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Abstract

We consider a dynamical billiard in a circle with one or two holes
in the boundary, or q symmetrically placed holes. It is shown that the
long time survival probability, either for a circle billiard with discrete
or with continuous time, can be written as a sum over never escaping
periodic orbits. Besides, it is demonstrated that in both cases the Mellin
transform of the survival probability with respect to the hole size has
poles at locations determined by zeros of the Riemann zeta function and
in some cases, Dirichlet L-functions.

1 Introduction

Consideration of open dynamical systems, in which the dynamics continues
only until the system reaches a “hole,” a specified subset of phase space, was
introduced by Pianigiani and Yorke in 1979 [Pia79], and actively studied since
then. Whilst a dynamical system of interest can be chosen in an extremely
general manner, a goal was to study open billiards [Pia79] To quote:

Picture an energy conserving billiard table with smooth obstacles
so that all trajectories are unstable with respect to the initial data.
Now suppose a small hole is cut in the table so that the ball can
fall through. We would like to investigate the statistical behavior of
such phenomena.

There have been many mathematical results relating to open dynamics since
then; see for example Ref. [Hay20] and references therein.

Physicists have also studied open billiards experimentally, in which the bil-
liard balls are atoms [Fri01, Mil01] (see Ref. [Alt13] for a review of the exten-
sive physics literature). These experiments provided impetus for the present
authors to compare the effects of having one or two holes, both in a circu-
lar billiard [Bun05] and in chaotic systems [Bun07]. What was assumed to be
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seemingly the simplest case of a billiard in a circle turned out to be very com-
plicated, and highlighted a number of interesting phenomena, including con-
nections with the Riemann hypothesis. We attempted to justify these results
rigorously [Bun06] but some considerations were not sufficiently clear to the re-
viewers and this was not published. The paper Ref. [Bun05] continues to receive
citations, and we continue to receive questions about it, so the present contribu-
tion is an effort to give a clear and rigorous exposition of what is known, what
is conjectured or remains an open question in [Bun05].

We note that in the intervening years physicists have performed experiments
to measure the Riemann zeros [Cre15, He21]. One of us used methods similar
to Ref. [Bun05] to consider open spherical billiards [Det14, Det21]. Ref. [Det17]
gives a rigorous account of the scaling limit in which the product of hole size
and time is constant while the latter tends to infinity, for integrable systems.
This includes as an example, the elliptical billiard, which is a generalisation of
the circle, and is thus a rigorous justification of the limiting function presented
in Fig 3 of Ref. [Bun05].

∆

∆

θβ

ψ

Figure 1: Geometry of the circular billiard

In mathematical literature the studies of open billiards turned out to be inti-
mately related to limiting Poisson distributions of the process of recurrences to a
hole when the size of the hole is shrinking to zero. Most extensive mathematical
studies of open dynamical systems (particularly open billiards) are related to
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j Pj,θ(∆) aj αj Cj(x) Kj(x)
1 limN→∞NµM (NN ) π 2π

3 cot π
2x 1

2 limt→∞ tµM (Nt) π π2

3 x− δx,1
π
2 δx,0

2′ limN→∞NµM(proj−1NN ) 2 2π
3 x− δx,1

π
2 δx,0

3 limt→∞ tµM(proj−1Nt) 2 32
9 3 cot π

2x − cot 3π
2x 3− 32x−1

Table 1: Definitions of the four limiting survival probabilities and related quan-
tities, labelled by j ∈ {1, 2, 2′, 3}. The index j = 2′ is interpreted as 2 when it
appears in a formula such as 2j and sinj x. These involve the set NN not escap-
ing for discrete time N , the set Nt not escaping for continuous time t, invariant
measures of the map µM and of the flow µM, and the projection proj : M →M .

proving the Poisson and other limit laws (see e.g., the papers [Su22] and [Bun23]
and references therein). In physics studies, especially in the experimental ones,
holes are at the boundary of billiard tables. Therefore. if one shrinks such hole
to a point, the resulting limiting set has a finite size in the angle coordinate,
which makes a rigorous mathematical analysis much more involved [Bun22].

We now outline the results of the present paper. The geometry of the circular
billiard with two holes (one hole if θ = 0) is defined as in Fig. 1. Definitions are
given in more detail in Sec. 2.

First, we prove that the surviving set for sufficiently late times consists of
neighbourhoods of periodic orbits. More specifically,

Theorem 1. Let N > 4π
∆ . Then every connected component Bi, i = 1, 2, . . . ,m,

m = m(∆) of the set NN of orbits never escaping until N collisions either (a)
contains a unique segment Ii = {(β, ψ), βi,1 < β < βi,2} consisting of never
escaping periodic orbits, or (b) contains only creeping orbits.

Creeping orbits are those that have collisions along an arc of the circle with-
out crossing either of the holes. That their contribution is negligible is estab-
lished in the following lemma:

Lemma 1 (Creeping orbits). (a) In discrete time, the contribution of creeping
orbits to survival probability, for initial conditions distributed with respect to the
map or flow invariant measures, is o(N−1). (b) In continuous time, creeping
orbits escape in bounded time, specifically, the set Nt of orbits never escaping
until time t contains no creeping orbits for t > min(5

√
3, 8π∆ ).

Theorem 1 and Lemma 1 are proved in Sec. 3.
We find the contribution for each periodic orbit to the survival probability,

defined in each of four ways. These four definitions are for initial conditions
distributed with respect to the invariant measures of the billiard map and of
the billiard flow, and for measuring escape with respect to (a number of) colli-
sions and to (continuous) time. The survival probabilities are denoted Pj,θ(∆)
and defined in Tab. 1. We define θ′ = θ (mod 2π

n ) and x+ = max(x, 0). For
two integers m and n the greatest common divisor is denoted (m,n) and the

3



Kronecker delta function, equal to one ifm = n, otherwise zero, is denoted δm,n.
Then, we have

Theorem 2. The limiting survival probabilities defined in Tab. 1 are given by

Pj,θ(∆) =
2jaj
16π2

∑
m,n

n

[(
2π

n
− θ′ −∆

)2

+

+ (θ′ −∆)2+

]
sinj

πm

n
(1)

The sum is over 1 ≤ m < n with (m,n) = 1. The index j = 2′ is interpreted as
2 when it appears in a formula such as 2j and sinj x.

Theorem 2 is proved in Sec. 4. Note that the sum is finite since both terms in
the square brackets vanish if n ≥ 2π

∆ . As ∆ → 0 the number of terms increases
without bound. We now perform Möbius and Mellin transforms to represent
the limiting behaviour of the survival probability as a contour integral involving
an infinite sum over n together with a sum over its divisors. Furthermore, if
θ = 2πr/q, where 0 ≤ r < q are coprime integers, then we can express the
integrand in terms of Dirichlet L-functions (of which the Riemann zeta function
is a special case) involving a double sum in each of q terms:

Theorem 3. The limiting survival probabilities are given by

Pj,θ(∆) =
1

2πi

∫ C+i∞

C−i∞
P (∆, s)Fj(θ, s)ds (2)

P (∆, s) =
∆−s(2π)s

s(s+ 1)(s+ 2)
(3)

Fj(θ, s) =aj

∞∑
n=1

Θ(n, θ, s)

ns+1

∑
d|n

µ(d)Cj

(n
d

)
(4)

Θ(n, θ, s) =(1− {nθ
2π

})s+2 + {nθ
2π

}s+2 (5)

where {} indicates fractional part, C > 1, and Cj(x) is defined in Tab. 1.
Furthermore, when θ = 2πr/q we have

Fj

(
2πr

q
, s

)
=aj

q−1∑
c̄=0

q−1∑
d̄=0

Θ

(
c̄d̄,

2πr

q
, s

)
C̃(q, c̄, s)D̃(q, d̄, s) (6)

C̃(q, c̄, s) =
∑

c=c̄ (mod q)

Cj(c)

cs+1
(7)

=
2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!
Kj(k)

[∑
χ χ̄(c̄

′)L(s+ 2k, χ)

b′s+2kϕ(q′′)
− δc̄,1

]
D̃(q, d̄, s) =

∑
d=d̄ (mod q)

µ(d)

ds+1
(8)

=
µ(b)

bs+1ϕ(q′)

∑
χ

χ̄(d̄′)

L(s+ 1, χ)
∏
p|b(1− χ(p)p−s−1)
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Figure 2: The contour of the Mellin representation of Pj,θ(∆), Eq. (2), and
poles of the integrand for q = 1 (left) and q = 5 (right). Note the scales on the
real and imaginary axes. See Sec. 7.6 and Tab. 2.

In Eq. (7), b′ = (c̄, q), q′′ = q/b′, c̄′ = c̄/b′, Dirichlet characters χ are taken with
modulus q′′, the first sum is over c ≥ 1, B2k are Bernoulli numbers [DLMF,
(24.2.1)] and Kj(x) is defined in Tab. 1. In Eq. (8), b = (d̄, q), q′ = q/b,
d̄′ = d̄/b, characters are taken with modulus q′, and the first sum is over d ≥ 1.

