

Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○○
○○

Other models

○○○
○○○

Phenomena

○○○
○○○○○○

Lecture II: Intermittency in planar billiards

Dispersing billiards with cusps and tunnels

Péter Bálint

work in progress with N. Chernov and D. Dolgopyat

Institute of Mathematics
Budapest University of Technology and Economics

Mathematical Billiards and their Applications
University of Bristol, June 2010

Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○○
○○

Other models

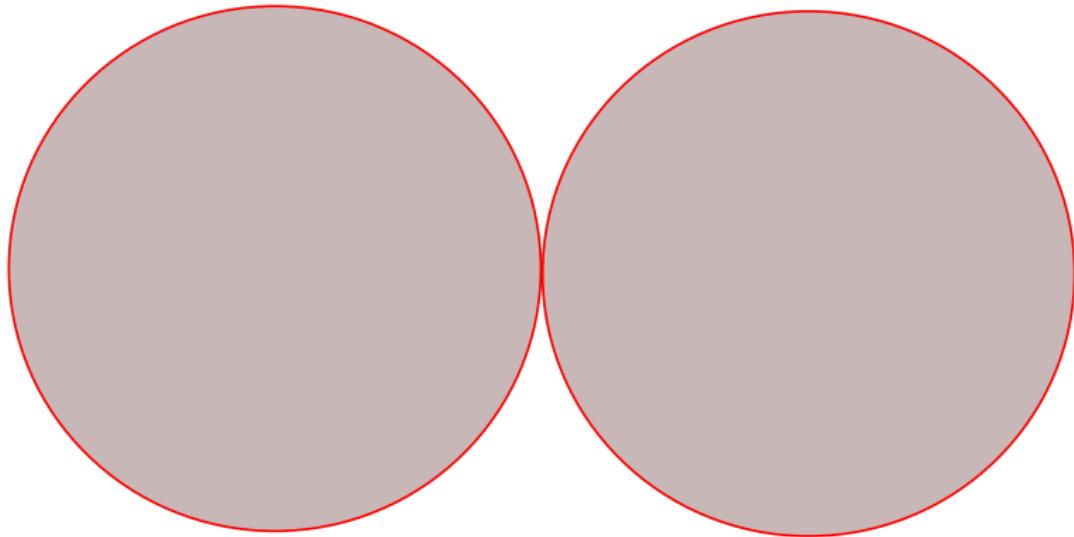
○○○
○○○

Phenomena

○○○
○○○○○○

In a nutshell

- Billiards with cusps: slow decay of correlations, non-standard limit theorem;
- Billiards with tunnels: CLT, but variance blows up as $\varepsilon \rightarrow 0$.



Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○○
○○

Other models

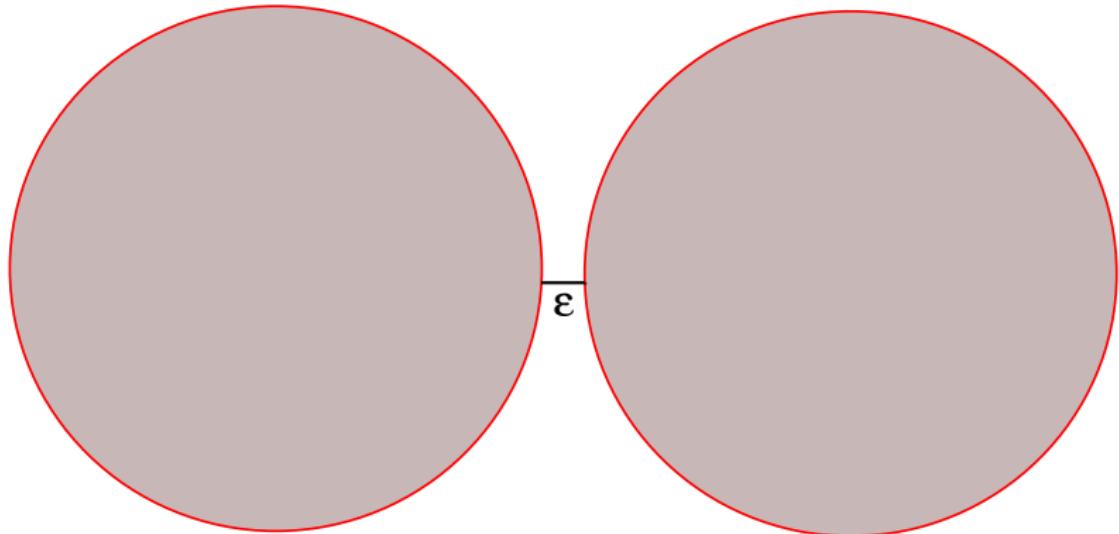
○○○
○○○

Phenomena

○○○
○○○○○○

In a nutshell

- Billiards with cusps: slow decay of correlations, non-standard limit theorem;
- Billiards with tunnels: CLT, but variance blows up as $\varepsilon \rightarrow 0$.



Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○○
○○

Other models

○○○
○○○

Phenomena

○○○
○○○○○○

Outline

Known results

Dispersing billiards in 2D

Dispersing billiards with cusps

New "results"

Cusp case

Tunnel case

Skeletons of arguments

Skeleton for cusp

Skeleton for tunnel

Other models

Infinite horizon Lorentz gas

Stadia

Phenomena

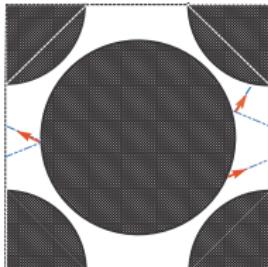
Rough description for cusp

Rough description for tunnel

Billiards

$Q = \mathbb{T}^2 \setminus \bigcup_{k=1}^K C_k$ strictly convex scatterers

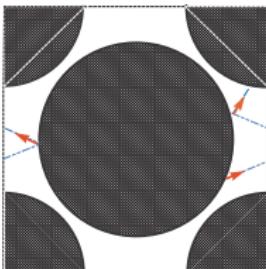
- **Billiard flow** : $S^t : \mathcal{M} \rightarrow \mathcal{M}$, $(q, v) \in \mathcal{M} = Q \times \mathbb{S}^1$, $|v| = 1$
Uniform motion within Q , elastic reflection at the boundaries
- **Billiard map** phase space: $M = \bigcup_{k=1}^K M_k$
- $(r, \phi) \in M_k$, r : arclength along ∂C_k , $\phi \in [-\pi/2, \pi/2]$
outgoing velocity angle
- invariant measure $d\mu = c \cos\phi \, dr \, d\phi$



Billiards

$Q = \mathbb{T}^2 \setminus \bigcup_{k=1}^K C_k$ strictly convex scatterers

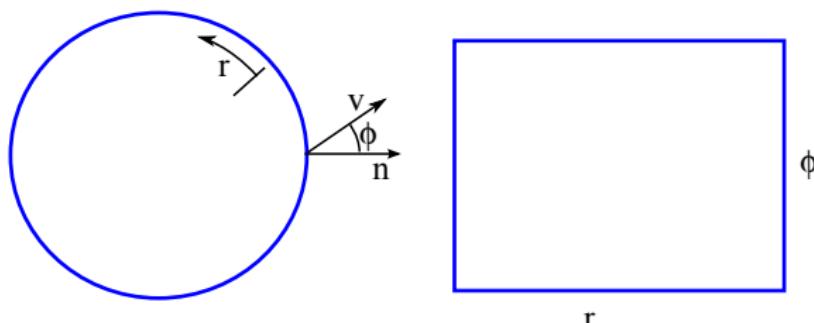
- **Billiard flow** : $S^t : \mathcal{M} \rightarrow \mathcal{M}$, $(q, v) \in \mathcal{M} = Q \times \mathbb{S}^1$, $|v| = 1$
Uniform motion within Q , elastic reflection at the boundaries
- **Billiard map phase space**: $M = \bigcup_{k=1}^K M_k$
- $(r, \phi) \in M_k$, r : arclength along ∂C_k , $\phi \in [-\pi/2, \pi/2]$
outgoing velocity angle
- invariant measure $d\mu = c \cos\phi \, dr \, d\phi$



Billiards

$Q = \mathbb{T}^2 \setminus \bigcup_{k=1}^K C_k$ strictly convex scatterers

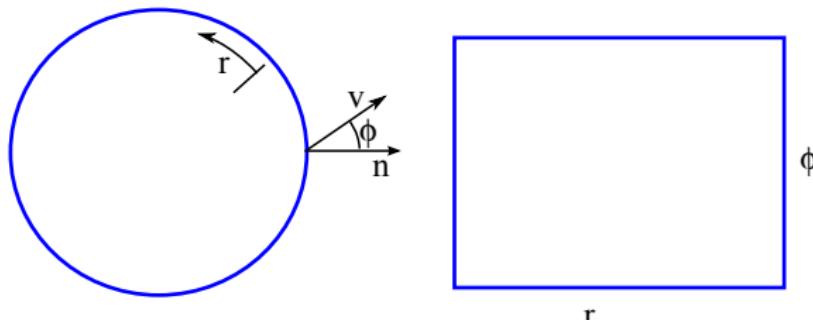
- **Billiard flow** : $S^t : \mathcal{M} \rightarrow \mathcal{M}$, $(q, v) \in \mathcal{M} = Q \times \mathbb{S}^1$, $|v| = 1$
Uniform motion within Q , elastic reflection at the boundaries
- **Billiard map** phase space: $M = \bigcup_{k=1}^K M_k$
- $(r, \phi) \in M_k$, r : arclength along ∂C_k , $\phi \in [-\pi/2, \pi/2]$
outgoing velocity angle
- invariant measure $d\mu = c \cos\phi \, dr \, d\phi$



Billiards

$Q = \mathbb{T}^2 \setminus \bigcup_{k=1}^K C_k$ strictly convex scatterers

- **Billiard flow** : $S^t : \mathcal{M} \rightarrow \mathcal{M}$, $(q, v) \in \mathcal{M} = Q \times \mathbb{S}^1$, $|v| = 1$
Uniform motion within Q , elastic reflection at the boundaries
- **Billiard map** phase space: $M = \bigcup_{k=1}^K M_k$
- $(r, \phi) \in M_k$, r : arclength along ∂C_k , $\phi \in [-\pi/2, \pi/2]$
outgoing velocity angle
- invariant measure $d\mu = c \cos\phi \, dr \, d\phi$



Sinai billiards

C_k are C^3 smooth and **disjoint** (no corner points);
finite horizon: flight length uniformly bounded from above

- **Billiard map** is **ergodic**, K-mixing (Sinai '70)
- **EDC**: $f, g : M \rightarrow \mathbb{R}$ Hölder continuous, $\int f d\mu = \int g d\mu = 0$
 let $C_n(f, g) = \mu(f \cdot g \circ T^n)$, then $|C_n(f, g)| \leq C\alpha^n$ for
 suitable $C > 0$ and $\alpha < 1$
 - Young '98 – tower construction with exponential tails,
 - Chernov & Dolgopyat '06 – standard pairs
- **CLT**: let $S_n f = f + f \circ T + \dots + f \circ T^{n-1}$, then

$$\frac{S_n f}{\sqrt{n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma)$$
 where $\sigma = \int f^2 d\mu + 2 \sum_{n=1}^{\infty} C_n(f, f)$.
 Bunimovich & Sinai '81, Chernov '06, Melbourne '06.
- **Billiard flow**: $F, G : \mathcal{M} \rightarrow \mathbb{R}$, $C_t(F, G)$:
 - stretched exponential bound, Chernov '07 (approximate Markov partitions)
 - faster than any polynomial, Melbourne '07 (Suspensions of Young towers)

Sinai billiards

C_k are C^3 smooth and **disjoint** (no corner points);
finite horizon: flight length uniformly bounded from above

- **Billiard map** is **ergodic**, K-mixing (Sinai '70)
- **EDC**: $f, g : M \rightarrow \mathbb{R}$ Hölder continuous, $\int f d\mu = \int g d\mu = 0$
 let $C_n(f, g) = \mu(f \cdot g \circ T^n)$, then $|C_n(f, g)| \leq C\alpha^n$ for
 suitable $C > 0$ and $\alpha < 1$

- Young '98 – tower construction with exponential tails,
- Chernov & Dolgopyat '06 – standard pairs

- **CLT**: let $S_n f = f + f \circ T + \dots + f \circ T^{n-1}$, then

$$\frac{S_n f}{\sqrt{n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma) \text{ where } \sigma = \int f^2 d\mu + 2 \sum_{n=1}^{\infty} C_n(f, f).$$

Bunimovich & Sinai '81, Chernov '06, Melbourne '06.

- **Billiard flow**: $F, G : \mathcal{M} \rightarrow \mathbb{R}$, $C_t(F, G)$:
 - stretched exponential bound, Chernov '07 (approximate Markov partitions)
 - faster than any polynomial, Melbourne '07 (Suspensions of Young towers)

Sinai billiards

C_k are C^3 smooth and **disjoint** (no corner points);
finite horizon: flight length uniformly bounded from above

- **Billiard map** is **ergodic**, K-mixing (Sinai '70)
- **EDC**: $f, g : M \rightarrow \mathbb{R}$ Hölder continuous, $\int f d\mu = \int g d\mu = 0$
 let $C_n(f, g) = \mu(f \cdot g \circ T^n)$, then $|C_n(f, g)| \leq C\alpha^n$ for
 suitable $C > 0$ and $\alpha < 1$
 - Young '98 – tower construction with exponential tails,
 - Chernov & Dolgopyat '06 – standard pairs
- **CLT**: let $S_n f = f + f \circ T + \dots + f \circ T^{n-1}$, then

$$\frac{S_n f}{\sqrt{n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma)$$
 where $\sigma = \int f^2 d\mu + 2 \sum_{n=1}^{\infty} C_n(f, f)$.
 Bunimovich & Sinai '81, Chernov '06, Melbourne '06.
- **Billiard flow**: $F, G : \mathcal{M} \rightarrow \mathbb{R}$, $C_t(F, G)$:
 - stretched exponential bound, Chernov '07 (approximate Markov partitions)
 - faster than any polynomial, Melbourne '07 (Suspensions of Young towers)

Sinai billiards

C_k are C^3 smooth and **disjoint** (no corner points);
finite horizon: flight length uniformly bounded from above

- **Billiard map** is **ergodic**, K-mixing (Sinai '70)
- **EDC**: $f, g : M \rightarrow \mathbb{R}$ Hölder continuous, $\int f d\mu = \int g d\mu = 0$
 let $C_n(f, g) = \mu(f \cdot g \circ T^n)$, then $|C_n(f, g)| \leq C\alpha^n$ for
 suitable $C > 0$ and $\alpha < 1$
 - Young '98 – tower construction with exponential tails,
 - Chernov & Dolgopyat '06 – standard pairs
- **CLT**: let $S_n f = f + f \circ T + \dots + f \circ T^{n-1}$, then

$$\frac{S_n f}{\sqrt{n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma)$$
 where $\sigma = \int f^2 d\mu + 2 \sum_{n=1}^{\infty} C_n(f, f)$.

Bunimovich & Sinai '81, Chernov '06, Melbourne '06.

- **Billiard flow**: $F, G : \mathcal{M} \rightarrow \mathbb{R}$, $C_t(F, G)$:
 - stretched exponential bound, Chernov '07 (approximate Markov partitions)
 - faster than any polynomial, Melbourne '07 (Suspensions of Young towers)

Sinai billiards

C_k are C^3 smooth and **disjoint** (no corner points);
finite horizon: flight length uniformly bounded from above

- **Billiard map** is **ergodic**, K-mixing (Sinai '70)
- **EDC**: $f, g : M \rightarrow \mathbb{R}$ Hölder continuous, $\int f d\mu = \int g d\mu = 0$
 let $C_n(f, g) = \mu(f \cdot g \circ T^n)$, then $|C_n(f, g)| \leq C\alpha^n$ for
 suitable $C > 0$ and $\alpha < 1$

- Young '98 – tower construction with exponential tails,
 • Chernov & Dolgopyat '06 – standard pairs

- **CLT**: let $S_n f = f + f \circ T + \dots + f \circ T^{n-1}$, then

$$\frac{S_n f}{\sqrt{n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma) \text{ where } \sigma = \int f^2 d\mu + 2 \sum_{n=1}^{\infty} C_n(f, f).$$

Bunimovich & Sinai '81, Chernov '06, Melbourne '06.

