Lecture I: Dispersing billiards in 2D and 3D

Péter Bálint

Institute of Mathematics
Budapest University of Technology and Economics

Mathematical Billiards and their Applications
University of Bristol, June 2010
Plan

1. Today: Dispersing (Sinai) Billiards
 - in $2D$: uniform hyperbolicity, strong ergodic properties
 - in $3D$: similar phenomena, but serious technical complications

2. Tomorrow: Planar billiards with intermittency.
 - billiards with cusps and tunnels: WIP with Chernov and Dolgopyat
 - comparisons: stadia, infinite horizon...
Plan

1. Today: Dispersing (Sinai) Billiards
 - in $2D$: uniform hyperbolicity, strong ergodic properties
 - in $3D$: similar phenomena, but serious technical complications

2. Tomorrow: Planar billiards with intermittency.
 - billiards with cusps and tunnels: WIP with Chernov and Dolgopyat
 - comparisons: stadia, infinite horizon...
Outline for Lecture I

Planar dispersing billiards
Results
Phenomena

Dispersing Billiards in 3D
Results
Phenomena

Singularities in 3D dispersing billiards
Unbounded curvature
Example with exponential complexity
Billiards in 2D

\(Q = \mathbb{T}^2 \setminus \bigcup_{k=1}^{K} C_k \) strictly convex scatterers

- **Billiard flow**: \(S^t : \mathcal{M} \rightarrow \mathcal{M} \), \((q, v) \in \mathcal{M} = Q \times \mathbb{S}^1 \), \(|v| = 1 \)
 Uniform motion within \(Q \), elastic reflection at the boundaries

- **Billiard map** phase space: \(M = \bigcup_{k=1}^{K} M_k \)

- \((r, \phi) \in M_k \), \(r \): arclength along \(\partial C_k \), \(\phi \in [-\pi/2, \pi/2] \)
 outgoing velocity angle

- invariant measure \(d\mu = c \cos \phi \, dr \, d\phi \)

![Diagram of billiards in 2D with scatterers and trajectories]
Billiards in 2D

\[Q = \mathbb{T}^2 \setminus \bigcup_{k=1}^{K} C_k \] strictly convex scatterers

- **Billiard flow**: \(S^t : \mathcal{M} \to \mathcal{M} \), \((q, v) \in \mathcal{M} = Q \times S^1, |v| = 1\)
 Uniform motion within \(Q \), elastic reflection at the boundaries

- **Billiard map phase space**: \(M = \bigcup_{k=1}^{K} M_k \)

- \((r, \phi) \in M_k, r: \) arclength along \(\partial C_k, \phi \in [-\pi/2, \pi/2]\)
 outgoing velocity angle

- invariant measure \(d\mu = c \cos \phi \, dr \, d\phi \)
Billiards in 2D

\[Q = \mathbb{T}^2 \setminus \bigcup_{k=1}^{K} C_k \text{ strictly convex scatterers} \]

- **Billiard flow**: \(S^t : \mathcal{M} \to \mathcal{M} \), \((q, v) \in \mathcal{M} = Q \times S^1, |v| = 1\)
 Uniform motion within \(Q \), elastic reflection at the boundaries

- **Billiard map** phase space: \(\mathcal{M} = \bigcup_{k=1}^{K} \mathcal{M}_k \)

- \((r, \phi) \in \mathcal{M}_k\), \(r \): arclength along \(\partial C_k \), \(\phi \in [-\pi/2, \pi/2] \)
 outgoing velocity angle

- invariant measure \(d\mu = c \cos \phi \, dr \, d\phi \)
Billiards in 2D

\[Q = \mathbb{T}^2 \setminus \bigcup_{k=1}^{K} C_k \] strictly convex scatterers

- **Billiard flow** : \(S^t : M \rightarrow M \), \((q, v) \in M = Q \times S^1, |v| = 1\)
 Uniform motion within \(Q \), elastic reflection at the boundaries

- **Billiard map** phase space: \(M = \bigcup_{k=1}^{K} M_k \)
- \((r, \phi) \in M_k, r: \text{arclength along } \partial C_k, \phi \in [-\pi/2, \pi/2]\)
 outgoing velocity angle

- invariant measure \(d\mu = c \cos \phi \, dr \, d\phi \)
Sinai billiards in 2D

C_k are C^3 smooth and disjoint (no corner points);
finite horizon: flight length uniformly bounded from above