The two parts of Theorem 3 are proved in Sections 5 and 6 respectively.
Note that the one hole case θ = 0 corresponds to r = 0 and q = 1. Observe also
that Θ remains invariant if c̄ → q − c̄ or d̄ → q − d̄, but these change the signs
of all odd characters in C̃j or D̃. Thus, no odd L-functions appear in Fj . This
then implies that only the Riemann zeta function appears for q ∈ {1, 2, 3, 4, 6}.

These expressions suggest a possibility of connections with the (generalised)
Riemann hypothesis: The Riemann hypothesis asserts that the complex zeros of
ζ(s) lie on the line Re(s) = 1/2, and the generalised Riemann hypothesis asserts
that the complex zeros of L(s, χ) lie on the same line. Thus, these statements
are related to the locations of the poles of D̃(q, d̄, s) arising from L(s+ 1, χ) in
the denominator, with residues contributing to the contour integral.

We then analyse the pole structure of the integrand of Eq. (2) in Section 7;
see also Fig. 2. We present the above expressions for all q ≤ 6, using Mathe-
matica symbolic algebra for 4 ≤ q ≤ 6, in Section 8. The residues of poles are
presented in Tab. 2, including exact values from Eqs. (83,93), other exact values
using symbolic algebra, and numerical values where there is a nontrivial sum
over k.
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In the simplest cases, one hole or two symmetric holes, we have

Fj(
2πr

q
, s) = aj

2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!
Kj(k)Fr,q(s, k) (9)

F0,1(s, k) =
ζ(s+ 2k)− 1

ζ(s+ 1)
(10)

F1,2(s, k) =
ζ(s+ 2k)

ζ(s+ 1)2s+2k
(11)

In Section 9 we consider a different scenario, that of q symmetrically placed
holes, where the special case q = 2 is given above. We show

Theorem 4. For the case of q ≥ 2 symmetrically placed holes, Fr,q(s, k) in
Eq. (9) is replaced by

F sym
q (s, k) =

ζ(s+ 2k)

ζ(s+ 1)qs+2k
(12)

The locations of the poles are the same as q = 2 of the two hole case above.
The residues follow immediately where only the k = 0 term is relevant, that is,
j ∈ {2, 2′} or s = 1.

We have successfully related the survival probabilities to a contour integral
with poles at locations related to the zeros of Dirichlet L-functions, including
the Riemann zeta function. To continue, we propose the following conjecture:

Conjecture 1. Consider a circular billiard with one or two holes, using nota-
tion as defined above. The function Fj(θ, s) is meromorphic (for θ ∈ πQ this
follows from Theorem 3). Furthermore

Pj,θ(∆) =
∑
s∗

Ress=s∗ P (∆, s)Fj(θ, s) (13)

with the series converging absolutely. Here, s∗ are the locations of the poles.

To show this, one would need to infer the existence of a sequence of contours
with integral tending to zero and which, in the limit, encloses all the poles
(see Fig. 2). The main difficulty is in putting a lower bound on the ζ(s + 1)
or L(s + 1, χ) that is in the denominator, uniform on the part of the contour
in or near the critical strip. Far from the critical strip, we can bound the
zeta function, for example to show that the sum over the poles on the real
axis converges; see Lemma 2 in Sec. 10. Numerical simulations in support of
Conj. 1, testing absolute convergence of the sum in Eq. (13), and showing that
when the leading term is subtracted from the numerical survival probability,
the remainder is qualitatively given by the next real pole, are given in Sec. 11.

Assuming Conj. 1 the limit ∆ → 0 may be taken to give

Pj,0 = lim
∆→0

∆Pj,0(∆) =Ress=1P (∆, s)Fj(θ, s) =


4
π j = 1
2 j = 2
4
π j = 2′
64
3π2 j = 3

(14)
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for the one hole case, using Eq. (83).
The absence of the poles at s = −2 for the cases q = 2, j ∈ {2, 2′} would

then imply that P2,π(∆) and P2′,π(∆) contain only odd powers of ∆, together
with the complex conjugate pairs from the critical line; this is not obvious from
Eqs (48,50).

The two hole leading (s = 1) residue is exactly half of the one hole residue,
for all values of θ we calculated. This is a special case of Ref. [Det17] (see remark
2.2 and section 5) where it is proved that the leading order survival probability
is independent of the position of the holes. Note that the limits in this paper and
Ref. [Det17] are different; the latter has first ∆ → 0 keeping S = ∆t constant,
and then S → ∞. Thus we can write the leading order survival probabilities
for j = 3 as

P3,θ = lim
∆→0

lim
S→∞

SµM(proj−1NS/∆) (15)

P
[Det17]
3,θ = lim

S→∞
lim
∆→0

SµM(proj−1NS/∆) (16)

If these limits commute (as we expect), we have for all 0 < θ < 2π, not only for
rational multiples of π:

Pj,θ =
1

2
Pj,0 (17)

The Riemann Hypothesis (RH) states that the complex zeros of ζ(s) all lie
on the line Re(s) = 1

2 . Under Conjecture 1 and RH we can use Theorem 3
including Eqs (9–11) to then show statements such as

lim
∆→0

∆δ−1/2 [Pj,0(∆)− Ress=1 P (∆, s)Fj(0, s)] = 0 (18)

lim
∆→0

∆δ−1/2 [Pj,0(∆)− 2Pj,θ(∆)] = 0 (19)

for every δ > 0, each j ∈ {1, 2, 2′, 3}, and θ = 2π
q with q ∈ {2, 3, 4, 6}. For q = 5

and q > 6 there is a pole at s = 0 that would affect the above expressions, and
also L-functions leading to poles on the same critical axis, real part of s equal
to −1/2, so this would require the Generalised Riemann hypothesis.

Conversely, it seems likely that Conj. 1 together with Eq. (18) or (19) should
imply RH, but this does not appear to the authors to be completely obvious.

We conclude this section with some remarks on the extent to which the
claims of Ref. [Bun05] can be justified rigorously. We have indeed shown that
the long time survival probabilities of the open circular billiard with one hole,
two holes, can be written as a sum over non-escaping periodic orbits. We have
further related these expressions to zeta and Dirichlet L-functions. However,
connection to the Riemann hypothesis seems only possible at this time with the
aid of Conjecture 1.

In addition to Ref. [Bun05] we have shown that the map and flow measures,
and thus the escape with respect to a number of collisions and with respect to a
continuous time, lead to different powers of sine in the periodic orbit contribu-
tions. The calculation presented in Ref. [Bun05] has sin2 πmn which corresponds
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to the “mixed” cases of invariant measure for a billiard map but with continuous
time, or to invariant measure for the flow with discrete time. The more natural
cases of map with discrete time and flow with continuous time correspond to
sin πm

n and sin3 πmn respectively. These cases are more involved but it turned
out that we could extend the analysis and present the new results here. We
have also added the case of q symmetric holes.

In the future, it would be interesting to prove some of the above conjectures,
including Conjecture 1, the commutation of limits in Eqs. (15,16) and showing
the RH may be derived from Conjecture 1 and statements like Eqs. (18,19). Our
techniques may be applied to find similarly precise asymptotics for escape from
other open integrable billiards such as the square. Finally, it would be good to
verify at least the leading order escape rates, Eq. (14) in a physical experiment.
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2 Definitions and notations

Consider a billiard on the unit disk D i.e., a dynamical system generated by the
motion of a point particle with a constant speed within D with elastic collisions
(angle of incidence equals angle of reflection) from its boundary. Without any
loss of generality we assume that the particle’s speed is identically one, and
therefore its velocity is completely defined by an angle ϑ it makes with the
horizontal direction, −π < ϑ ≤ π. The phase space of the billiard flow St,
−∞ < t <∞ is denoted M = (x, y, ϑ) with (x, y) ∈ D and ϑ the angle between
the direction of motion and the x-axis. See Fig. 1.

Let M = {(β, ψ) : −π < β ≤ π,−π
2 ≤ ψ ≤ π

2 }, where β ∈ ∂D. The billiard
flow St induces the billiard map T :M →M defined as

T (β, ψ) = (β + π − 2ψ,ψ) (20)

where ψ is the angle between the outward trajectory and the inner normal at
β ∈ ∂D, and all the angles in Eq. (20) are taken modulo 2π. The natural
projection M → ∂D we denote by πβ . Thus πβ(β, ψ) = β, where (β, ψ) ∈M .

Another useful projection we denote as proj : M → M to give the point
corresponding to the previous collision. Explicitly, this is

proj(x, y, ϑ) = (ϑ+ arcsinL+ π, arcsinL) (21)

where L = x sinϑ − y cosϑ is the angular momentum of the particle. Also,
proj−1A ⊆ M denotes the preimage of A ⊆M under proj.
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The normalised invariant measures of the map µM and flow µM are, as usual
for planar billiards, respectively:

dµM =
1

2|∂D|
cosψ dβ dψ =

1

4π
cosψ dβ dψ (22)

dµM =
1

2π|D|
dx dy dϑ =

1

2π2
dx dy dϑ (23)

It is well known that orbits of the billiard in a circle are periodic with a
period n, if

ψ = ψm,n ≡ π

2
− m

n
π (24)

where m and n are coprime integers and 0 < m < n. On the other hand, the
orbit is everywhere dense in ∂D if ψ is incommensurable with π.