- **Billiard flow**: $F, G : \mathcal{M} \rightarrow \mathbb{R}$, $C_t(F, G)$:
 - stretched exponential bound, Chernov '07 (approximate Markov partitions)
 - faster than any polynomial, Melbourne '07 (Suspensions of Young towers)

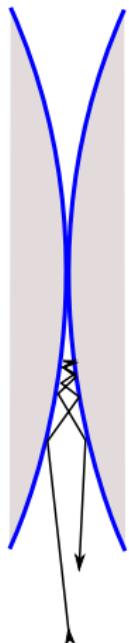
Sinai billiards

C_k are C^3 smooth and **disjoint** (no corner points);
finite horizon: flight length uniformly bounded from above

- **Billiard map** is **ergodic**, K-mixing (Sinai '70)
- **EDC**: $f, g : M \rightarrow \mathbb{R}$ Hölder continuous, $\int f d\mu = \int g d\mu = 0$
 let $C_n(f, g) = \mu(f \cdot g \circ T^n)$, then $|C_n(f, g)| \leq C\alpha^n$ for
 suitable $C > 0$ and $\alpha < 1$
 - Young '98 – tower construction with exponential tails,
 - Chernov & Dolgopyat '06 – standard pairs
- **CLT**: let $S_n f = f + f \circ T + \dots + f \circ T^{n-1}$, then

$$\frac{S_n f}{\sqrt{n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma)$$
 where $\sigma = \int f^2 d\mu + 2 \sum_{n=1}^{\infty} C_n(f, f)$.
- Bunimovich & Sinai '81, Chernov '06, Melbourne '06.
- **Billiard flow**: $F, G : \mathcal{M} \rightarrow \mathbb{R}$, $C_t(F, G)$:
 - stretched exponential bound, Chernov '07 (approximate Markov partitions)
 - faster than any polynomial, Melbourne '07 (Suspensions of Young towers)

Cusp map

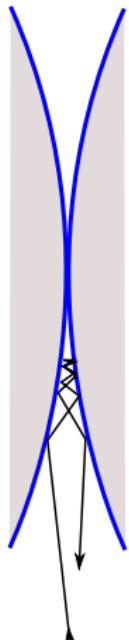


C_1 and C_2 touch tangentially – unbounded series of consecutive reflections in the vicinity of the cusp

- Reháček '95 ergodicity
- Machta '83 numerics and heuristic reasoning for $C_n(f, g) \asymp 1/n$
- Chernov & Markarian '07: $C_n(f, g) \leq C \frac{\log^2 n}{n}$
- Chernov & Zhang '08: $C_n(f, g) \leq C \frac{1}{n}$

Not summable \Rightarrow non-standard limit law?

Cusp map

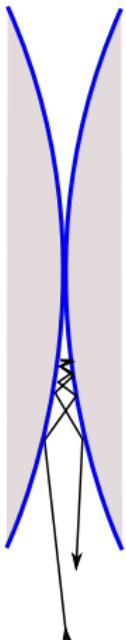


C_1 and C_2 touch tangentially – unbounded series of consecutive reflections in the vicinity of the cusp

- Reháček '95 ergodicity
- Machta '83 numerics and heuristic reasoning for $C_n(f, g) \asymp 1/n$
- Chernov & Markarian '07: $C_n(f, g) \leq C \frac{\log^2 n}{n}$
- Chernov & Zhang '08: $C_n(f, g) \leq C \frac{1}{n}$

Not summable \Rightarrow non-standard limit law?

Cusp map

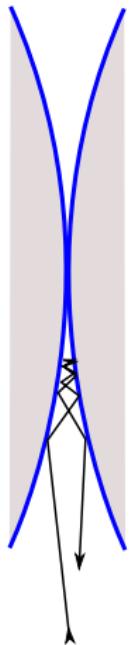


C_1 and C_2 touch tangentially – unbounded series of consecutive reflections in the vicinity of the cusp

- Reháček '95 ergodicity
- Machta '83 numerics and heuristic reasoning for $C_n(f, g) \asymp 1/n$
- Chernov & Markarian '07: $C_n(f, g) \leq C \frac{\log^2 n}{n}$
- Chernov & Zhang '08: $C_n(f, g) \leq C \frac{1}{n}$

Not summable \Rightarrow non-standard limit law?

Cusp flow

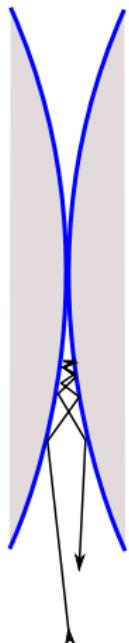


long collision series near the cusp correspond to bounded flow time – flow mixes faster?

Melbourne & B. '08

- $C_t(F, G)$ decays faster than any polynomial
- S^t admits CLT (almost sure invariance principle)

Cusp flow

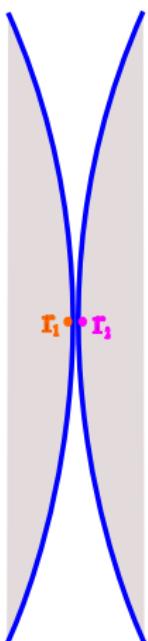


long collision series near the cusp correspond to bounded flow time – flow mixes faster?

Melbourne & B. '08

- $C_t(F, G)$ decays faster than any polynomial
- S^t admits CLT (almost sure invariance principle)

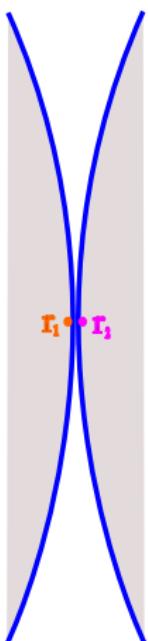
Cusp superdiffusion constant



"Result" (C)

- Denote by $r_1 \in C_1$ and $r_2 \in C_2$ the two points that make the cusp.
- Let $I_f = \int_{-\pi/2}^{\pi/2} (f(r_1, \phi) + f(r_2, \phi)) \rho(\phi) d\phi$
with $\rho(\phi) = \frac{\sqrt{\cos \phi}}{\int_{-\pi/2}^{\pi/2} \sqrt{\cos \phi} d\phi}$
- if $I_f \neq 0$ then $\frac{S_n f}{\sqrt{n \log n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_f)$
where $D_f = c^* I_f^2$ and c^* is some numerical constant.
- if $I_f = 0$ then $S_n f$ satisfies standard CLT.

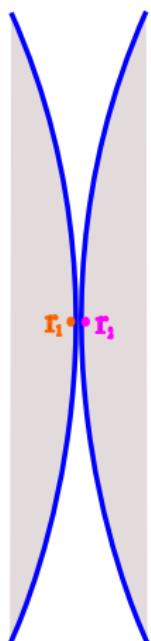
Cusp superdiffusion constant



"Result" (C)

- Denote by $r_1 \in C_1$ and $r_2 \in C_2$ the two points that make the cusp.
- Let $I_f = \int_{-\pi/2}^{\pi/2} (f(r_1, \phi) + f(r_2, \phi))\rho(\phi)d\phi$
with $\rho(\phi) = \frac{\sqrt{\cos \phi}}{\int_{-\pi/2}^{\pi/2} \sqrt{\cos \phi}d\phi}$
- if $I_f \neq 0$ then $\frac{S_n f}{\sqrt{n \log n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_f)$
where $D_f = c^* I_f^2$ and c^* is some numerical constant.
- if $I_f = 0$ then $S_n f$ satisfies standard CLT.

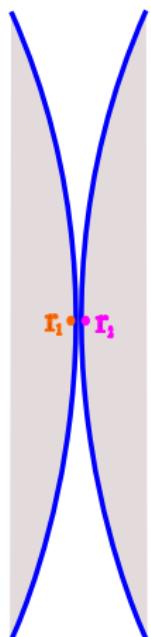
Cusp superdiffusion constant



"Result" (C)

- Denote by $r_1 \in C_1$ and $r_2 \in C_2$ the two points that make the cusp.
- Let $I_f = \int\limits_{-\pi/2}^{\pi/2} (f(r_1, \phi) + f(r_2, \phi))\rho(\phi)d\phi$
with $\rho(\phi) = \frac{\sqrt{\cos \phi}}{\int\limits_{-\pi/2}^{\pi/2} \sqrt{\cos \phi}d\phi}$
- if $I_f \neq 0$ then $\frac{S_n f}{\sqrt{n \log n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_f)$
where $D_f = c^* I_f^2$ and c^* is some numerical constant.
- if $I_f = 0$ then $S_n f$ satisfies standard CLT.

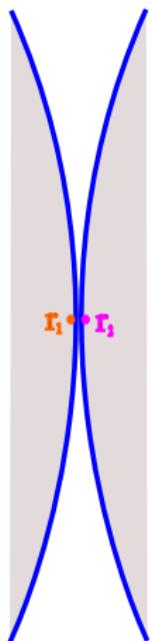
Cusp superdiffusion constant



"Result" (C)

- Denote by $r_1 \in C_1$ and $r_2 \in C_2$ the two points that make the cusp.
- Let $I_f = \int\limits_{-\pi/2}^{\pi/2} (f(r_1, \phi) + f(r_2, \phi))\rho(\phi)d\phi$
with $\rho(\phi) = \frac{\sqrt{\cos \phi}}{\int\limits_{-\pi/2}^{\pi/2} \sqrt{\cos \phi}d\phi}$
- if $I_f \neq 0$ then $\frac{S_n f}{\sqrt{n \log n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_f)$
where $D_f = c^* I_f^2$ and c^* is some numerical constant.
- if $I_f = 0$ then $S_n f$ satisfies standard CLT.

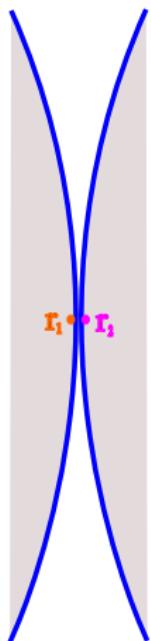
Remarks concerning the cusp flow



- if $G : \mathcal{M} \rightarrow \mathbb{R}$ Hölder, then let

$$g(x) = \int_0^{\tau(x)} G(x, t) dt,$$
- and we have $I_g = 0$ (as $\tau(x) = 0$ for $x = (r_1, \phi)$),
- hence CLT and invariance principle are reasonable.

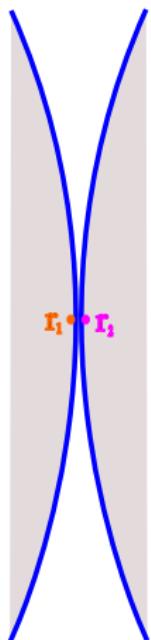
Remarks concerning the cusp flow



- if $G : \mathcal{M} \rightarrow \mathbb{R}$ Hölder, then let

$$g(x) = \int_0^{\tau(x)} G(x, t) dt,$$
- and we have $I_g = 0$ (as $\tau(x) = 0$ for $x = (r_1, \phi)$),
- hence CLT and invariance principle are reasonable.

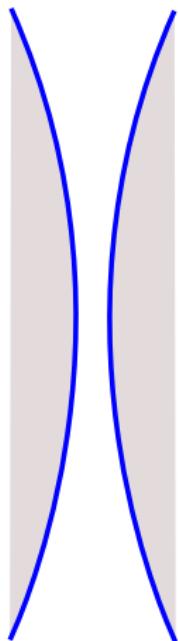
Remarks concerning the cusp flow



- if $G : \mathcal{M} \rightarrow \mathbb{R}$ Hölder, then let

$$g(x) = \int_0^{\tau(x)} G(x, t) dt,$$
- and we have $I_g = 0$ (as $\tau(x) = 0$ for $x = (r_1, \phi)$),
- hence CLT and invariance principle are reasonable.

Blow-up of the variance in tunnels

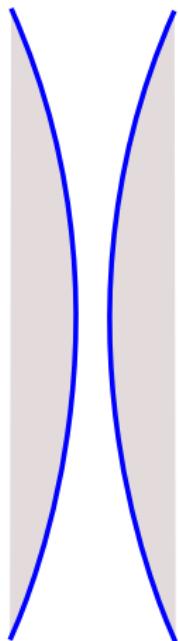


"Result" (T)

Denote be $T_\varepsilon : M \rightarrow M$ the billiard map
 same phase space, same $f : M \rightarrow \mathbb{R}$

- for fixed $\varepsilon > 0$ this is a Sinai billiard, hence CLT:
- $\frac{S_n f}{\sqrt{n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_{f,\varepsilon})$ with
- $D_{f,\varepsilon} = D_f |\log \varepsilon| (1 + o(1))$

Blow-up of the variance in tunnels



"Result" (T)

Denote be $T_\varepsilon : M \rightarrow M$ the billiard map
 same phase space, same $f : M \rightarrow \mathbb{R}$

- for fixed $\varepsilon > 0$ this is a Sinai billiard, hence CLT:
- $\frac{S_n f}{\sqrt{n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_{f,\varepsilon})$ with
- $D_{f,\varepsilon} = D_f |\log \varepsilon|(1 + o(1))$

Known results

○○
○○

New "results"

○○
●○

Skeletons of arguments

○○○
○○

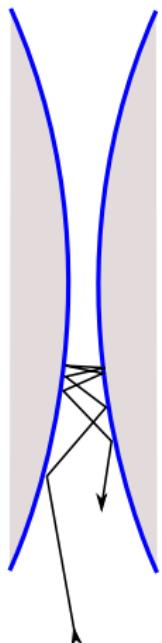
Other models

○○○
○○○

Phenomena

○○○
○○○○○○

Blow-up of the variance in tunnels



“Result” (T)

Denote be $T_\varepsilon : M \rightarrow M$ the billiard map
 same phase space, same $f : M \rightarrow \mathbb{R}$

- for fixed $\varepsilon > 0$ this is a Sinai billiard, hence CLT:
- $\frac{S_n f}{\sqrt{n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_{f,\varepsilon})$ with
- $D_{f,\varepsilon} = D_f |\log \varepsilon|(1 + o(1))$

Known results

○○
○○

New "results"

○○
●○

Skeletons of arguments

○○○
○○

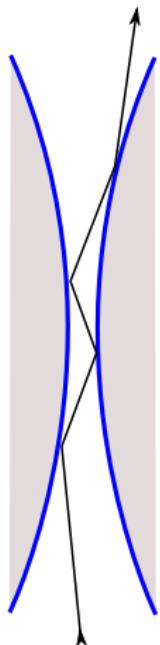
Other models

○○○
○○○

Phenomena

○○○
○○○○○○

Blow-up of the variance in tunnels



“Result” (T)

Denote be $T_\varepsilon : M \rightarrow M$ the billiard map
 same phase space, same $f : M \rightarrow \mathbb{R}$

- for fixed $\varepsilon > 0$ this is a Sinai billiard, hence CLT:
- $\frac{S_n f}{\sqrt{n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_{f,\varepsilon})$ with
- $D_{f,\varepsilon} = D_f |\log \varepsilon|(1 + o(1))$

Known results

○○
○○

New "results"

○○
●○

Skeletons of arguments

○○○
○○

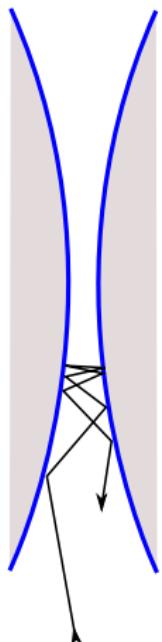
Other models

○○○
○○○

Phenomena

○○○
○○○○○○

Blow-up of the variance in tunnels



"Result" (T)

Denote be $T_\varepsilon : M \rightarrow M$ the billiard map
 same phase space, same $f : M \rightarrow \mathbb{R}$

- for fixed $\varepsilon > 0$ this is a Sinai billiard, hence CLT:
- $\frac{S_n f}{\sqrt{n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_{f,\varepsilon})$ with
- $D_{f,\varepsilon} = D_f |\log \varepsilon| (1 + o(1))$

Known results

○○
○○

New "results"

○○
○●

Skeletons of arguments

○○○
○○

Other models

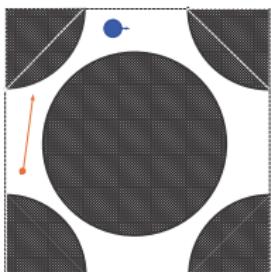
○○○
○○○

Phenomena

○○○
○○○○○○

Motivation

1. Brownian Brownian motion – Chernov & Dolgopyat '09



$m \ll M$ (separation of time scales)

SDE for large particle:

$$dV = \sigma_Q(f) dW$$

collisions of the heavy particle with the wall?

2. Triangular lattice with small opening

How does the planar diffusion depend on ε ?

Known results

○○
○○

New "results"

○○
○●

Skeletons of arguments

○○○
○○

Other models

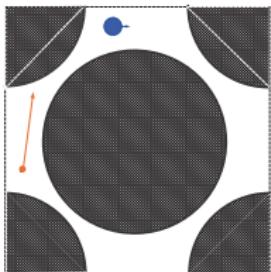
○○○
○○○

Phenomena

○○○
○○○○○○

Motivation

1. Brownian Brownian motion – Chernov & Dolgopyat '09



$m \ll M$ (separation of time scales)

SDE for large particle:

$$dV = \sigma_Q(f) dW$$

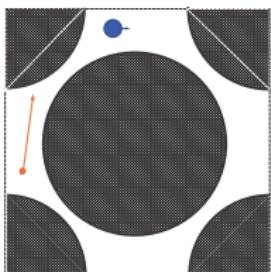
collisions of the heavy particle with the wall?