- **Billiard map** is ergodic, K-mixing (Sinai ’70)
- **EDC:** $f, g : M \to \mathbb{R}$ Hölder continuous, $\int fd\mu = \int gd\mu = 0$
 let $C_n(f, g) = \mu(f \cdot g \circ T^n)$, then $|C_n(f, g)| \leq C\alpha^n$ for suitable $C > 0$ and $\alpha < 1$
 - Young ’98 – tower construction with exponential tails,
 - Chernov & Dolgopyat ’06 – standard pairs
 crucial: Growth Lemma on unstable curves

- **CLT:** let $S_nf = f + f \circ T + \ldots + f \circ T^{n-1}$, then
 $\frac{S_nf}{\sqrt{n}} \xrightarrow{D} \mathcal{N}(0, \sigma)$ where $\sigma = \int f^2d\mu + 2 \sum_{n=1}^{\infty} C_n(f, f)$.
 Bunimovich & Sinai ’81
- **Billiard flow:** $F, G : \mathcal{M} \to \mathbb{R}$, $C_t(F, G)$: stretched exponential bound, Chernov ’07 (not optimal?)
Sinai billiards in 2D

C_k are C^3 smooth and disjoint (no corner points); finite horizon: flight length uniformly bounded from above

- Billiard map is ergodic, K-mixing (Sinai ’70)
- EDC: $f, g : M \rightarrow \mathbb{R}$ Hölder continuous, $\int fd\mu = \int gd\mu = 0$
 let $C_n(f, g) = \mu(f \cdot g \circ T^n)$, then $|C_n(f, g)| \leq C\alpha^n$ for suitable $C > 0$ and $\alpha < 1$
 - Young ’98 – tower construction with exponential tails,
 - Chernov & Dolgopyat ’06 – standard pairs
 crucial: Growth Lemma on unstable curves
- CLT: let $S_nf = f + f \circ T + ... + f \circ T^{n-1}$, then
 $\frac{S_n f}{\sqrt{n}} \xrightarrow{D} \mathcal{N}(0, \sigma)$ where $\sigma = \int f^2 d\mu + 2 \sum_{n=1}^{\infty} C_n(f, f)$.
 Bunimovich & Sinai ’81
- Billiard flow: $F, G : \mathcal{M} \rightarrow \mathbb{R}$, $C_t(F, G)$: stretched exponential bound, Chernov ’07 (not optimal?)
Sinai billiards in 2D

C_k are C^3 smooth and disjoint (no corner points);
finite horizon: flight length uniformly bounded from above

- **Billiard map** is ergodic, K-mixing (Sinai ’70)
- **EDC**: $f, g : M \to \mathbb{R}$ Hölder continuous, $\int fd\mu = \int gd\mu = 0$
 let $C_n(f, g) = \mu(f \cdot g \circ T^n)$, then $|C_n(f, g)| \leq C\alpha^n$ for suitable $C > 0$ and $\alpha < 1$
 - Young ’98 – tower construction with exponential tails,
 - Chernov & Dolgopyat ’06 – standard pairs

crucial: Growth Lemma on unstable curves

- **CLT**: let $S_nf = f + f \circ T + \ldots + f \circ T^{n-1}$, then
 $\frac{S_nf}{\sqrt{n}} \xrightarrow{D} \mathcal{N}(0, \sigma)$ where $\sigma = \int f^2 d\mu + 2 \sum_{n=1}^{\infty} C_n(f, f)$.
 Bunimovich & Sinai ’81

- Billiard flow: $F, G : \mathcal{M} \to \mathbb{R}$, $C_t(F, G)$: stretched exponential bound, Chernov ’07 (not optimal?)
Sinai billiards in 2D

C_k are C^3 smooth and disjoint (no corner points);
finite horizon: flight length uniformly bounded from above

- Billiard map is ergodic, K-mixing (Sinai ’70)
- EDC: $f, g : M \to \mathbb{R}$ Hölder continuous, $\int fd\mu = \int gd\mu = 0$
 let $C_n(f, g) = \mu(f \cdot g \circ T^n)$, then $|C_n(f, g)| \leq C\alpha^n$ for
 suitable $C > 0$ and $\alpha < 1$
 - Young ’98 – tower construction with exponential tails,
 - Chernov & Dolgopyat ’06 – standard pairs

crucial: Growth Lemma on unstable curves

- CLT: let $S_nf = f + f \circ T + ... + f \circ T^{n-1}$, then
 $\frac{S_nf}{\sqrt{n}} \xrightarrow{D} \mathcal{N}(0, \sigma)$ where $\sigma = \int f^2d\mu + 2 \sum_{n=1}^{\infty} C_n(f, f)$.
 Bunimovich & Sinai ’81

