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Billiards
Q =T2?\ UI|<<:1 Cy strictly convex scatterers

e Billiard flow : St : M — M, (q,v) e M =Q x St, [v| =1
Uniform motion within Q, elastic reflection at the
boundaries
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Q =T2?\ UI|<<:1 Cy strictly convex scatterers

o Billiard map phase space: M = | J_; Mk

e (r,¢) € M, r: arclength along 9Cy, ¢ € [-7/2,7/2]
outgoing velocity angle

e invariant measure du = c cos¢drd¢
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e EDC:f,g : M — R Hélder continuous, [fdu = [gdu =0

let Cn(f,g) = pu(f -goT"), then |Cy(f,g)| < Ca" for
suitable C >0and a < 1
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Sinai billiards
Cy are C® smooth and disjoint (no corner points);
finite horizon: flight length uniformly bounded from above

e Billiard map is ergodic, K-mixing (Sinai '70)

e EDC:f,g : M — R Hélder continuous, [fdu = [gdu =0
let Cn(f,g) = pu(f -goT"), then |Cy(f,g)| < Ca" for
suitable C >0anda < 1

¢ Young '98 — tower construction with exponential tails,
e Chernov & Dolgopyat '06 — standard pairs

e CLT:letSf =f +foT +...+foT" 1, then

o0
St 2 N(0,0) where o = [f2dp+2 Y Ca(f,f).
Bunimovich & Sinai ‘81, Chernov 06, I\/rl1ellbourne '06.
e Billiard flow: F,G : M — R, C(F, G):
e stretched exponential bound, Chernov '07 (approximate
Markov partitions)
o faster than any polynomial, Melbourne '07 (Suspensions of
Young towers)
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Cusp map

C, and C, touch tangentially — unbounded
series of consecutive reflections in the vicinity
of the cusp
e Rehacek '95 ergodicity
e Machta '83 numerics and heuristic
reasoning for Cp(f,g) < 1/n
e Chernov & Markarian '07:
Cn(f,9) < C@
o Chernov & Zhang '08: Cn(f,g) < Ci
Not summable = non-standard limit law?
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Cusp flow

long collision series near the cusp correspond
to bounded flow time — flow mixes faster?
Melbourne & B. '08

e Ci(F,G) decays faster than any
polynomial

e S' admits CLT (almost sure invariance
principle)
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Cusp superdiffusion constant

“Result” (C)

e Denote byr, € C; andr, € C, the two
points that make the cusp.

/2
o Letly = [ (f(r1,¢) +f(r2,9))p(¢)do
—7/2
nfr with p(g) = —,1<50—
| Veosodo

—7/2



Known results New “results” Skeletons of arguments Other models Phenomena

(ele] [ Je] [e]e]e} 000 000
[e]e] oo [e]e] 000 000000

Cusp superdiffusion constant

“Result” (C)

e Denote byr, € C; andr, € C, the two
points that make the cusp.

/2
o Letly = [ (f(r1,¢) +f(r2,9))p(¢)do
—7/2
nfr with p(¢) = ——"— VoS¢
], veesads

o if Iy O then \/%W L. N(0,Dy)

where D = c¢*I? and c* is some numerical
constant.
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Cusp superdiffusion constant

“Result” (C)

e Denote byr, € C; andr, € C, the two
points that make the cusp.

/2
o Letly = [ (f(r1,¢) +f(r2,9))p(¢)do
—7/2
nfr with p(¢) = ——"— VoS¢
], veesads

o if Iy O then \/%W L. N(0,Dy)

where D = c¢*I? and c* is some numerical
constant.

e if I = 0 then S,f satisfies standard CLT.
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Remarks concerning the cusp flow

e if G: M — R Hoélder, then let
7(x)
g(x) = | G(x,t)dt,

0
e,
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Remarks concerning the cusp flow

e if G: M — R Hoélder, then let
7(x)
g(x) = | G(x,t)dt,
0
e and we have Iy = 0 (as 7(x) = 0 for

X = (ry, ¢)),

e,
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Remarks concerning the cusp flow

e if G: M — R Hoélder, then let

7(x)
g(x)= [ G(x,t)dt,
0
" « and we have I; = 0 (as 7(x) = 0 for
X = (r17¢))1

e hence CLT and invariance principle are
reasonable.
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Denote be T. : M — M the billiard map
same phase space, samef: M — R
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Blow-up of the variance in tunnels

“Result” (T)

Denote be T. : M — M the billiard map
same phase space, samef: M — R

o for fixed £ > 0 this is a Sinai billiard, hence
CLT:
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Blow-up of the variance in tunnels