2. Triangular lattice with small opening

How does the planar diffusion depend on ε ?

Motivation

1. Brownian Brownian motion – Chernov & Dolgopyat '09



$m \ll M$ (separation of time scales)

SDE for large particle:

$$dV = \sigma_Q(f) dW$$

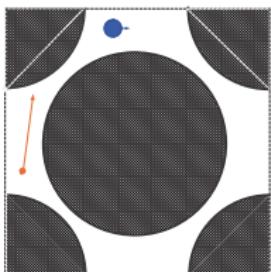
collisions of the heavy particle with the wall?

2. Triangular lattice with small opening

How does the planar diffusion depend on ε ?

Motivation

1. Brownian Brownian motion – Chernov & Dolgopyat '09



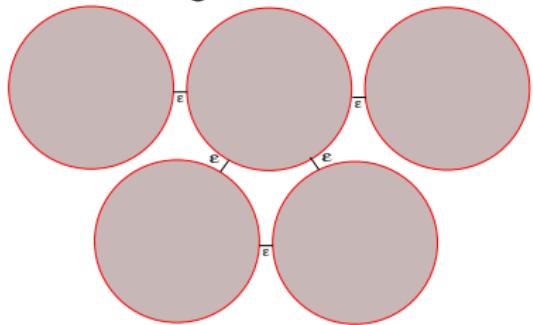
$m \ll M$ (separation of time scales)

SDE for large particle:

$$dV = \sigma_Q(f) dW$$

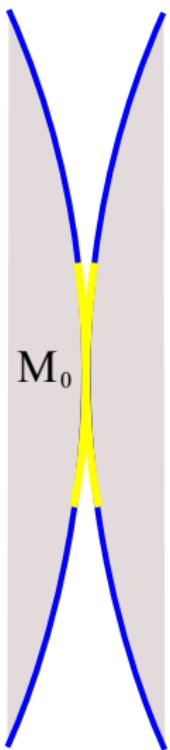
collisions of the heavy particle with the wall?

2. Triangular lattice with small opening



How does the planar diffusion depend on ε ?

The first return map



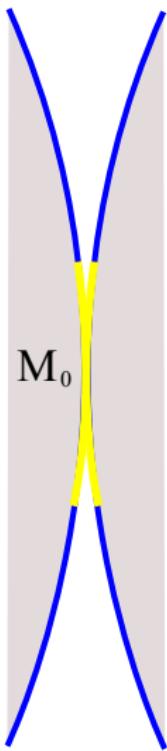
Let $\hat{M} = M \setminus M_0$ where M_0 is a fixed small nbd. of the cusp.

- $\hat{T} : \hat{M} \rightarrow \hat{M}$ first return map
- $R : \hat{M} \rightarrow \mathbb{N}$ unbounded return time
- $\hat{f}(x) = \sum_{k=0}^{R(x)-1} f(T^k x)$ induced observable

limit law for $\hat{S}_n \hat{f}$ implies limit law for $S_n f$
(eg. Gouëzel '04)

$$D_f = \mu(R) D_{\hat{f}} = \frac{D_{\hat{f}}}{\mu(\hat{M})}$$

The first return map



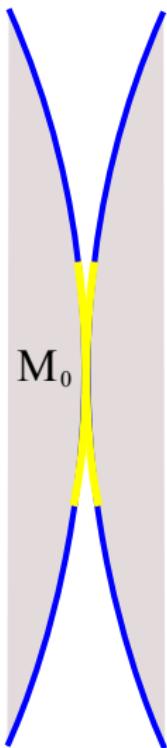
Let $\hat{M} = M \setminus M_0$ where M_0 is a fixed small nbd. of the cusp.

- $\hat{T} : \hat{M} \rightarrow \hat{M}$ first return map
- $R : \hat{M} \rightarrow \mathbb{N}$ unbounded return time
- $\hat{f}(x) = \sum_{k=0}^{R(x)-1} f(T^k x)$ induced observable

limit law for $\hat{S}_n \hat{f}$ implies limit law for $S_n f$
(eg. Gouëzel '04)

$$D_f = \mu(R) D_{\hat{f}} = \frac{D_{\hat{f}}}{\mu(\hat{M})}$$

The first return map



Let $\hat{M} = M \setminus M_0$ where M_0 is a fixed small nbd. of the cusp.

- $\hat{T} : \hat{M} \rightarrow \hat{M}$ first return map
- $R : \hat{M} \rightarrow \mathbb{N}$ unbounded return time
- $\hat{f}(x) = \sum_{k=0}^{R(x)-1} f(T^k x)$ induced observable

limit law for $\hat{S}_n \hat{f}$ implies limit law for $S_n f$
(eg. Gouëzel '04)

$$D_f = \mu(R) D_{\hat{f}} = \frac{D_{\hat{f}}}{\mu(\hat{M})}$$

Fast mixing of the first return map

Lemma (C1)

The map $\hat{T} : \hat{M} \rightarrow \hat{M}$ is uniformly hyperbolic and it satisfies the Growth Lemma (“Expansion prevails fractioning”)

so that

- Young tower with exponential tails can be constructed
- standard pairs can be coupled at an exponential rate

Hence: EDC for Hölder observables

Lemma (C2)

$|\hat{\mu}(\hat{f} \cdot \hat{f} \circ \hat{T}^n)| \leq Ce^{-\alpha n}$ with $C > 0, \alpha < 1$ for $n \geq 1$

Not for $n = 0$ as \hat{f} is not Hölder and not in L^2

Summarizing: the sequence $\hat{f} \circ \hat{T}^n$ behaves almost like an i.i.d. sequence

Fast mixing of the first return map

Lemma (C1)

The map $\hat{T} : \hat{M} \rightarrow \hat{M}$ is *uniformly hyperbolic* and it satisfies the *Growth Lemma* (“Expansion prevails fractioning”)

so that

- Young tower with exponential tails can be constructed
- standard pairs can be coupled at an exponential rate

Hence: *EDC* for Hölder observables

Lemma (C2)

$|\hat{\mu}(\hat{f} \cdot \hat{f} \circ \hat{T}^n)| \leq Ce^{-\alpha n}$ with $C > 0, \alpha < 1$ for $n \geq 1$

Not for $n = 0$ as \hat{f} is not Hölder and not in L^2

Summarizing: the sequence $\hat{f} \circ \hat{T}^n$ behaves almost like an i.i.d. sequence

Fast mixing of the first return map

Lemma (C1)

The map $\hat{T} : \hat{M} \rightarrow \hat{M}$ is *uniformly hyperbolic* and it satisfies the *Growth Lemma* ("Expansion prevails fractioning")

so that

- Young tower with exponential tails can be constructed
- standard pairs can be coupled at an exponential rate

Hence: *EDC* for Hölder observables

Lemma (C2)

$|\hat{\mu}(\hat{f} \cdot \hat{f} \circ \hat{T}^n)| \leq C e^{-\alpha n}$ with $C > 0, \alpha < 1$ for $n \geq 1$

Not for $n = 0$ as \hat{f} is not Hölder and not in L^2

Summarizing: the sequence $\hat{f} \circ \hat{T}^n$ behaves almost like an i.i.d. sequence

Fast mixing of the first return map

Lemma (C1)

The map $\hat{T} : \hat{M} \rightarrow \hat{M}$ is *uniformly hyperbolic* and it satisfies the *Growth Lemma* (“Expansion prevails fractioning”)

so that

- Young tower with exponential tails can be constructed
- standard pairs can be coupled at an exponential rate

Hence: *EDC* for Hölder observables

Lemma (C2)

$|\hat{\mu}(\hat{f} \cdot \hat{f} \circ \hat{T}^n)| \leq Ce^{-\alpha n}$ with $C > 0, \alpha < 1$ for $n \geq 1$

Not for $n = 0$ as \hat{f} is not Hölder and not in L^2

Summarizing: the sequence $\hat{f} \circ \hat{T}^n$ behaves almost like an i.i.d. sequence

Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○●
○○

Other models

○○○
○○○

Phenomena

○○○
○○○○○○

Blow-up of \hat{f}^2

- $M_n = \{x \in \hat{M} | R(x) = n\}$ n -cell
- $L_n = \bigcup_{j \leq n} M_j$ low cells, $H_n = \bigcup_{j > n} M_j$ high cells

Lemma (C3)

- $\hat{f}|_{M_n} = nI(1 + o(1))$

$$(recall I = c_1 \int_{-\pi/2}^{\pi/2} (f(r_1, \phi) + f(r_2, \phi)) \sqrt{\cos(\phi)} d\phi)$$
- $\hat{\mu}(H_n) = \frac{c_2}{n^2}(1 + o(1))$ (here c_1, c_2 are numerical constants)
- hence $\hat{\mu}(\hat{f}^2 \cdot \mathbf{1}|_{L_n}) = 2 \log n D_{\hat{f}}(1 + o(1))$

if $\hat{f} \circ \hat{T}^n$ were i.i.d, it would belong to the non-standard domain of attraction of the normal law

Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○●
○○

Other models

○○○
○○○

Phenomena

○○○
○○○○○

Blow-up of \hat{f}^2

- $M_n = \{x \in \hat{M} | R(x) = n\}$ n -cell
- $L_n = \bigcup_{j \leq n} M_j$ low cells, $H_n = \bigcup_{j > n} M_j$ high cells

Lemma (C3)

- $\hat{f}|_{M_n} = nI(1 + o(1))$

$$(recall I = c_1 \int_{-\pi/2}^{\pi/2} (f(r_1, \phi) + f(r_2, \phi)) \sqrt{\cos(\phi)} d\phi)$$
- $\hat{\mu}(H_n) = \frac{c_2}{n^2}(1 + o(1))$ (here c_1, c_2 are numerical constants)
- hence $\hat{\mu}(\hat{f}^2 \cdot \mathbf{1}|_{L_n}) = 2 \log n D_{\hat{f}}(1 + o(1))$

if $\hat{f} \circ \hat{T}^n$ were i.i.d, it would belong to the non-standard domain of attraction of the normal law

Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○●
○○

Other models

○○○
○○○

Phenomena

○○○
○○○○○

Blow-up of \hat{f}^2

- $M_n = \{x \in \hat{M} | R(x) = n\}$ n -cell
- $L_n = \bigcup_{j \leq n} M_j$ low cells, $H_n = \bigcup_{j > n} M_j$ high cells

Lemma (C3)

- $\hat{f}|_{M_n} = nI(1 + o(1))$

$$(recall I = c_1 \int_{-\pi/2}^{\pi/2} (f(r_1, \phi) + f(r_2, \phi)) \sqrt{\cos(\phi)} d\phi)$$
- $\hat{\mu}(H_n) = \frac{c_2}{n^2}(1 + o(1))$ (here c_1, c_2 are numerical constants)
- hence $\hat{\mu}(\hat{f}^2 \cdot \mathbf{1}|_{L_n}) = 2 \log n D_{\hat{f}}(1 + o(1))$

if $\hat{f} \circ \hat{T}^n$ were i.i.d, it would belong to the non-standard domain of attraction of the normal law

Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○●
○○

Other models

○○○
○○○

Phenomena

○○○
○○○○○

Blow-up of \hat{f}^2

- $M_n = \{x \in \hat{M} | R(x) = n\}$ n -cell
- $L_n = \bigcup_{j \leq n} M_j$ low cells, $H_n = \bigcup_{j > n} M_j$ high cells

Lemma (C3)

- $\hat{f}|_{M_n} = nI(1 + o(1))$

$$(recall I = c_1 \int_{-\pi/2}^{\pi/2} (f(r_1, \phi) + f(r_2, \phi)) \sqrt{\cos(\phi)} d\phi)$$
- $\hat{\mu}(H_n) = \frac{c_2}{n^2}(1 + o(1))$ (here c_1, c_2 are numerical constants)
- hence $\hat{\mu}(\hat{f}^2 \cdot \mathbf{1}|_{L_n}) = 2 \log n D_{\hat{f}}(1 + o(1))$

if $\hat{f} \circ \hat{T}^n$ were i.i.d, it would belong to the non-standard domain of attraction of the normal law

Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○●
○○

Other models

○○○
○○○

Phenomena

○○○
○○○○○

Blow-up of \hat{f}^2

- $M_n = \{x \in \hat{M} | R(x) = n\}$ n -cell
- $L_n = \bigcup_{j \leq n} M_j$ low cells, $H_n = \bigcup_{j > n} M_j$ high cells

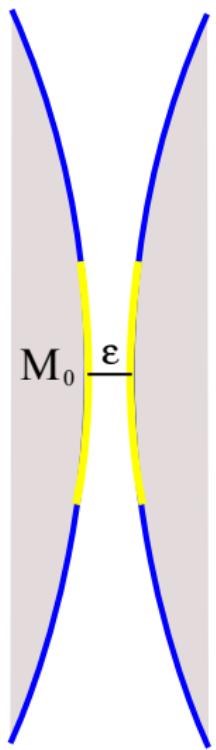
Lemma (C3)

- $\hat{f}|_{M_n} = nI(1 + o(1))$

$$(recall I = c_1 \int_{-\pi/2}^{\pi/2} (f(r_1, \phi) + f(r_2, \phi)) \sqrt{\cos(\phi)} d\phi)$$
- $\hat{\mu}(H_n) = \frac{c_2}{n^2}(1 + o(1))$ (here c_1, c_2 are numerical constants)
- hence $\hat{\mu}(\hat{f}^2 \cdot \mathbf{1}|_{L_n}) = 2 \log n D_{\hat{f}}(1 + o(1))$

if $\hat{f} \circ \hat{T}^n$ were i.i.d, it would belong to the non-standard domain of attraction of the normal law

First return map for tunnel



$T_\varepsilon : M \rightarrow M$, M_0 : same nbd. for any ε ,

$$\hat{M} = M \setminus M_0$$

Return map $\hat{T}_\varepsilon : \hat{M} \rightarrow \hat{M}$ and return time R_ε depend on ε

Lemma (T1)

The map $\hat{T}_\varepsilon : \hat{M} \rightarrow \hat{M}$ satisfies the Growth Lemma and EDC for Hölder observables uniformly in ε .

Lemma (T2)

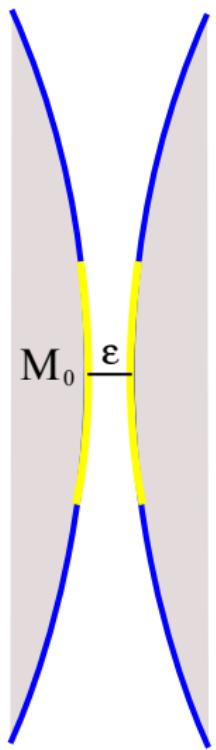
$|\hat{\mu}(\hat{f}_\varepsilon \cdot \hat{f}_\varepsilon \circ \hat{T}_\varepsilon^n)| \leq C e^{-\alpha n}$ with $C > 0, \alpha < 1$
independent of ε

Hence CLT for $\hat{S}_n \hat{f}_\varepsilon$ with variance

$$D_{\hat{f}_\varepsilon, \varepsilon} = \hat{\mu}(\hat{f}_\varepsilon^2) + \mathcal{O}(1):$$

correlations do not contribute to the main term.

First return map for tunnel



$T_\varepsilon : M \rightarrow M$, M_0 : same nbd. for any ε ,

$$\hat{M} = M \setminus M_0$$

Return map $\hat{T}_\varepsilon : \hat{M} \rightarrow \hat{M}$ and return time R_ε depend on ε

Lemma (T1)

The map $\hat{T}_\varepsilon : \hat{M} \rightarrow \hat{M}$ satisfies the Growth Lemma and EDC for Hölder observables uniformly in ε .

Lemma (T2)

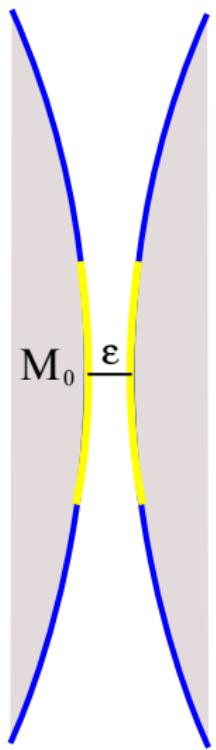
$|\hat{\mu}(\hat{f}_\varepsilon \cdot \hat{f}_\varepsilon \circ \hat{T}_\varepsilon^n)| \leq Ce^{-\alpha n}$ with $C > 0, \alpha < 1$
independent of ε

Hence CLT for $\hat{S}_n \hat{f}_\varepsilon$ with variance

$$D_{\hat{f}_\varepsilon, \varepsilon} = \hat{\mu}(\hat{f}_\varepsilon^2) + \mathcal{O}(1):$$

correlations do not contribute to the main term.