- Billiard flow: $F, G : \mathcal{M} \to \mathbb{R}$, $C_t(F, G)$: stretched
 exponential bound, Chernov ’07 (not optimal?)
Sinai billiards in 2D

C_k are C^3 smooth and disjoint (no corner points);
finite horizon: flight length uniformly bounded from above

- Billiard map is ergodic, K-mixing (Sinai ’70)
- EDC: $f, g : M \to \mathbb{R}$ Hölder continuous, $\int f d\mu = \int g d\mu = 0$
 let $C_n(f, g) = \mu(f \cdot g \circ T^n)$, then $|C_n(f, g)| \leq C \alpha^n$ for
 suitable $C > 0$ and $\alpha < 1$
 - Young ’98 – tower construction with exponential tails,
 - Chernov & Dolgopyat ’06 – standard pairs

crucial: Growth Lemma on unstable curves

- CLT: let $S_n f = f + f \circ T + \ldots + f \circ T^{n-1}$, then
 $\frac{S_n f}{\sqrt{n}} \xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma)$ where $\sigma = \int f^2 d\mu + 2 \sum_{n=1}^{\infty} C_n(f, f)$.

Bunimovich & Sinai ’81

- Billiard flow: $F, G : M \to \mathbb{R}$, $C_t(F, G)$: stretched
 exponential bound, Chernov ’07 (not optimal?)
Sinai billiards in 2D

C_k are C^3 smooth and disjoint (no corner points);
finite horizon: flight length uniformly bounded from above

- Billiard map is ergodic, K-mixing (Sinai ’70)
- EDC: $f, g : M \to \mathbb{R}$ Hölder continuous, $\int fd\mu = \int gd\mu = 0$ let $C_n(f, g) = \mu(f \cdot g \circ T^n)$, then $|C_n(f, g)| \leq C\alpha^n$ for suitable $C > 0$ and $\alpha < 1$
 - Young ’98 – tower construction with exponential tails,
 - Chernov & Dolgopyat ’06 – standard pairs

crucial: Growth Lemma on unstable curves

- CLT: let $S_nf = f + f \circ T + \ldots + f \circ T^{n-1}$, then
 \[\frac{S_n f}{\sqrt{n}} \overset{D}{\to} \mathcal{N}(0, \sigma) \] where $\sigma = \int f^2 d\mu + 2 \sum_{n=1}^{\infty} C_n(f, f)$.
 Bunimovich & Sinai ’81

- Billiard flow: $F, G : \mathcal{M} \to \mathbb{R}$, $C_t(F, G)$: stretched exponential bound, Chernov ’07 (not optimal?)
Unstable curves

Neutral (or convex) wavefront \rightarrow Convex front

Definition

U-curve W: Trace of a convex front on M.

- Increasing in the r, ϕ coordinates.
- Invariant and expanding under T. In particular:
 $\exists \lambda > 1$ such that $\rho(Tx, Ty) \geq \lambda \rho(x, y), \forall W, \forall x, y \in W$
Unstable curves

Neutral (or convex) wavefront → Convex front

Definition

U-curve W: Trace of a convex front on M.

- Increasing in the r, ϕ coordinates.
- Invariant and expanding under T. In particular:
 \[\exists \Lambda > 1 \text{ such that } \rho(Tx, Ty) \geq \Lambda \rho(x, y), \forall W, \forall x, y \in W \]
Unstable curves

Neutral (or convex) wavefront → Convex front

Definition

U-curve W: Trace of a convex front on M.

- **Increasing** in the r, ϕ coordinates.
- **Invariant and expanding** under T. In particular:
 \[\exists \lambda > 1 \text{ such that } \rho(Tx, Ty) \geq \lambda \rho(x, y), \forall W, \forall x, y \in W \]
Unstable curves

Neutral (or convex) wavefront \rightarrow Convex front

Definition

U-curve W: Trace of a convex front on M.

