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Abstract

We consider a dynamical billiard in a circle with one or two holes
in the boundary, or q symmetrically placed holes. It is shown that the
long-time survival probability, either for a circle billiard with discrete
or with continuous time, can be written as a sum over never-escaping
periodic orbits. Moreover, it is demonstrated that in both cases the Mellin
transform of the survival probability with respect to the hole size has
poles at locations determined by zeros of the Riemann zeta function and,
in some cases, Dirichlet L functions.

1 Introduction

The consideration of open dynamical systems, in which the dynamics continues
only until the system reaches a “hole,” a specified subset of phase space, was
introduced by Pianigiani and Yorke in 1979 [Pia79] and has been actively studied
since then. Whilst a dynamical system of interest can be chosen in an extremely
general manner, a goal was to study open billiards [Pia79] To quote:

Picture an energy conserving billiard table with smooth obstacles
so that all trajectories are unstable with respect to the initial data.
Now suppose that a small hole is cut in the table so that the ball can
fall through. We would like to investigate the statistical behavior of
such phenomena.

There have been many mathematical results relating to open dynamics since
then; see, for example, Ref. [Hay20] and references therein.

Physicists have also studied open billiards experimentally, in which the bil-
liard balls are atoms [Fri01, Mil01] (see [Alt13] for a review of the extensive
physics literature). These experiments provided impetus for the present au-
thors to compare the effects of having one or two holes, both in a circular
billiard [Bun05] and in chaotic systems [Bun07]. What was assumed to be seem-
ingly the simplest case of a billiard in a circle turned out to be very complicated,
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and highlighted a number of interesting phenomena, including connections with
the Riemann hypothesis. We tried to rigorously justify these results [Bun06],
but some considerations were not sufficiently clear to the reviewers, and this
was not published. The paper [Bun05] continues to receive citations and we
continue to receive questions about it, so the present contribution is an effort
to give a clear and rigorous exposition of what is known, what is conjectured,
or remains an open question in [Bun05].

We note that in the intervening years physicists have performed experiments
to measure the Riemann zeros [Cre15, He21]. One of us used methods similar
to Ref. [Bun05] to consider open spherical billiards [Det14, Det21]. Ref. [Det17]
gives a rigorous account of the scaling limit in which the product of hole size
and time is constant, while the latter tends to infinity, for integrable systems.
This includes, as an example, the elliptical billiard, which is a generalization of
the circle, and is thus a rigorous justification of the limiting function presented
in Fig. 3 of [Bun05].
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Figure 1: Geometry of the circular billiard

In mathematical literature the studies of open billiards turned out to be in-
timately related to limiting Poisson distributions of the process of recurrences
to a hole when the size of the hole is shrinking to zero. Most extensive math-
ematical studies of open dynamical systems (particularly open billiards) are
related to proving the Poisson and other limit laws (see, e.g., the papers [Su22]
and [Bun23] and references therein). In physics studies, especially experimental
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j Pj,θ(∆) aj αj Cj(x) Kj(x)
1 limN→∞NµM (NN ) π 2π

3 cot π
2x 1

2′ limt→∞ tµM (Nt) π π2

3 x− δx,1
π
2 δx,0

2′′ limN→∞NµM(proj−1NN ) 2 2π
3 x− δx,1

π
2 δx,0

3 limt→∞ tµM(proj−1Nt) 2 32
9 3 cot π

2x − cot 3π
2x 3− 32x−1

Table 1: Definitions of the four limiting survival probabilities and related quan-
tities, labelled by j ∈ {1, 2′, 2′′, 3}. The indices j ∈ {2′, 2′′} are interpreted as 2
when they appear in a formula such as 2j and sinj x. These involve the set NN

not escaping for discrete time N , the set Nt not escaping for continuous time
t, invariant measures of the map µM and of the flow µM, and the projection
proj : M →M . The corresponding definitions will be given in Sec. 2.

ones, holes are at the boundary of billiard tables. Therefore. if one shrinks such
hole to a point, the resulting limiting set has a finite size in the angle coordinate,
which makes a rigorous mathematical analysis much more involved [Bun24].

We now outline the results of the present paper. The geometry of the circular
billiard with two holes (one hole if θ = 0) is defined as in Fig. 1. Definitions are
given in more detail in Sec. 2.

First, we prove that the surviving set for sufficiently late times consists of
neighborhoods of periodic orbits. More specifically,

Theorem 1. Let N > 4π
∆ . Then every connected component Bi, i = 1, 2, . . . ,m,

m = m(∆) of the set NN of orbits never escaping until N collisions either (a)
contains a unique segment Ii = {(β, ψ), βi,1 < β < βi,2} consisting of never
escaping periodic orbits, or (b) contains only creeping orbits.

The angles β and ψ are defined in Sec. 2 below and illustrated in Fig. 1.
Creeping orbits are those that have collisions along an arc of the circle without
crossing either of the holes. That their contribution is negligible is established
in the following lemma:

Lemma 1 (Creeping orbits). (a) In discrete time, the contribution of creeping
orbits to survival probability, for initial conditions distributed with respect to the
map or flow invariant measures, is o(N−1). (b) In continuous time, creeping
orbits escape in bounded time, specifically, the set Nt of orbits that never escape
until time t contains no creeping orbits for t > min(5

√
3, 8π∆ ).

Theorem 1 and Lemma 1 are proved in Sect. 3.
We find the contribution for each periodic orbit to the survival probability,

defined in each of four ways. These four definitions are for initial conditions
distributed with respect to the invariant measures of the billiard map and of
the billiard flow, and for measuring escape with respect to (a number of) colli-
sions and to (continuous) time. Survival probabilities are denoted Pj,θ(∆) and
are defined in Tab. 1. We define θ′ = θ (mod 2π

n ) and x+ = max(x, 0). For
two integers m and n the greatest common divisor is denoted (m,n) and the
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Kronecker delta function, equal to one ifm = n, otherwise zero, is denoted δm,n.
Then, we have

Theorem 2. The limiting survival probabilities defined in Tab. 1 are given by

Pj,θ(∆) =
2jaj
16π2

∑
m,n

n

[(
2π

n
− θ′ −∆

)2

+

+ (θ′ −∆)2+

]
sinj

πm

n
(1)

The sum is over 1 ≤ m < n with (m,n) = 1. The indices j ∈ {2′, 2′′} are
interpreted as 2 when they appear in a formula such as 2j and sinj x. Thus, in
full we have

lim
N→∞

NµM (NN ) =
1

8π

∑
m,n

n

[(
2π

n
− θ′ −∆

)2

+

+ (θ′ −∆)2+

]
sin

πm

n

(2)

lim
t→∞

tµM (Nt) =
1

4π

∑
m,n

n

[(
2π

n
− θ′ −∆

)2

+

+ (θ′ −∆)2+

]
sin2

πm

n

(3)

lim
N→∞

NµM(proj−1NN ) =
1

2π2

∑
m,n

n

[(
2π

n
− θ′ −∆

)2

+

+ (θ′ −∆)2+

]
sin2

πm

n

(4)

lim
t→∞

tµM(proj−1Nt) =
1

π2

∑
m,n

n

[(
2π

n
− θ′ −∆

)2

+

+ (θ′ −∆)2+

]
sin3

πm

n

(5)

Theorem 2 is proved in Sec. 4. Note that the sum is finite since both terms in
the square brackets vanish if n ≥ 2π

∆ . As ∆ → 0 the number of terms increases
without bound. We now perform Möbius and Mellin transforms to represent
the limiting behaviour of the survival probability as a contour integral involving
an infinite sum over n together with a sum over its divisors. Furthermore, if
θ = 2πr/q, where 0 ≤ r < q are coprime integers, then we can express the
integrand in terms of Dirichlet L-functions (of which the Riemann zeta function
is a special case) involving a double sum in each of q terms:

Theorem 3. The limiting survival probabilities are given by

Pj,θ(∆) =
1

2πi

∫ C+i∞

C−i∞
P (∆, s)Fj(θ, s)ds (6)

P (∆, s) =
∆−s(2π)s

s(s+ 1)(s+ 2)
(7)

Fj(θ, s) =aj

∞∑
n=1

Θ(n, θ, s)

ns+1

∑
d|n

µ(d)Cj

(n
d

)
(8)

Θ(n, θ, s) =(1− {nθ
2π

})s+2 + {nθ
2π

}s+2 (9)
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where {} indicates fractional part, C > 1, and Cj(x) is defined in Tab. 1.
Furthermore, when θ = 2πr/q we have

Fj

(
2πr

q
, s

)
=aj

q−1∑
c̄=0

q−1∑
d̄=0

Θ

(
c̄d̄,

2πr

q
, s

)
C̃j(q, c̄, s)D̃(q, d̄, s) (10)

C̃j(q, c̄, s) =
∑

c=c̄ (mod q)

Cj(c)

cs+1
(11)

=
2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!
Kj(k)

[∑
χ χ̄(c̄

′)L(s+ 2k, χ)

b′s+2kϕ(q′′)
− δc̄,1

]
D̃(q, d̄, s) =

∑
d=d̄ (mod q)

µ(d)

ds+1
(12)

=
µ(b)

bs+1ϕ(q′)

∑
χ

χ̄(d̄′)

L(s+ 1, χ)
∏
p|b(1− χ(p)p−s−1)

In Eq. (11), b′ = (c̄, q), q′′ = q/b′, c̄′ = c̄/b′, Dirichlet characters χ are taken
with modulus q′′, the first sum is over c ≥ 1, B2k are Bernoulli numbers [DLMF,
(24.2.1)] and Kj(x) is defined in Tab. 1. In Eq. (12), b = (d̄, q), q′ = q/b,
d̄′ = d̄/b, characters are taken with modulus q′, and the first sum is over d ≥ 1.

The two parts of Theorem 3 are proved in Sections 5 and 6 respectively.
Note that the one hole case θ = 0 corresponds to r = 0 and q = 1. Observe also
that Θ remains invariant if c̄ → q − c̄ or d̄ → q − d̄, but these change the signs
of all odd characters in C̃j or D̃. Thus, no odd L-functions appear in Fj . The
number of characters and L-functions modulo q is given by ϕ(q), the number of
integers in [1, q] that are coprime to q. When q ∈ {1, 2} there is only a single,
even, character, and when q ∈ {3, 4, 6} there are two, one of which is odd. One
even character for each q is the principal character, for which the L-function
can be written in terms of the Riemann zeta function. This then implies that
only the Riemann zeta function appears in Fj for q ∈ {1, 2, 3, 4, 6}.