First return map for tunnel



$T_\varepsilon : M \rightarrow M$, M_0 : same nbd. for any ε ,

$$\hat{M} = M \setminus M_0$$

Return map $\hat{T}_\varepsilon : \hat{M} \rightarrow \hat{M}$ and return time R_ε depend on ε

Lemma (T1)

The map $\hat{T}_\varepsilon : \hat{M} \rightarrow \hat{M}$ satisfies the Growth Lemma and EDC for Hölder observables uniformly in ε .

Lemma (T2)

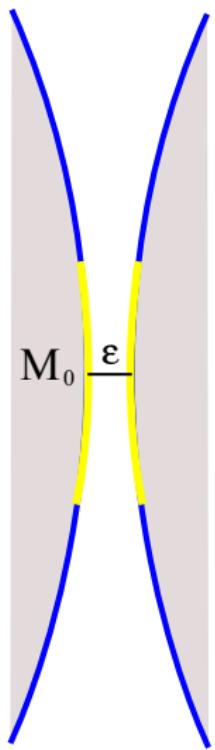
$|\hat{\mu}(\hat{f}_\varepsilon \cdot \hat{f}_\varepsilon \circ \hat{T}_\varepsilon^n)| \leq C e^{-\alpha n}$ with $C > 0, \alpha < 1$
independent of ε

Hence CLT for $\hat{S}_n \hat{f}_\varepsilon$ with variance

$$D_{\hat{f}_\varepsilon, \varepsilon} = \hat{\mu}(\hat{f}_\varepsilon^2) + \mathcal{O}(1):$$

correlations do not contribute to the main term.

First return map for tunnel



$T_\varepsilon : M \rightarrow M$, M_0 : same nbd. for any ε ,

$$\hat{M} = M \setminus M_0$$

Return map $\hat{T}_\varepsilon : \hat{M} \rightarrow \hat{M}$ and return time R_ε depend on ε

Lemma (T1)

The map $\hat{T}_\varepsilon : \hat{M} \rightarrow \hat{M}$ satisfies the Growth Lemma and EDC for Hölder observables uniformly in ε .

Lemma (T2)

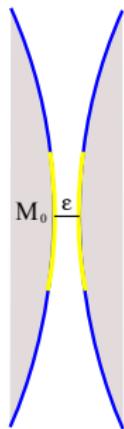
$|\hat{\mu}(\hat{f}_\varepsilon \cdot \hat{f}_\varepsilon \circ \hat{T}_\varepsilon^n)| \leq C e^{-\alpha n}$ with $C > 0, \alpha < 1$
independent of ε

Hence CLT for $\hat{S}_n \hat{f}_\varepsilon$ with variance

$$D_{\hat{f}_\varepsilon, \varepsilon} = \hat{\mu}(\hat{f}_\varepsilon^2) + \mathcal{O}(1):$$

correlations do not contribute to the main term.

Blow-up of \hat{f}_ε^2



Lemma (T3)

$$\hat{\mu}(\hat{f}_\varepsilon^2) = |\log \varepsilon| D_{\hat{f}}(1 + o(1))$$

All these Lemmas require: detailed geometric analysis of the cells M_k (measures, unstable and stable dimensions etc...)

- For cusp, mostly (but not completely) done by Chernov & Markarian
- For tunnel, requires new ideas & technical work (in progress)

Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○○
○●

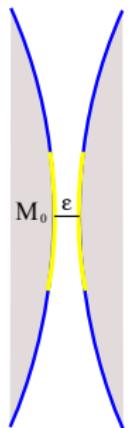
Other models

○○○
○○○

Phenomena

○○○
○○○○○○

Blow-up of \hat{f}_ε^2



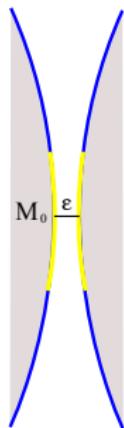
Lemma (T3)

$$\hat{\mu}(\hat{f}_\varepsilon^2) = |\log \varepsilon| D_{\hat{f}}(1 + o(1))$$

All these Lemmas require: **detailed geometric analysis of the cells M_k** (measures, unstable and stable dimensions etc...)

- For cusp, mostly (but not completely) done by Chernov & Markarian
- For tunnel, requires new ideas & technical work (in progress)

Blow-up of \hat{f}_ε^2



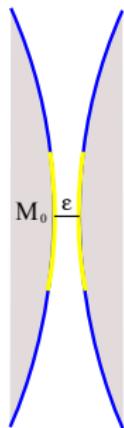
Lemma (T3)

$$\hat{\mu}(\hat{f}_\varepsilon^2) = |\log \varepsilon| D_{\hat{f}}(1 + o(1))$$

All these Lemmas require: detailed geometric analysis of the cells M_k (measures, unstable and stable dimensions etc...)

- For **cusp**, mostly (but not completely) done by Chernov & Markarian
- For **tunnel**, requires new ideas & technical work (in progress)

Blow-up of \hat{f}_ε^2



Lemma (T3)

$$\hat{\mu}(\hat{f}_\varepsilon^2) = |\log \varepsilon| D_{\hat{f}}(1 + o(1))$$

All these Lemmas require: detailed geometric analysis of the cells M_k (measures, unstable and stable dimensions etc...)

- For **cusp**, mostly (but not completely) done by Chernov & Markarian
- For **tunnel**, requires new ideas & technical work (in progress)

Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○○
○○

Other models

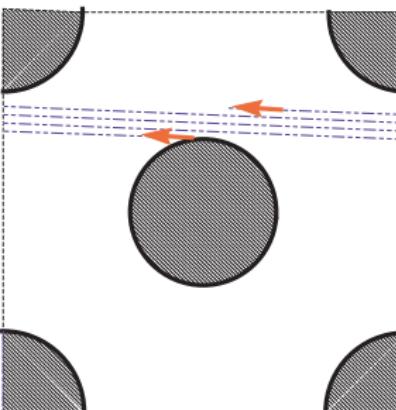
●○○
○○○

Phenomena

○○○
○○○○○○

Superdiffusion

- Collision map: growth lemma, Young tower, EDC for Hölder
– Chernov 1999
- an observable of particular interest: $\mathbf{L}(x)$ free flight (vector)
– neither Hölder, nor in L^2
- $\frac{S_n \mathbf{L}}{\sqrt{n \log n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_{\mathbf{L}})$ – Szász & Varjú 2006
 $D_{\mathbf{L}}$ is determined by the blow-up of the variance – corridor sum



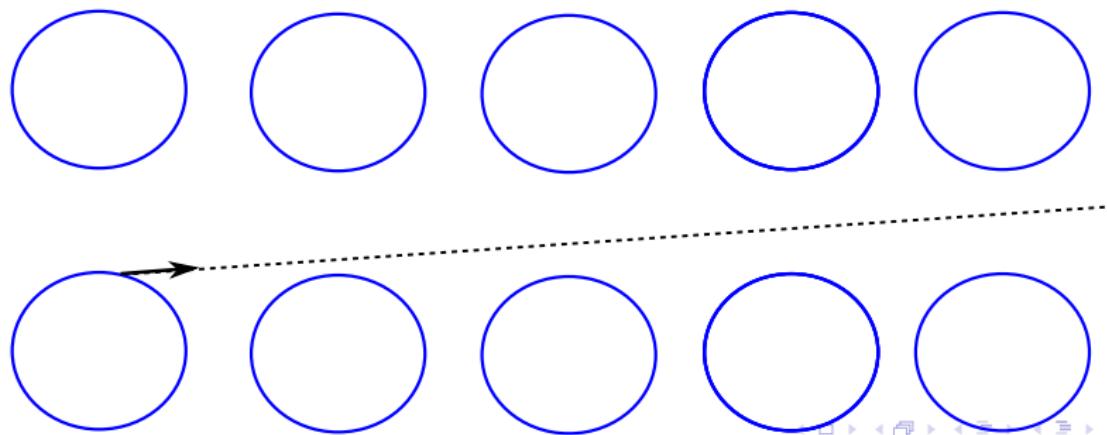
Superdiffusion

- Collision map: growth lemma, Young tower, EDC for Hölder – Chernov 1999
- an observable of particular interest: $\mathbf{L}(x)$ free flight (vector) – neither Hölder, nor in L^2
- $\frac{S_n \mathbf{L}}{\sqrt{n \log n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_{\mathbf{L}})$ – Szász & Varjú 2006
 $D_{\mathbf{L}}$ is determined by the blow-up of the variance – corridor sum



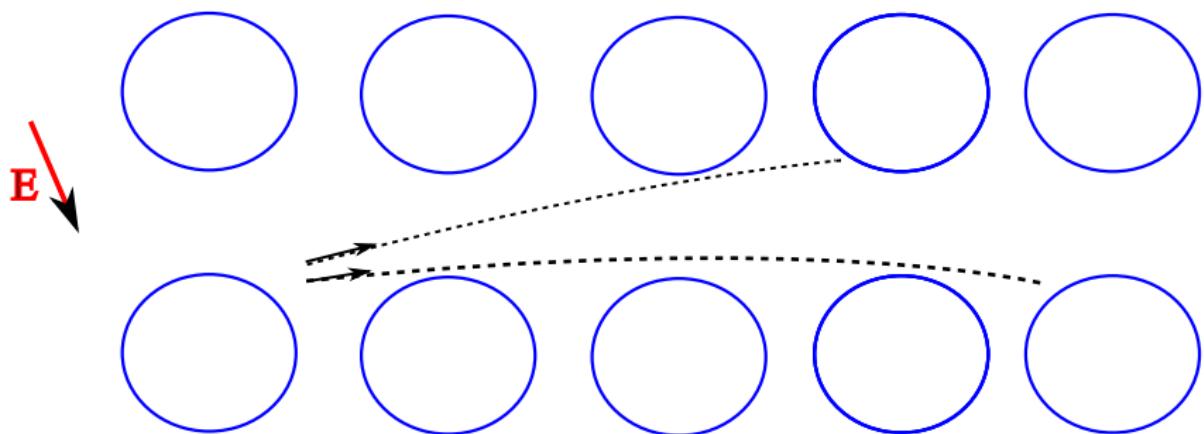
Superdiffusion

- Collision map: growth lemma, Young tower, EDC for Hölder – Chernov 1999
- an observable of particular interest: $\mathbf{L}(x)$ free flight (vector) – neither Hölder, nor in L^2
- $\frac{S_n \mathbf{L}}{\sqrt{n \log n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_{\mathbf{L}})$ – Szász & Varjú 2006
 $D_{\mathbf{L}}$ is determined by the blow-up of the variance – corridor sum



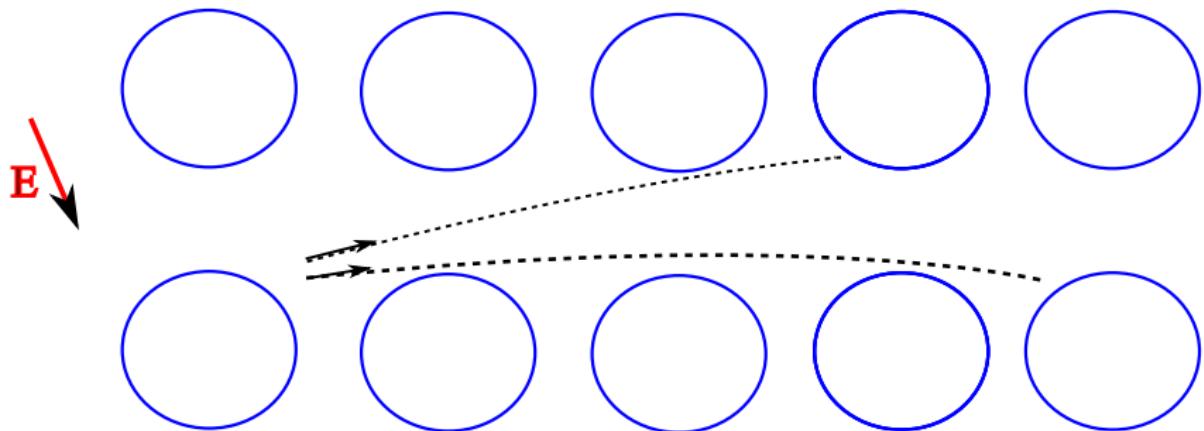
Infinite horizon with field I

- Add **field \mathbf{E}** transversal to corridors, $|\mathbf{E}| = \varepsilon \ll 1$
- + thermostating: Gaussian $\dot{\mathbf{v}} = \mathbf{E} - \langle \mathbf{E}, \mathbf{v} \rangle \mathbf{v}$
- free flight $\mathbf{L}_\varepsilon \leq \frac{C}{\sqrt{\varepsilon}}$ is bounded, but depends on ε .



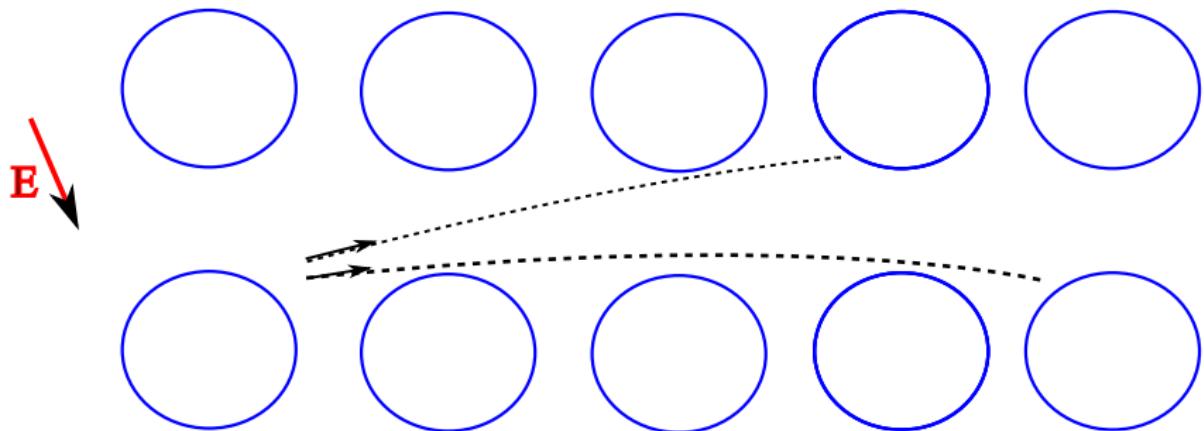
Infinite horizon with field I

- Add **field \mathbf{E}** transversal to corridors, $|\mathbf{E}| = \varepsilon \ll 1$
- + thermostating: Gaussian $\dot{\mathbf{v}} = \mathbf{E} - \langle \mathbf{E}, \mathbf{v} \rangle \mathbf{v}$
- free flight $L_\varepsilon \leq \frac{C}{\sqrt{\varepsilon}}$ is bounded, but depends on ε .



Infinite horizon with field I

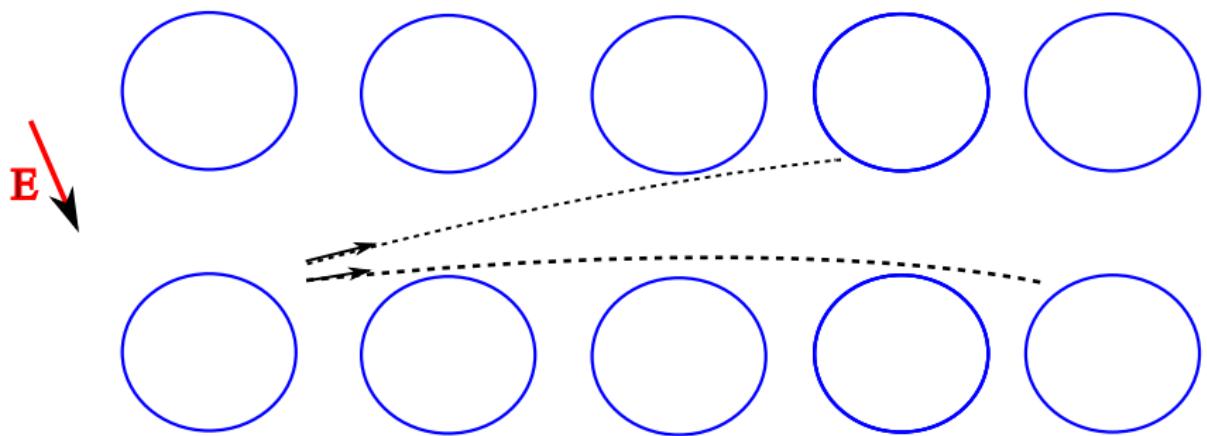
- Add **field \mathbf{E}** transversal to corridors, $|\mathbf{E}| = \varepsilon \ll 1$
- + thermostating: Gaussian $\dot{\mathbf{v}} = \mathbf{E} - \langle \mathbf{E}, \mathbf{v} \rangle \mathbf{v}$
- free flight $\mathbf{L}_\varepsilon \leq \frac{C}{\sqrt{\varepsilon}}$ is bounded, but depends on ε .