- Increasing in the r, ϕ coordinates.
- Invariant and expanding under T. In particular:
 $\exists \Lambda > 1$ such that $\rho(Tx, Ty) \geq \Lambda \rho(x, y), \forall W, \forall x, y \in W$
Singularities I

Preimages of tangencies: T discontinuous, S^t non-differentiable
Singularities I

Preimages of tangencies: T discontinuous, S^t non-differentiable
Singularities II

\[S_n = T^{-n}S_0 \] where \(S_0 \) is the tangency

Discontinuity set for \(T^n \): \(S^{(n)} = \bigcup_{i=0}^{n} S_i \)

- The \(S_n \) are smooth Decreasing curves in the \(r, \phi \) coordinates.
- \(S^{(n)} \) fills \(M \) more and more densely as \(n \) increases.
Singularities II

\[S_n = T^{-n}S_0 \] where \(S_0 \) is the tangency

Discontinuity set for \(T^n \): \(S^{(n)} = \bigcup_{i=0}^{n} S_i \)

- The \(S_n \) are smooth Decreasing curves in the \(r, \phi \) coordinates.
- \(S^{(n)} \) fills \(M \) more and more densely as \(n \) increases.
Singularities II

\[S_n = T^{-n}S_0 \text{ where } S_0 \text{ is the tangency} \]

Discontinuity set for \(T^n \): \(S^{(n)} = \bigcup_{i=0}^{n} S_i \)

- The \(S_n \) are smooth Decreasing curves in the \(r, \phi \) coordinates.
- \(S^{(n)} \) fills \(M \) more and more densely as \(n \) increases.
Singularities II

\[S_n = T^{-n}S_0 \text{ where } S_0 \text{ is the tangency discontinuity set for } T^n: S^{(n)} = \bigcup_{i=0}^{n} S_i \]

- The \(S_n \) are smooth Decreasing curves in the \(r, \phi \) coordinates.
- \(S^{(n)} \) fills \(M \) more and more densely as \(n \) increases.
Evolution of u-curves

W (sufficiently small) u-curve TW

- increases in length
- partitioned by the singularities

Expansion prevails fractioning: “Most” components of W are “long”

How to quantify this?
Evolution of u-curves

W (sufficiently small) u-curve TW

- increases in length
- partitioned by the singularities

Expansion prevails fractioning: “Most” components of W are “long”

How to quantify this?
Evolution of u-curves

\(W \) (sufficiently small) u-curve \(TW \)
- increases in length
- partitioned by the singularities

Expansion prevails fractioning: “Most” components of \(W \) are “long”

How to quantify this?
Evolution of u-curves

W (sufficiently small) u-curve TW

- increases in length
- partitioned by the singularities

Expansion prevails fractioning: “Most” components of W are “long”

How to quantify this?
The Growth Lemma

- W is small u-curve, m_W Lebesgue measure on W.
- G_ε: set of points in W that are at most ε from the boundary:
 \[G_\varepsilon = \{ x \in W \mid \rho(x, \partial W) \leq \varepsilon \} \]

- H_ε: set of points in W that will be at most ε from the boundary.
 \[H_\varepsilon = \{ x \in W \mid \rho(Tx, \partial(TW)) \leq \varepsilon \} \]

If there were no singularities: $m_W(H_\varepsilon) \leq m_W(G_{\varepsilon/\Lambda})$.

Lemma

There exists a constant $\lambda < \Lambda$, independent of W, such that

\[m_W(H_\varepsilon) \leq \lambda m_W(G_{\varepsilon/\Lambda}). \]
The Growth Lemma

- W is small u-curve, m_W Lebesgue measure on W.
- G_ε: set of points in W that are at most ε from the boundary:

$$G_\varepsilon = \{x \in W \mid \rho(x, \partial W) \leq \varepsilon\}.$$

- H_ε: set of points in W that will be at most ε from the boundary.

$$H_\varepsilon = \{x \in W \mid \rho(Tx, \partial(TW)) \leq \varepsilon\}.$$

If there were no singularities: $m_W(H_\varepsilon) \leq m_W(G_{\varepsilon/\Lambda}).$

Lemma

There exists a constant $\lambda < \Lambda$, independent of W, such that

$$m_W(H_\varepsilon) \leq \lambda m_W(G_{\varepsilon/\Lambda}).$$
The Growth Lemma

- W is small u-curve, m_W Lebesgue measure on W.
- G_ε: set of points in W that are at most ε from the boundary:

 $$G_\varepsilon = \{ x \in W \mid \rho(x, \partial W) \leq \varepsilon \}.$$

- H_ε: set of points in W that will be at most ε from the boundary.

 $$H_\varepsilon = \{ x \in W \mid \rho(Tx, \partial(TW)) \leq \varepsilon \}.$$

If there were no singularities: $m_W(H_\varepsilon) \leq m_W(G_\varepsilon/\Lambda)$.

