\dim M = 4$
- convex fronts u-manifolds $\dim W = 2$
- singularity set –

Billiard dynamics in 3D

- M: hemispherebundle, $\dim M = 4$
- convex fronts u-manifolds $\dim W = 2$
- singularity set codimension 1 $\dim S_n = 3$

- Sinai & Chernov 1987
 - Ergodicity
- Chernov, Szász, Tóth & B. 2002
 - unbounded curvature for S_n , n > 2
 - proof of ergodicity reconsidered, algebraic scatterers
- Tóth & B. 2008 Assuming sub-exponential complexity
 - Growth Lemma, Young tower, EDC, CLT
 - with Bachurin: Growth Lemma implies Ergodicity

- Sinai & Chernov 1987
 - Ergodicity
 - local ergodicity theorem many further applications: semi-dispersing billiards hard ball systems, Simányi
- Chernov, Szász, Tóth & B. 2002
 - unbounded curvature for S_n , n > 2
 - proof of ergodicity reconsidered, algebraic scatterers
- Tóth & B. 2008 Assuming sub-exponential complexity
 - Growth Lemma, Young tower, EDC, CLT
 - with Bachurin: Growth Lemma implies Ergodicity
 - counterexample with exponential complexity

- Sinai & Chernov 1987
 - Ergodicity
 - local ergodicity theorem many further applications: semi-dispersing billiards hard ball systems, Simányi
- Chernov, Szász, Tóth & B. 2002
 - unbounded curvature for S_n , $n \ge 2$
 - proof of ergodicity reconsidered, algebraic scatterers
- Tóth & B. 2008 Assuming sub-exponential complexity
 - Growth Lemma, Young tower, EDC, CLT
 - with Bachurin: Growth Lemma implies Ergodicity
 - counterexample with exponential complexity

- Sinai & Chernov 1987
 - Ergodicity
 - local ergodicity theorem many further applications: semi-dispersing billiards hard ball systems, Simányi
- Chernov, Szász, Tóth & B. 2002
 - unbounded curvature for S_n, n > 2
 - proof of ergodicity reconsidered, algebraic scatterers
- Tóth & B. 2008 Assuming sub-exponential complexity
 - Growth Lemma, Young tower, EDC, CLT
 - with Bachurin: Growth Lemma implies Ergodicity
 - counterexample with exponential complexity

- Sinai & Chernov 1987
 - Ergodicity
 - local ergodicity theorem many further applications: semi-dispersing billiards hard ball systems, Simányi
- Chernov, Szász, Tóth & B. 2002
 - unbounded curvature for S_n , n > 2
 - proof of ergodicity reconsidered, algebraic scatterers
- Tóth & B. 2008 Assuming sub-exponential complexity
 - Growth Lemma, Young tower, EDC, CLT

 - counterexample with exponential complexity

- Sinai & Chernov 1987
 - Ergodicity
 - local ergodicity theorem many further applications: semi-dispersing billiards hard ball systems, Simányi
- Chernov, Szász, Tóth & B. 2002
 - unbounded curvature for S_n, n > 2
 - proof of ergodicity reconsidered, algebraic scatterers
- Tóth & B. 2008 Assuming sub-exponential complexity
 - Growth Lemma, Young tower, EDC, CLT
 - with Bachurin: Growth Lemma implies Ergodicity

- Sinai & Chernov 1987
 - Ergodicity
 - local ergodicity theorem many further applications: semi-dispersing billiards hard ball systems, Simányi
- Chernov, Szász, Tóth & B. 2002
 - unbounded curvature for S_n, n > 2
 - proof of ergodicity reconsidered, algebraic scatterers
- Tóth & B. 2008 Assuming sub-exponential complexity
 - Growth Lemma, Young tower, EDC, CLT
 - with Bachurin: Growth Lemma implies Ergodicity
 - counterexample with exponential complexity

What is responsible for all this...

- Unbounded expansion near singularities (highly nonlinear, applies to 2D)
- in 3D highly anisotropic expansion near singularities cf. astigmatism

What is responsible for all this...