Suppose that two holes H1 = {β : 0 < β < ∆} and H2 = {β : θ < β <
θ + ∆}, 0 ≤ θ ≤ π, ∆ > 0, are placed at the boundary ∂D. If θ > π we
interchange the holes to obtain θ ≤ π. Consider now a new dynamical system,
an open billiard in ∂D with holes H1 and H2. In this open billiard any orbit
(β0, ψ0) moves under the billiard map Eq. (20) until it hits one of the holes H1

and H2. When the orbit hits H1 ∪H2 it “disappears” (escapes).
When θ < ∆ the holes overlap and we obtain a single hole of size θ + ∆.

When θ = ∆ there is again a single hole of size 2∆ except for a single point
at its centre; the point has zero measure and so does not affect the survival
probability. So, without loss of generality we may consider either the two hole
case ∆ < θ ≤ π or the one hole case where H1 = H2, θ = 0.

Obviously, almost all (with respect to the measure µ) orbits will eventually
escape. The only orbits that never escape are such periodic orbits that never
hit H1∪H2. Denote Ĥi = {(β, ψ) : β ∈ Hi}, i = 1, 2. Thus πβĤi = Hi, i = 1, 2.

Let N(β0, ψ0), (β0, ψ0) ∈ M be a (minimal) number of reflections from the
boundary after which the orbit Tn(β0, ψ0) = (βn, ψn), n = 1, 2, . . . escapes from
the circle. If the orbit of (β0, ψ0) never escapes we set N(β0, ψ0) = ∞.

The time between collisions τ :M → R is τ(β, ψ) = 2 cosψ, so τ◦proj(x, y, ϑ) =
2
√
1− L2. The survival time t and number of collisions N (implicitly functions

of (β0, ψ0)) are thus related by N = ⌈t/(2 cosψ)⌉,where ⌈x⌉ is the ceiling func-
tion, giving the least integer greater than or equal to its argument. The set
NN ⊂ M surviving for N collisions is related to the set Nt ⊂ M surviving for
time t, by their ψ sections:

NN |ψ=ψ0
= N2N cosψ0 |arcsinL=ψ0

(25)

The survival probability is the measure of orbits that do not escape until a
fixed moment of time t or number of collisions N . We obtain different results
depending on whether the measure is µM or µM and whether the non-escaping
orbits are Nt or NN .
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3 Structure of the set of orbits not escaping for
large N or t

In this section we prove Thm. 1, that is, for N > 4π
∆ , the set NN ⊂M of initial

conditions surviving for at least N collisions consists of connected components,
each of which either (a) contains exactly one segment consisting of never es-
caping periodic orbits of the same period, or (b) contains only creeping orbits.
Moreover, there are no other periodic orbits in the set NN . After giving in de-
tail the argument for the billiard map for one hole, we explain the few changes
needed for continuous time (for the set Nt) and for two holes, the most impor-
tant of which is the treatment of creeping orbits (ψ ≈ ±π

2 ). Finally, we prove
Lemma 1, enumerating the creeping orbits and showing that they are negligible
for the survival probability.

We will start with the billiard map T , see Eq. (20), which sends unit vectors
with footpoints on the boundary of a billiard table and pointing into interior
of the billiard table into unit vectors arising just after a moment of the next
reflection off the boundary. Clearly, the only orbits that never escape are those
periodic orbits with periods n < 2π

∆ which never hit the holes H1 ∪H2. Again,
for the clarity and simplicity we will study in details only the case when there
is a single hole H of size ∆ in the boundary of a billiard table.

The phase space of the billiard map is a cylinder M , consisting of all points
(β, ψ), where β is coordinate on the boundary varying between −π and π, and
ψ is an angle coordinate varying from −π/2 to π/2.

Consider on the cylinder M all points with ψ = ψm,n = π
2 − πm

n , where
m < n are coprime integers. Clearly all such points form a (horizontal) circle C
on the cylinderM , with (vertical) coordinate ψ equal to ψm,n. For these points,
the billiard map T corresponds to a rotation in the first coordinate by an angle
2πm
n .
The set of nonescaping till time (iterate)N consists of connected components

which are adjacent to (horizontal) circles in the phase space (cylinder)M , which
consist of periodic points of the billiard map with periods n not exceeding N .
On each such circle we have the intersection of the hole with the cylinder M ,
and n−1 images (or preimages) of this intersection. The complement to these n
segments on the circle inM under consideration also consists of n equal segments
with the length (2π/n−∆). We will show that the set of nonescaping till time N
orbits, which is adjacent to this circle of periodic points (with period n), consists
of 2n right triangles, each of which is adjacent to one of the n segments in the
complement described above. Clearly, all points of n segments corresponding
to the hole and its n− 1 images (preimages) do not belong to this set.

Because of symmetry it is enough to consider only non-negative angles ψ,
because for −ψ both consideration and formulas are the same. Small values of
ψ are connected to the periodic orbit with ψ = 0, that is, n = 2. Take now all
preimages of the hole, from the first till the (n− 1)th preimage. Note, that the
nth preimage of each hole coincide with this hole. On the horizontal circle in
question, the set consisting of the hole H and its preimages under the billiard
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map contains n segments.
Observe that on the circle C the complement to the shifts of hole also consists

of n segments with ends sharing with end points of shifts of the (only) hole H.
Denote this set by C ′. Clearly, these n complementary segments will never
escape because the billiard map sends one of them exactly into another one,
and therefore the iterates of all points of these segments forever stay away from
the holes.

We will show that exactly such segments, consisting of periodic points (of
period n in this case), are the core subsets of connected components of the set
of not escaping till time N points (i.e., the Nth iterate of the billiard map),
where N > 4π

∆ . Denote this set by Ne.
Clearly, there are points in Ne with the same (horizontal) coordinate x as

some point y in a complementary set to the shifts of holes C ′ on C, and with
angles close to ψm,n. Such points belong to the same vertical segment in the
cylinderM as the points y on c. Indeed, let such point z corresponds to a larger
rotation angle than the points in our circle C, (i.e., its vertical coordinate on
the phase cylinder M is larger than coordinates of points on C). Then, in order
not to escape till time N , the horizontal coordinate of z must be close enough
to the left end of a segment on C which belongs to the complement of the hole
and its n − 1 images (preimages) on C. Indeed, N images of that must not
fall into the hole. Therefore, the closer horizontal coordinate of z is to the left
end of a segment in the complement of the hole and its iterates, the larger its
vertical coordinate is allowed to be. Analogously, if the horizontal coordinate of
z belongs to the hole or its images on C, then, the closer its horizontal coordinate
on C is to the right end of hole, the larger its vertical coordinate is allowed to
be. Analogous consideration is applied to the set of nonescaping till time N
points, which have smaller vertical coordinates that the points on the circle C,
where all right end points must be changed to the let end points and vice versa.

Let coordinates of such point z are (y, πm/n + α). Here α > 0, but small
enough that during N iterates of the billiard map it never hits holes. Because
of the extra rotation on α in each iterate of the billiard map the point y must
be sufficiently far from the right end of the segment consisting of never escaping
points to which this point belongs. The length of any segment of never escaping
points is at most 2π

n − ∆, in a gap formed by the n images of a single hole.
Indeed, let the distance of the projection of the point z to C to the left end
of a segment in the complement of the hole and its images equals u. Then the
height of the vertical segment containing z, and consisting of not escaping till
time N points, equals 2π/N−u/N , where u varies between 0 and 2π. Therefore,
all such points form a right triangle adjacent (from above) to segments in the
complemental set to the union of the hole and its n−1 images on our circle C in
M . If a point z is above our circle and its projection to the circle is in the hole
or its images, then, the left end becomes the right end and vice versa. Besides,
in the above expression we have ∆ instead of 2π/N −∆.

Analogously, we can consider the case when α is negative. Then correspond-
ing points are below y on the cylinder M . Therefore, in such case y must be
sufficiently far from the left end of a segment in the complemental set to the
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hole and its n− 1 images, in order not to escape (hit a hole) in N iterations of
the billiard map.

We will estimate now a ”height” of the vertical segment over the point y
from C which consists of not escaping in N iterates points.

Let the distance of the point y from the right end of the segment of never
escaping points containing y equals l. Since the billiard map, Eq. (20), involves
2ψ, a perturbation of ψ leads to twice the perturbation of the position around
the circle. Thus the height of the vertical segment over y cannot be larger than
1

2N ( 2πn −∆− l).
Therefore, the set Ne of not escaping till time N (Nth iterate of the billiard

map) consists of two equal right triangles adjacent to a segment consisting of
never escaping points; see Fig. 3. The orthogonal to horizontal segment side of
upper triangle, that is, its height, equals

1

2N
(
2π

n
−∆) (26)

at the left end of the segment and zero at its right end. The lower triangle is
symmetric to the upper one and thus has zero length of a vertical segment at
the left end of the segment consisting of never escaping points, and the same
height as above but now at the right end of the segment.