Lemma

There exists a constant $\lambda < \Lambda$, independent of W, such that

$$m_W(H_\varepsilon) \leq \lambda m_W(G_\varepsilon/\Lambda).$$
Complexity of the singularity set

Definition

\(K_n(x) \), \(n \)-step complexity of a point \(x \in M \): number of different symbolic collision sequences that can be observed in the vicinity of \(x \).

\(n \)-step complexity of the singularity set: \(K_n = \sup_{x \in M} K_n(x) \)
Complexity of the singularity set

Definition

$K_n(x)$, n-step complexity of a point $x \in M$: number of different symbolic collision sequences that can be observed in the vicinity of x.

n-step complexity of the singularity set: $K_n = \sup_{x \in M} K_n(x)$
Subexponential complexity

Subexponential growth of complexity:

\[\exists C > 0 \text{ and } \lambda < \Lambda \text{ such that } K_n \leq C\lambda^n \]

Lemma

Bunimovich, 1991: In 2D Sinai billiards (finite horizon, no corner points) \(K_n \) grows at most linearly.
Subexponential complexity

subexponential growth of complexity:

$$\exists C > 0 \text{ and } \lambda < \Lambda \text{ such that } K_n \leq C\lambda^n$$

Lemma

Bunimovich, 1991: In 2D Sinai billiards (finite horizon, no corner points) K_n grows at most linearly.
Billiard dynamics in 3D

- M: hemisphere-bundle,
 $\dim M = 4$
- convex fronts – u-manifolds
 $\dim W = 2$
- singularity set – codimension 1
 $\dim S_n = 3$
Billiard dynamics in 3D

- M: hemisphere-bundle,
 $\dim M = 4$
- convex fronts – u-manifolds
 $\dim W = 2$
- singularity set – codimension 1
 $\dim S_n = 3$
Billiard dynamics in 3D

- M: hemisphere-bundle, $\dim M = 4$
- convex fronts – u-manifolds, $\dim W = 2$
- singularity set – codimension 1, $\dim S_n = 3$
History: 3D dispersing billiards

- Sinai & Chernov 1987
 - Ergodicity
 - Local ergodicity theorem – many further applications: semi-dispersing billiards hard ball systems, Simányi
- Chernov, Szász, Tóth & B. 2002
 - Unbounded curvature for $S_n, n \geq 2$
 - Proof of ergodicity reconsidered, algebraic scatterers
- Tóth & B. 2008 – Assuming sub-exponential complexity
 - Growth Lemma, Young tower, EDC, CLT
 - With Bachurin: Growth Lemma implies Ergodicity
 - Counterexample with exponential complexity
History: 3D dispersing billiards

- Sinai & Chernov 1987
 - Ergodicity
 - local ergodicity theorem – many further applications: semi-dispersing billiards hard ball systems, Simányi

- Chernov, Szász, Tóth & B. 2002
 - unbounded curvature for $S_n, n \geq 2$
 - proof of ergodicity reconsidered, algebraic scatterers

- Tóth & B. 2008 – Assuming sub-exponential complexity
 - Growth Lemma, Young tower, EDC, CLT
 - with Bachurin: Growth Lemma implies Ergodicity
 - counterexample with exponential complexity
History: 3D dispersing billiards

- Sinai & Chernov 1987
 - Ergodicity
 - local ergodicity theorem – many further applications: semi-dispersing billiards hard ball systems, Simányi
- Chernov, Szász, Tóth & B. 2002
 - unbounded curvature for S_n, $n \geq 2$
 - proof of ergodicity reconsidered, algebraic scatterers
- Tóth & B. 2008 – Assuming sub-exponential complexity
 - Growth Lemma, Young tower, EDC, CLT
 - with Bachurin: Growth Lemma implies Ergodicity
 - counterexample with exponential complexity
History: 3D dispersing billiards

- Sinai & Chernov 1987
 - Ergodicity
 - local ergodicity theorem – many further applications: semi-dispersing billiards hard ball systems, Simányi
- Chernov, Szász, Tóth & B. 2002
 - unbounded curvature for $S_n, n \geq 2$
 - proof of ergodicity reconsidered, algebraic scatterers
- Tóth & B. 2008 – Assuming sub-exponential complexity
 - Growth Lemma, Young tower, EDC, CLT
 - with Bachurin: Growth Lemma implies Ergodicity
 - counterexample with exponential complexity
History: 3D dispersing billiards