“Result” (T)
Denote be T. : M — M the billiard map
same phase space, samef: M — R
o for fixed ¢ > O this is a Sinai billiard, hence
CLT:

D .
. S_\/% —> N(0, D¢ ) with

e D; . = D¢[loge|(1+ 0(1))
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1. Brownian Brownian motion — Chernov & Dolgopyat '09
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1. Brownian Brownian motion — Chernov & Dolgopyat '09

m < M (separation of time scales)
SDE for large particle:

dV = og(f)dw

collisions of the heavy particle with
the wall?
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Motivation

1. Brownian Brownian motion — Chernov & Dolgopyat '09

m < M (separation of time scales)
SDE for large particle:

dV = oq(f)dw

collisions of the heavy particle with
the wall?

How does the planar
diffusion depend on ¢?
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The first return map

Let M = M \ Mg where Mq is a fixed small nbd.
of the cusp.
o T :M — M first return map

|| e R : M — N unbounded return time
o f(x) = SR®£(Tkx) induced
/ observable

/\




Skeletons of arguments
@00

The first return map

Let M = M \ Mg where Mq is a fixed small nbd.
of the cusp.
o T :M — M first return map
e R : M — N unbounded return time
o f(x) = SR®£(Tkx) induced
observable
limit law for énf implies limit law for S,f
(eg. Gouézel '04)

D:
Dr = w(R)D; = 2
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Fast mixing of the first return map

Lemma (C1)

The map T : M — M is uniformly hyperbolic and it satisfies the
Growth Lemma (“Expansion prevalils fractioning”)
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The map T : M — M is uniformly hyperbolic and it satisfies the
Growth Lemma (“Expansion prevails fractioning”)

so that
e Young tower with exponential tails can be constructed

e standard pairs can be coupled at an exponential rate
Hence: EDC for Holder observables
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Fast mixing of the first return map

Lemma (C1)
The map T : M — M is uniformly hyperbolic and it satisfies the
Growth Lemma (“Expansion prevails fractioning”)

so that
e Young tower with exponential tails can be constructed
e standard pairs can be coupled at an exponential rate
Hence: EDC for Holder observables

Lemma (C2)

- foTn) <Ce withC >0,a<1lforn>1

Not for n = 0 as f is not Holder and not in L2

Summarizing: the sequence f o T behaves almost like an i.i.d.
sequence
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Blow-up of 2

e My = {x € M|R(x) = n} n-cell
* Ln =Uj<n M; low cells, Hn = Uj=n M; high cells
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Blow-up of 2

e My = {x € M|R(x) = n} n-cell
* Ln =Uj<n M; low cells, Hn = Uj=n M; high cells

Lemma (C3)

o flw, = nI(1+o(1))
w/2

(recall | =cy [ (f(r1, ) +f(r2,¢))\/cos(¢)d ¢)

—7/2
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Blow-up of 2

e My = {x € M|R(x) = n} n-cell
* Ln =Uj<n M; low cells, Hn = Uj=n M; high cells

Lemma (C3)
o flu, = ni(1+o0(1)
w/2
(recall | =cy [ (f(r1, ) +f(r2,¢))\/cos(¢)d ¢)
—7/2

* A(Hn) = (1 + 0(1)) (here cy, c; are numerical constants)
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Blow-up of 2

e My = {x € M|R(x) = n} n-cell
* Ln =Uj<n M; low cells, Hn = Uj=n M; high cells

Lemma (C3)
o flu, = ni(1+o0(1)
w/2
(recall | =cy [ (f(r1, ) +f(r2,¢))\/cos(¢)d ¢)
—7/2

* A(Hn) = (1 + 0(1)) (here cy, c; are numerical constants)
o hence A(f2 - 1|,) = 2lognD;(1 + 0(1))
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Blow-up of 2

e My = {x € M|R(x) = n} n-cell
* Ln =Uj<n M; low cells, Hn = Uj=n M; high cells

Lemma (C3)
o flu, = ni(1+o0(1)
w/2
(recall | =cy [ (f(r1, ) +f(r2,¢))\/cos(¢)d ¢)
—7/2

* A(Hn) = (1 + 0(1)) (here cy, c; are numerical constants)
o hence A(f2 - 1|,) = 2lognD;(1 + 0(1))

iff o T" were i.i.d, it would belong to the non-standard domain
of attraction of the normal law
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First return map for tunnel

T.: M — M, Mg: same nbd. for any e,
M =M\ Mg
Return map T. : M — M and return time R,
dependon e

1\/‘[0‘i
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First return map for tunnel

T.: M — M, Mg: same nbd. for any e,

M =M\ Mg

Return map T. : M — M and return time R,
dependon e

Lemma (T1)

| The map T. : M — M satisfies the Growth
M. £ Lemma and EDC for Holder observables
B uniformly in e.
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First return map for tunnel

T.: M — M, Mg: same nbd. for any e,

M =M\ Mg

Return map T. : M — M and return time R,
dependon e

Lemma (T1)

The map T. : M — M satisfies the Growth
M. £ Lemma and EDC for Holder observables
B uniformly in ¢.