The period n of the non-escaping orbits cannot exceed [2π∆ ]. Therefore,
n∆ ≤ 2π, Otherwise, the images of the hole will eventually cover the entire
circle because the size ∆ of hole is finite. We will show now that such sets,
consisting of segments of never escaping points and two adjacent triangles do
not intersect. In order to do that we must consider the closest to our horizontal
circle on the cylinder M , which also consists of periodic points of the billiard
map. Consider the fractions with coprime numerators and denominators, where
all denominators do not exceed a given fixed integer N (here equal to [ 2π∆ ]).They
form the so called Farey numbers FN. It is well known from that the closest to
m/n fraction in the set FN is such fraction p/q that |m/n− p/q| = 1/qn.

Let us show that the neighborhoods, of the corresponding two circles, which
consist of right triangles (see above), do not intersect. To do it consider the
maximal lengths of the vertical sides of these triangle and compare their sum
with the distance between these two horizontal circles on the cylinder M .

Assume that the number of collisions N > 4π
∆ ≥ n+ q since n, q ≤ 2π

∆ . The
(vertical) distance between the horizontal circles (m,n) and (p, q) is |ψm,n −
ψp,q| = π

∣∣∣mn − p
q

∣∣∣ = π
nq .

Our goal now is to show that the sum of the maximal lengths of the sides
of right triangles in the sets of nonescaping orbits adjacent to these two circles
(consisting of periodic orbits of the billiard map) exceeds the vertical distance
between two corresponding circles on the phase space cylinder M . The sum of
the maximal heights of the right triangles on these intervals equals

1

2N

[
(
2π

n
−∆)− (

2π

q
−∆)

]
=

π

N

n+ q

nq
> |ψm,n − ψp,q|

12



π/6

0 ∆ 2π/3 4π/3 2π

ψ

β

Figure 3: For a circular billiard with a single hole (ie θ = 0) of size ∆ < 2π
3 ,

we illustrate the part of phase space near the (m,n) = (1, 3) orbit. The set of
points that never escape is shown in blue, together with the rest of the relevant
circle (ψ = π/6; see Eq. 24), of which the red part corresponds to the hole and
the orange parts its pre-images. The set surviving for a large number N of
collisions is shown in green, and consists of right triangles adjoining the points
that never escape. Observe that for ψ > π/6, the dynamics, Eq. (20), gives a
rotation around the circle of slightly less than 2π/3. Thus the effective rotation
is to the left in each of the upper green sets, so that the longest surviving orbits
are those that start towards the right of these intervals.
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where we used that N < n+ q for denominators of two consecutive fractions in
the Farey series FN .

Therefore, the set of points Ne, which do not escape through the holes in N
iterates of the billiard map consists of connected components. Each connected
component of Ne is a neighborhood of a circle Ci on the cylinderM . Each such
circle consists of periodic points of the billiard map with periods not exceeding
[2π/∆]. Certainly, the holes and all their images (or preimages) under the first
(n− 1) iterates of the billiard map do not belong to Ne.

For the case of two holes, the above analysis holds; depending on ∆ and θ,
the preimages of the holes may be completely disjoint, giving 2n non-escaping
intervals, intersect, giving n non-escaping intervals, or cover the circle C entirely,
giving no non-escaping intervals. The non-escaping intervals are at most the size
of the one hole case, so the above argument with Farey fractions remains valid.

The case n = 1, corresponding to ψ = ±π
2 is not a true periodic orbit,

however its neighborhood is a right triangle as described above. These are the
creeping orbits, those that move along an arc of the circle without crossing
either of the holes. Thus for N > 4π

∆ each connected component of NN contains
a unique segment of periodic orbits, or contains only creeping orbits. This
concludes the proof of Theorem 1.

For continuous time (a billiard flow) consideration is absolutely analogous to
the one for discrete time (billiard map). Indeed, only periodic points may never
escape. If we fix a large (continuous) time t > 8π

∆ and note τ = 2 cosψ ≤ 2 so
the number of collisions N > 4π

∆ as assumed above. On each circle ψ = ψm,n
the same 2n (or n) segments of equal length will belong to the set of never
escaping (and particularly till time t) points. Adjacent to each of these circles
are as before the right triangles corresponding to N = ⌊ t

2 cosψ ⌋. Since N now
varies with ψ, it is possible for most of the component corresponding to ψm,n to
correspond to a single value of N , while the tip of a right triangle corresponds
to N−1 and can disconnect from the main component. The relative sizes of the
right triangles also differ between periodic orbits at different ψm,n compared
with the discrete time case. But the enumeration of the set Nt in terms of
contributions from periodic orbits remains as in the discrete time case.

Finally, we discuss the creeping orbits, which undergo N collisions with an
arc of the circle without crossing either hole, and prove the claims of Lemma 1.
First, consider discrete time N . The creeping orbits have ψ = ±(π2 − ϵ) with
0 < ϵ < π

N−1 . Thus their contribution to the survival probability is bounded
above by

2

∫ 2π

0

dβ

∫ π
2

π
2 − π

N−1

cosψ

4π
dψ = 1− cos

π

N − 1
= O(N−2)

using Eq. (22). Using the same argument for Eq. (23) where initial conditions
are in the interior, we find that the survival probability is O(N−3). Thus in both
cases this contribution is negligible compared with the periodic orbits, which
have contribution of order N−1 (see the next section).

For continuous time, we show that the creeping orbits have all escaped for

14



t > min(5
√
3, 8π∆ ). Let N be the number of collisions the creeping orbit makes

with the boundary before entering or crossing one of the holes, and tm(N,∆)
the supremum of the time the creeping orbit exists. Clearly tm(N,∆) is non-
increasing in ∆. We have the following cases

• N = 1: Long creeping orbits start in the interior but arbitrarily close to
the boundary, follow the diameter of the disk, collide, and then return
along the diameter, giving tm(1,∆) = 4.

• N = 2, ∆ < π: Long creeping orbits follow the diameter of the disk, make
collisions with two opposite points, and then return along the diameter to
give tm(2,∆) = 6.

• N = 2, π ≤ ∆ < 2π: Long creeping orbits have again time just under
3τ , but now the maximum τ = 2 cosψ = 2 sin 2π−∆

2 . Thus tm(2,∆) =

6 sin 2π−∆
2 .

• N ≥ 3: Long creeping orbits have time just under (N + 1)τ , with the
maximum τ = 2 cosψ = 2 sin 2π−∆

2(N−1) for the case of one hole, so that the

largest hole-free arc of the boundary is of size 2π −∆. Thus, tm(N,∆) ≤
2(N + 1) sin 2π−∆

2(N−1)

The above is for one hole; for two holes, tm(N,∆) may be less than this.
Now, we show that in each of these cases tm(N,∆) < min(5

√
3, 8π∆ ). This

follows directly in the first two cases since ∆ < 2π in the first case, and ∆ < π
in the second case.

For the other cases we first show the inequality tm(N,∆) < 8π
∆ . Note that

the sine function is concave when its argument is in [0, π] and that the graph of
a concave function lies below any tangent to that graph. Then, the intersection
of this tangent and the convex curve t = 8π

∆ reduces to a quadratic equation
with no real solutions.

For N = 2 and π ≤ ∆ < 2π,

tm(2,∆) = 6 sin
2π −∆

2

≤ 3
√
3− 3

2
(∆− 4π

3
) (27)

<
8π

∆

where the tangent to the graph is at ∆ = 4π
3 .

Similarly, for N ≥ 3

tm(N,∆) ≤ 2(N + 1) sin
2π −∆

2(N − 1)

≤ N + 1

N − 1
(2π −∆) (28)

<
8π

∆
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where the tangent to the graph is at ∆ = 2π. The discriminant of the quadratic

equation for the final inequality is 4πN+1
N−1

(
πN+1
N−1 − 8

)
which is negative for

N > 2.3. Thus, we have that tm(N,∆) < 8π
∆

Finally, we show the fixed bound tm(N,∆) ≤ 5
√
3. The fact that tm(N,∆)

is non-increasing means that

tm(N,∆) ≤ tm(N, 0) (29)

The concavity argument with the tangent at ∆ = 2π gives again

tm(N, 0) ≤ N + 1

N − 1
2π < 5

√
3 (30)

for N > 5
√
3+2π

5
√
3−2π

≈ 6.2865. Then, we can check the remaining cases N ∈
{3, 4, 5, 6} to show tm(N, 0) = 2(N +1) sin π

N−1 ≤ 5
√
3 with equality for N = 4.

Thus, we have that tm(N,∆) ≤ 5
√
3. In summary, all the creeping orbits escape

by time 5
√
3, or 8π

∆ if this is earlier, so they give zero contribution to the survival
probability in the continuous time case. This concludes the proof of Lemma 1.