- Sinai & Chernov 1987
 - Ergodicity
 - Local ergodicity theorem – many further applications: semi-dispersing billiards, hard ball systems, Simányi
- Chernov, Szász, Tóth & B. 2002
 - Unbounded curvature for $S_n, n \geq 2$
 - Proof of ergodicity reconsidered, algebraic scatterers
- Tóth & B. 2008 – Assuming sub-exponential complexity
 - Growth Lemma, Young tower, EDC, CLT
 - With Bachurin: Growth Lemma implies Ergodicity
 - Counterexample with exponential complexity
History: 3D dispersing billiards

- Sinai & Chernov 1987
 - Ergodicity
 - local ergodicity theorem – many further applications: semi-dispersing billiards hard ball systems, Simányi
- Chernov, Szász, Tóth & B. 2002
 - unbounded curvature for $S_n, n \geq 2$
 - proof of ergodicity reconsidered, algebraic scatterers
- Tóth & B. 2008 – Assuming sub-exponential complexity
 - Growth Lemma, Young tower, EDC, CLT
 - with Bachurin: Growth Lemma implies Ergodicity
 - counterexample with exponential complexity
History: 3D dispersing billiards

- **Sinai & Chernov 1987**
 - Ergodicity
 - local ergodicity theorem – many further applications: semi-dispersing billiards hard ball systems, Simányi

- **Chernov, Szász, Tóth & B. 2002**
 - unbounded curvature for S_n, $n \geq 2$
 - proof of ergodicity reconsidered, algebraic scatterers

- **Tóth & B. 2008** – Assuming sub-exponential complexity
 - Growth Lemma, Young tower, EDC, CLT
 - with Bachurin: Growth Lemma implies Ergodicity
 - counterexample with exponential complexity
What is responsible for all this...

- **Unbounded expansion** near singularities (highly nonlinear, applies to 2D)
- in 3D **highly anisotropic** expansion near singularities
 cf. astigmatism
What is responsible for all this...

- **Unbounded expansion** near singularities (highly nonlinear, applies to 2D)
- in 3D **highly anisotropic** expansion near singularities cf. astigmatism
Growth Lemma

W is a small u-manifold (2 dimensional)

$$G_\varepsilon = \{ x \in W \mid \rho(x, \partial W) \leq \varepsilon \}.$$

$$H_\varepsilon = \{ x \in W \mid \rho(Tx, \partial(TW)) \leq \varepsilon \}.$$

$$m_W(H_\varepsilon) \leq \lambda m_W(G_{\varepsilon/\Lambda}) \text{ with } \lambda < \Lambda.$$
Growth Lemma

W is a small u-manifold (2 dimensional)

$G_\varepsilon = \{ x \in W \mid \rho(x, \partial W) \leq \varepsilon \}$.

$H_\varepsilon = \{ x \in W \mid \rho(Tx, \partial(TW)) \leq \varepsilon \}$.

$m_W(H_\varepsilon) \leq \lambda m_W(G_{\varepsilon/\Lambda})$ with $\lambda < \Lambda$.
Growth Lemma

W is a small u-manifold (2 dimensional)

$$G_\varepsilon = \{ x \in W \mid \rho(x, \partial W) \leq \varepsilon \}.$$

$$H_\varepsilon = \{ x \in W \mid \rho(Tx, \partial(TW)) \leq \varepsilon \}.$$

$$m_W(H_\varepsilon) \leq \lambda m_W(G_{\varepsilon/\Lambda})$$ with $\lambda < \Lambda.$
Growth Lemma

W is a small u-manifold (2 dimensional)

$$G_\varepsilon = \{x \in W \mid \rho(x, \partial W) \leq \varepsilon\}.$$

$$H_\varepsilon = \{x \in W \mid \rho(Tx, \partial(TW)) \leq \varepsilon\}.$$

$$m_W(H_\varepsilon) \leq \lambda m_W(G_\varepsilon/\Lambda)$$ with $\lambda < \Lambda$.

\[
\begin{array}{c}
H_\varepsilon \\
\end{array}
\]

\[
\begin{array}{c}
T \\
\end{array}
\]

\[
\begin{array}{c}
\text{Diagram} \\
\end{array}
\]
The pathological intersection I

S_0: tangency, $S_1 = T^{-1}S_0$, $S_2 = T^{-2}S_0$

- in 2D: $S_1 \cap S_2$ is single point
- in 3D: $S_1 \cap S_2$ has structure, $\dim(S_1 \cap S_2) = 2$