- Unbounded expansion near singularities (highly nonlinear, applies to 2D)
- in 3D highly anisotropic expansion near singularities cf. astigmatism

$$G_{\varepsilon} = \{ x \in W \mid \rho(x, \partial W) \leq \varepsilon \}.$$

$$H_{\varepsilon} = \{ x \in W \mid \rho(Tx, \partial(TW)) \leq \varepsilon \}.$$

$$m_W(H_{\varepsilon}) \leq \lambda \, m_W(G_{\varepsilon/\Lambda})$$
 with $\lambda < \Lambda$.

$$G_{\varepsilon} = \{ x \in W \, | \, \rho(x, \partial W) \leq \varepsilon \}.$$

$$H_{\varepsilon} = \{ x \in W \mid \rho(Tx, \partial(TW)) \leq \varepsilon \}.$$

$$m_W(H_{\varepsilon}) \leq \lambda \, m_W(G_{\varepsilon/\Lambda})$$
 with $\lambda < \Lambda$.

$$G_{\varepsilon} = \{ \mathbf{x} \in \mathbf{W} \, | \, \rho(\mathbf{x}, \partial \mathbf{W}) \leq \varepsilon \} .$$

$$H_{\varepsilon} = \{ \mathbf{x} \in \mathbf{W} \, | \, \rho(\mathbf{T}\mathbf{x}, \partial(\mathbf{T}\mathbf{W})) \leq \varepsilon \}.$$

$$G_{\varepsilon} = \{ \mathbf{x} \in \mathbf{W} \, | \, \rho(\mathbf{x}, \partial \mathbf{W}) \leq \varepsilon \} .$$

$$H_{\varepsilon} = \{ \mathbf{x} \in \mathbf{W} \, | \, \rho(\mathbf{T}\mathbf{x}, \partial(\mathbf{T}\mathbf{W})) \leq \varepsilon \} \, .$$

$$m_W(H_{\varepsilon}) \leq \lambda \, m_W(G_{\varepsilon/\Lambda})$$
 with $\lambda < \Lambda$.

The pathological intersection I

Singularities in 3D dispersing billiards

$$S_0$$
: tangency, $S_1 = T^{-1}S_0$, $S_2 = T^{-2}S_0$

- in 2D: $S_1 \cap S_2$ is single point
- in 3D: $S_1 \cap S_2$ has structure, dim $(S_1 \cap S_2) = 2$
- S₂ terminates on S₁ typically tangentially,

The pathological intersection I

$$S_0$$
: tangency, $S_1 = T^{-1}S_0$, $S_2 = T^{-2}S_0$

- in 2D: $S_1 \cap S_2$ is single point
- in 3D: $S_1 \cap S_2$ has structure, dim $(S_1 \cap S_2) = 2$
- S₂ terminates on S₁ typically tangentially,
- transversally in a one dimensional pathological set
 P ⊂ S₁ ∩ S₂

Pathological intersection II

0000

Singularities in 3D dispersing billiards

Pathological intersection III

The example

000

Singularities in 3D dispersing billiards

$x_0 \in M$ singular periodic point

 P_0 : plane spanned by x and the centers of the "small"

 $x_{\varepsilon} \in M$ starting $||x_0|$ in P_{ε}

Singularities in 3D dispersing billiards

The example

$x_0 \in M$ singular periodic point

 P_0 : plane spanned by x and the centers of the "small" scatterers

 $x_{\varepsilon} \in M$ starting $||x_0|$ in P_{ε}

The example

 $x_0 \in M$ singular periodic point

 P_0 : plane spanned by x and the centers of the "small" scatterers

 $P_{\varepsilon} \parallel P_0$ of distance ε from P_0

 $x_{\varepsilon} \in M$ starting $\parallel x_0$ in P_{ε}

Symbolic sequences in P_e

Collisions on the "small" scatterers: strong expansion ⇒

Symbolic sequences in P_e

Collisions on the "small" scatterers: strong expansion ⇒ Trajectory may collide at either of the two scatterers from each pair, i.e.

Symbolic sequences in P_e

Collisions on the "small" scatterers: strong expansion ⇒ Trajectory may collide at either of the two scatterers from each pair, i.e.