4 Limiting survival probabilities

In this section we prove Theorem 2, pertaining to the survival probability, that
is, the measure of orbits that do not escape until a certain number of collisions N
or time t. We can consider as initial conditions the measure with respect to the
map µM or the flow µM, giving four expressions in total. As before, we consider
in detail the simplest case, of discrete time in both the initial conditions and the
dynamics, and the case of a single hole, and then discuss the straightforward
modifications that need to be made for the other cases.

From Theorem 1 and Lemma 1 the survival probability for large N can be
written in terms of contributions from connected components of periodic orbits:

lim
N→∞

NµM (NN ) =
∑
m,n,j

lim
N→∞

NµM (NN,m,n,j) (31)

assuming that the limits exist. Here, {m,n, j} label the non-escaping periodic
orbits as before, with 1 ≤ m < n < 2π

∆ and (m,n) = 1. Within each component,
we write, following Eq. (24)

ψ = ψm,n + η (32)

The label j enumerates the connected arcs of non-escaping periodic orbits; 1 ≤
j ≤ n in the one hole case. Eq. (31) is a finite sum, with the number of terms
diverging as ∆ → 0.

Each of the non-escaping periodic orbits is

{(β, ψ) : β ∈ [βj , βj + λj ], ψ = ψm,n} (33)
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where λj is the length of the relevant arc and the dependence of βj and λj on
{m,n} is omitted to simplify the notation.

Throughout the component of this periodic orbit, the billiard map, Eq. (20)
is

T (β, ψm,n + η) = (β +
2πm

n
− 2η, ψm,n + η) (34)

thus, iterated N times it becomes

TN (β, ψm,n + η) = (β +
2πm

n
N − 2ηN,ψm,n + η) (35)

For each η, there is a set β ∈ [β−(η), β+(η)] which survives after N collisions.
The value of β may extend beyond the periodic orbit, Eq. (33) near the start
or end of the N collisions if it is in a pre-image of the hole, but not more than
n collisions, the length of the periodic orbit. For η > 0 we find

βj + 2η(N − n) ≤ β−(η) ≤ βj + 2ηN (36)

βj + λj ≤ β+(η) ≤ βj + λj + 2ηn (37)

and similar expressions for η < 0. Thus, the length of the surviving set at fixed
η, denoted l(η) = β+(η)− β−(η) is

max(λj − 2|η|N, 0) ≤ l(η) ≤ λj − 2|η|N + 4|η|n (38)

This gives the maximum possible η for this component as

η+ =
λj

2N − 4n
(39)

. We can now express the measure of the relevant component as an integral,
using Eq. (22):

µM (NN,m,n,j) =
1

4π

∫ η+

−η+
l(η) cos(ψm,n + η)dη (40)

We have
cos(ψm,n + η) = cosψm,n +O(N−1) (41)

from Eq. (39). Substituting Eqs. (38,41) into Eq, (40) we obtain

µM (NN,m,n,j) =
λ2j
8πN

cosψm,n +O(N−2) (42)

Noting that the limits in Eq. (31) do indeed exist, we combine this with Eqs. (24,42)
and find

lim
N→∞

NµM (NN ) =
∑
m,n,j

λ2j
8π

sin
πm

n
(43)
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As above, the sum is over 1 ≤ m < n < 2π
∆ with (m,n) = 1. In the one hole

case there are n arcs of size λj =
2π
n −∆ so we have

lim
N→∞

NµM (NN ) =
1

8π

∑
m,n

n

(
2π

n
−∆

)2

sin
πm

n
(44)

This completes the calculation of the survival probability in the one hole case,
for discrete time (both initial measure and escape time). For the remainder of
this section, we show how to modify this result for two holes and continuous
time (initial measure and/or escape time).

For the case of two holes, we note that the union of n preimages of the holes
is periodic with a periodicity 2π

n . Let us write θ′ = θ (mod 2π
n ).

Within the first unit cell, β ∈ [0, 2πn ) there is a hole H1 = {β : 0 ≤ β ≤ ∆}
(noting that ∆ < 2π

n ). The other hole or one of its preimages is H ′
2 = {β : θ′ ≤

β ≤ θ′+∆}. This leads to (potentially) two arcs of non-escaping periodic orbits
in the unit cell, for ∆ < β < θ′ and for θ′ +∆ < β < 2π

n . The lengths of these
arcs are, respectively, (θ′ −∆)+ and

(
2π
n − θ′ −∆

)
+
where we use the notation

x+ = max(x, 0) for some x ∈ R to account for cases where one or both of these
arcs do not exist.

There are n periodic copies of this unit cell. Thus, there are n arcs of length
(θ′ −∆)+ and n arcs of length

(
2π
n − θ′ −∆

)
+
of non-escaping periodic orbits.

There are in reality 0, n, or 2n arcs, depending on which of these quantities is
positive. Eq. (43) becomes

lim
N→∞

NµM (NN ) =
1

8π

∑
m,n

n

[(
2π

n
− θ′ −∆

)2

+

+ (θ′ −∆)2+

]
sin

πm

n
(45)

The one hole case, Eq. (44) is a special form of this equation, when θ = 0. Note
that we need not explicitly impose the condition n < 2π

∆ as it follows from the
x+ notation. We still require (m,n) = 1.

For escape in continuous time t, we note Eq. (25) and surrounding discussion.
For each ψ we have N = ⌈t/(2 cosψ)⌉, and for each periodic orbit {m,n} we
have (see Eqs. (32,39)) that the values of ψ lie in

ψm,n − η+ < ψ < ψm,n + η+ (46)

where η+ = O(N−1). This means that

N = ⌈t/(2 cosψ)⌉+O(1) (47)

for any contribution at fixed t related to this periodic orbit. The O(1) term
contributes to the O(N−2) term in Eq. (42) and so may be neglected. Thus
Eq. (45) remains valid with an extra 2 cosψ weighting on each orbit, leading to

lim
t→∞

tµM (Nt) =
1

4π

∑
m,n

n

[(
2π

n
− θ′ −∆

)2

+

+ (θ′ −∆)2+

]
sin2

πm

n
(48)
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For the flow, we place initial conditions in the interior of the billiard accord-
ing to µM. Now, project them to M according to the projection proj. The
measure of a set A ⊆M under the map and flow invariant measures are related
by ∫

A

dµM =
π

2

∫
proj−1A

dµM

τ ◦ proj
(49)

That is, each part of the set A expands by a factor τ under proj−1, so this has
to be divided when integrating over M. The prefactor π

2 arises as the ratio of
the normalisation constants in Eqs. (22,23) and it is easy to check that both
sides of the equation are unity when A =M .

Thus, when integrating over neighbourhoods of periodic orbits of the flow
measure, the results are for the map measure, weighted by 2τ

π . From Eqs. (45,48)
we find

lim
N→∞

NµM(proj−1NN ) =
1

2π2

∑
m,n

n

[(
2π

n
− θ′ −∆

)2

+

+ (θ′ −∆)2+

]
sin2

πm

n

(50)

lim
t→∞

tµM(proj−1Nt) =
1

π2

∑
m,n

n

[(
2π

n
− θ′ −∆

)2

+

+ (θ′ −∆)2+

]
sin3

πm

n

(51)

This completes the proof of Thm. 2.
Note that in the four expressions for the survival probability, Eqs. (45,48,50,51),

differ only by an overall constant and the power of the sine function. This moti-
vates the following simpler notation Pj,θ(∆) given in Tab. 1 and in the statement
of Thm. 2. The cases with sin2 πmn are the same calculation as in Ref. [Bun05].
Here we also consider the remaining cases, Eqs. (45,51).

5 Möbius and Mellin transforms

In this section we prove the first part of Theorem. 3. The Möbius inversion
formulas (Ref. [DLMF, (27.5.3)] replacing d by n/d in the second equation) are

g(n) =
∑
d|n

f(d) f(n) =
∑
d|n

µ(d)g(n/d) (52)

If

g(n) =

n∑
m=1

h(m/n) (53)

for some function h, then, by splitting this sum into terms corresponding to
(m,n) = d, we find

f(n) =

n∑
m=1

(m,n)=1

h(m/n) (54)
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Thus the Möbius inversion formula gives

n∑
m=1

(m,n)=1

h(m/n) =
∑
d|n

µ(d)

n/d∑
m=1

h(dm/n) (55)

To apply this to Eq, (1) we write

sin2
πm

n
=

1

2

(
1− cos

2πm

n

)
(56)

sin3
πm

n
=

3

4
sin

πm

n
− 1

4
sin

3πm

n
(57)

So we need h(x) = sin(πx), h(x) = cos(2πx) or h(x) = sin(3πx). Writing the
trigonometric functions as exponentials and summing geometric series, we find

n∑
m=1

sin
πm

n
= cot

π

2n
(58)

n∑
m=1

cos
2πm

n
= δn,1 (59)

n∑
m=1

sin
3πm

n
= cot

3π

2n
(60)

where δn,1 is one if n = 1 and zero otherwise.
Thus we find

n∑
m=1

sin
mπ

n
= cot

π

2n
(61)

n∑
m=1

sin2
mπ

n
=

1

2
(n− δn,1) (62)

n∑
m=1

sin3
mπ

n
=

3

4
cot

π

2n
− 1

4
cot

3π

2n
(63)

Now we apply Möbius inversion, Eq. (55) to get

n∑
m=1

(m,n)=1

sin
πm

n
=

∑
d|n

µ(d) cot
πd

2n
(64)

n∑
m=1

(m,n)=1

sin2
πm

n
=

∑
d|n

µ(d)
1

2

[n
d
− δn/d,1

]
=

1

2
[ϕ(n)− µ(n)] (65)

n∑
m=1

(m,n)=1

sin3
πm

n
=

∑
d|n

µ(d)

[
3

4
cot

πd

2n
− 1

4
cot

3πd

2n

]
(66)
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In Eq. (65), we can explicitly sum over d as shown, where ϕ(n) is the Euler
totient function (see Ref. [Bun05] for details). However, for consistency with
the other cases it is simpler not to do so.