These expressions suggest the possibility of connections with the (general-
ized) Riemann hypothesis: The Riemann hypothesis claims that the complex
zeros of ζ(s) lie on the line ℜ(s) = 1/2, and the generalized Riemann hypothesis
says that the complex zeros of L(s, χ) lie on the same line. Thus, these state-
ments are related to the locations of the poles of D̃(q, d̄, s) arising from L(s+1, χ)
in the denominator, with residues contributing to the contour integral.

We then analyze the pole structure of the integrand of Eq. (6) in Section 7;
see also Fig. 2. We present the above expressions for all q ≤ 6, using Mathe-
matica symbolic algebra for 4 ≤ q ≤ 6, in Section 8. The residues of the poles
are presented in Tab. 2, including exact values from Eqs. (95,106), other exact
values using symbolic algebra and numerical values where there is a complicated
sum over k.
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Figure 2: The contour of the Mellin representation of Pj,θ(∆), Eq. (6), and
poles of the integrand for q = 1 (left) and q = 5 (right). Note the scales on the
real and imaginary axes. See Sec. 7.7 and Tab. 2.

In the simplest cases, one hole or two symmetric holes, we have

Fj(
2πr

q
, s) = aj

2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!
Kj(k)Fr,q(s, k) (13)

F0,1(s, k) =
ζ(s+ 2k)− 1

ζ(s+ 1)
(14)

F1,2(s, k) =
ζ(s+ 2k)

ζ(s+ 1)2s+2k
(15)

In Section 9 we consider a different scenario, that of q symmetrically placed
holes, where the special case q = 2 is given above. We show

Theorem 4. For the case of q ≥ 2 symmetrically placed holes, Fr,q(s, k) in
Eq. (13) is replaced by

F sym
q (s, k) =

ζ(s+ 2k)

ζ(s+ 1)qs+2k
(16)

The locations of the poles are the same as q = 2 of the two hole case above.
The residues follow immediately from those of the q = 2 case where only the
k = 0 term is relevant, that is, j ∈ {2′, 2′′} or s = 1. In the latter case, the
pole comes only from the ζ(s+2k) term in the numerator, for k = 0. For other
poles, see the descriptions given in Sect. 7.

We have successfully related the survival probabilities to a contour integral
with poles at locations related to the zeros of Dirichlet L functions, including
the Riemann zeta function. To continue, we propose the following conjecture:
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Conjecture 1. Consider a circular billiard with one or two holes, using nota-
tion as defined above. The function Fj(θ, s) is meromorphic (for θ ∈ πQ this
follows from Theorem 3). Furthermore

Pj,θ(∆) =
∑
s∗

Ress=s∗ P (∆, s)Fj(θ, s) (17)

with the series converging absolutely. Here, s∗ are the locations of the poles.

To show this, one would need to infer the existence of a sequence of contours
with integral tending to zero and which, in the limit, encloses all the poles (see
Fig. 2). The main difficulty is in putting a lower bound on ζ(s+1) or L(s+1, χ)
that is, in the denominator, uniform on the part of the contour in or near the
critical strip. Far from the critical strip, we can bound the zeta function, for
example, to show that the sum over the poles on the real axis converges; see
Lemma 2 in Sect. 10. Numerical simulations in support of Conj. 1, testing
absolute convergence of the sum in Eq. (17), and showing that when the leading
term is subtracted from the numerical survival probability, the remainder for
small ∆ is qualitatively given by the next few real poles, are given in Sect. 11.

Assuming Conj. 1 the limit ∆ → 0 may be taken to give

Pj,0 = lim
∆→0

∆Pj,0(∆) =Ress=1P (∆, s)Fj(θ, s) =


4
π j = 1
2 j = 2′
4
π j = 2′′
64
3π2 j = 3

(18)

for the one hole case, using Eq. (95).
The absence of the poles at s = −2 for the case q = 2, j ∈ {2′, 2′′} would

then imply that P2′,π(∆) and P2′′,π(∆) contain only odd powers of ∆, together
with the conjugate complex pairs of the critical line; this is not obvious from
Eqs (56,58).

In case of two holes the leading (s = 1) residue is exactly half of the one-hole
residue, for all values of θ we calculated. This is a special case of Ref. [Det17]
(see Remark 2.2 and Section 5) where it is proved that the leading order of the
survival probability is independent of the position of the holes. Note that the
limits in this paper and in Ref. [Det17] are different; the latter has first ∆ → 0
keeping S = ∆t constant, and then S → ∞. Thus we can write the leading
order survival probabilities for j = 3 as

P3,θ = lim
∆→0

lim
S→∞

SµM(proj−1NS/∆) (19)

P
[Det17]
3,θ = lim

S→∞
lim
∆→0

SµM(proj−1NS/∆) (20)

If these limits commute (as we expect), we have for all 0 < θ < 2π, not only for
rational multiples of π:

Pj,θ =
1

2
Pj,0 (21)
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The Riemann hypothesis (RH) states that the complex zeros of ζ(s) all lie on
the line ℜ(s) = 1

2 . Under Conjecture 1 and RH we can use Theorem 3 including
Eqs (13–15) to then bound corrections to the leading order behaviour, and
relate the one and two hole cases. For example we have

Theorem 5. Assume RH and Conjecture 1. Then

lim
∆→0

∆δ−1/2 [Pj,0(∆)− Ress=1 P (∆, s)Fj(0, s)] = 0 (22)

lim
∆→0

∆δ−1/2 [Pj,0(∆)− 2Pj,θ(∆)] = 0 (23)

for every δ > 0, each j ∈ {1, 2′, 2′′, 3}, and θ = 2π
q with q ∈ {2, 3, 4, 6}.

Proof. This follows from Tannery’s theorem, allowing interchange of the limit
and sum over s∗ in the expressions obtained by applying Conjecture 1 to The-
orem 3. In particular, the summand

∆δ−1/2P (∆, s)Fj(θ, s) (24)

is bounded, uniform in ∆, for all s∗ ̸= 1 assuming RH. Conjecture 1 also ensures
absolute convergence of the sum.

For q = 5 and q > 6 there is a pole at s = 0 that would affect the above
expressions, and also L-functions leading to poles on the same critical axis, the
real part of s equal to −1/2, so this would require to deal with the generalized
Riemann hypothesis.

On the other hand, it seems likely that Conj. 1 together with Eq. (22) or (23)
should imply RH, but this does not appear to the authors to be completely
obvious.

We conclude this section with some remarks on the extent to which the
claims of Ref. [Bun05] can be rigorously justified. We have indeed shown that
the long-time survival probabilities of the open circular billiard with one hole,
two holes, can be written as a sum over non-escaping periodic orbits. We have
further related these expressions to zeta and Dirichlet L-functions. However,
connection to the Riemann hypothesis seems only possible at this time with the
aid of Conjecture 1.

In addition to Ref. [Bun05] we have shown that the map and flow measures,
and thus the escape with respect to the number of collisions and with respect
to a continuous time, lead to different powers of sine in the periodic orbits
contributions. The calculation presented in Ref. [Bun05] has sin2 πmn which
corresponds to the “mixed” cases of invariant measure for a billiard map but
with continuous time, or to invariant measure for the flow with discrete time.
The more natural cases of the discrete-time map and of the continuous-time flow
correspond to sin πm

n and sin3 πmn , respectively. These cases are more involved,
but it turned out that we could extend the analysis and present the new results
here. We have also added the case of q symmetric holes.

In the future, it would be interesting to prove some of the above conjectures,
including Conjecture 1, the commutation of limits in Eqs. (19,20) and showing
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that RH may be derived from Conjecture 1 and statements like Eqs. (22,23).
Our techniques may be applied to find similarly precise asymptotics for escape in
other open integrable billiards, such as the square. Finally, it would be good to
verify at least the leading order escape rates, Eq. (18) in a physical experiment.
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2 Definitions and notations

Consider a billiard on the unit disk D, that is, a dynamical system generated
by the motion of a point particle with a constant speed within D with elas-
tic collisions (angle of incidence equals angle of reflection) from its boundary.
Without any loss of generality we assume that the particle’s speed is identically
one, and therefore its velocity is completely defined by the angle ϑ it makes with
the horizontal direction −π < ϑ ≤ π. The phase space of the billiard flow St,
−∞ < t <∞ is denoted M = (x, y, ϑ) with (x, y) ∈ D and ϑ the angle between
the direction of motion and the x-axis. See Fig. 1.

Let M = {(β, ψ) : −π < β ≤ π,−π
2 ≤ ψ ≤ π

2 }, where β ∈ ∂D. The billiard
flow St induces the billiard map T :M →M defined as

T (β, ψ) = (β + π − 2ψ,ψ) (25)

where ψ is the angle between the outward trajectory and the inner normal at
β ∈ ∂D, and all the angles in Eq. (25) are taken modulo 2π. The natural
projection M → ∂D we denote by πβ . Therefore, πβ(β, ψ) = β, where (β, ψ) ∈
M .

Another useful projection we denote as proj : M → M to give the point
corresponding to the previous collision. Explicitly, this is

proj(x, y, ϑ) = (ϑ+ arcsinL±π, arcsinL) (26)

where L = x sinϑ − y cosϑ is the angular momentum of the particle. Let also
proj−1A ⊆ M denote the preimage of A ⊆M under proj.

The normalised invariant measures of the map µM and flow µM are, as usual
for planar billiards, respectively:

dµM =
1

2|∂D|
cosψ dβ dψ =

1

4π
cosψ dβ dψ (27)

dµM =
1

2π|D|
dx dy dϑ =

1

2π2
dx dy dϑ (28)
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It is well known that orbits of the billiard in a circle are periodic with a
period n, if

ψ = ψm,n ≡ π

2
− m

n
π (29)

where m and n are coprime integers and 0 < m < n. On the other hand, the
orbit is everywhere dense in ∂D if ψ is incommensurable with π.

Suppose that two holes H1 = {β : 0 < β < ∆} and H2 = {β : θ < β <
θ + ∆}, 0 ≤ θ ≤ π, ∆ > 0, are placed at the boundary ∂D. If θ > π we
interchange the holes to obtain θ ≤ π. Consider now a new dynamical system,
an open billiard in ∂D with holes H1 and H2. In this open billiard any orbit
(β0, ψ0) moves under the billiard map Eq. (25) until it hits one of the holes H1

and H2. When the orbit hits H1 ∪H2 it “disappears” (escapes).
When θ < ∆ the holes overlap and we obtain a single hole of size θ + ∆.