Infinite horizon with field II

Chernov-Dolgopyat 2009:

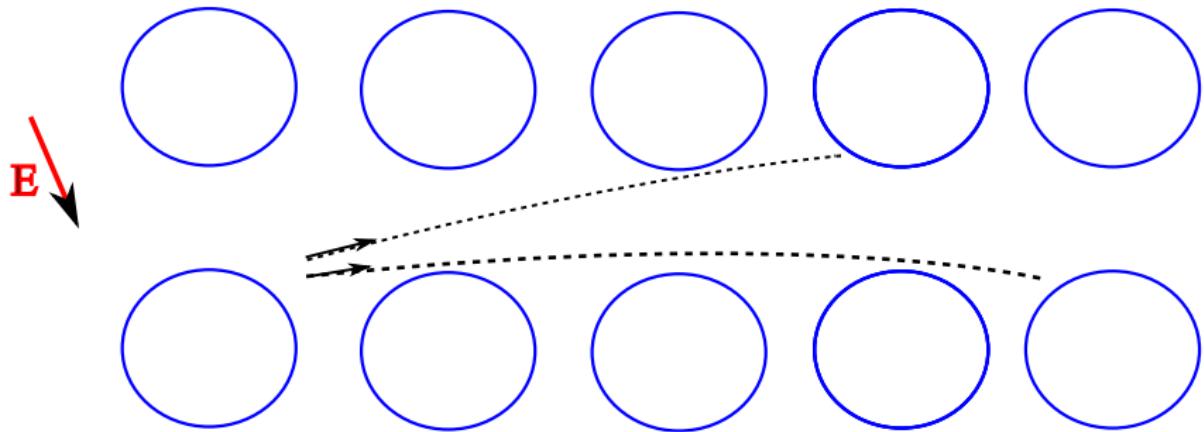
- SRB measure (non-equilibrium steady state) μ_ε
- current $\mathbf{J} = \mu_\varepsilon(L_\varepsilon) = \frac{1}{2} |\log \varepsilon| \mathbf{D}_L \mathbf{E} + \mathcal{O}(\varepsilon)$
- fluctuations: $\frac{S_n \mathbf{L} - J_n}{\sqrt{n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_\varepsilon)$ with
 $D_\varepsilon = |\log \varepsilon| \mathbf{D}_L (1 + o(1))$.



Infinite horizon with field II

Chernov-Dolgopyat 2009:

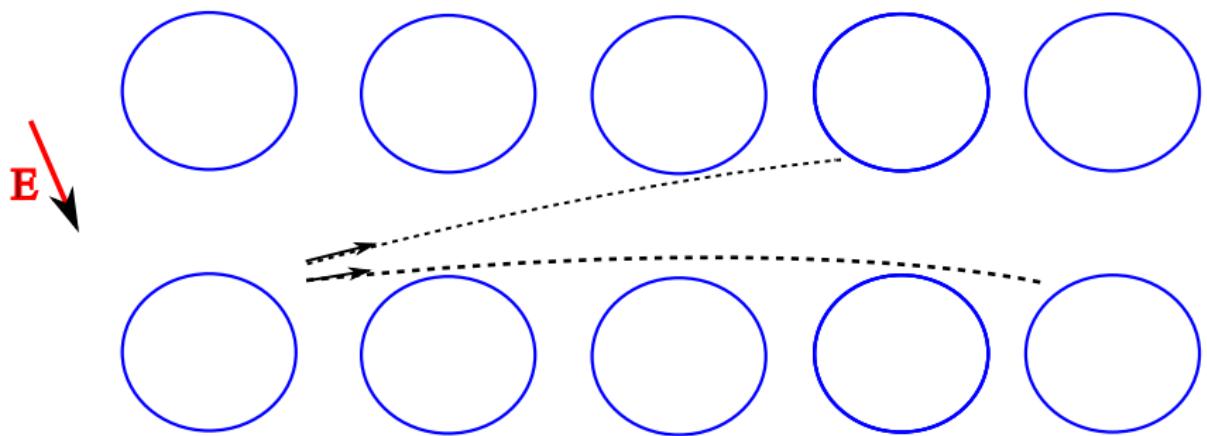
- SRB measure (non-equilibrium steady state) μ_ε
- current $\mathbf{J} = \mu_\varepsilon(L_\varepsilon) = \frac{1}{2} |\log \varepsilon| \mathbf{D}_L \mathbf{E} + \mathcal{O}(\varepsilon)$
- fluctuations: $\frac{S_n \mathbf{L} - \mathbf{J}n}{\sqrt{n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_\varepsilon)$ with
 $D_\varepsilon = |\log \varepsilon| \mathbf{D}_L (1 + o(1))$.



Infinite horizon with field II

Chernov-Dolgopyat 2009:

- SRB measure (non-equilibrium steady state) μ_ε
- current $\mathbf{J} = \mu_\varepsilon(L_\varepsilon) = \frac{1}{2} |\log \varepsilon| \mathbf{D}_L \mathbf{E} + \mathcal{O}(\varepsilon)$
- fluctuations: $\frac{S_n \mathbf{L} - \mathbf{J} n}{\sqrt{n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_\varepsilon)$ with $D_\varepsilon = |\log \varepsilon| D_L (1 + o(1))$.



Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○○
○○

Other models

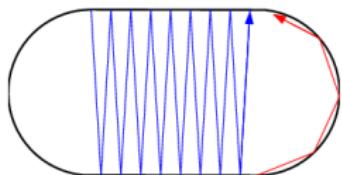
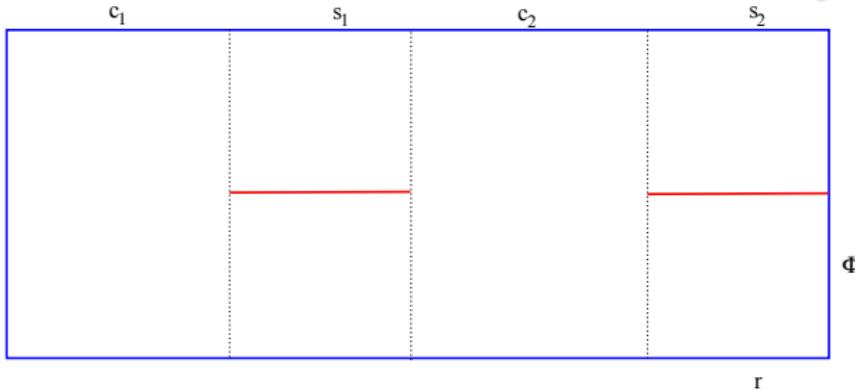
○○○
●○○

Phenomena

○○○
○○○○○○

Superdiffusion in the straight stadium I

- Gouëzel & B. 2006. $f : M \rightarrow \mathbb{R}$, $\mu(f) = 0$.
- Let $I_f = \int_{S_1 \cup S_2} f(r, \frac{\pi}{2}) dr$.
- if $I_f \neq 0$ then $\frac{S_n f}{\sqrt{n \log n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_f)$
where $D_f = \frac{4+3\log 3}{4-3\log 3} c^* |f|^2$



Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○○
○○

Other models

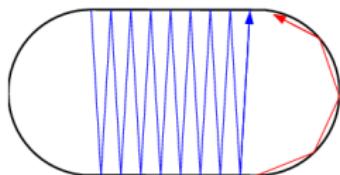
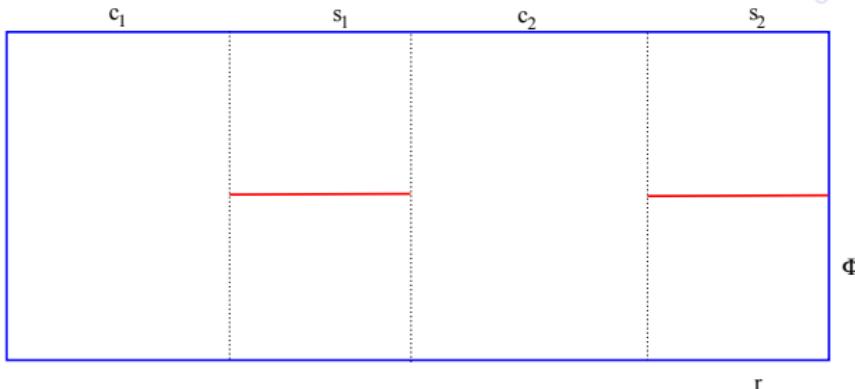
○○○
●○○

Phenomena

○○○
○○○○○○

Superdiffusion in the straight stadium I

- Gouëzel & B. 2006. $f : M \rightarrow \mathbb{R}$, $\mu(f) = 0$.
- Let $I_f = \int_{S_1 \cup S_2} f(r, \frac{\pi}{2}) dr$.
- if $I_f \neq 0$ then $\frac{S_nf}{\sqrt{n \log n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_f)$
where $D_f = \frac{4+3\log 3}{4-3\log 3} c^* |f|^2$



Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○○
○○

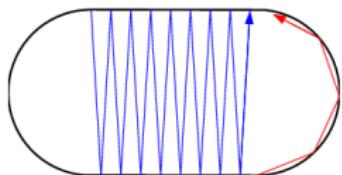
Other models

○○○
●○○

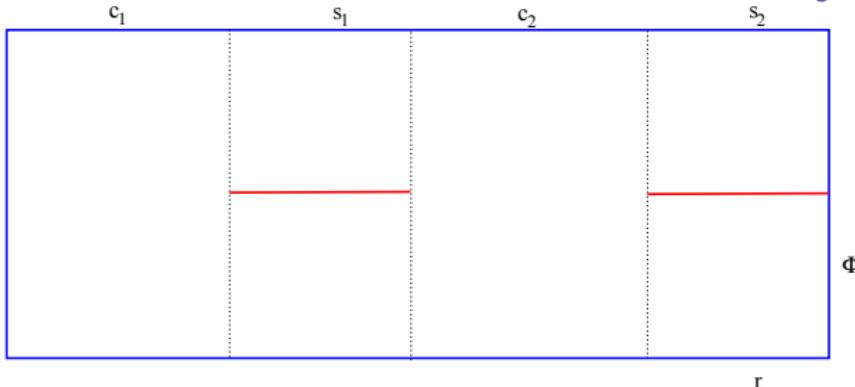
Phenomena

○○○
○○○○○

Superdiffusion in the straight stadium I



- Gouëzel & B. 2006. $f : M \rightarrow \mathbb{R}$, $\mu(f) = 0$.
- Let $I_f = \int_{S_1 \cup S_2} f(r, \frac{\pi}{2}) dr$.
- if $I_f \neq 0$ then $\frac{S_n f}{\sqrt{n \log n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_f)$
where $D_f = \frac{4+3\log 3}{4-3\log 3} c^* |I_f|^2$



Known results

New “results”

Skeletons of arguments

Other models

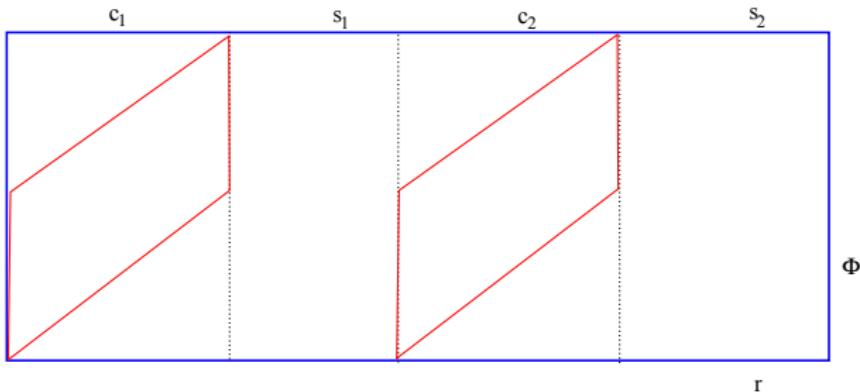
Phenomena

6

A 2x2 grid of four small, light-gray circles, centered on the page.

Why $\frac{4+3\log 3}{4-3\log 3}$?

- \hat{M} : leaving one of the semicircular arcs.
 - in cusp or infinite horizon horizon:
 $E(R(Tx)|R(x) = K) = c\sqrt{K}(1 + o(1))$
 - in stadium: $E(R(Tx)|R(x) = K) = \alpha K(1 + o(1))$ for some $\alpha < 1$, computable \implies i.i.d. clusters



Known results

New “results”

Skeletons of arguments

Other models

Phenomena

8

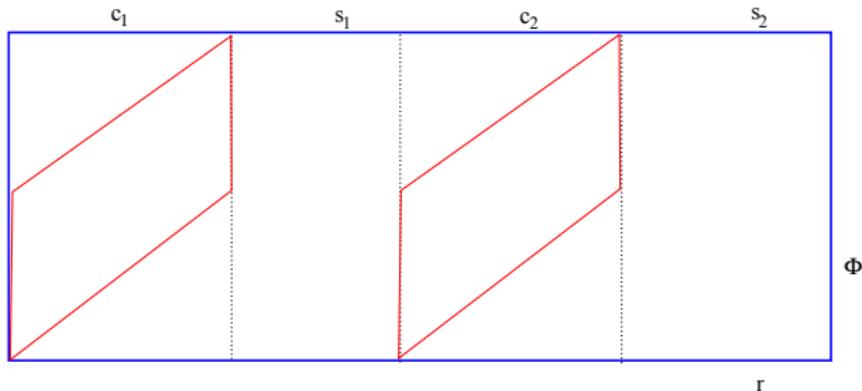
A 2x2 grid of four small, light-gray circles, centered on the page.

10

Why $\frac{4+3\log 3}{4-3\log 3}$?

- \hat{M} : leaving one of the semicircular arcs.
- in **cusp** or infinite horizon horizon:

$$E(R(Tx)|R(x) = K) = c\sqrt{K}(1 + o(1))$$
- in stadium: $E(R(Tx)|R(x) = K) = \alpha K(1 + o(1))$ for some $\alpha < 1$, computable \implies i.i.d. clusters



Known results

New "results"

Skeletons of arguments

Other models

Phenomena

4

8

100

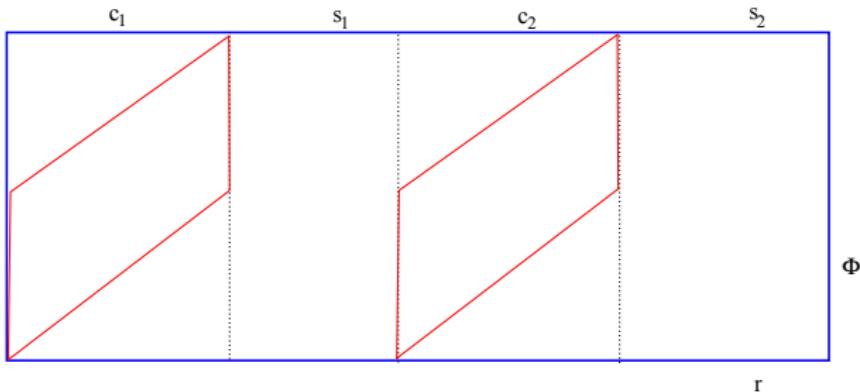
3

A series of small, empty circles arranged in two rows. The top row contains three circles. The bottom row contains six circles, positioned directly below the first three of the top row.

Why $\frac{4+3\log 3}{4-3\log 3}$?

- \hat{M} : leaving one of the semicircular arcs.
- in **cusp** or infinite horizon horizon:

$$E(R(Tx)|R(x) = K) = c\sqrt{K}(1 + o(1))$$
- in **stadium**: $E(R(Tx)|R(x) = K) = \alpha K(1 + o(1))$ for some $\alpha < 1$, computable \implies i.i.d. clusters



Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○○
○○

Other models

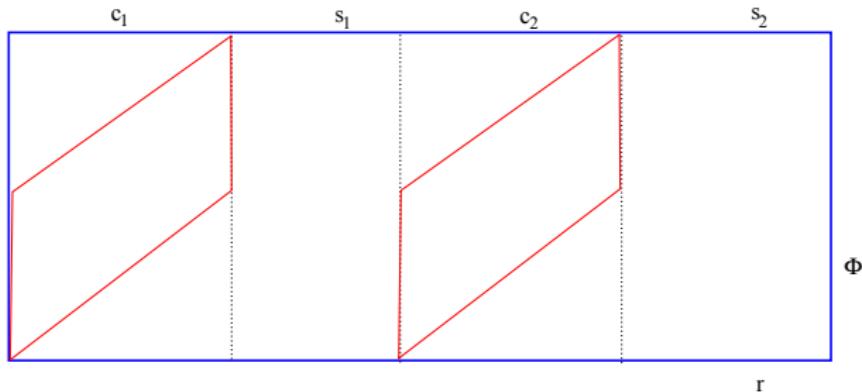
○○○
○●○

Phenomena

○○○
○○○○○

$$\text{Why } \frac{4+3\log 3}{4-3\log 3}?$$

- \hat{M} : leaving one of the semicircular arcs.
- in **cusp** or infinite horizon horizon:
 $E(R(Tx)|R(x) = K) = c\sqrt{K}(1 + o(1))$
- in **stadium**: $E(R(Tx)|R(x) = K) = \alpha K(1 + o(1))$ for some $\alpha < 1$, computable \Rightarrow i.i.d. **clusters**



What is a good candidate for ε ?

Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○○
○○

Other models

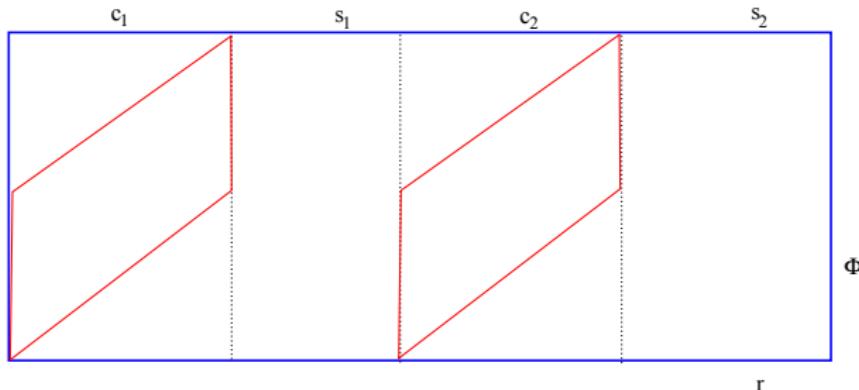
○○○
○●○

Phenomena

○○○
○○○○○

$$\text{Why } \frac{4+3\log 3}{4-3\log 3}?$$

- \hat{M} : leaving one of the semicircular arcs.
- in **cusp** or infinite horizon horizon:
 $E(R(Tx)|R(x) = K) = c\sqrt{K}(1 + o(1))$
- in **stadium**: $E(R(Tx)|R(x) = K) = \alpha K(1 + o(1))$ for some $\alpha < 1$, computable \Rightarrow i.i.d. **clusters**



What is a good candidate for ε ?

Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○○
○○

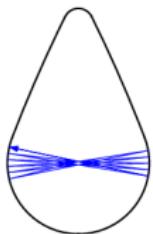
Other models

○○○
○○●

Phenomena

○○○
○○○○○

Skewed stadium, squashes



skewed stadia: similar, bouncing \Rightarrow
diametrical

Numerics and heuristic reasoning: Ergodicity for large enough finite c (Halász, Sanders, Tahuilán, B., submitted)

Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○○
○○

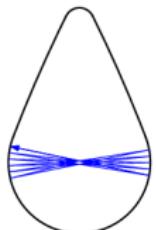
Other models

○○○
○○●

Phenomena

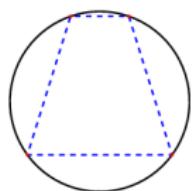
○○○
○○○○○

Skewed stadium, squashes

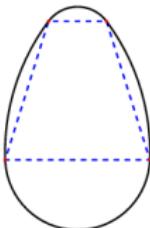


skewed stadia: similar, bouncing \Rightarrow diametrical

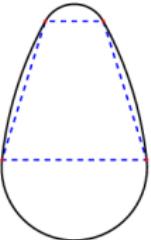
$c = 1$



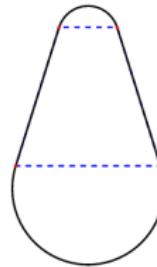
$c = 3$



$c = 5$



$c = 1000$



Numerics and heuristic reasoning: Ergodicity for large enough finite c (Halász, Sanders, Tahuilán, B., submitted)

Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○○
○○

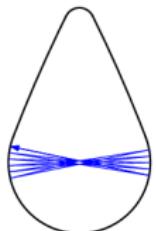
Other models

○○○
○○●

Phenomena

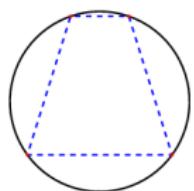
○○○
○○○○○

Skewed stadium, squashes

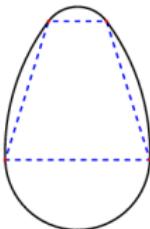


skewed stadia: similar, bouncing \Rightarrow diametrical

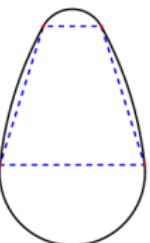
$c = 1$



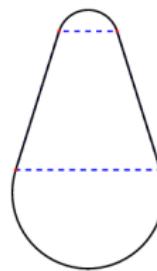
$c = 3$



$c = 5$



$c = 1000$



Numerics and heuristic reasoning: Ergodicity for large enough finite c (Halász, Sanders, Tahuilán, B., submitted)

Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○○
○○

Other models

○○○
○○○

Phenomena

●○○
○○○○○○

Corner series

For simplicity assume that C_1 and C_2 are circles of radius 1.

Coordinates: α distance from cusp, $\gamma = \frac{\pi}{2} - \phi$

- while going down the cusp: α decreases, $\gamma : 0 \longrightarrow \frac{\pi}{2}$
- while coming out of the cusp: α increases, $\gamma : \frac{\pi}{2} \longrightarrow \pi$

Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○○
○○

Other models

○○○
○○○

Phenomena

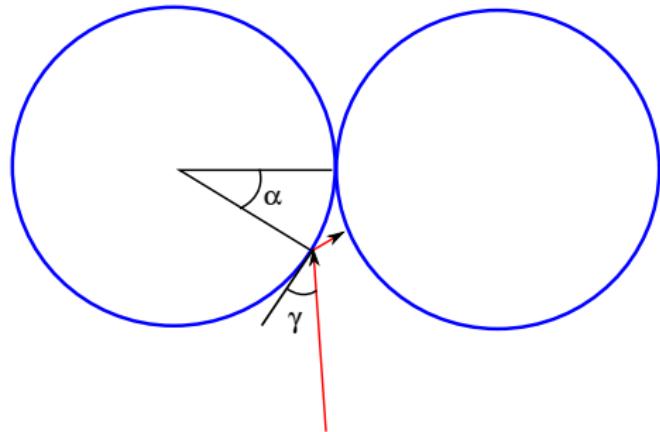
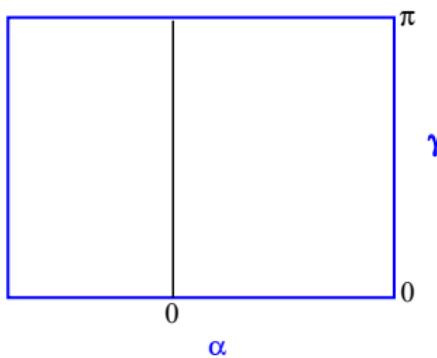
●○○
○○○○○○

Corner series

For simplicity assume that C_1 and C_2 are circles of radius 1.

Coordinates: α distance from cusp, $\gamma = \frac{\pi}{2} - \phi$

- while going down the cusp: α decreases, $\gamma : 0 \longrightarrow \frac{\pi}{2}$
- while coming out of the cusp: α increases, $\gamma : \frac{\pi}{2} \longrightarrow \pi$



Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○○
○○

Other models

○○○
○○○

Phenomena

●○○
○○○○○○

Corner series

For simplicity assume that C_1 and C_2 are circles of radius 1.

Coordinates: α distance from cusp, $\gamma = \frac{\pi}{2} - \phi$

- while **going down** the cusp: α decreases, $\gamma : 0 \longrightarrow \frac{\pi}{2}$
- while **coming out** of the cusp: α increases, $\gamma : \frac{\pi}{2} \longrightarrow \pi$

Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○○
○○

Other models

○○○
○○○

Phenomena

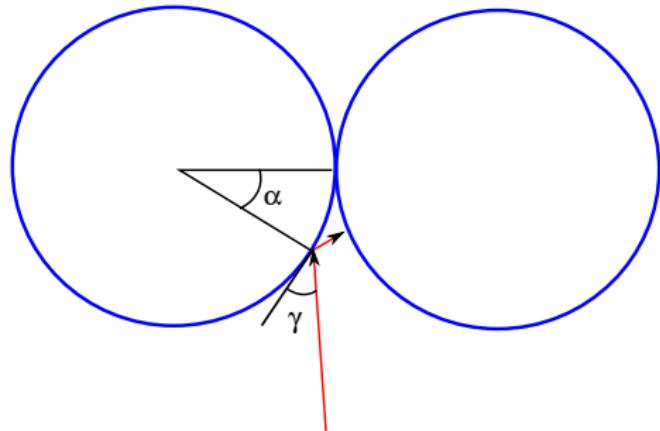
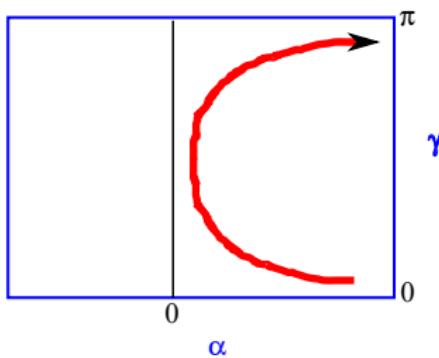
●○○
○○○○○

Corner series

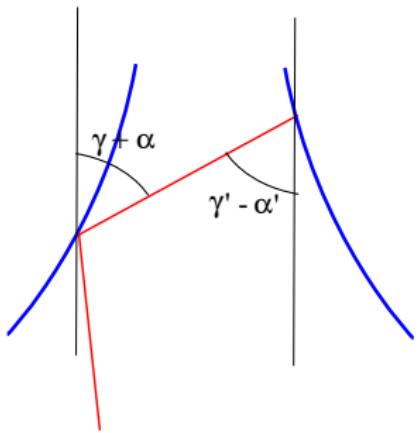
For simplicity assume that C_1 and C_2 are circles of radius 1.

Coordinates: α distance from cusp, $\gamma = \frac{\pi}{2} - \phi$

- while **going down** the cusp: α decreases, $\gamma : 0 \longrightarrow \frac{\pi}{2}$
- while **coming out** of the cusp: α increases, $\gamma : \frac{\pi}{2} \longrightarrow \pi$



Equations of motion



$$\gamma' - \alpha' = \alpha + \gamma$$

$$b = \sin \alpha - \sin \alpha';$$

$$a = 2 - \cos \alpha - \cos \alpha'$$

and

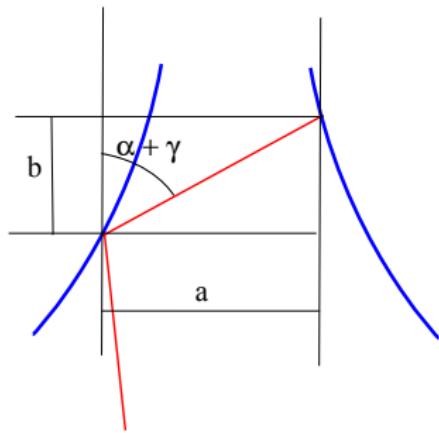
$$b = a \tan(\alpha + \gamma)$$

$$\sin \alpha' - \sin \alpha = -\frac{2 - \cos \alpha' - \cos \alpha}{\tan(\alpha + \gamma)}$$

- Throughout the corner series: $\alpha \ll 1$, $\alpha < \gamma$;
- in a “large part” of the corner series: $\alpha \ll \gamma$.

$$\gamma' - \gamma \approx 2\alpha; \quad \alpha' - \alpha \approx -\frac{\alpha^2}{\tan(\gamma)}.$$

Equations of motion



$$\gamma' - \alpha' = \alpha + \gamma$$

$$b = \sin \alpha - \sin \alpha';$$

$$a = 2 - \cos \alpha - \cos \alpha'$$

and

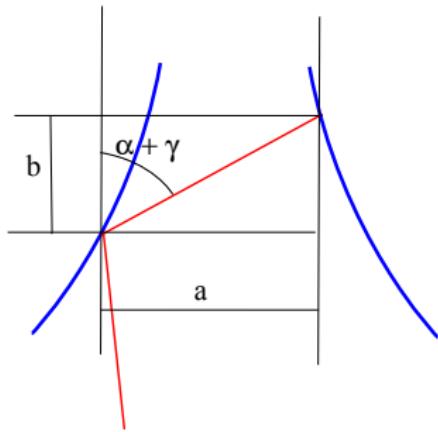
$$b = a \tan(\alpha + \gamma)$$

$$\sin \alpha' - \sin \alpha = -\frac{2 - \cos \alpha' - \cos \alpha}{\tan(\alpha + \gamma)}$$

- Throughout the corner series: $\alpha \ll 1$, $\alpha < \gamma$;
- in a “large part” of the corner series: $\alpha \ll \gamma$.

$$\gamma' - \gamma \approx 2\alpha; \quad \alpha' - \alpha \approx -\frac{\alpha^2}{\tan(\gamma)}.$$

Equations of motion



$$\gamma' - \alpha' = \alpha + \gamma$$

$$b = \sin \alpha - \sin \alpha';$$

$$a = 2 - \cos \alpha - \cos \alpha'$$

and

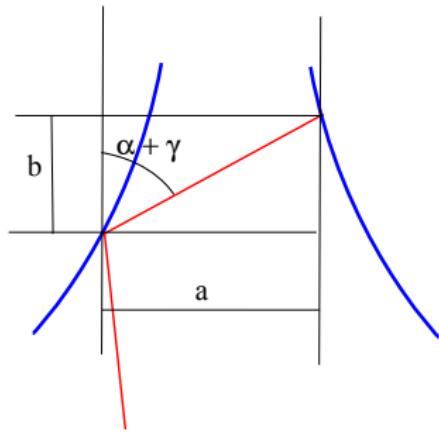
$$b = a \tan(\alpha + \gamma)$$

$$\sin \alpha' - \sin \alpha = -\frac{2 - \cos \alpha' - \cos \alpha}{\tan(\alpha + \gamma)}$$

- Throughout the corner series: $\alpha \ll 1$, $\alpha < \gamma$;
- in a “large part” of the corner series: $\alpha \ll \gamma$.

$$\gamma' - \gamma \approx 2\alpha; \quad \alpha' - \alpha \approx -\frac{\alpha^2}{\tan(\gamma)}.$$

Equations of motion



$$\gamma' - \alpha' = \alpha + \gamma$$

$$b = \sin \alpha - \sin \alpha';$$

$$a = 2 - \cos \alpha - \cos \alpha'$$

and

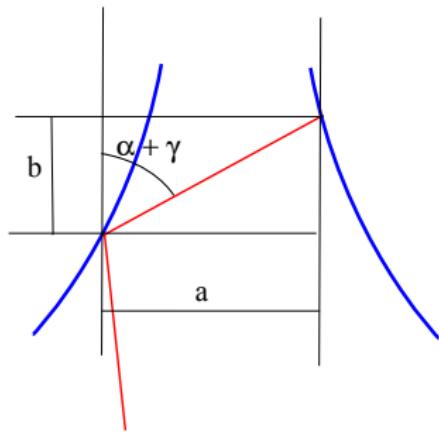
$$b = a \tan(\alpha + \gamma)$$

$$\sin \alpha' - \sin \alpha = -\frac{2 - \cos \alpha' - \cos \alpha}{\tan(\alpha + \gamma)}$$

- Throughout the corner series: $\alpha \ll 1$, $\alpha < \gamma$;
- in a “large part” of the corner series: $\alpha \ll \gamma$.

$$\gamma' - \gamma \approx 2\alpha; \quad \alpha' - \alpha \approx -\frac{\alpha^2}{\tan(\gamma)}.$$

Equations of motion



$$\gamma' - \alpha' = \alpha + \gamma$$

$$b = \sin \alpha - \sin \alpha';$$

$$a = 2 - \cos \alpha - \cos \alpha'$$

and

$$b = a \tan(\alpha + \gamma)$$

$$\sin \alpha' - \sin \alpha = -\frac{2 - \cos \alpha' - \cos \alpha}{\tan(\alpha + \gamma)}$$

- Throughout the corner series: $\alpha \ll 1$, $\alpha < \gamma$;
- in a “large part” of the corner series: $\alpha \ll \gamma$.

$$\gamma' - \gamma \approx 2\alpha; \quad \alpha' - \alpha \approx -\frac{\alpha^2}{\tan(\gamma)}.$$

Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○○
○○

Other models

○○○
○○○

Phenomena

○○●
○○○○○

Flow approximation

$$\gamma' - \gamma \approx 2\alpha; \quad \alpha' - \alpha \approx -\frac{\alpha^2}{\tan(\gamma)} \quad \text{well approximated by}$$

$$\dot{\gamma} = 2\alpha; \quad \dot{\alpha} = -\frac{\alpha^2}{\tan(\gamma)}.$$

$J = \alpha^2 \sin \gamma$ is first integral, so $\dot{\gamma} = 2\sqrt{\frac{J}{\sin \gamma}}$, $dt = \frac{2\sqrt{\sin \gamma}}{\sqrt{J}} d\gamma$

proportion of time between γ_1 and γ_2 $\approx \int_{\gamma_1}^{\gamma_2} \sqrt{\sin \gamma} d\gamma$.