Then Eq. (1) becomes

Pj,θ(∆) =
aj
8π2

∞∑
n=1

n

[(
2π

n
− θ′ −∆

)2

+

+ (θ′ −∆)2+

]∑
d|n

µ(d)Cj

(n
d

)
, (67)

where aj and Cj(x) are defined in Tab. 1. The sum over n can be written in this
unrestricted form because Cj(1) = 0 for all j, hence, the n = 1 term vanishes.
Also, both terms in the square brackets vanish when n ≥ 2π

∆ .
Now, apply a Mellin transform in ∆. The Mellin transformation theorem,

and the interchange of sum and integral, can both be justified when the integral
is absolutely convergent. In fact, it holds to the right of all poles in the integrand,
namely for C > 1. The result is Eq.(2), i.e., the first part of Thm. 3 holds.

6 Rational hole spacing

In this section, we prove the second part of Theorem 3. Let θ = 2πr/q. Then
Θ(n, θ, s) is periodic in n, and we obtain Eq. (6) with the sums defining C̃(q, c̄, s)
and D̃(q, d̄, s) still to be evaluated.

Now let us consider D̃(q, d̄, s). Transform Eq. (8) by dividing all the terms
through by the greatest common divisor b = (d̄, q). Then

D̃(q, d̄, s) =
∑

d′≡d̄′( mod q′)

µ(bd′)

(bd′)s+1
, (68)

where d′ = d/b, d̄′ = d̄/b and q′ = q/b. Here (d̄′, q′) = 1.
To make the paper self-contained we recall now some facts about the Dirich-

let characters (see, e.g., [Dav13] for more details). Dirichlet’s characters to the
modulus q are multiplicative functions χ(n) of an integer variable n which are
periodic with period q. The conjugacy classes modulo q, which are coprime to
q, form an abelian group under multiplication.

It is easy to see that the order of this group equals the Euler totient function
ϕ(q). Besides it is a finite abelian group. Therefore it has ϕ(q) irreducible
representations χ(n), where (n, q) = 1. The characters χ(n) are in this case the
complex roots of unity, i.e., χ(m)χ(n) = χ(mn). This definition is extended by
setting χ(n) = 0, if (n, q) > 1.

By the orthogonality relation [Dav13]

1

ϕ(q)

∑
χ

χ̄(a)χ(n) = δa,n (69)

where δa,n = 1, if a ≡ n(mod q), zero otherwise, and x̄ denotes a complex
conjugate to a number x.
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By inserting Eq. (69) into Eq. (68) we get

D̃(q, d, s) =
1

ϕ(q′)

∑
χ

χ̄(d̄′)

∞∑
d′=1

χ(d′)
µ(bd′)

(bd′)s+1
(70)

Let d′ =
∏
p p

αp be the decomposition of d′ into prime factors. Then χ(d′) =∏
p χ(p)

αp . Furthermore,

µ(bd′) =

{
µ(b)

∏
p(−1)αp if bn′ is square free

0 otherwise,
(71)

Farther
∞∑
n=1

µ(n)

ns+1
=

∏
p

(1− p−s−1) = ζ(s+ 1)−1, (72)

where ζ(s) is the Riemann zeta function. Analogously∑
n

χ(n)µ(n)

ns+1
= L(s+ 1, χ)−1, (73)

where

L(s, χ) =

∞∑
n=1

χ(n)

ns
=

∏
p

(
1− χ(p)

ps

)−1

(74)

is the Dirichlet L function. Finally we arrive at Eq. (8).
If q′ = 1 then L(s, χ) reduces to the Riemann zeta function ζ(s). For each

q′ there is a trivial character χ1(d̄
′) that assumes the value 1 for all d̄′ coprime

to q′. Therefore

L(s, χ1) = ζ(s)
∏
p|q′

(1− p−s). (75)

Consider now C̃(q, c̄, s) in Eq. (7). We expand the cot terms using their
power series [DLMF, (4.19.6)] to obtain

Cj(c) =
2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!

Kj(k)

c2k−1
, (76)

where B2k are the Bernoulli numbers, and Kj(x) is defined in Tab. 1. Eq. (76)
does not hold for the case j ∈ {2, 2′} and c = 1, in which case Cj(c) = 0 directly
from Tab. 1.

Explicitly, the cot expansions come to

cot
π

2c
=
2c

π
− π

6c
− π3

360c3
− π5

15120c5
+ . . . (77)

3 cot
π

2c
− cot

3π

2c
=
16c

3π
+

π3

15c3
+

π5

63c5
+ . . . (78)
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Note that the second expression does not have a term proportional to c−1, since
K3(1) = 0.

The C1(c) series converges for c > 1/2, whilst the C3(c) series converges for
c > 3/2. There is also an exception noted above for c = 1 when j ∈ {2, 2′}. In
all cases, Cj(1) = 0, so we perform the sum for c > 1 in what follows.

Using the orthogonality of Dirichlet characters as before, we get

∑
c=c̄ mod q

1

cs+2k
=

∑
χ χ̄(c̄

′)L(s+ 2k, χ)

b′s+2kϕ(q′′)
− δc̄,1, (79)

where the sum is for c > 1, leading to the term δc̄,1. This expression is
O(2−s−2k), as seen from the left hand side. On the right hand side we denote
b′ = (c̄, q), q′′ = q/b′, c̄′ = c̄/b′ and Dirichlet characters of modulus q′′.

Combining Eqs. (76,79) and the first equality in Eq. (7) we arrive at the
second equality in Eq. (7). The series in k converges exponentially, except

exactly at a pole of the zeta function, that is, s = 1 − 2k, since π2kB2k

(2k)! ∼
21−2k [DLMF, (24.11.1)], Kj(k) = O(32k) and the square bracket in Eq. (7),
namely Eq. (79), is O(2−2k). This completes the proof of Theorem 3.

7 Poles and residues

In this section we study the poles of the integrand P (∆, s)Fj(θ, s) of the Mellin
transform, Eq. (2), for rational hole spacing θ = 2πr/q, in decreasing order of
Re(s). The results are summarised in Sec. 7.6.

7.1 s = 1

The residue of the pole at s = 1 arises only from the k = 0 term of the c series.
We have

Ress=1 C̃j(q, c̄, s) =
2Kj(0)

πq
(80)

independent of c̄. The full residue is thus

Ress=1 P (∆, s)Fj(θ, s) =
αj
q∆

q−1∑
c̄=0

q−1∑
d̄=0

Θ(c̄d̄,
2πr

q
, 1)D̃(q, d̄, 1) (81)

with αj =
2
3Kj(0)aj given in Tab. 1.

Assuming (q, r) = 1 without loss of generality, we note that any r ̸= 1 just
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relabels c̄. The sum over c̄ then gives

1

q

q−1∑
c̄=0

Θ

(
c̄d̄,

2πr

q
, 1

)
=

1

q′

q′∑
j=0

Θ

(
j,
2πj

q′
, 1

)

=
1

q′4

q′3 + 2

q′∑
j=1

j3

 (82)

=
q′2 + 1

2q′2

where, as before, q′ = q/b, b = (q, d̄). Summing over d̄ within the classes defined
by constant b all non-principal characters cancel to give∑

d̄:(q,d̄)=b

D̃(q, d̄, 1) =
6

π2

µ(b)

b2
1∏

p|q(1− p−2)

where we have substituted ζ(2) = π2/6. Finally, Eq. (81) becomes

Ress=1 P (∆, s)Fj(θ, s) =
αj
∆

6

π2

∑
b|q

(q/b)2 + 1

2(q/b)2
µ(b)

b2
1∏

p|q(1− p−2)

=
αj
∆

3

π2

q2
∑
b|q µ(b)/b

2 +
∑
b|q µ(b)

q2
∏
p|q(1− p−2)

(83)

=
αj
∆

3

π2
(1 + δq,1)

Thus the residue has a simple closed form and is independent of θ except for
q = 1 (one hole case); Eq. (17) claims that this independence holds even when
θ is not a rational multiple of π.