When θ = ∆ there is again a single hole of size 2∆ except for a single point
at its center; the point has zero measure and thus does not affect the survival
probability. So, without loss of generality we may consider either the case of
two holes ∆ < θ ≤ π, or one hole, where H1 = H2, θ = 0.

Obviously, almost all (with respect to the measure µ) orbits will eventually
escape. The only orbits that never escape are periodic orbits that never hit
H1 ∪H2. Denote Ĥi = {(β, ψ) : β ∈ Hi}, i = 1, 2. Thus, πβĤi = Hi, i = 1, 2.

Let N(β0, ψ0), (β0, ψ0) ∈ M be a (minimal) number of reflections from the
boundary after which the orbit Tn(β0, ψ0) = (βn, ψn), n = 1, 2, . . . escapes from
the circle. If the orbit of (β0, ψ0) never escapes, we set N(β0, ψ0) = ∞.

The time between collisions τ :M → R is τ(β, ψ) = 2 cosψ, so τ◦proj(x, y, ϑ) =
2
√
1− L2. The survival time t and a number of collisions N (implicitly func-

tions of (β0, ψ0)) are thus related by N = ⌈t/(2 cosψ)⌉,where ⌈x⌉ is the ceiling
function, giving the least integer greater than or equal to its argument. The set
NN ⊂ M surviving for N collisions is related to the set Nt ⊂ M surviving for
time t, by their ψ sections:

NN |ψ=ψ0
= N2N cosψ0 |arcsinL=ψ0

(30)

Survival probability is the measure of orbits that do not escape until a fixed
time t or a number of collisions equal N . We obtain different results depending
on whether the measure is µM or µM and whether the non-escaping orbits are
Nt or NN .

3 Structure of the set of orbits not escaping for
large N or t

In this section we prove Thm. 1, that is, for N > 4π
∆ , the set NN ⊂M of initial

conditions surviving for at least N collisions consists of connected components.
Each such component either (a) contains exactly one segment consisting of never
escaping periodic orbits of the same period, or (b) contains only creeping or-
bits. Moreover, there are no other periodic orbits in the set NN . After giving
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in detail the argument for the billiard map for one hole, we explain the few
changes needed for continuous time (for the set Nt) and for two holes, the most
important of which is the treatment of creeping orbits (ψ ≈ ±π

2 ). Finally, we
prove Lemma 1, by enumerating the creeping orbits and showing that they are
negligible for survival probability.

We will start with the billiard map T , see Eq. (25), which sends unit vectors
with the footpoints on the boundary of a billiard table and pointing to the
interior of the billiard table into unit vectors that arise just after a moment of
the next reflection off the boundary. Clearly, the only orbits that never escape
are those periodic orbits with periods n < 2π

∆ that never hit the holes H1 ∪H2.
Again, for clarity and simplicity, we will study in detail only the case with a
single hole H of size ∆ on the boundary of a billiard table.

The phase space of the billiard map is a cylinder M , consisting of all points
(β, ψ), where β is a boundary coordinate varying between −π and π, and ψ is
an angle coordinate varying from −π/2 to π/2.

Consider in the cylinder M all points with ψ = ψm,n = π
2 − πm

n , where
m < n are co-prime integers. Clearly, all such points form a (horizontal) circle
C on the cylinder M , where the (vertical) coordinate ψ is equal to ψm,n. For
these points, the billiard map T corresponds to a rotation in the first coordinate
by an angle 2πm

n .
The set of orbits, which do not escape until time (iterate) N , consists of

connected components which are adjacent to (horizontal) circles in the phase
space (cylinder) M , which consist of periodic points of the billiard map with
periods n not exceeding N . In each circle, we have the intersection of the hole
with the images (or preimages) of the cylinder M and n− 1 of this intersection.
The complement to these n segments in the circle in M also consists of n equal
segments with length (2π/n − ∆). We will show that the set of non-escaping
until time N orbits, which is adjacent to this circle of periodic points (with
period n), consists of 2n right triangles, each of which is adjacent to one of
the n segments in the complement described above. Clearly, all points of the
n segments, which correspond to the hole and its n− 1 images (preimages), do
not belong to this set.

Due to symmetry, it is enough to consider only non-negative angles ψ. In
fact, for −ψ, both the consideration and formulas are the same. Small values
of ψ are connected to the periodic orbit with ψ = 0, that is, n = 2. Consider
now all preimages of the hole, from the first to the (n− 1)th preimage. Observe
that the nth preimage of each hole coincides with this hole. In the horizontal
circle in question, the set consisting of the hole H and its preimages under the
billiard map contains n segments.

Observe that in the circle C the complement to the shifts of the hole also
consists of n segments with ends sharing with end points of the shifts of the
hole H. Denote this set by C ′. Clearly, these n complementary segments will
never escape because the billiard map sends each of them exactly to another.
Therefore, the iterations of all points of these segments are forever kept away
from the holes.

We will show that exactly such segments, consisting of periodic points (of

11



period n in this case), are the core subsets of connected components of the set
of not escaping until time N points (i.e., the Nth iterate of the billiard map),
where N > 4π

∆ . Denote this set by Ne.
Clearly, there are points in Ne with the same (horizontal) coordinate x as

some point y in a complement to the shifts of holes C ′ in C, and with angles
close to ψm,n. Such points belong to the same vertical segment in the cylinder
M as the points y in C. Indeed, let such a point z correspond to a larger
rotation angle than the points in our circle C, (i.e., its vertical coordinate on
the phase cylinder M is larger than the coordinates of points on C). Then, to
avoid escape until time N , the horizontal coordinate of z must be close enough
to the left end of a segment of C which belongs to the complement of the hole
and its n − 1 images (preimages) on C. In fact, N images of that must not
fall into the hole. Therefore, the closer the horizontal coordinate of z is to the
left end of a segment in the complement of the hole and its iterations, then the
larger its vertical coordinate is allowed to be. Analogously, if the horizontal
coordinate of z belongs to the hole or its images on C, then, the closer its
horizontal coordinate on C is to the right end of hole, the larger its vertical
coordinate is allowed to be. Analogous consideration is applied to the set of
points that do not escape until time N , which have smaller vertical coordinates
than the points on the circle C, where all right end points must be changed to
left end points and vice versa.

Let the coordinates of such a point z be (y, πm/n+α). Here α > 0, but small
enough that during N iterations of the billiard map it never hits holes. Due to
the extra rotation on α in each iterate of the billiard map, the point y must be
sufficiently far from the right end of the segment consisting of never-escaping
points to which this point belongs. The length of any segment of never-escaping
points is at most 2π

n −∆, in a gap formed by the n images of a single hole. In
fact, let the distance of the projection of the point z to C to the left end of a
segment in the complement of the hole and its images be equal to u. Then the
height of the vertical segment containing z, which consists of not escaping until
time N points, equals 2π/N−u/N , where u varies between 0 and 2π. Therefore,
all such points form a right triangle adjacent (from above) to segments in the
complemental set to the union of the hole and its n − 1 images on our circle
C in M . If a point z is above our circle and its projection to the circle is in
the hole or its images, then, the left end becomes the right end and vice versa.
Moreover, in the above expression we have ∆ instead of 2π/N −∆.

Analogously, we can consider the case of negative α. Then the corresponding
points are below y on the cylinderM . Therefore, y must be sufficiently far from
the left end of a segment in the complementary set to the hole and its n − 1
images, to not escape (hit a hole) during N iterations of the billiard map.

We will now estimate the ”height” of the vertical segment on the point y
from C which consists of not escaping in N iterating points.

Let the distance of the point y from the right end of the segment of never
escaping points containing y equals l. Since the billiard map, Eq. (25), involves
2ψ, a perturbation of ψ leads to twice the perturbation of the position around
the circle. Thus the height of the vertical segment over y cannot be larger than

12



1
2N ( 2πn −∆− l).

Therefore, the set Ne of not escaping till time N (Nth iterate of the billiard
map) consists of two equal right triangles adjacent to a segment consisting of
never escaping points; see Fig. 3. The orthogonal to horizontal segment side of
upper triangle, that is, its height, equals

1

2N
(
2π

n
−∆) (31)

at the left end of the segment and zero at its right end. The lower triangle is
symmetric to the upper one and thus has zero length of a vertical segment at
the left end of the segment consisting of never escaping points, and the same
height as above but now at the right end of the segment.

The period n of the non-escaping orbits cannot exceed [2π∆ ]. Therefore,
n∆ ≤ 2π, otherwise, the images of the hole will eventually cover the entire
circle because the size ∆ of the hole is finite. We will show now that such sets
consisting of segments of never-escaping points and two adjacent triangles do not
intersect. In order to do that, we must consider the closest one to our horizontal
circle on the cylinder M , which also consists of periodic points on the billiard
map. Consider the fractions with coprime numerators and denominators, where
all denominators do not exceed a given fixed integer N (here equal to [ 2π∆ ]).They
form the so called Farey numbers FN. It is well known that the fraction closest
to m/n in the set FN is such fraction p/q that |m/n− p/q| = 1/qn.

Let us show that the neighborhoods of the corresponding two circles, which
consist of right triangles (see above), do not intersect. To do it, consider the
maximal lengths of the vertical sides of these triangles and compare their sum
with the distance between these two horizontal circles on the cylinder M .

Assume that the number of collisions N > 4π
∆ ≥ n+ q since n, q ≤ 2π

∆ . The
(vertical) distance between the horizontal circles (m,n) and (p, q) is |ψm,n −
ψp,q| = π

∣∣∣mn − p
q

∣∣∣ = π
nq .