- S_2 terminates on S_1 typically tangentially,
- transversally in a one dimensional pathological set $P \subset S_1 \cap S_2$
The pathological intersection I

S_0: tangency, $S_1 = T^{-1}S_0$, $S_2 = T^{-2}S_0$

- in 2D: $S_1 \cap S_2$ is single point
- in 3D: $S_1 \cap S_2$ has structure, $\dim(S_1 \cap S_2) = 2$
- S_2 terminates on S_1 typically tangentially,
- transversally in a one dimensional pathological set $P \subset S_1 \cap S_2$
Pathological intersection II

\(\dim M = 4 \Rightarrow S_1 \cap S_2 \) has structure

I "Typical" case

II "Pathological" case

\(n_1 \perp n_2 \)
Pathological intersection III

I 'TYPICAL CASE'

\[x_0 \in S_1 \land S_2 \Rightarrow \]
\[\Rightarrow \text{PERTURB OF ORDER } [\epsilon^1]: x_1 \in S_1 \Rightarrow \]
\[\Rightarrow \text{PERTURB OF ORDER } [\epsilon^2]: x_2 \in S_2 \]

II 'PATHOLOGICAL CASE'

\[x_0 \in S_1 \land S_2 \Rightarrow \]
\[\Rightarrow \text{PERTURB OF ORDER } [\epsilon^1]: x_1 \in S_1 \Rightarrow \]
\[\Rightarrow \text{PERTURB OF ORDER } [\epsilon^1]: x_2 \in S_2 \]

CONSEQUENCE:

THERE IS \(P \subset S_1 \land S_2 \), **PATHOLOGY:**

\(S_2 \): - UNBOUNDED CURVATURE NEAR \(P \)
- NO SMOOTH MANIFOLD STRUCTURE AT \(P \)
Analogy: Whitney Umbrella

\[W = \{(x,y,z) \mid x^2 + y^2 = 1\} \]

- No manifold structure at \(P \)
- No curvature bound near \(P \)
The example

\(x_0 \in M \text{ singular periodic point} \)

\(P_0 \): plane spanned by \(x \) and the centers of the “small” scatterers

\(P_\varepsilon \parallel P_0 \) of distance \(\varepsilon \) from \(P_0 \)

\(x_\varepsilon \in M \) starting \(\parallel x_0 \) in \(P_\varepsilon \)
The example

\(x_0 \in M \) singular periodic point

\(P_0 \): plane spanned by \(x \) and the centers of the “small” scatterers

\(P_\varepsilon \parallel P_0 \) of distance \(\varepsilon \) from \(P_0 \)

\(x_\varepsilon \in M \) starting \(\parallel x_0 \) in \(P_\varepsilon \)
The example

\(x_0 \in M \) singular periodic point

\(P_0 \): plane spanned by \(x \) and the centers of the “small” scatterers

\(P_\varepsilon \parallel P_0 \) of distance \(\varepsilon \) from \(P_0 \)

\(x_\varepsilon \in M \) starting \(\parallel x_0 \) in \(P_\varepsilon \)
Symbolic sequences in P_ε

Collisions on the “small” scatterers: strong expansion \implies
Trajectory may collide at either of the two scatterers from each pair, i.e.
ε-close to x_ε: 2^n distinct collision sequences of length $2n$
Symbolic sequences in P_ϵ

Collisions on the “small” scatterers: strong expansion \Rightarrow
Trajectory may collide at either of the two scatterers from each pair, i.e.
ϵ-close to x_ϵ: 2^n distinct collision sequences of length $2n$
Symbolic sequences in P_ε

Collisions on the “small” scatterers: strong expansion \Rightarrow
Trajectory may collide at either of the two scatterers from each pair, i.e.