7.2 s = 0

For s = 0 there is a pole arising from P (∆, s). However for q ∈ {1, 2, 3, 4, 6} there
are no non-principal even characters, so this is cancelled by the zeta function in
the denominator of D̃(q, d̄, s). For other values of q, the Dirichlet L-functions at
argument 1 can be evaluated exactly using the discrete Fourier transform [MO]

L(1, χ) = −1

q

q−1∑
k=1

ln(1− e2πik/q)

q∑
n=1

χ(n)e−2πink/q (84)

See for example Tab. 2 below, q = 5 at s = 0. However there do not appear to
be any significant simplifications to the expression for the residue.
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7.3 Re(s) = −1
2

These arise due to zeros of zeta and L-functions in the denominator of D̃(q, d̄, s).
If the Generalised Riemann Hypothesis is false, then other poles exist in the
critical strip with real part [−1, 0]. The density of poles increases with q as
more and more L-functions contribute; see Fig. 2. This suggests that for θ not a
rational multiple of π, it may not be possible to analytically continue the Mellin
transform to smaller real part.

7.4 s = −1

For s = −1 there is a pole arising from P (∆, s) and for j = 1 also one from
C̃j(q, c̄, s).

It is tempting to note
Θ(n, θ,−1) = 1 (85)

for all θ, not just rational multiples of π. For rational cases, the sums over c̄
and d̄ decouple, and we can perform them:

q−1∑
c̄=0

C̃j(q, c̄, s) = C̃j(1, 0, s) (86)

q−1∑
d̄=0

D̃(q, d̄, s) = D̃(1, 0, s) (87)

with the relevant expressions in Sec. 8.1 below. Substituting s = −1 we have
D̃(1, 0,−1) = −2, that is, finite.

However, this is too naive. For q > 1 the limit s→ −1 is singular, due to the
factor

∏
p|q(1 − χ(p)p−s−1 in the denominator of D̃(q, d̄, s) which gives a pole

of order the number of prime factors of q. These poles cancel in the sum over d̄
exactly at s = −1 but still lead to divergence in the limit s→ −1 when there is
more than one prime factor (for example q = 6), leading to an overall increase
in the order of the pole at s = −1. Even when there is a single prime factor,
the singular limit needs to be addressed correctly. We do not have a general
expression, but the residues for q ≤ 6 are given in Tab. 2 below.

7.5 s = −2

For j ∈ {2, 2′} there is another case for which the residue can be found exactly,
namely s = −2. Unlike the case s = −1 in the previous section, both C̃ and D̃
are well behaved at this point, so there is no singular limit to consider.

Because j ∈ {2, 2′} we need consider only k = 0, and noting that odd L-
functions cancel and even L-functions have a zero at s = −2, we find

C̃2(q, c̄,−2) = −δc̄,1 (88)
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Moreover, at s = −2 the exponents in Θ(c̄d̄, θ, s) are zero. Analytically con-
tinuing from s > −2 we note that if c̄d̄ = 0 mod q there is only a single term,
otherwise two terms. So,

Θ

(
c̄d̄,

2πr

q
,−2

)
= 2− δc̄d̄,0 (89)

Summing over all d̄ give the zeta function

q−1∑
d̄=0

D̃(q, d̄, s) =

∞∑
d=1

µ(d)

ds+1
=

1

ζ(s+ 1)
(90)

Thus by analytic continuation

q−1∑
d̄=0

D̃(q, d̄,−2) =
1

ζ(−1)
= −12 (91)

Then, for d̄ = 0 we have

D̃(q, 0,−2) =
qµ(q)

ζ(−1)
∏
p|q(1− p)

= −12
qµ(q)2

ϕ(q)
(92)

Putting it together and noting that j = 2′ differs only by a constant, we find

π

2
Ress=−2 P (∆, s)F2′

(
2πr

q
, s

)
= Ress=−2 P (∆, s)F2

(
2πr

q
, s

)
=

3∆2

π

(
1− qµ(q)2

2ϕ(q)

)
(93)

for coprime (r, q). Note that this formula applies also to q = 1, which is not
obvious from the above derivation but can be checked separately. Also, for q = 2
(and only q = 2) the residue is zero - the pole is cancelled.

7.6 Overall pole structure

To summarise, the poles (covering all values of j) are given as follows. See also
Fig. 2. Unless otherwise stated, the residues for j ∈ {1, 3} are written as series
over k and for j ∈ {2, 2′} they are written in closed form, involving values of
L-functions.

s = 1 There is a simple pole with residue given exactly in Eq. (83).

s = 0 There is a pole in P (∆, s), which is cancelled by the zeta function in the
denominator of D̃(q, d̄, s) for q ∈ {1, 2, 3, 4, 6}. For other q and j ∈ {2, 2′}
the residue can be found in closed form, and for j ∈ {1, 3} as a series over
k.
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Re(s) = − 1
2 : These arise due to zeros of zeta and L-functions in the denom-

inator of D̃(q, d̄, s). If the Riemann Hypothesis is false, then other poles
exist with real part in the critical strip [−1, 0]; this may also happen for
some q if the Generalised Riemann Hypothesis is false, depending on what
L-functions are present.

s = −1 There is a pole in P (∆, s), and also C̃j(q, c̄, s) if j = 1. In addition, the

factor
∏
p|b(1− χ(p)p−s−1) in the denominator of D̃(q, d̄, s) increases the

order of the pole by one less than the number of distinct prime factors of
q.

s = −2 There is a pole in P (∆, s). For j ∈ {2, 2′} the residue is given exactly
in Eq. (93), vanishing and cancelling the pole for q = 2.

s ≤ −3, odd There is a pole in D̃(q, d̄, s), and also C̃j(q, c̄, s) if j ∈ {1, 3}.

s ≤ −4, even There are no poles, since all odd L-functions in D̃(q, d̄, s) cancel
after summing over c̄ and d̄ as noted after the statement of Thm. 3.

Note that the above description is conditional on the (as almost certainly true)
statement that C̃j(q, c̄, s) has no zeros for s ∈ {−2, 0} and j ∈ {1, 3}. If it is
false, then it is possible that these poles may be cancelled.

8 Calculations for fixed q

In this section, we give explicit expressions for the integrand P (∆, s)Fj(θ, s) of
the Mellin transform, Eq. (2) in the case where θ = 2πr/q and q ≤ 6, that is,
there is only a single hole (θ = 0), or the angle between the two holes is a simple
rational multiple of π, using the equations of Sec. 6.

8.1 q = 1: One hole

This is the case of one hole. We have r = c̄ = d̄ = 0.

Θ(0, 0, s) = 1 (94)

C̃j(1, 0, s) =
2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!
Kj(k) [ζ(s+ 2k)− 1] (95)

D̃(1, 0, s) =
1

ζ(s+ 1)
(96)

Fj(0, s) = aj
2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!
Kj(k)

ζ(s+ 2k)− 1

ζ(s+ 1)
(97)

The residues are given in Tab. 2. The residue for s = 1 is exactly twice that of
the other cases (q > 1).
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8.2 q = 2: Two symmetric holes

The case q = 2 is that of two symmetric holes. We have r = 1, 0 ≤ c̄, d̄ ≤ 1.

Θ(0, π, s) = 1 (98)

Θ(1, π, s) =
1

2s+1
(99)

C̃j(2, 0, s) =
2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!
Kj(k)ζ(s+ 2k)2−s−2k (100)

C̃j(2, 1, s) =
2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!
Kj(k)

[
ζ(s+ 2k)(1− 2−s−2k)− 1

]
(101)

D̃(2, 0, s) =
1

ζ(s+ 1)(1− 2s+1)
(102)

D̃(2, 1, s) =
1

ζ(s+ 1)(1− 2−s−1)
(103)

This gives

Fj(π, s) =aj
2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!
Kj(k)

ζ(s+ 2k)

ζ(s+ 1)2s+2k
(104)

The residues are given in Tab. 2. For j ∈ {2, 2′} the zeta function in the
numerator cancels the pole at s = −2. For q > 2 symmetric holes, see Sec. 9
below.
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8.3 q = 3

This is the case of two holes with angle 2π
3 (equivalent to 4π

3 by interchanging
the holes). We have r = 1 (without loss of generality), 0 ≤ c̄, d̄ ≤ 2.