Our goal now is to show that the sum of the maximal lengths of the sides
of right triangles in the sets of nonescaping orbits adjacent to these two circles
(consisting of periodic orbits of the billiard map) is exceeded by the vertical
distance between two corresponding circles on the phase space cylinderM . The
sum of the maximal heights of the right triangles on these intervals equals

1

2N

[
(
2π

n
−∆) + (

2π

q
−∆)

]
=

π

N

n+ q

nq
− ∆

N
<

π

nq

noting that n+ q < N as above.
We now exclude the possibility of orbits that survive for N collisions but

are not connected to never escaping orbits of period at most 2π/∆. Since in an
orbit of at least 2π/∆ collisions the orbit must return to within an angle ≤ ∆
of its starting point, we define the minimum number of collisions required to do
so as the period n ≤ 2π/∆. Thus, N > 4π/∆ > 2n. A general orbit avoiding
the hole(s) may be denoted as

βj = β0 +

(
2πm

n
− 2η

)
j, 0 ≤ j ≤ 2n (32)
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π/6

0 ∆ 2π/3 4π/3 2π

ψ

β

Figure 3: For a circular billiard with a single hole (ie θ = 0) of size ∆ < 2π
3 ,

we illustrate the part of phase space near the (m,n) = (1, 3) orbit. The set of
points that never escape is shown in blue, together with the rest of the relevant
circle (ψ = π/6; see Eq. 29), of which the red part corresponds to the hole
and the orange parts its preimages. The set surviving for a large number N of
collisions is shown in green, and consists of right triangles adjoining the points
that never escape. Observe that for ψ > π/6, the dynamics, Eq. (25), gives a
rotation around the circle of slightly less than 2π/3. Thus the effective rotation
is to the left in each of the upper green sets, so that the longest surviving orbits
are those that start towards the right of these intervals.
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where η = ψ − ψm,n and we use Eqs. (25,29). Then, the periodic orbit

β̄j = βn +
2πm

n
j, 0 ≤ j < n (33)

is enclosed by the original orbit

βn+j ≤ β̄j ≤ βj , 0 ≤ j < n (34)

for η > 0 and the reverse inequalities for η < 0. Since the original orbit returns
to a distance less than ∆ after n collisions, then it cannot enclose a hole. Thus,
the periodic orbit also avoids the hole(s). The original arbitrary orbit may be
continuously deformed to reach the periodic orbit. Hence, they are in the same
connected component of orbits surviving for N collisions.

Therefore, the set of points Ne, which do not escape through the holes in N
iterates of the billiard map consists of connected components. Each connected
component of Ne is a neighborhood of a circle Ci on the cylinderM . Each such
circle consists of periodic points of the billiard map with periods not exceeding
[2π/∆]. Certainly, the holes and all their images (or preimages) under the first
(n− 1) iterates of the billiard map do not belong to Ne.

For the case of two holes, the above analysis holds; depending on ∆ and θ,
the preimages of the holes may be completely disjoint, giving 2n non-escaping
intervals, intersect, giving n non-escaping intervals, or cover the circle C entirely,
giving no non-escaping intervals. The non-escaping intervals are at most the size
of the one hole case, so the above argument with Farey fractions remains valid.

The case n = 1, corresponding to ψ = ±π
2 is not a true periodic orbit,

however its neighborhood is a right triangle as described above. These are the
creeping orbits, those that move along an arc of the circle without crossing
either of the holes. Thus for N > 4π

∆ each connected component of NN contains
a unique segment of periodic orbits, or contains only creeping orbits. This
concludes the proof of Theorem 1.

For continuous time (a billiard flow) consideration is absolutely analogous to
the one for discrete time (billiard map). Indeed, only periodic points may never
escape. If we fix a large (continuous) time t > 8π

∆ and note τ = 2 cosψ ≤ 2
so the number of collisions N > 4π

∆ as assumed above. On each circle ψ =
ψm,n the same 2n (or n) segments of equal length will belong to the set of
never escaping (and particularly till time t) points. Adjacent to each of these
circles are as before the right triangles corresponding to N = ⌊ t

2 cosψ ⌋. Since
N now varies with ψ, it is possible for most of the components corresponding
to ψm,n to correspond to a single value of N , while the tip of a right triangle
corresponds to N−1 and can disconnect from the main component. The relative
sizes of the right triangles also differ between periodic orbits at different ψm,n
compared to the discrete-time case. But the enumeration of the set Nt in terms
of contributions from periodic orbits remains as the same in the case of discrete
time.

Finally, we discuss the creeping orbits, which undergo N collisions with an
arc of the circle without crossing either hole, and prove the claims of Lemma 1.
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First, we deal with discrete time N . The creeping orbits have ψ = ±(π2 −ϵ) with
0 < ϵ < π

N−1 . Thus, their contribution to the survival probability is bounded
above by

2

∫ 2π

0

dβ

∫ π
2

π
2 − π

N−1

cosψ

4π
dψ = 1− cos

π

N − 1
= O(N−2)

using Eq. (27). Using the same argument for Eq. (28) where initial conditions
are in the interior, we find that the survival probability is O(N−3). Thus in
both cases this contribution is negligible compared with the periodic orbits, and
their contribution is of order N−1 (see the next section).

For continuous time, we show that all creeping orbits escaped for t >
min(5

√
3, 8π∆ ). Let N be the number of collisions the creeping orbit makes

with the boundary before entering or crossing one of the holes, and tm(N,∆)
the supremum of the time the creeping orbit exists. Clearly tm(N,∆) is non-
increasing in ∆. We have the following cases

• N = 1: Long creeping orbits start in the interior but arbitrarily close to
the boundary, follow the diameter of the disk, collide, and then return
along the diameter, giving tm(1,∆) = 4.

• N = 2, ∆ < π: Long creeping orbits follow the diameter of the disk, make
collisions with two opposite points, and then return along the diameter to
give tm(2,∆) = 6.

• N = 2, π ≤ ∆ < 2π: Long creeping orbits have again escaping time
just under 3τ , but now the maximum τ = 2 cosψ = 2 sin 2π−∆

2 . Thus,

tm(2,∆) = 6 sin 2π−∆
2 .

• N ≥ 3: Long creeping orbits have escaping time just under (N + 1)τ ,
with the maximum τ = 2 cosψ = 2 sin 2π−∆

2(N−1) for the case of one hole, so

that the largest hole-free arc of the boundary is of size 2π − ∆. Thus,
tm(N,∆) ≤ 2(N + 1) sin 2π−∆

2(N−1)

The above is for one hole; for two holes, tm(N,∆) may be less than this.
Now, we show that in each of these cases tm(N,∆) < min(5

√
3, 8π∆ ). This

follows directly in the first two cases, since ∆ < 2π in the first case, and ∆ < π
in the second case.

For the other cases we first show the inequality tm(N,∆) < 8π
∆ . Note that

the sine function is concave when its argument is in [0, π] and that the graph of
a concave function lies below any tangent to that graph. Then, the intersection
of this tangent and the convex curve t = 8π

∆ reduces to a quadratic equation
with no real solutions.
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For N = 2 and π ≤ ∆ < 2π,

tm(2,∆) = 6 sin
2π −∆

2

≤ 3
√
3− 3

2
(∆− 4π

3
) (35)

<
8π

∆

where the tangent to the graph is at ∆ = 4π
3 .

Similarly, for N ≥ 3

tm(N,∆) ≤ 2(N + 1) sin
2π −∆

2(N − 1)

≤ N + 1

N − 1
(2π −∆) (36)

<
8π

∆

where the tangent to the graph is at ∆ = 2π. The discriminant of the quadratic

equation for the final inequality is 4πN+1
N−1

(
πN+1
N−1 − 8

)
which is negative for

N > 2.3. Thus, we have that tm(N,∆) < 8π
∆

Finally, we show the fixed bound tm(N,∆) ≤ 5
√
3. The fact that tm(N,∆)

is non-increasing means that

tm(N,∆) ≤ tm(N, 0) (37)

The concavity argument with the tangent at ∆ = 2π gives again

tm(N, 0) ≤ N + 1

N − 1
2π < 5

√
3 (38)

for N > 5
√
3+2π

5
√
3−2π

≈ 6.2865. Then, we can check the remaining cases N ∈
{3, 4, 5, 6} to show that tm(N, 0) = 2(N+1) sin π

N−1 ≤ 5
√
3 which gives equality

for N = 4. Thus, we have tm(N,∆) ≤ 5
√
3. In summary, all the creeping orbits

escape by time 5
√
3, or 8π

∆ if this is earlier, so they give zero contribution to the
survival probability if time is continuous. This concludes the proof of Lemma 1.

4 Limiting survival probabilities

In this section we prove Theorem 2, pertaining to the survival probability, that
is, the measure of orbits that do not escape until a certain number of collisions N
or time t. We can consider as initial conditions the measure with respect to the
map µM or the flow µM, giving four expressions in total. As before, we consider
in detail the simplest case, of discrete time in both the initial conditions and the
dynamics, and the case of a single hole, and then discuss the straightforward
modifications that need to be made for the other cases.
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From Theorem 1 and Lemma 1 the survival probability for large N can be
written in terms of contributions from connected components of periodic orbits:

lim
N→∞

NµM (NN ) =
∑
m,n,j

lim
N→∞

NµM (NN,m,n,j) (39)

assuming that the limits exist. Here, {m,n, j} label the non-escaping periodic
orbits as before, with 1 ≤ m < n < 2π

∆ and (m,n) = 1. Within each component,
we write, following Eq. (29)

ψ = ψm,n + η (40)

The label j enumerates the connected arcs of non-escaping periodic orbits; 1 ≤
j ≤ n in the one hole case. Eq. (39) is a finite sum, and the number of terms
diverges as ∆ → 0.

Each of the non-escaping periodic orbits is

{(β, ψ) : β ∈ [βj , βj + λj ], ψ = ψm,n} (41)

where λj is the length of the relevant arc and the dependence of βj and λj on
{m,n} is omitted to simplify the notation.

Throughout the component of this periodic orbit, the billiard map, Eq. (25)
is

T (β, ψm,n + η) = (β +
2πm

n
− 2η, ψm,n + η) (42)

thus, iterated N times it becomes

TN (β, ψm,n + η) = (β +
2πm

n
N − 2ηN,ψm,n + η) (43)

For each η, there is a set β ∈ [β−(η), β+(η)] which survives after N collisions,
defining the triangles depicted in Fig. 3. The value of β may extend beyond
the periodic orbit, Eq. (41) near the start or end of the N collisions if it is in a
pre-image of the hole, but not more than n collisions, the length of the periodic
orbit. For η > 0 we find

βj + 2η(N − n) ≤ β−(η) ≤ βj + 2ηN (44)

βj + λj ≤ β+(η) ≤ βj + λj + 2ηn (45)

and similar expressions for η < 0. Thus, the length of the surviving set at fixed
η, denoted l(η) = β+(η)− β−(η) is

max(λj − 2|η|N, 0) ≤ l(η) ≤ λj − 2|η|N + 4|η|n (46)

This gives the maximum possible η for this component as

η+ =
λj

2N − 4n
(47)
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with the minimum η− = −η+. We can now express the measure of the relevant
component as an integral, using Eq. (27):

µM (NN,m,n,j) =
1

4π

∫ η+

−η+
l(η) cos(ψm,n + η)dη (48)

We have
cos(ψm,n + η) = cosψm,n +O(N−1) (49)

from Eq. (47). Substituting Eqs. (46,49) into Eq, (48) we obtain

µM (NN,m,n,j) =
λ2j
8πN

cosψm,n +O(N−2) (50)

Noting that the limits in Eq. (39) do indeed exist, we combine this with Eqs. (29,50)
and find

lim
N→∞

NµM (NN ) =
∑
m,n,j

λ2j
8π

sin
πm

n
(51)

As above, the sum is over 1 ≤ m < n < 2π
∆ with (m,n) = 1. In the one hole

case there are n arcs of size λj =
2π
n −∆ so we have

lim
N→∞

NµM (NN ) =
1

8π

∑
m,n

n

(
2π

n
−∆

)2

sin
πm

n
(52)

This completes the calculation of the survival probability in the one hole case,
for discrete time (both initial measure and escape time). For the remainder of
this section, we show how to modify this result for two holes and continuous
time (initial measure and/or escape time).