Lemma (T2)

. -f.oTh) <Ce ™ withC > 0,0 < 1
independent of ¢
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First return map for tunnel

T.: M — M, Mg: same nbd. for any e,

M =M\ Mg

Return map T. : M — M and return time R,
dependon e

Lemma (T1)

The map T. : M — M satisfies the Growth
M. £ Lemma and EDC for Holder observables
B uniformly in ¢.

Lemma (T2)

. -f.oTh) <Ce ™ withC > 0,0 < 1
independent of ¢

Hence CLT for Syf. with variance

Dy . = A(f2) +0(1): _

correlations do not contribute to the main term.
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MOJL[ Lemma (T3)

/ \ i(f2) = |log |D;(1 + o(1))

Blow-up of {2
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Blow-up of {2

M(.J ‘
All these Lemmas require: detailed geometric analysis of the
cells My (measures, unstable and stable dimensions etc...)

Lemma (T3)
ii(f2) = loge|D;(1 + (1))



Known results New “results Skeletons of arguments Other models
00 oo 000
[o]e] oo oce

Phenomena
000 000

000 000000

Blow-up of {2

| |
M, £

|
All these Lemmas require: detailed geometric analysis of the

cells My (measures, unstable and stable dimensions etc...)

e For cusp, mostly (but not completely) done by Chernov &
Markarian

Lemma (T3)
ii(f2) = loge|D;(1 + (1))
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M,

/\

All these Lemmas require: detailed geometric analysis of the
cells My (measures, unstable and stable dimensions etc...)

e For cusp, mostly (but not completely) done by Chernov &
Markarian

e For tunnel, requires new ideas & technical work (in
progress)

oe

Blow-up of {2

Lemma (T3)
ii(f2) = loge|D;(1 + (1))
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Superdiffusion

e Collision map: growth lemma, Young tower, EDC for Holder
— Chernov 1999
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— Chernov 1999

e an observable of particular interest: L(x) free flight (vector)
— neither Holder, nor in L?
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Superdiffusion

Collision map: growth lemma, Young tower, EDC for Holder
— Chernov 1999

an observable of particular interest: L(x) free flight (vector)
— neither Holder, nor in L?

Sn—ToLgn L, N(0,D.) — Szasz & Varjii 2006

D, is determined by the blow-up of the variance — corridor
sum

OOO0O
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e Add field E transversal to corridors, |E| = < 1
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e Add field E transversal to corridors, |E| = < 1

o -+ thermostating: Gaussianv = E — (E,v)v
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Infinite horizon with field |

e Add field E transversal to corridors, |E| = < 1
o -+ thermostating: Gaussianv = E — (E,v)v

e free flight L. < % is bounded, but depends on ¢ .

LOC

Phenomena
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Infinite horizon with field Il
Chernov-Dolgopyat 2009:

¢ SRB measure (non-equilibrium steady state) u.
e currentJ = (L)
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Infinite horizon with field Il
Chernov-Dolgopyat 2009:

¢ SRB measure (non-equilibrium steady state) u.
o currentJ = p.(L.)= 3|log|DLE + O(¢)
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Infinite horizon with field Il

Chernov-Dolgopyat 2009:
¢ SRB measure (non-equilibrium steady state) u.
o currentJ = p.(L.)= 3|log|DLE + O(¢)

o fluctuations: Lff” L. N(0,D.) with
D. = |loge|Di (1 + 0(1)).

LOOC

Phenomena

000
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Superdiffusion in the straight stadium |

« Gouézel & B. 2006. f : M — R,
u(f) = 0.

€y Sy Cy Sy
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Summary and comparisions

. __ Saf D ; i
e Cusp: oo = N/(0, Ds) with explicit Dg
e Tunnel: S—\/”ﬁf SN N (0, Ds ) with D . = [log ¢|Ds(1 + 0(1))

Related models:

1. Infinite horizon Lorentz gas and field of strength ¢
2. Stadia what is ?

Applications:

slow-fast systems:
Brownian Brownian motion, triangular lattice, Galton board...

Thank you for your attention!
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