ε-close to x_ε: 2^n distinct collision sequences of length $2n$

1. $\{A B A B A B\}$
2. $\{A B\}$
3. $\{A B A B\}$
4. $\{A B\}$
5. $\{A B A B\}$

x_0 twoeps
Back to the 3D example

Orthogonal to P_0: moderate expansion \Rightarrow

$\forall n$ and ε, $\exists \delta$ such that $T^k x_\delta \in P_{\varepsilon_k}$ for some $\varepsilon_k \leq \varepsilon$
Orthogonal to P_0: moderate expansion \implies
\forall n \text{ and } \varepsilon, \exists \delta \text{ such that } T^k x_\delta \in P_{\varepsilon_k} \text{ for some } \varepsilon_k \leq \varepsilon$
Summary and outlook

- **2D Sinai billiard maps**: strong ergodic and statistical properties
 - Methods
 - key phenomena: growth of u-curves
 - approaches: Young tower, coupling, ???
 - Applications (Chernov-Dolgopyat)
 - slow-fast systems, eg. Brownian Brownian motion

Open problems
- EDC for the flow

- **3D dispersing billiards**: analogous phenomena, but technically more involved
 - genericity of subexponential (finite) complexity?
 - statistical properties of example with exponential complexity?
 - so far: Young tower. Alternative methods?
Summary and outlook

- **2D Sinai billiard maps**: strong ergodic and statistical properties
 - **Methods**
 - key phenomena: growth of u-curves
 - approaches: Young tower, coupling, ???

- **Applications** (Chernov-Dolgopyat)
 - slow-fast systems, eg. Brownian Brownian motion

- **Open problems** EDC for the flow

- **3D dispersing billiards**: analogous phenomena, but technically more involved
 - genericity of subexponential (finite) complexity?
 - statistical properties of example with exponential complexity?
 - so far: Young tower. Alternative methods?
Summary and outlook

- **2D Sinai billiard maps**: strong ergodic and statistical properties

 Methods
 - key phenomena: growth of u-curves
 - approaches: Young tower, coupling, ???

 Applications (Chernov-Dolgopyat)
 slow-fast systems, eg. Brownian Brownian motion

Open problems EDC for the flow

- **3D dispersing billiards**: analogous phenomena, but technically more involved

 - genericity of subexponential (finite) complexity?
 - statistical properties of example with exponential complexity?

 so far: Young tower. Alternative methods?
Summary and outlook

- **2D Sinai billiard maps**: strong ergodic and statistical properties

 Methods
 - key phenomena: growth of u-curves
 - approaches: Young tower, coupling, ???

 Applications (Chernov-Dolgopyat)
 slow-fast systems, eg. Brownian Brownian motion

Open problems
- EDC for the flow

- **3D dispersing billiards**: analogous phenomena, but technically more involved
 - genericity of subexponential (finite) complexity?
 - statistical properties of example with exponential complexity?
 - so far: Young tower. Alternative methods?
Summary and outlook

- **2D Sinai billiard maps**: strong ergodic and statistical properties
 - **Methods**: key phenomena: growth of u-curves
 - approaches: Young tower, coupling, ???
 - **Applications**: (Chernov-Dolgopyat)
 - slow-fast systems, eg. Brownian motion

Open problems

- **3D dispersing billiards**: analogous phenomena, but technically more involved
 - genericity of subexponential (finite) complexity?
 - statistical properties of example with exponential complexity?
 - so far: Young tower. Alternative methods?
Summary and outlook

• 2D Sinai billiard maps: strong ergodic and statistical properties
 Methods • key phenomena: growth of u-curves
 • approaches: Young tower, coupling, ???

Applications (Chernov-Dolgopyat)
 slow-fast systems, eg. Brownian Brownian motion

Open problems EDC for the flow

• 3D dispersing billiards: analogous phenomena, but technically more involved
 • genericity of subexponential (finite) complexity?
 • statistical properties of example with exponential complexity?
 • so far: Young tower. Alternative methods?
Summary and outlook

- **2D Sinai billiard maps**: strong ergodic and statistical properties
 - **Methods**
 - key phenomena: growth of u-curves
 - approaches: Young tower, coupling, ???
 - **Applications** (Chernov-Dolgopyat)
 - slow-fast systems, eg. Brownian Brownian motion

- **Open problems**
 - EDC for the flow

- **3D dispersing billiards**: analogous phenomena, but technically more involved
 - genericity of subexponential (finite) complexity?
 - statistical properties of example with exponential complexity?
 - so far: Young tower. Alternative methods?
Further reading

N. Chernov & R. Markarian
Chaotic billiards
Mathematical Surveys and Monographs, *127*, AMS, 2006

N. Chernov & D. Dolgopyat
Hyperbolic billiards and statistical physics
in ICM Proceedings, EMS, 2006

P. Bálint & I.P. Tóth
An Application of Young’s Tower Method: Exponential Decay of Correlations in Multidimensional Dispersing Billiards
Erwin Schrödinger Institut preprint No. 2084, 2008
Thanks

Thank you for your attention!