For the case of two holes, we note that the union of n preimages of the holes
is periodic a period 2π

n . Let us write θ′ = θ (mod 2π
n ).

Within the first unit cell, β ∈ [0, 2πn ) there is a hole H1 = {β : 0 ≤ β ≤ ∆}
(noting that ∆ < 2π

n ). The other hole or one of its preimages is H ′
2 = {β : θ′ ≤

β ≤ θ′+∆}. This leads to (potentially) two arcs of non-escaping periodic orbits
in the unit cell, for ∆ < β < θ′ and for θ′ +∆ < β < 2π

n . The lengths of these
arcs are, respectively, (θ′ −∆)+ and

(
2π
n − θ′ −∆

)
+
where we use the notation

x+ = max(x, 0) for some x ∈ R to account for cases where one or both of these
arcs do not exist.

There are n copies of this unit cell, and these copies are periodic. Thus,
there are n arcs of length (θ′ − ∆)+ and n arcs of length

(
2π
n − θ′ −∆

)
+

of
non-escaping periodic orbits. Thus, there are 0, n, or 2n arcs, depending on
which of these quantities is positive. Eq. (51) becomes

lim
N→∞

NµM (NN ) =
1

8π

∑
m,n

n

[(
2π

n
− θ′ −∆

)2

+

+ (θ′ −∆)2+

]
sin

πm

n
(53)

The one hole case, Eq. (52) is a special form of this equation, when θ = 0. Note
that we need not explicitly impose the condition n < 2π

∆ as follows from the x+
notation. We still require (m,n) = 1.
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For escape in continuous time t, we note Eq. (30) and surrounding discussion.
For each ψ we have N = ⌈t/(2 cosψ)⌉, and for each periodic orbit {m,n} we
have (see Eqs. (40,47)) that the values of ψ lie in

ψm,n − η+ < ψ < ψm,n + η+ (54)

where η+ = O(N−1). This means that

N = ⌈t/(2 cosψ)⌉+O(1) (55)

for any contribution at fixed t related to this periodic orbit. The O(1) term
contributes to the O(N−2) term in Eq. (50) and so may be neglected. Thus
Eq. (53) remains valid with an extra 2 cosψ weighting on each orbit, leading to

lim
t→∞

tµM (Nt) =
1

4π

∑
m,n

n

[(
2π

n
− θ′ −∆

)2

+

+ (θ′ −∆)2+

]
sin2

πm

n
(56)

In case of a flow, we place initial conditions in the interior of the billiard
according to µM. Now, project them to M according to the projection proj.
The measure of a set A ⊆ M under the map and flow invariant measures are
related by ∫

A

dµM =
π

2

∫
proj−1A

dµM

τ ◦ proj
(57)

That is, each part of the set A expands by a factor τ under proj−1, so this has
to be divided when integrating over M. The prefactor π

2 arises as the ratio of
the normalization constants in Eqs. (27,28) and it is easy to check that both
sides of the equation are unity when A =M .

Thus, when integrating over the neighborhoods of periodic orbits of the flow
measure, the results are for the map measure, weighted by 2τ

π . From Eqs. (53,56)
we find

lim
N→∞

NµM(proj−1NN ) =
1

2π2

∑
m,n

n

[(
2π

n
− θ′ −∆

)2

+

+ (θ′ −∆)2+

]
sin2

πm

n

(58)

lim
t→∞

tµM(proj−1Nt) =
1

π2

∑
m,n

n

[(
2π

n
− θ′ −∆

)2

+

+ (θ′ −∆)2+

]
sin3

πm

n

(59)

This completes the proof of Thm. 2.
Note that in the four expressions for the survival probability, Eqs. (53,56,58,59),

differ only by an overall constant and the power of the sine function. This moti-
vates the following simpler notation Pj,θ(∆) given in Tab. 1 and in the statement
of Thm. 2. The cases with sin2 πmn are the same calculation as in Ref. [Bun05].
Here we also consider the remaining cases, Eqs. (53,59).
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5 Möbius and Mellin transforms

In this section we prove the first part of Theorem 3. The Möbius inversion
formulas (Ref. [DLMF, (27.5.3)] replacing d by n/d in the second equation) are

g(n) =
∑
d|n

f(d) f(n) =
∑
d|n

µ(d)g(n/d) (60)

If

f(n) =

n∑
m=1

(m,n)=1

h(m/n) (61)

for some function h, then

g(n) =
∑
d|n

f(d)

=
∑
d|n

d∑
k=1

(k,d)=1

h(k/d) (62)

=

n∑
m=1

h(m/n)

where the second line enumerates the reduced fractions k/d of m/n in the third
line.

Thus the Möbius inversion formula gives

n∑
m=1

(m,n)=1

h(m/n) =
∑
d|n

µ(d)

n/d∑
m=1

h(dm/n) (63)

To apply this to Eq, (1) we write

sin2
πm

n
=

1

2

(
1− cos

2πm

n

)
(64)

sin3
πm

n
=

3

4
sin

πm

n
− 1

4
sin

3πm

n
(65)

So we need h(x) = sin(πx), h(x) = cos(2πx) or h(x) = sin(3πx). Writing the
trigonometric functions as exponentials and summing geometric series, we find

n∑
m=1

sin
πm

n
= cot

π

2n
(66)

n∑
m=1

cos
2πm

n
= δn,1 (67)

n∑
m=1

sin
3πm

n
= cot

3π

2n
(68)
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where δn,1 is one if n = 1 and zero otherwise.
Thus we find

n∑
m=1

sin
mπ

n
= cot

π

2n
(69)

n∑
m=1

sin2
mπ

n
=

1

2
(n− δn,1) (70)

n∑
m=1

sin3
mπ

n
=

3

4
cot

π

2n
− 1

4
cot

3π

2n
(71)

Now we apply Möbius inversion, Eq. (63) to get

n∑
m=1

(m,n)=1

sin
πm

n
=

∑
d|n

µ(d) cot
πd

2n
(72)

n∑
m=1

(m,n)=1

sin2
πm

n
=

∑
d|n

µ(d)
1

2

[n
d
− δn/d,1

]
=

1

2
[ϕ(n)− µ(n)] (73)

n∑
m=1

(m,n)=1

sin3
πm

n
=

∑
d|n

µ(d)

[
3

4
cot

πd

2n
− 1

4
cot

3πd

2n

]
(74)

In Eq. (73), we can explicitly sum over d as shown, where ϕ(n) is the Euler
totient function (see Ref. [Bun05] for details). However, for consistency with
the other cases it is simpler not to do so.

Then Eq. (1) becomes

Pj,θ(∆) =
aj
8π2

∞∑
n=1

n

[(
2π

n
− θ′ −∆

)2

+

+ (θ′ −∆)2+

]∑
d|n

µ(d)Cj

(n
d

)
, (75)

where aj and Cj(x) are defined in Tab. 1. The sum over n can be written in this
unrestricted form because Cj(1) = 0 for all j. Hence, the n = 1 term vanishes.
Also, both terms in the square brackets vanish when n ≥ 2π

∆ .
Now, apply a Mellin transform in ∆. See Ref. [DLMF, §1.14(iv)]. Thus

P̃j,θ(s) =
∫ ∞

0

∆s−1Pj,θ(∆)d∆

=P (∆, s)Fj(θ, s) (76)

Pj,θ(s) =
1

2πi

∫ C+i∞

C−i∞
∆−sP̃j,θ(s)ds (77)

where P (∆, s) and Fj(θ, s) are given in the statement of Thm 3. The Mellin
transformation theorem and the interchange of sum and integral can both be
justified when the integral is absolutely convergent. In fact, it holds to the right
of all poles in the integrand, namely for C > 1. The result is Eq.(6), i.e., the
first part of Thm. 3 holds.
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6 Rational hole spacing

In this section, we prove the second part of Theorem 3. Let θ = 2πr/q. Then
Θ(n, θ, s) is periodic in n with period q. Writing n = cd and separating the
sum according to the values of c and d modulo q (denoted c̄ and d̄ respectively),
we obtain Eq. (10) with the sums defining C̃(q, c̄, s) and D̃(q, d̄, s) still to be
evaluated.

Let us consider now D̃(q, d̄, s). Transform Eq. (12) by dividing all terms by
the greatest common divisor b = (d̄, q). Then

D̃(q, d̄, s) =
∑

d′≡d̄′( mod q′)

µ(bd′)

(bd′)s+1
, (78)

where d′ = d/b, d̄′ = d̄/b and q′ = q/b. Here (d̄′, q′) = 1.
To make the paper self-contained, we recall now some facts about the Dirich-

let characters (see, e.g., [Dav13] for more details). The Dirichlet’s characters to
the modulus q are multiplicative functions χ(n) of an integer variable n which
are periodic with period q. The conjugacy classes modulo q, which are coprime
with q, form an abelian group under multiplication.

It is easy to see that the order of this group is equal to the Euler totient
function ϕ(q). Moreover, it is a finite abelian group. Thus, it has ϕ(q) irreducible
representations χ(n), where (n, q) = 1. The characters χ(n) are in this case the
complex roots of unity, i.e., χ(m)χ(n) = χ(mn). This definition is extended by
setting χ(n) = 0, if (n, q) > 1.

By the orthogonality relation [Dav13]

1

ϕ(q)

∑
χ

χ̄(a)χ(n) = δa,n (79)

where δa,n = 1, if a ≡ n(mod q), zero otherwise, and x̄ denotes a complex
conjugate to a number x.