Recall $I_f = c \int_{-\pi/2}^{\pi/2} (f(r_1, \phi) + f(r_2, \phi)) \sqrt{\cos(\phi)} d\phi$.

length of the excursion $R = cJ^{-\frac{1}{2}} \int_0^{\pi} \sqrt{\sin \gamma} d\gamma = cJ^{-\frac{1}{2}}$

hence $\mu(H_n) = \mu(R > n) = \mu(J < \frac{c}{n^2}) = \mu(\alpha^2 \gamma < \frac{c}{n^2}) = \frac{c}{n^2}$.

Flow approximation

$$\gamma' - \gamma \approx 2\alpha; \quad \alpha' - \alpha \approx -\frac{\alpha^2}{\tan(\gamma)} \quad \text{well approximated by}$$

$$\dot{\gamma} = 2\alpha; \quad \dot{\alpha} = -\frac{\alpha^2}{\tan(\gamma)}.$$

$J = \alpha^2 \sin \gamma$ is first integral, so $\dot{\gamma} = 2\sqrt{\frac{J}{\sin \gamma}}$, $dt = \frac{2\sqrt{\sin \gamma}}{\sqrt{J}} d\gamma$
 proportion of time between γ_1 and γ_2 $\approx \int_{\gamma_1}^{\gamma_2} \sqrt{\sin \gamma} d\gamma$.

Recall $I_f = c \int_{-\pi/2}^{\pi/2} (f(r_1, \phi) + f(r_2, \phi)) \sqrt{\cos(\phi)} d\phi$.

length of the excursion $R = c J^{-\frac{1}{2}} \int_0^{\pi} \sqrt{\sin \gamma} d\gamma = c J^{-\frac{1}{2}}$

hence $\mu(H_n) = \mu(R > n) = \mu(J < \frac{c}{n^2}) = \mu(\alpha^2 \gamma < \frac{c}{n^2}) = \frac{c}{n^2}$.

Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○○
○○

Other models

○○○
○○○

Phenomena

○○●
○○○○○

Flow approximation

$$\gamma' - \gamma \approx 2\alpha; \quad \alpha' - \alpha \approx -\frac{\alpha^2}{\tan(\gamma)} \quad \text{well approximated by}$$

$$\dot{\gamma} = 2\alpha; \quad \dot{\alpha} = -\frac{\alpha^2}{\tan(\gamma)}.$$

$J = \alpha^2 \sin \gamma$ is first integral, so $\dot{\gamma} = 2\sqrt{\frac{J}{\sin \gamma}}$, $dt = \frac{2\sqrt{\sin \gamma}}{\sqrt{J}} d\gamma$

proportion of time between γ_1 and γ_2 $\approx \int_{\gamma_1}^{\gamma_2} \sqrt{\sin \gamma} d\gamma$.

Recall $I_f = c \int_{-\pi/2}^{\pi/2} (f(r_1, \phi) + f(r_2, \phi)) \sqrt{\cos(\phi)} d\phi$.

length of the excursion $R = cJ^{-\frac{1}{2}} \int_0^{\pi} \sqrt{\sin \gamma} d\gamma = cJ^{-\frac{1}{2}}$

hence $\mu(H_n) = \mu(R > n) = \mu(J < \frac{c}{n^2}) = \mu(\alpha^2 \gamma < \frac{c}{n^2}) = \frac{c}{n^2}$.

Flow approximation

$$\gamma' - \gamma \approx 2\alpha; \quad \alpha' - \alpha \approx -\frac{\alpha^2}{\tan(\gamma)} \quad \text{well approximated by}$$

$$\dot{\gamma} = 2\alpha; \quad \dot{\alpha} = -\frac{\alpha^2}{\tan(\gamma)}.$$

$J = \alpha^2 \sin \gamma$ is first integral, so $\dot{\gamma} = 2\sqrt{\frac{J}{\sin \gamma}}$, $dt = \frac{2\sqrt{\sin \gamma}}{\sqrt{J}} d\gamma$

proportion of time between γ_1 and γ_2 $\approx \int_{\gamma_1}^{\gamma_2} \sqrt{\sin \gamma} d\gamma$.

Recall $I_f = c \int_{-\pi/2}^{\pi/2} (f(r_1, \phi) + f(r_2, \phi)) \sqrt{\cos(\phi)} d\phi$.

length of the excursion $R = cJ^{-\frac{1}{2}} \int_0^{\pi} \sqrt{\sin \gamma} d\gamma = cJ^{-\frac{1}{2}}$

hence $\mu(H_n) = \mu(R > n) = \mu(J < \frac{c}{n^2}) = \mu(\alpha^2 \gamma < \frac{c}{n^2}) = \frac{c}{n^2}$.

Flow approximation

$$\gamma' - \gamma \approx 2\alpha; \quad \alpha' - \alpha \approx -\frac{\alpha^2}{\tan(\gamma)} \quad \text{well approximated by}$$

$$\dot{\gamma} = 2\alpha; \quad \dot{\alpha} = -\frac{\alpha^2}{\tan(\gamma)}.$$

$J = \alpha^2 \sin \gamma$ is first integral, so $\dot{\gamma} = 2\sqrt{\frac{J}{\sin \gamma}}$, $dt = \frac{2\sqrt{\sin \gamma}}{\sqrt{J}} d\gamma$
 proportion of time between γ_1 and γ_2 $\approx \int_{\gamma_1}^{\gamma_2} \sqrt{\sin \gamma} d\gamma$.

Recall $I_f = c \int_{-\pi/2}^{\pi/2} (f(r_1, \phi) + f(r_2, \phi)) \sqrt{\cos(\phi)} d\phi$.

length of the excursion $R = c J^{-\frac{1}{2}} \int_0^{\pi} \sqrt{\sin \gamma} d\gamma = c J^{-\frac{1}{2}}$

hence $\mu(H_n) = \mu(R > n) = \mu(J < \frac{c}{n^2}) = \mu(\alpha^2 \gamma < \frac{c}{n^2}) = \frac{c}{n^2}$.

Flow approximation

$$\gamma' - \gamma \approx 2\alpha; \quad \alpha' - \alpha \approx -\frac{\alpha^2}{\tan(\gamma)} \quad \text{well approximated by}$$

$$\dot{\gamma} = 2\alpha; \quad \dot{\alpha} = -\frac{\alpha^2}{\tan(\gamma)}.$$

$J = \alpha^2 \sin \gamma$ is first integral, so $\dot{\gamma} = 2\sqrt{\frac{J}{\sin \gamma}}$, $dt = \frac{2\sqrt{\sin \gamma}}{\sqrt{J}} d\gamma$
 proportion of time between γ_1 and γ_2 $\approx \int_{\gamma_1}^{\gamma_2} \sqrt{\sin \gamma} d\gamma$.

Recall $I_f = c \int_{-\pi/2}^{\pi/2} (f(r_1, \phi) + f(r_2, \phi)) \sqrt{\cos(\phi)} d\phi$.

length of the excursion $R = cJ^{-\frac{1}{2}} \int_0^{\pi} \sqrt{\sin \gamma} d\gamma = cJ^{-\frac{1}{2}}$

hence $\mu(H_n) = \mu(R > n) = \mu(J < \frac{c}{n^2}) = \mu(\alpha^2 \gamma < \frac{c}{n^2}) = \frac{c}{n^2}$.

Flow approximation

$$\gamma' - \gamma \approx 2\alpha; \quad \alpha' - \alpha \approx -\frac{\alpha^2}{\tan(\gamma)} \quad \text{well approximated by}$$

$$\dot{\gamma} = 2\alpha; \quad \dot{\alpha} = -\frac{\alpha^2}{\tan(\gamma)}.$$

$J = \alpha^2 \sin \gamma$ is first integral, so $\dot{\gamma} = 2\sqrt{\frac{J}{\sin \gamma}}$, $dt = \frac{2\sqrt{\sin \gamma}}{\sqrt{J}} d\gamma$
 proportion of time between γ_1 and γ_2 $\approx \int_{\gamma_1}^{\gamma_2} \sqrt{\sin \gamma} d\gamma$.

Recall $I_f = c \int_{-\pi/2}^{\pi/2} (f(r_1, \phi) + f(r_2, \phi)) \sqrt{\cos(\phi)} d\phi$.

length of the excursion $R = c J^{-\frac{1}{2}} \int_0^{\pi} \sqrt{\sin \gamma} d\gamma = c J^{-\frac{1}{2}}$

hence $\mu(H_n) = \mu(R > n) = \mu(J < \frac{c}{n^2}) = \mu(\alpha^2 \gamma < \frac{c}{n^2}) = \frac{c}{n^2}$.

Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○○
○○

Other models

○○○
○○○

Phenomena

○○○
●○○○○○

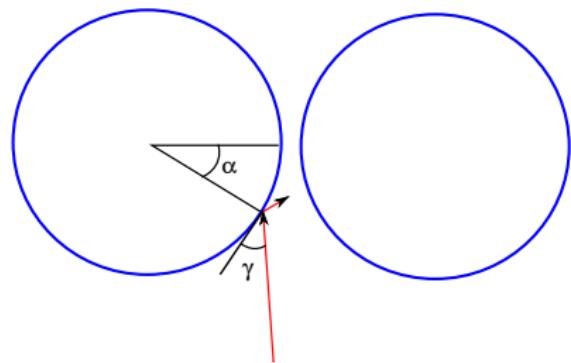
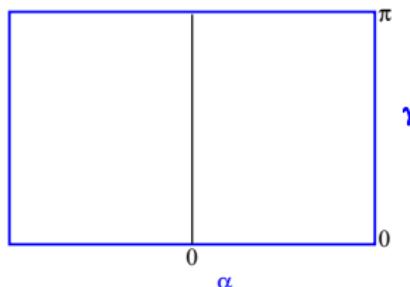
Corner series for tunnel

Coordinates: α, γ as for cusp

$$\gamma' - \alpha' = \alpha + \gamma$$

$$a = 2 - \cos \alpha - \cos \alpha' + \varepsilon$$

$$\sin \alpha' - \sin \alpha = -\frac{2 - \cos \alpha' - \cos \alpha + \varepsilon}{\tan(\alpha + \gamma)}$$



Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○○
○○

Other models

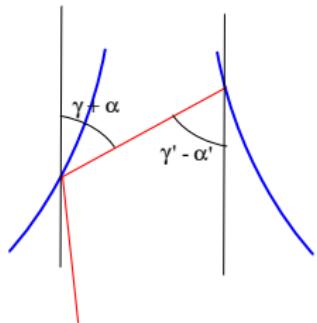
○○○
○○○

Phenomena

○○○
●○○○○○

Corner series for tunnel

Coordinates: α, γ as for cusp



$$a = 2 - \cos \alpha - \cos \alpha' + \varepsilon$$

$$\gamma' - \alpha' = \alpha + \gamma$$

$$\sin \alpha' - \sin \alpha = -\frac{2 - \cos \alpha' - \cos \alpha + \varepsilon}{\tan(\alpha + \gamma)}$$

Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○○
○○

Other models

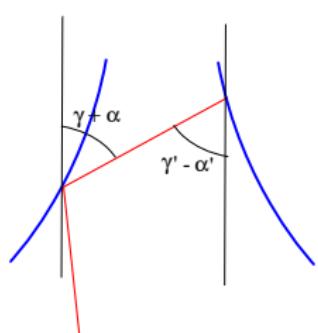
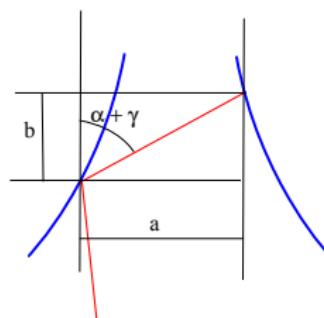
○○○
○○○

Phenomena

○○○
●○○○○○

Corner series for tunnel

Coordinates: α, γ as for cusp



$$\gamma' - \alpha' = \alpha + \gamma$$

$$a = 2 - \cos \alpha - \cos \alpha' + \varepsilon$$

$$\sin \alpha' - \sin \alpha = -\frac{2 - \cos \alpha' - \cos \alpha + \varepsilon}{\tan(\alpha + \gamma)}$$

Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○○
○○

Other models

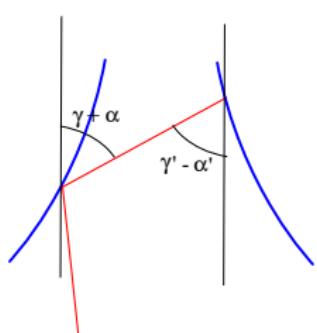
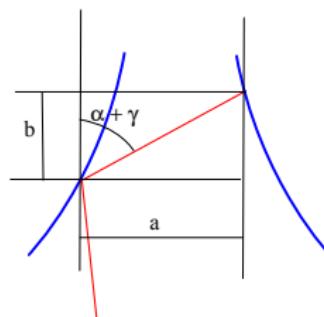
○○○
○○○

Phenomena

○○○
●○○○○○

Corner series for tunnel

Coordinates: α, γ as for cusp



$$\gamma' - \alpha' = \alpha + \gamma$$

$$a = 2 - \cos \alpha - \cos \alpha' + \varepsilon$$

$$\sin \alpha' - \sin \alpha = -\frac{2 - \cos \alpha' - \cos \alpha + \varepsilon}{\tan(\alpha + \gamma)}$$

Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○○
○○

Other models

○○○
○○○

Phenomena

○○○
○●○○○○

Flow approximation for tunnel

$$\dot{\gamma} = 2\alpha; \quad \dot{\alpha} = -\frac{\alpha^2 + \varepsilon}{\tan(\gamma)}.$$

$J = (\alpha^2 + \varepsilon) \sin \gamma$ is first integral, so $\dot{\gamma} = 2\alpha = \pm 2\sqrt{\frac{J}{\sin \gamma} - \varepsilon}$.

Fix some small δ_0 . We distinguish three cases:

$$J > \varepsilon/\delta_0, \quad J < \delta_0 \varepsilon \quad \text{and} \quad J/\varepsilon \approx 1.$$

Flow approximation for tunnel

$$\dot{\gamma} = 2\alpha; \quad \dot{\alpha} = -\frac{\alpha^2 + \varepsilon}{\tan(\gamma)}.$$

$J = (\alpha^2 + \varepsilon) \sin \gamma$ is first integral, so $\dot{\gamma} = 2\alpha = \pm 2\sqrt{\frac{J}{\sin \gamma} - \varepsilon}$.

Fix some small δ_0 . We distinguish three cases:

$$J > \varepsilon/\delta_0, \quad J < \delta_0 \varepsilon \quad \text{and} \quad J/\varepsilon \approx 1.$$

Flow approximation for tunnel

$$\dot{\gamma} = 2\alpha; \quad \dot{\alpha} = -\frac{\alpha^2 + \varepsilon}{\tan(\gamma)}.$$

$J = (\alpha^2 + \varepsilon) \sin \gamma$ is first integral, so $\dot{\gamma} = 2\alpha = \pm 2\sqrt{\frac{J}{\sin \gamma} - \varepsilon}$.