 ε -close to x_{ε} : 2^n distinct collision sequences of length 2n

Back to the 3D example

Orthogonal to P_0 : moderate expansion \Longrightarrow

 $\forall n \text{ and } \varepsilon, \exists \delta \text{ such that } T^k x_\delta \in P_{\varepsilon_k} \text{ for some } \varepsilon_k \leq \varepsilon$

Back to the 3D example

Orthogonal to P_0 : moderate expansion \Longrightarrow $\forall n \text{ and } \varepsilon, \exists \delta \text{ such that } T^k x_\delta \in P_{\varepsilon_k} \text{ for some } \varepsilon_k \leq \varepsilon$

2D Sinai billiard maps: strong ergodic and statistical properties

- Methods key phenomena: growth of u-curves
 - approaches: Young tower, coupling, ???

- 3D dispersing billiards: analogous phenomena, but
 - genericity of subexponential (finite) complexity?

 - so far: Young tower. Alternative methods?

Summary and outlook

2D Sinai billiard maps: strong ergodic and statistical properties

Methods

- key phenomena: growth of u-curves
- approaches: Young tower, coupling, ???

Applications (Chernov-Dolgopyat) slow-fast systems, eg. Brownian Brownian motion

- 3D dispersing billiards: analogous phenomena, but technically more involved
 - genericity of subexponential (finite) complexity?
 - statistical properties of example with exponential complexity?
 - so far: Young tower. Alternative methods?

2D Sinai billiard maps: strong ergodic and statistical properties

- Methods key phenomena: growth of u-curves
 - approaches: Young tower, coupling, ???

Applications (Chernov-Dolgopyat)

slow-fast systems, eg. Brownian Brownian motion

- 3D dispersing billiards: analogous phenomena, but
 - genericity of subexponential (finite) complexity?

 - so far: Young tower. Alternative methods?

- 2D Sinai billiard maps: strong ergodic and statistical properties

 - Methods key phenomena: growth of u-curves
 - approaches: Young tower, coupling, ???

Applications (Chernov-Dolgopyat)

slow-fast systems, eg. Brownian Brownian motion

- 3D dispersing billiards: analogous phenomena, but
 - genericity of subexponential (finite) complexity?

 - so far: Young tower. Alternative methods?

Summary and outlook

 2D Sinai billiard maps: strong ergodic and statistical properties

- Methods key phenomena: growth of u-curves
 - approaches: Young tower, coupling, ???

Applications (Chernov-Dolgopyat)

slow-fast systems, eg. Brownian Brownian motion

- 3D dispersing billiards: analogous phenomena, but technically more involved
 - genericity of subexponential (finite) complexity?

 - so far: Young tower. Alternative methods?

Summary and outlook

 2D Sinai billiard maps: strong ergodic and statistical properties

- Methods key phenomena: growth of u-curves
 - approaches: Young tower, coupling, ???

Applications (Chernov-Dolgopyat)

slow-fast systems, eg. Brownian Brownian motion

- 3D dispersing billiards: analogous phenomena, but technically more involved
 - genericity of subexponential (finite) complexity?
 - statistical properties of example with exponential complexity?

 2D Sinai billiard maps: strong ergodic and statistical properties

- Methods key phenomena: growth of u-curves
 - approaches: Young tower, coupling, ???

Applications (Chernov-Dolgopyat)

slow-fast systems, eg. Brownian Brownian motion

- 3D dispersing billiards: analogous phenomena, but technically more involved
 - genericity of subexponential (finite) complexity?
 - statistical properties of example with exponential complexity?
 - so far: Young tower. Alternative methods?

- N. Chernov & R. Markarian Chaotic billiards Mathematical Surveys and Monographs, 127, AMS, 2006
- N. Chernov & D. Dolgopyat Hyperbolic billiards and statistical physics in ICM Proceedings, EMS, 2006
- P. Bálint & I.P. Tóth An Application of Young's Tower Method: Exponential Decay of Correlations in Multidimensional Dispersing Rilliards

Erwin Schrödinger Institut preprint No. 2084, 2008

Thank you for your attention!