By inserting Eq. (79) into Eq. (78) we get

D̃(q, d, s) =
1

ϕ(q′)

∑
χ

χ̄(d̄′)

∞∑
d′=1

χ(d′)
µ(bd′)

(bd′)s+1
(80)

Let d′ =
∏
p p

αp be the decomposition of d′ into prime factors. Then χ(d′) =∏
p χ(p)

αp . Furthermore,

µ(bd′) =

{
µ(b)

∏
p(−1)αp if bd′ is square free

0 otherwise,
(81)

Farther
∞∑
n=1

µ(n)

ns+1
=

∏
p

(1− p−s−1) = ζ(s+ 1)−1, (82)

23



where ζ(s) is the Riemann zeta function. Analogously∑
n

χ(n)µ(n)

ns+1
= L(s+ 1, χ)−1, (83)

where

L(s, χ) =

∞∑
n=1

χ(n)

ns
=

∏
p

(
1− χ(p)

ps

)−1

(84)

is the Dirichlet L function.
Now the Möbius µ function is not completely multiplicative. From Eq. (81),

µ(bd′) = µ(b)µ(d′) when (b, d′) = 1, otherwise it is zero. Thus, we may take
µ(b) and bs+1 from the sum in Eq. (80) at a cost of removing all d′ that have a
common factor with b. In particular

∞∑
d′ = 1

(d′, b) = 1

χ(d′)

d′s+1
=
∏
p̸ |b

(
1− χ(p)

ps+1

)−1

=L(s+ 1, χ)
∏
p|b

(
1− χ(p)

ps+1

)
(85)

Finally we arrive at Eq. (12).
If q′ = 1. then L(s, χ) reduces to the Riemann zeta function ζ(s). For each

q′ there is a trivial character χ1(d̄
′) that assumes value 1 for all d̄′ coprime to

q′. Therefore

L(s, χ1) = ζ(s)
∏
p|q′

(1− p−s). (86)

Consider now C̃(q, c̄, s) in Eq. (11). We expand the cot terms using their
power series [DLMF, (4.19.6)] to obtain

Cj(c) =
2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!

Kj(k)

c2k−1
, (87)

where B2k are the Bernoulli numbers, and Kj(x) is defined in Tab. 1. Eq. (87)
does not hold for the case j ∈ {2′, 2′′} and c = 1, in which case Cj(c) = 0
directly from Tab. 1.

Explicitly, the cot expansions come to

cot
π

2c
=
2c

π
− π

6c
− π3

360c3
− π5

15120c5
+ . . . (88)

3 cot
π

2c
− cot

3π

2c
=
16c

3π
+

π3

15c3
+

π5

63c5
+ . . . (89)

Note that the second expression does not have a term proportional to c−1, since
K3(1) = 0.
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The C1(c) series converges for c > 1/2, whilst the C3(c) series converges for
c > 3/2. There is also an exception noted above for c = 1 when j ∈ {2′, 2′′}. In
all cases, Cj(1) = 0, so we perform the sum for c > 1 in what follows.

Using the orthogonality of Dirichlet characters as before, we get∑
c=c̄ mod q

1

cs+2k
=

∑
c′=c̄′ mod q′′

1

(b′c′)s+2k

=
1

ϕ(q′′)

∑
χ

χ̄(c̄′)

∞∑
c′=1

χ(c′)

(b′c′)s+2k
(90)

=

∑
χ χ̄(c̄

′)L(s+ 2k, χ)

b′s+2kϕ(q′′)

where we denote b′ = (c̄, q), q′′ = q/b′, c̄′ = c̄/b′ and Dirichlet characters are of
modulus q′′. Finally, we require c > 1:∑

c = c̄ mod q
c > 1

1

cs+2k
=

∑
χ χ̄(c̄

′)L(s+ 2k, χ)

b′s+2kϕ(q′′)
− δc̄,1, (91)

This expression equals O(2−s−2k), as seen from the left hand side.
Combining Eqs. (87,91) and the first equality in Eq. (11) we arrive at the

second equality in Eq. (11). The series in k converges exponentially, except

exactly at a pole of the zeta function, that is, s = 1 − 2k, since π2kB2k

(2k)! ∼
21−2k [DLMF, (24.11.1)], Kj(k) = O(32k) and the square bracket in Eq. (11),
namely Eq. (91), is O(2−2k). This completes the proof of Theorem 3.

7 Poles and residues

In this section we study the poles of the integrand P (∆, s)Fj(θ, s) of the Mellin
transform, Eq. (6), for rational hole spacing θ = 2πr/q, in decreasing order of
ℜ(s). The results are summarized in Sec. 7.7.

7.1 s = 1

The residue of the pole at s = 1 arises only from the k = 0 term of the c series.
We have

Ress=1 C̃j(q, c̄, s) =
2Kj(0)

πq
(92)

independent of c̄. The full residue is thus

Ress=1 P (∆, s)Fj(θ, s) =
αj
q∆

q−1∑
c̄=0

q−1∑
d̄=0

Θ(c̄d̄,
2πr

q
, 1)D̃(q, d̄, 1) (93)

with αj =
2
3Kj(0)aj given in Tab. 1.
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Assuming (q, r) = 1 without loss of generality and that Θ(c̄d̄, 2πr/q, 1) has
period q in its first argument, we note that any r ̸= 1 just permutes the sum
over c̄, so we may take r = 1. The sum over c̄ then gives

1

q

q−1∑
c̄=0

Θ

(
c̄d̄,

2πr

q
, 1

)
=

1

q′

q′−1∑
j=0

Θ

(
j,
2π

q′
, 1

)

=
1

q′4

q′3 + 2

q′−1∑
j=1

j3

 (94)

=
q′2 + 1

2q′2

where, as before, q′ = q/b, b = (q, d̄). In the first line we note that c̄d̄/q simplifies
by dividing through by the common factor b and that d̄/b is coprime with q′ and
so permutes the sum as above. The second line uses the definition of Θ, and
separates the terms with j = 0 and j > 0. The third line uses the well-known
expression for sums of cubes

Summing over d̄ within the classes defined by constant b all non-principal
characters cancel to give∑

d̄:(q,d̄)=b

D̃(q, d̄, 1) =
6

π2

µ(b)

b2
1∏

p|q(1− p−2)

where we have substituted ζ(2) = π2/6. Finally, Eq. (93) becomes

Ress=1 P (∆, s)Fj(θ, s) =
αj
∆

6

π2

∑
b|q

(q/b)2 + 1

2(q/b)2
µ(b)

b2
1∏

p|q(1− p−2)

=
αj
∆

3

π2

q2
∑
b|q µ(b)/b

2 +
∑
b|q µ(b)

q2
∏
p|q(1− p−2)

(95)

=
αj
∆

3

π2
(1 + δq,1)

Thus the residue has a simple closed form and is independent of θ except for
q = 1 (one hole case); Eq. (21) claims that this independence holds even when
θ is not a rational multiple of π.

7.2 s = 0

For s = 0 there is a pole arising from P (∆, s). However for q ∈ {1, 2, 3, 4, 6} there
are no non-principal even characters, so this is cancelled by the zeta function in
the denominator of D̃(q, d̄, s). For other values of q, the Dirichlet L-functions at
argument 1 can be evaluated exactly using the discrete Fourier transform [MSE]

L(1, χ) = −1

q

q−1∑
k=1

ln(1− e2πik/q)

q∑
n=1

χ(n)e−2πink/q (96)
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See for example Tab. 2 below, q = 5 at s = 0. However there do not appear to
be any significant simplifications to the expression for the residue.

7.3 ℜ(s) = −1
2

These arise due to zeros of zeta and L-functions in the denominator of D̃(q, d̄, s).
If the Generalized Riemann Hypothesis is false, then other poles exist in the
critical strip with real part [−1, 0]. The density of poles increases with q as
more and more L-functions contribute; see Fig. 2. This suggests that for θ not a
rational multiple of π, it may not be possible to analytically continue the Mellin
transform to smaller real part.

7.4 s = −1

For s = −1 there is a pole arising from P (∆, s) and for j = 1 also one from
C̃j(q, c̄, s).

It is tempting to note
Θ(n, θ,−1) = 1 (97)

for all θ, not just rational multiples of π. For rational cases, the sums over c̄
and d̄ decouple, and we can perform them:

q−1∑
c̄=0

C̃j(q, c̄, s) = C̃j(1, 0, s) (98)

q−1∑
d̄=0

D̃(q, d̄, s) = D̃(1, 0, s) (99)

with the relevant expressions in Sec. 8.1 below. Substituting s = −1 we have
D̃(1, 0,−1) = −2, that is, finite.

However, this is too naive. For q > 1 the limit s → −1 is singular, due to
the factor

∏
p|b(1 − χ(p)p−s−1) in the denominator of D̃(q, d̄, s) which gives a

pole of order the number of prime factors of q. These poles cancel in the sum
over d̄ exactly at s = −1 but still lead to divergence in the limit s → −1 when
there is more than one prime factor (for example q = 6), leading to an overall
increase in the order of the pole at s = −1. Even when there is a single prime
factor, the singular limit needs to be addressed correctly. We do not have a
general expression, but the residues for q ≤ 6 are given in Tab. 2 below.

7.5 ℜ(s) = −1, ℑ(s) ̸= 0

The factor
∏
p|b(1 − χ(p)p−s−1) in the denominator of D̃(q, d̄, s) can also lead

to further poles with imaginary part equal to −1. It is zero when

s = −1 +
i(argχ(p) + 2πl)

ln p
, l ∈ Z (100)
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However, some of these poles may be canceled when the sums are organized to
construct Fj(2π/q, s), and indeed they do not appear for q ∈ {1, 2}. See Sec. 8.5
for details.

7.6 s = −2

For j ∈ {2′, 2′′} there is another case for which the residue can be found exactly,
namely s = −2. Unlike the case s = −1 in the previous section, both C̃ and D̃
are well behaved at this point, so there is no singular limit to consider.

Because j ∈ {2′, 2′′} we need consider only k = 0, and noting that odd
L-functions cancel and even L-functions have a zero at s = −2, we find

C̃2′(q, c̄,−2) = −δc̄,1 (101)

Moreover, at s = −2 the exponents in Θ(c̄d̄, θ, s) are zero. Analytically con-
tinuing from s > −2 we note that if c̄d̄ = 0 mod q there is only a single term,
otherwise two terms. So,

Θ

(
c̄d̄,

2πr

q
,−2

)
= 2− δc̄d̄,0 (102)

Summing over all d̄ give the zeta function

q−1∑
d̄=0

D̃(q, d̄, s) =

∞∑
d=1

µ(d)

ds+1
=

1

ζ(s+ 1)
(103)

Thus by analytic continuation

q−1∑
d̄=0

D̃(q, d̄,−2) =
1

ζ(−1)
= −12 (104)

Then, for d̄ = 0 we have

D̃(q, 0,−2) =
qµ(q)

ζ(−1)
∏
p|q(1− p)

= −12
qµ(q)2

ϕ(q)
(105)

Putting it together and noting that j = 2′′ differs only by a constant, we find

π

2
Ress=−2 P (∆, s)F2′′

(
2πr

q
, s

)
= Ress=−2 P (∆, s)F2′

(
2πr

q
, s

)
=

3∆2

π

(
1− qµ(q)2

2ϕ(q)

)
(106)

for coprime (r, q). Note that this formula applies also to q = 1, which is not
obvious from the above derivation but can be checked separately. Also, for q = 2
(and only q = 2) the residue is zero - the pole is cancelled.
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7.7 Overall pole structure

To summarise, the poles (covering all values of j) are given as follows. See also
Fig. 2. Unless otherwise stated, the residues for j ∈ {1, 3} are written as series
over k and for j ∈ {2′, 2′′} they are written in closed form, involving values of
L-functions.

s = 1 There is a simple pole with residue given exactly in Eq. (95).

s = 0 There is a pole in P (∆, s), which is canceled by the zeta function in the
denominator of D̃(q, d̄, s) for q ∈ {1, 2, 3, 4, 6}. For other q and j ∈ {2′, 2′′}
the residue can be found in closed form, and for j ∈ {1, 3} as a series over
k.