Fix some small δ_0 . We distinguish three cases:

$$J > \varepsilon/\delta_0, \quad J < \delta_0 \varepsilon \quad \text{and} \quad J/\varepsilon \approx 1.$$

Known results

○○

New "results"

○○

○○

Skeletons of arguments

○○○

○○

Other models

○○○

○○○

Phenomena

○○○

○○●○○○

Cusp case

$$J = (\alpha^2 + \varepsilon) \sin \gamma, \quad \dot{\gamma} = 2\alpha = \pm 2\sqrt{\frac{J}{\sin \gamma} - \varepsilon}$$

$J > \varepsilon/\delta_0$:

- $\alpha > 0$ and $\alpha^2 \gg \varepsilon$ throughout the excursion
- cusp estimates apply, however $R = CJ^{-1/2} \leq \frac{C}{\sqrt{\varepsilon}}$

Contribution to the variance: $\hat{\mu}(\hat{f}^2 \cdot \mathbf{1}_{L_{\frac{c}{\sqrt{\varepsilon}}}}) = D_{\hat{f}} |\log \varepsilon|$

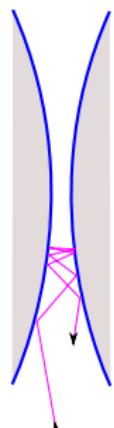
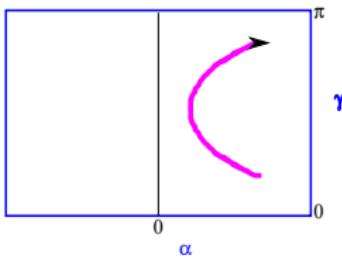
Cusp case

$$J = (\alpha^2 + \varepsilon) \sin \gamma, \quad \dot{\gamma} = 2\alpha = \pm 2\sqrt{\frac{J}{\sin \gamma} - \varepsilon}$$

$J > \varepsilon/\delta_0$:

- $\alpha > 0$ and $\alpha^2 \gg \varepsilon$ throughout the excursion
- cusp estimates apply, however $R = CJ^{-1/2} \leq \frac{C}{\sqrt{\varepsilon}}$

Contribution to the variance: $\hat{\mu}(\hat{f}^2 \cdot \mathbf{1}_{L_{\frac{c}{\sqrt{\varepsilon}}}}) = D_f |\log \varepsilon|$



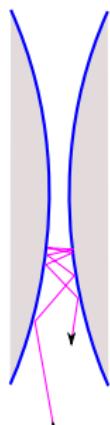
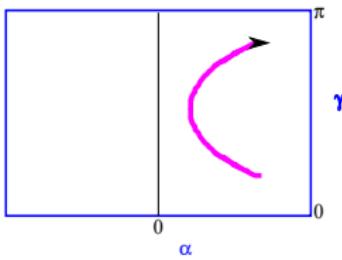
Cusp case

$$J = (\alpha^2 + \varepsilon) \sin \gamma, \quad \dot{\gamma} = 2\alpha = \pm 2\sqrt{\frac{J}{\sin \gamma} - \varepsilon}$$

$J > \varepsilon/\delta_0$:

- $\alpha > 0$ and $\alpha^2 \gg \varepsilon$ throughout the excursion
- cusp estimates apply, however $R = CJ^{-1/2} \leq \frac{C}{\sqrt{\varepsilon}}$

Contribution to the variance: $\hat{\mu}(\hat{f}^2 \cdot \mathbf{1}_{L_{\frac{c}{\sqrt{\varepsilon}}}}) = D_{\hat{f}} |\log \varepsilon|$



Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○○
○○

Other models

○○○
○○○

Phenomena

○○○
○○○●○○

Crossing case

$$J = (\alpha^2 + \varepsilon) \sin \gamma, \quad \dot{\gamma} = 2\alpha = \pm 2\sqrt{\frac{J}{\sin \gamma} - \varepsilon}$$

$J < \varepsilon\delta_0$:

- $\gamma < \gamma_0 < \frac{\pi}{2}$, however, α changes sign
- $R = CJ/\varepsilon^{3/2} \leq \frac{C}{\sqrt{\varepsilon}}$ and $\hat{\mu}(J < \varepsilon\delta_0) = \mathcal{O}(\varepsilon)$

$\mathcal{O}(1)$ contribution to the variance.

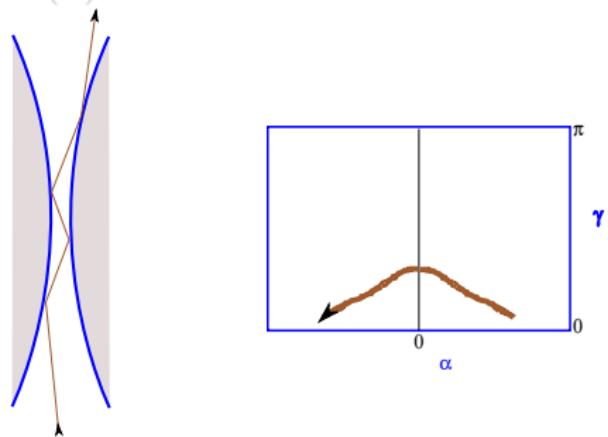
Crossing case

$$J = (\alpha^2 + \varepsilon) \sin \gamma, \quad \dot{\gamma} = 2\alpha = \pm 2\sqrt{\frac{J}{\sin \gamma} - \varepsilon}$$

$$J < \varepsilon \delta_0 :$$

- $\gamma < \gamma_0 < \frac{\pi}{2}$, however, α changes sign
- $R = CJ/\varepsilon^{3/2} \leq \frac{C}{\sqrt{\varepsilon}}$ and $\hat{\mu}(J < \varepsilon\delta_0) = O(\varepsilon)$

$\mathcal{O}(1)$ contribution to the variance.



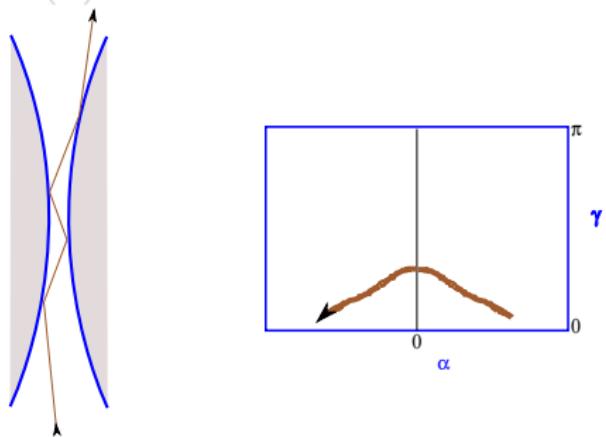
Crossing case

$$J = (\alpha^2 + \varepsilon) \sin \gamma, \quad \dot{\gamma} = 2\alpha = \pm 2\sqrt{\frac{J}{\sin \gamma} - \varepsilon}$$

$$J < \varepsilon \delta_0 :$$

- $\gamma < \gamma_0 < \frac{\pi}{2}$, however, α changes sign
- $R = CJ/\varepsilon^{3/2} \leq \frac{C}{\sqrt{\varepsilon}}$ and $\hat{\mu}(J < \varepsilon\delta_0) = \mathcal{O}(\varepsilon)$

$\mathcal{O}(1)$ contribution to the variance.



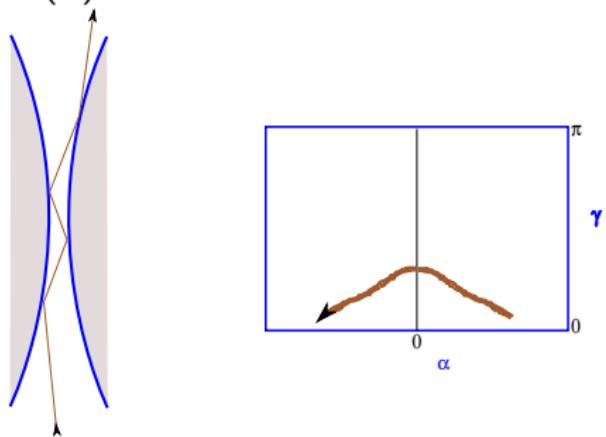
Crossing case

$$J = (\alpha^2 + \varepsilon) \sin \gamma, \quad \dot{\gamma} = 2\alpha = \pm 2\sqrt{\frac{J}{\sin \gamma} - \varepsilon}$$

$$J < \varepsilon \delta_0 :$$

- $\gamma < \gamma_0 < \frac{\pi}{2}$, however, α changes sign
- $R = CJ/\varepsilon^{3/2} \leq \frac{C}{\sqrt{\varepsilon}}$ and $\hat{\mu}(J < \varepsilon\delta_0) = \mathcal{O}(\varepsilon)$

$\mathcal{O}(1)$ contribution to the variance.



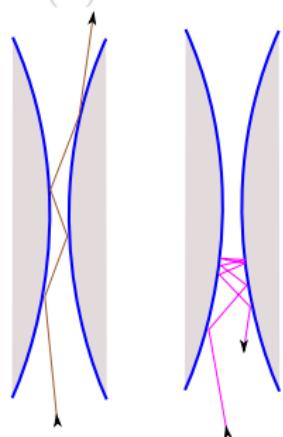
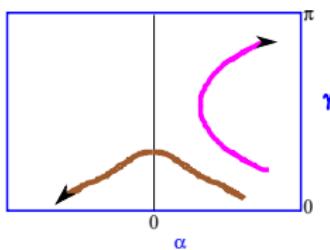
The third case

What is in between?

$\alpha = 0, \gamma = \pi/2$ is a **hyperbolic fixed point** (period two orbit)

Saddle case: if $J \approx \varepsilon$, R can be arbitrary large, however, it is dominated by the hyperbolic periodic orbit

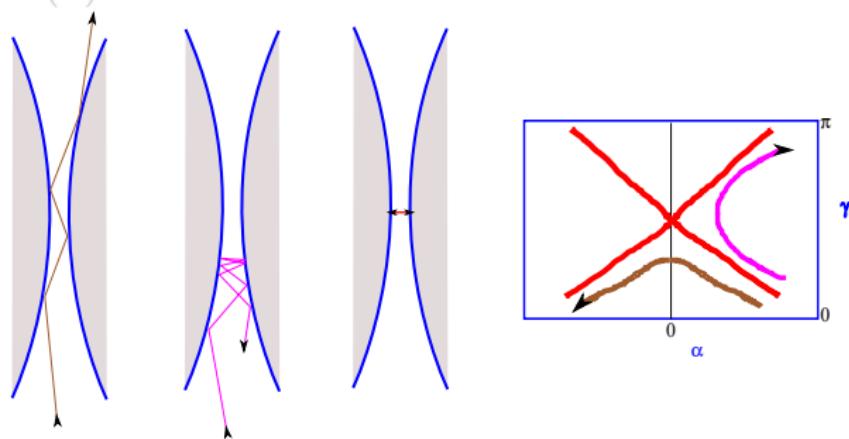
$\mathcal{O}(1)$ contribution to the variance.



The third case

What is in between?

$\alpha = 0, \gamma = \pi/2$ is a **hyperbolic fixed point** (period two orbit)



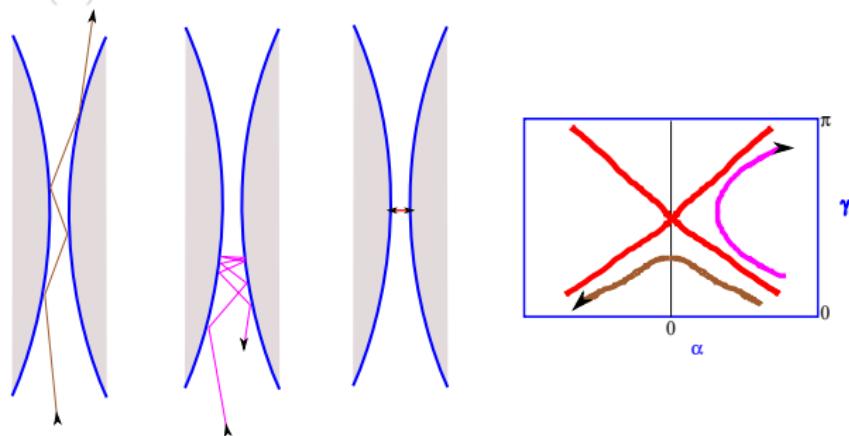
The third case

What is in between?

$\alpha = 0, \gamma = \pi/2$ is a **hyperbolic fixed point** (period two orbit)

Saddle case: if $J \approx \varepsilon$, R can be arbitrary large, however, it is dominated by the hyperbolic periodic orbit

$\mathcal{O}(1)$ contribution to the variance.



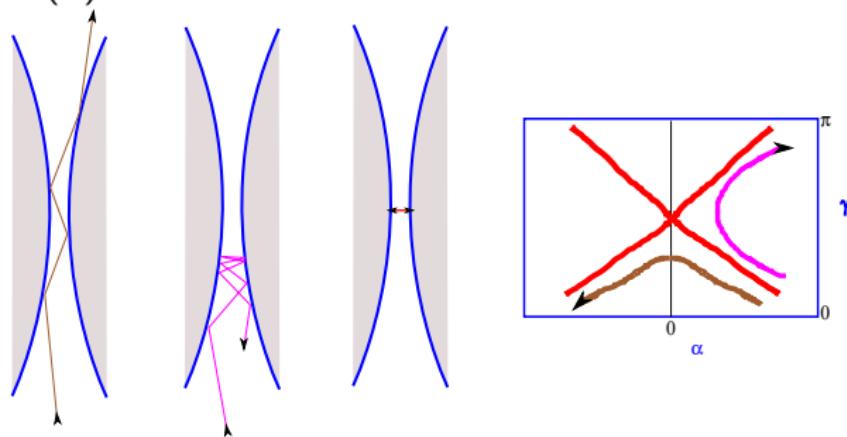
The third case

What is in between?

$\alpha = 0, \gamma = \pi/2$ is a **hyperbolic fixed point** (period two orbit)

Saddle case: if $J \approx \varepsilon$, R can be arbitrary large, however, it is dominated by the hyperbolic periodic orbit

$\mathcal{O}(1)$ contribution to the variance.



Summary and comparisions

- **Cusp:** $\frac{S_{nf}}{\sqrt{n \log n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_f)$ with explicit D_f
- **Tunnel:** $\frac{S_{nf}}{\sqrt{n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_{f,\varepsilon})$ with $D_{f,\varepsilon} = |\log \varepsilon| D_f (1 + o(1))$

Related models:

1. Infinite horizon Lorentz gas and field of strength ε
2. Stadia what is ε ?

Applications:

slow-fast systems:

Brownian motion, triangular lattice, Galton board...

Thank you for your attention!

Summary and comparisions

- **Cusp:** $\frac{S_{nf}}{\sqrt{n \log n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_f)$ with explicit D_f
- **Tunnel:** $\frac{S_{nf}}{\sqrt{n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_{f,\varepsilon})$ with $D_{f,\varepsilon} = |\log \varepsilon| D_f (1 + o(1))$

Related models:

1. Infinite horizon Lorentz gas and field of strength ε
2. Stadia what is ε ?

Applications:

slow-fast systems:

Brownian motion, triangular lattice, Galton board...

Thank you for your attention!

Known results

○○
○○

New "results"

○○
○○

Skeletons of arguments

○○○
○○

Other models

○○○
○○○

Phenomena

○○○
○○○○●

Summary and comparisions

- Cusp: $\frac{S_{nf}}{\sqrt{n \log n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_f)$ with explicit D_f
- Tunnel: $\frac{S_{nf}}{\sqrt{n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_{f,\varepsilon})$ with $D_{f,\varepsilon} = |\log \varepsilon| D_f (1 + o(1))$

Related models:

1. Infinite horizon Lorentz gas and field of strength ε
2. Stadia what is ε ?

Applications:

slow-fast systems:

Brownian motion, triangular lattice, Galton board...

Thank you for your attention!

Summary and comparisions

- **Cusp:** $\frac{S_{nf}}{\sqrt{n \log n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_f)$ with explicit D_f
- **Tunnel:** $\frac{S_{nf}}{\sqrt{n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_{f,\varepsilon})$ with $D_{f,\varepsilon} = |\log \varepsilon| D_f (1 + o(1))$

Related models:

1. Infinite horizon Lorentz gas and field of strength ε
2. Stadia what is ε ?

Applications:

slow-fast systems:

Brownian motion, triangular lattice, Galton board...

Thank you for your attention!

Summary and comparisions

- Cusp: $\frac{S_{nf}}{\sqrt{n \log n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_f)$ with explicit D_f
- Tunnel: $\frac{S_{nf}}{\sqrt{n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_{f,\varepsilon})$ with $D_{f,\varepsilon} = |\log \varepsilon| D_f (1 + o(1))$

Related models:

1. Infinite horizon Lorentz gas and field of strength ε
2. Stadia what is ε ?

Applications:

slow-fast systems:

Brownian motion, triangular lattice, Galton board...

Thank you for your attention!

Summary and comparisions

- Cusp: $\frac{S_{nf}}{\sqrt{n \log n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_f)$ with explicit D_f
- Tunnel: $\frac{S_{nf}}{\sqrt{n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_{f,\varepsilon})$ with $D_{f,\varepsilon} = |\log \varepsilon| D_f (1 + o(1))$

Related models:

1. Infinite horizon Lorentz gas and field of strength ε
2. Stadia what is ε ?

Applications:

slow-fast systems:

Brownian motion, triangular lattice, Galton board...

Thank you for your attention!

Summary and comparisions

- Cusp: $\frac{S_{nf}}{\sqrt{n \log n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_f)$ with explicit D_f
- Tunnel: $\frac{S_{nf}}{\sqrt{n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_{f,\varepsilon})$ with $D_{f,\varepsilon} = |\log \varepsilon| D_f (1 + o(1))$

Related models:

1. Infinite horizon Lorentz gas and field of strength ε
2. Stadia what is ε ?

Applications:

slow-fast systems:

Brownian motion, triangular lattice, Galton board...

Thank you for your attention!

Summary and comparisions

- Cusp: $\frac{S_{nf}}{\sqrt{n \log n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_f)$ with explicit D_f
- Tunnel: $\frac{S_{nf}}{\sqrt{n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, D_{f,\varepsilon})$ with $D_{f,\varepsilon} = |\log \varepsilon| D_f (1 + o(1))$

Related models:

1. Infinite horizon Lorentz gas and field of strength ε
2. Stadia what is ε ?

Applications:

slow-fast systems:

Brownian motion, triangular lattice, Galton board...

Thank you for your attention!