ℜ(s) = − 1
2 These arise from zeros in the zeta and L functions in the denom-

inator of D̃(q, d̄, s). If the Riemann hypothesis is false, then other poles
exist with a real part in the critical strip [−1, 0]; this may also happen
for some q if the Generalized Riemann Hypothesis is false, depending on
what L-functions are present.

s = −1 There is a pole in P (∆, s), and also C̃j(q, c̄, s) if j = 1. In addition, the

factor
∏
p|b(1− χ(p)p−s−1) in the denominator of D̃(q, d̄, s) increases the

order of the pole by one less than the number of distinct prime factors of
q.

ℜ(s) = −1 The factor
∏
p|b(1−χ(p)p−s−1) in the denominator of D̃(q, d̄, s) leads

to one or more families of equally spaced poles for q ≥ 3.

s = −2 There is a pole in P (∆, s). For j ∈ {2′, 2′′} the residue is given exactly
in Eq. (106), vanishing and canceling the pole for q = 2.

s ≤ −3, odd There is a pole in D̃(q, d̄, s), and also in C̃j(q, c̄, s) if j ∈ {1, 3}.

s ≤ −4, even There are no poles, since all odd L-functions in D̃(q, d̄, s) cancel
after summing over c̄ and d̄ as noted after the statement of Thm. 3.

Note that the above description is conditional on the (as almost certainly true)
statement that C̃j(q, c̄, s) has no zeros for s ∈ {−2, 0} and j ∈ {1, 3}. If it is
false, then it is possible that these poles may be canceled.

8 Calculations for fixed q

In this section, we give explicit expressions for the integrand P (∆, s)Fj(θ, s) of
the Mellin transform, Eq. (6) in the case where θ = 2πr/q and q ≤ 6, that is,
there is only a single hole (θ = 0), or the angle between the two holes is a simple
rational multiple of π, using the equations of Sec. 6.
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8.1 q = 1: One hole

This is the case of one hole. We have r = c̄ = d̄ = 0.

Θ(0, 0, s) = 1 (107)

C̃j(1, 0, s) =
2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!
Kj(k) [ζ(s+ 2k)− 1] (108)

D̃(1, 0, s) =
1

ζ(s+ 1)
(109)

Fj(0, s) = aj
2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!
Kj(k)

ζ(s+ 2k)− 1

ζ(s+ 1)
(110)

The residues are given in Tab. 2. The residue for s = 1 is exactly twice that of
the other cases (q > 1).

8.2 q = 2: Two symmetric holes

The case q = 2 is that of two symmetric holes. We have r = 1, 0 ≤ c̄, d̄ ≤ 1.

Θ(0, π, s) = 1 (111)

Θ(1, π, s) =
1

2s+1
(112)

C̃j(2, 0, s) =
2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!
Kj(k)ζ(s+ 2k)2−s−2k (113)

C̃j(2, 1, s) =
2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!
Kj(k)

[
ζ(s+ 2k)(1− 2−s−2k)− 1

]
(114)

D̃(2, 0, s) =
1

ζ(s+ 1)(1− 2s+1)
(115)

D̃(2, 1, s) =
1

ζ(s+ 1)(1− 2−s−1)
(116)

This gives

Fj(π, s) =aj
2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!
Kj(k)

ζ(s+ 2k)

ζ(s+ 1)2s+2k
(117)

The residues are given in Tab. 2. For j ∈ {2′, 2′′} the zeta function in the
numerator cancels the pole at s = −2. For q > 2 symmetric holes, see Sec. 9
below.
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8.3 q = 3

This is the case of two holes with angle 2π
3 (equivalent to 4π

3 by interchanging
the holes). We have r = 1 (without loss of generality), 0 ≤ c̄, d̄ ≤ 2.

Θ(0,
2π

3
, s) =1 (118)

Θ(1,
2π

3
, s) =Θ(2,

2π

3
, s) =

1 + 2s+2

3s+2
(119)

C̃j(3, 0, s) =
2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!
Kj(k)ζ(s+ 2k)3−s−2k (120)

C̃j(3, 1, s) =
2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!
Kj(k) (121)

×
[
ζ(s+ 2k)(1− 3−s−2k) + L(s+ 2k, χ2)

2
− 1

]
C̃j(3, 2, s) =

2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!
Kj(k) (122)

×
[
ζ(s+ 2k)(1− 3−s−2k)− L(s+ 2k, χ2)

2
− 1

]
D̃(3, 0, s) =

1

ζ(s+ 1)(1− 3s+1)
(123)

D̃(3, 1, s) =
1

2

[
1

ζ(s+ 1)(1− 3−s−1)
+

1

L(s+ 1, χ2)

]
(124)

D̃(3, 2, s) =
1

2

[
1

ζ(s+ 1)(1− 3−s−1)
− 1

L(s+ 1, χ2)

]
(125)

where χ2 is the non-principal (and odd) character of modulus 3. Now the sum
over c̄ and d̄ involves only C̃j(3, 0, s) and D̃(3, 0, s) together with the combina-

tions C̃j(3, 1, s) + C̃j(3, 2, s) and D̃(3, 1, s) + D̃(3, 2, s). Hence, all terms with
the L-function of character χ2 cancel. The result is

Fj

(
2π

3
, s

)
=aj

2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!
Kj(k)

1

ζ(s+ 1)3(3s+1 − 1)
(126)

×
[
(2s+2 − 2)(ζ(s+ 2k)− 1) +

3s+2 − 2s+2 − 1

3s+2k
ζ(s+ 2k)

]
The residues are given in Tab. 2.
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8.4 4 ≤ q ≤ 6

The following were found using mathematica.

Fj

(π
2
, s
)
=aj

2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!
Kj(k)

1

ζ(s+ 1)(2s+1 − 1)4s+2k+1
(127)

×
[
ζ(s+ 2k)((2s+4k − 22k)(3s+2 − 3) + 2s+4 − 8)− 2s+4k(3s+2 − 3)

]
Fj

(
2π

5
, s

)
=aj

2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!
Kj(k)

1

ζ(s+ 1)L(s+ 1, χ3)(5s+1 − 1)5s+2k+2

×
(
5L(s+ 1, χ3)[ζ(s+ 2k)(2× 5s+2 − 4s+2 − 3s+2 − 2s+2 − 1)

+ 5s+2k(ζ(s+ 2k)− 1)(4s+2 + 3s+2 + 2s+2 − 9)] (128)

+(L(s+ 2k, χ3)− 1)ζ(s+ 1)(5s+2k+1 − 52k)(4s+2 − 3s+2 − 2s+2 + 1)
)

Fj

(
4π

5
, s

)
=aj

2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!
Kj(k)

1

ζ(s+ 1)L(s+ 1, χ3)(5s+1 − 1)5s+2k+2

×
(
5L(s+ 1, χ3)[ζ(s+ 2k)(2× 5s+2 − 4s+2 − 3s+2 − 2s+2 − 1)

+ 5s+2k(ζ(s+ 2k)− 1)(4s+2 + 3s+2 + 2s+2 − 9)] (129)

−(L(s+ 2k, χ3)− 1)ζ(s+ 1)(5s+2k+1 − 52k)(4s+2 − 3s+2 − 2s+2 + 1)
)

Fj

(π
3
, s
)
=aj

2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!
Kj(k)

1

ζ(s+ 1)(2s+1 − 1)(3s+1 − 1)6s+2k

×
[
ζ(s+ 2k)(6s+2k(1− 5s+2) + 5s+2(3s+2k + 2s+2k − 1) (130)

+ 4s+2(1− 3s+2k) + 3s+2k(22s+2k+3 + 2s+3 − 5) + 2× 3s+2

−22s+2k+3 − 2s+2k − 2s+2 − 1) + 6s+2k(5s+2 − 2s+3 − 1)
]

Here, χ3 is the non-principal even character of modulus 5. All q > 6 have non-
principal even characters, so we would expect the expressions to include the
relevant non-principal L-functions.

The residues are given in Tab. 2.
For q = 5, the non-principal L function leads to a pole at s = 0
For q = 6 an increase in the order of the pole is found for the first time at

s = −1 due to D̃(q, d̄, s). That is, for j = 1, it is now a triple pole and for
j ∈ {2′, 2′′, 3} it is a double pole. See Sec. 7.4.

8.5 Table of residues

The residues of the functions found for q ≤ 6 are given in Tab. 2. They were
found using mathematica symbolic algebra, then numerical evaluation when
involving a sum over k. The case j = 3 requires k ≤ 16 for this precision. The
table confirms many of the results shown in Sect. 7, namely, the residues for
s = 1, those for s = −2 and j ∈ {2′, 2′′}, and the order of all poles, including
the absence of poles for s = 0 and q ∈ {1, 2, 3, 4, 6} and for s = −2, j ∈ {2′, 2′′}
and q = 2.
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q r j s = 1 s = 0 s = −1 s = −2
1 0 1 4

π∆
−1 0 −0.486∆ + 0.524∆ ln∆ −0.0437∆2

2′ 2∆−1 0 − 13
12∆

3
2π∆

2

2′′ 4
π∆

−1 0 − 13
6π∆

3
π2∆

2

3 64
3π2∆

−1 0 −0.662∆ −0.136∆2

2 1 1 2
π∆

−1 0 −0.0894∆ + 0.262∆ ln∆ −0.107∆2

2′ ∆−1 0 − 1
6∆ 0

2′′ 2
π∆

−1 0 − 1
3π∆ 0

3 32
3π2∆

−1 0 0.242∆ −0.478∆2

3 1 1 2
π∆

−1 0 −0.217∆ + 0.321∆ ln∆ −0.0805∆2

2′ ∆−1 0 − 20 ln 2+9 ln 3
36 ln 3 ∆ 3

4π∆
2

2′′ 2
π∆

−1 0 − 20 ln 2+9 ln 3
18π ln 3 ∆ 3

2π2∆
2

3 32
3π2∆

−1 0 −0.391∆ −0.139∆2

4 1 1 2
π∆

−1 0 −0.427∆ + 0.442∆ ln∆ 0.00671∆2

2′ ∆−1 0 − 16 ln 2+33 ln 3
48 ln 3 ∆ 3

π∆
2

2′′ 2
π∆

−1 0 − 16 ln 2+33 ln 3
24π ln 3 ∆ 6

π2∆
2

3 32
3π2∆

−1 0 −1.407∆ 0.611∆2

5 1 1 2
π∆

−1 -0.139 −0.312∆ + 0.371∆ ln∆ −0.0633∆2

2′ ∆−1 −π
10

√
5 lnφ

− 40 ln 2+12 ln 3+25 ln 5
60 ln 5 ∆ 9

8π∆
2

2′′ 2
π∆

−1 −2
10

√
5 lnφ

− 40 ln 2+12 ln 3+25 ln 5
30π ln 5 ∆ 9

4π2∆
2

3 32
3π2∆

−1 -0.376 −0.580∆ −0.113∆2

5 2 1 2
π∆

−1 0.139 −0.312∆ + 0.371∆ ln∆ −0.0633∆2

2′ ∆−1 π
10

√
5 lnφ

− 40 ln 2+12 ln 3+25 ln 5
60 ln 5 ∆ 9

8π∆
2

2′′ 2
π∆

−1 2
10

√
5 lnφ

− 40 ln 2+12 ln 3+25 ln 5
30π ln 5 ∆ 9

4π2∆
2

3 32
3π2∆

−1 0.376 −0.580∆ −0.113∆2

6 1 1 2
π∆

−1 0 −0.374∆+0.812∆ ln∆−0.101∆(ln∆)2 −0.173∆2

2′ ∆−1 0 [5 ln 5(2+10 ln 3−7 ln 5−24 lnA) − 3
2π∆

2

+ ln 2(−8−76 ln 3+55 ln 5+96 lnA)

+(70 ln 5−56 ln 2) ln∆]
∆

72 ln 2 ln 3
2′′ 2

π∆
−1 0 [5 ln 5(2+10 ln 3−7 ln 5−24 lnA) − 3

π2∆
2

+ ln 2(−8−76 ln 3+55 ln 5+96 lnA)

+(70 ln 5−56 ln 2) ln∆]
∆

36π ln 2 ln 3
3 32

3π2∆
−1 0 −0.242∆ + 1.435∆ ln∆ −0.706∆2

Table 2: Residues for q ≤ 6 and s ≥ −2 and real. A = exp[ 1
12 − ζ ′(−1)] is

the Glaisher-Kinkelin constant, and φ = 1+
√
5

2 is the golden ratio. Where the
residue is zero, there is no pole. See Sec. 8.5.
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The table presents details of poles on the real axis for s ≥ −2. In addition,
as noted in Sec. 7 and using the expressions for Fj(2π/q, s) earlier in Sec. 8,
there are the following additional families of poles off the real axis for q ≤ 6:
For ℜ(s) = −1/2 at locations corresponding to the non-trivial zeros of ζ(s) for
all q, and also L(s, χ3) for q = 5. For ℜ(s) = −1,

s = −1 +
2πl

ln 2
q ∈ {4, 6}

s = −1 +
2πl

ln 3
q ∈ {3, 6} (131)

s = −1 +
2πl

ln 5
q = 5

where l ∈ Z. Note that complex poles with ℜ(s) = −1 do not appear for
q ∈ {1, 2}.

9 Symmetrically placed holes

In this section we consider a different scenario, that of q ≥ 2 symmetric holes,
that is, H = ∪q−1

j=0[
2πj
q , 2πjq + ∆]. The analysis is exactly the same to the

derivation of the one hole survival probability, Eq. (52). Then, reducing the
dynamics mod 2π

n , we find q̃ arcs of length 2π
nq̃ of non-escaping periodic orbits

of length n, where q̃ = q
(n,q) . Thus Eq. (1) becomes

Psym
j,q (∆) =

2jaj
16π2

∑
m,n

[n, q]

(
2π

[n, q]
−∆

)2

+

sinj
πm

n
(132)

where [n, q] = nq̃ is the least common multiple, and again the sum is over
1 ≤ m < n with (m,n) = 1. Applying the Möbius and Mellin transforms as
before, Eq, (6) becomes

Psym
j,q (∆) =

1

2πi

∫ C+i∞

C−i∞
P (∆, s)F sym

j (q, s)ds (133)

F sym
j (q, s) = aj

∑
n

1

[n, q]s+1

∑
d|n

µ(d)Cj(n/d) (134)
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We can substitute Eq. (87). In addition, the multiplicative structure in the
sums imply the identity

∞∑
n=1

1

[n, q]s+1

∑
d|n

µ(d)

(
d

n

)2k−1

=
1

qs+1

∞∑
n=1

(n, q)s+1

ns+2k

∏
p|n

(1− p2k−1)

=
1

qs+1

∏
p

1 + (1− p2k−1)

∞∑
j=1

p−(s+1)max(j−β,0)−(2k−1)j

 (135)

=
1

qs+1

∏
p

1 + (1− p2k−1)

 β∑
j=1

p−j(2k−1) + pβ(s+1)
∞∑

j=β+1

p−j(s+2k)


=

1

qs+1

∏
p

[
p−β(2k−1) 1− p−(s+1)

1− p−(s+2k)

]
=

ζ(s+ 2k)

ζ(s+ 1)qs+2k

where β = ordp(q) and j = ordp(n). Combining this together, we obtain the
statement of Theorem 4.

For poles where only k = 0 contributes, that is, s = 1 or j ∈ {2′, 2′′}, the
residue is proportional to q−s. For example, we have from Eq. (95)

Ress=1P (∆, s)F
sym
j,q (s) =

6αj
π2∆q

(136)

10 Sum of real residues

Here we state and prove a lemma that demonstrates convergence of the sum
over the residues on the real axis.

Lemma 2. Let q ∈ {1, 2, 3, 4, 6}, then

∞∑
l=1

Ress=−lP (∆, s)Fj(2π/q, s) < C∆

∣∣∣∣ln ∆

4π

∣∣∣∣2 (137)

where C > 0 is a constant.

Note that to have non-overlapping holes, we must have ∆ < 2π
q . The right-

hand side is determined by the pole at s = −1, so the presence of the logarithm
depends on the order of this pole; see Tab. 2. We write this as ln(∆/(4π))
rather than ln∆ as the latter is zero when ∆ = 1. Where there is no pole (even
l except perhaps l = 2), we consider its residue to be zero.
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Proof. Refer to Eq. (7) for P (∆, s) and Sec. 8 for Fj(2π/q, s). The sum over k
converges (see the end of the proof of Theorem 3) and so each residue is finite
and O(∆l| ln(∆/(4π))|2) as ∆ → 0. Thus, we need only a bound on the residue
for large l.

For the Riemann zeta function, we have the functional equation

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s) (138)

Now 1 < ζ(s) ≤ ζ(2) for s ≥ 2. Thus, as s→ −∞, ζ(s) oscillates with amplitude
dominated by the Γ(1−s) term. This appears in the denominator of Fj(2π/q, s)
as ζ(s+1), whilst in the numerator ζ(s+2k) has a similar amplitude for k = 0
but decreases exponentially for k > 0:

|ζ(s+ 2k)| ≈ |ζ(s)|
(
2π

|s|

)2k

(139)

Thus, we need consider only the k = 0 term. Apart from constants and expo-
nentially small terms, this is

Ress=−lP (∆, s)
ζ(s)

ζ(s+ 1)qs
=

{
−
(
q∆
2π

)l
ζ(l+1)

(1−l)(2−l)ζ(l) l odd

0 l even
(140)

thus the sum over l converges for ∆ < 2π
q as required.

Remark 1. For other values of q, it also makes sense to consider ∆ > 2π
q .

For example, when q = 5, r = 2, we have θ = 4π/5 and it is valid to consider
∆ > 2π

5 . It seems the series does not converge in this case.

11 Numerical results

The numerical results in this section are given in support of Conj. 1, that the
sum of residues is absolutely convergent and gives the coefficient of the long time
survival probability. The sum of the absolute value of the residues is plotted in
Fig. 4, showing convergence.

The infinite time limit of the survival probability Pj,θ(∆) was estimated by
direct simulation, using a sample of 109 initial points distributed with respect
to the relevant measure. Then, the leading term Ress=1P (∆, s)Fj(θ, s) was
subtracted from this, for different values of ∆. The results are as in Fig. 5
(points), together with the sum of residues for s = 0,−1,−2 (curves); refer to
Tab. 2.

If the survival probability is given by the sum of the residues as in Conjec-
ture 1, the ∆ → 0 behavior should then be determined by the residues of the
remaining (s ̸= 1) poles. It turns out that the poles on the critical axis (real
part −1/2) have residues of magnitude about 10−3 and hence are not visible
at this scale. For q ∈ {1, 2, 3} the subleading real pole is at s = −1 whilst for
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Figure 4: Sum of the absolute value of the residues in Conj. 1, plotted against
the maximum absolute value of s∗, showing convergence. The left panels are
for q = 1 and the right panels for q = 2. From top to bottom, they are for
j ∈ {1, 2′, 2′′, 3}. The hole size ∆ = 2π/q, the supremum of possible values.
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Figure 5: Numerically computed Pj,θ(∆) as a function of ∆, after subtracting
the leading (∼ ∆−1) term (points) compared with the sum of residues for s =
0,−1,−2 (curves). Top left: q = 1. Top right q = 2. Middle left: q = 3. Middle
right q = 5, r = 1. Lower panel (points only): θ = (3−

√
5)π.

q = 5 it is at s = 0. We found good agreement for small ∆. At large ∆, other
poles (more negative s) are more relevant. For q = 5 the agreement is poorer for
large ∆; here there are more omitted poles, with real parts −1/2 and −1; see
Fig. 2. For θ = (3−

√
5)π we do not have an expression in terms of L-functions

but subtract the same leading term. As with q = 5, the curves do not approach
zero as ∆ → 0, suggesting pole(s) with 0 ≤ ℜs < 1.
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