Θ(0,
2π

3
, s) =1 (105)

Θ(1,
2π

3
, s) =Θ(2,

2π

3
, s) =

1 + 2s+2

3s+2
(106)

C̃j(3, 0, s) =
2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!
Kj(k)ζ(s+ 2k)3−s−2k (107)

C̃j(3, 1, s) =
2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!
Kj(k) (108)

×
[
ζ(s+ 2k)(1− 3−s−2k) + L(s+ 2k, χ2)

2
− 1

]
C̃j(3, 2, s) =

2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!
Kj(k) (109)

×
[
ζ(s+ 2k)(1− 3−s−2k)− L(s+ 2k, χ2)

2
− 1

]
D̃(3, 0, s) =

1

ζ(s+ 1)(1− 3s+1)
(110)

D̃(3, 1, s) =
1

2

[
1

ζ(s+ 1)(1− 3−s−1)
+

1

L(s+ 1, χ2)

]
(111)

D̃(3, 2, s) =
1

2

[
1

ζ(s+ 1)(1− 3−s−1)
− 1

L(s+ 1, χ2)

]
(112)

where χ2 is the non-principal (and odd) character of modulus 3. Now the sum
over c̄ and d̄ involves only C̃j(3, 0, s) and D̃(3, 0, s) together with the combi-

nations C̃j(3, 1, s) + C̃j(3, 2, s) and D̃(3, 1, s) + D̃(3, 2, s) so all terms with the
L-function of character χ2 cancel. The result is

Fj

(
2π

3
, s

)
=aj

2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!
Kj(k)

1

ζ(s+ 1)3(3s+1 − 1)
(113)

×
[
(2s+2 − 2)(ζ(s+ 2k)− 1) +

3s+2 − 2s+2 − 1

3s+2k
ζ(s+ 2k)

]
The residues are given in Tab. 2.
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8.4 4 ≤ q ≤ 6

The following were found using mathematica.

Fj

(π
2
, s
)
=aj

2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!
Kj(k)

1

ζ(s+ 1)(2s+1 − 1)4s+2k+1
(114)

×
[
ζ(s+ 2k)((2s+4k − 22k)(3s+2 − 3) + 2s+4 − 8)− 2s+4k(3s+2 − 3)

]
Fj

(
2π

5
, s

)
=aj

2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!
Kj(k)

1

ζ(s+ 1)L(s+ 1, χ3)(5s+1 − 1)5s+2k+2

×
(
5L(s+ 1, χ3)[ζ(s+ 2k)(2× 5s+2 − 4s+2 − 3s+2 − 2s+2 − 1)

+ 5s+2k(ζ(s+ 2k)− 1)(4s+2 + 3s+2 + 2s+2 − 9)] (115)

+(L(s+ 2k, χ3)− 1)ζ(s+ 1)(5s+2k+1 − 52k)(4s+2 − 3s+2 − 2s+2 + 1)
)

Fj

(
4π

5
, s

)
=aj

2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!
Kj(k)

1

ζ(s+ 1)L(s+ 1, χ3)(5s+1 − 1)5s+2k+2

×
(
5L(s+ 1, χ3)[ζ(s+ 2k)(2× 5s+2 − 4s+2 − 3s+2 − 2s+2 − 1)

+ 5s+2k(ζ(s+ 2k)− 1)(4s+2 + 3s+2 + 2s+2 − 9)] (116)

−(L(s+ 2k, χ3)− 1)ζ(s+ 1)(5s+2k+1 − 52k)(4s+2 − 3s+2 − 2s+2 + 1)
)

Fj

(π
3
, s
)
=aj

2

π

∞∑
k=0

(−1)kπ2kB2k

(2k)!
Kj(k)

1

ζ(s+ 1)(2s+1 − 1)(3s+1 − 1)6s+2k

×
[
ζ(s+ 2k)(6s+2k(1− 5s+2) + 5s+2(3s+2k + 2s+2k − 1) (117)

+ 4s+2(1− 3s+2k) + 3s+2k(22s+2k+3 + 2s+3 − 5) + 2× 3s+2

−22s+2k+3 − 2s+2k − 2s+2 − 1) + 6s+2k(5s+2 − 2s+3 − 1)
]

Here, χ3 is the non-principal even character of modulus 5. All q > 6 have non-
principal even characters, so we would expect the expressions to include the
relevant non-principal L-functions.

The residues are given in Tab. 2.
For q = 5 the non-principal L-function leads to a pole at s = 0
For q = 6 it is found for the first time an increase in the order of the pole

at s = −1 due to D̃(q, d̄, s). That is, for j = 1 it is now a triple pole, and for
j ∈ {2, 2′, 3} it is a double pole. See Sec. 7.4.

8.5 Table of residues

The residues of the functions found for q ≤ 6 are given in Tab. 2. They were
found using mathematica symbolic algebra, then numerical evaluation when
involving a sum over k. The case j = 3 requires k ≤ 16 for this precision. The
table confirms many of the results shown in Sec. 7, namely, the residues for
s = 1, those for s = −2 and j ∈ {2, 2′}, and the order of all the poles, including
the absence of poles for s = 0 and q ∈ {1, 2, 3, 4, 6} and for s = −2, j ∈ {2, 2′}
and q = 2.
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q r j s = 1 s = 0 s = −1 s = −2
1 0 1 4

π∆
−1 0 −0.486∆ + 0.524∆ ln∆ −0.0437∆2

2 2∆−1 0 − 13
12∆

3
2π∆

2

2′ 4
π∆

−1 0 − 13
6π∆

3
π2∆

2

3 64
3π2∆

−1 0 −0.662∆ −0.136∆2

2 1 1 2
π∆

−1 0 −0.0894∆ + 0.262∆ ln∆ −0.107∆2

2 ∆−1 0 − 1
6∆ 0

2′ 2
π∆

−1 0 − 1
3π∆ 0

3 32
3π2∆

−1 0 0.242∆ −0.478∆2

3 1 1 2
π∆

−1 0 −0.217∆ + 0.321∆ ln∆ −0.0805∆2

2 ∆−1 0 − 20 ln 2+9 ln 3
36 ln 3 ∆ 3

4π∆
2

2′ 2
π∆

−1 0 − 20 ln 2+9 ln 3
18π ln 3 ∆ 3

2π2∆
2

3 32
3π2∆

−1 0 −0.391∆ −0.139∆2

4 1 1 2
π∆

−1 0 −0.427∆ + 0.442∆ ln∆ 0.00671∆2

2 ∆−1 0 − 16 ln 2+33 ln 3
48 ln 3 ∆ 3

π∆
2

2′ 2
π∆

−1 0 − 16 ln 2+33 ln 3
24π ln 3 ∆ 6

π2∆
2

3 32
3π2∆

−1 0 −1.407∆ 0.611∆2

5 1 1 2
π∆

−1 -0.139 −0.312∆ + 0.371∆ ln∆ −0.0633∆2

2 ∆−1 −π
10

√
5 lnφ

− 40 ln 2+12 ln 3+25 ln 5
60 ln 5 ∆ 9

8π∆
2

2′ 2
π∆

−1 −2
10

√
5 lnφ

− 40 ln 2+12 ln 3+25 ln 5
30π ln 5 ∆ 9

4π2∆
2

3 32
3π2∆

−1 -0.376 −0.580∆ −0.113∆2

5 2 1 2
π∆

−1 0.139 −0.312∆ + 0.371∆ ln∆ −0.0633∆2

2 ∆−1 π
10

√
5 lnφ

− 40 ln 2+12 ln 3+25 ln 5
60 ln 5 ∆ 9

8π∆
2

2′ 2
π∆

−1 2
10

√
5 lnφ

− 40 ln 2+12 ln 3+25 ln 5
30π ln 5 ∆ 9

4π2∆
2

3 32
3π2∆

−1 0.376 −0.580∆ −0.113∆2

6 1 1 2
π∆

−1 0 −0.374∆+0.812∆ ln∆−0.101∆(ln∆)2 −0.173∆2

2 ∆−1 0 [5 ln 5(2+10 ln 3−7 ln 5−24 lnA) − 3
2π∆

2

+ ln 2(−8−76 ln 3+55 ln 5+96 lnA)

+(70 ln 5−56 ln 2) ln∆]
∆

72 ln 2 ln 3
2′ 2

π∆
−1 0 [5 ln 5(2+10 ln 3−7 ln 5−24 lnA) − 3

π2∆
2

+ ln 2(−8−76 ln 3+55 ln 5+96 lnA)

+(70 ln 5−56 ln 2) ln∆]
∆

36π ln 2 ln 3
3 32

3π2∆
−1 0 −0.242∆ + 1.435∆ ln∆ −0.706∆2

Table 2: Residues for q ≤ 6 and s ≥ −2 and real. A = exp[ 1
12 − ζ ′(−1)] is

the Glaisher-Kinkelin constant, and φ = 1+
√
5

2 is the golden ratio. Where the
residue is zero, there is no pole. See Sec. 8.5.
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9 Symmetrically placed holes

In this section we consider a different scenario, that of q ≥ 2 symmetric holes,
that is, H = ∪q−1

j=0[
2πj
q , 2πjq + ∆]. The analysis is exactly the same to the

derivation of the one hole survival probability, Eq. (44). Then, reducing the
dynamics mod 2π

n , we find q̃ arcs of length 2π
nq̃ of non-escaping periodic orbits

of length n, where q̃ = q
(n,q) . Thus Eq. (1) becomes

Psym
j,q (∆) =

2jaj
16π2

∑
m,n

[n, q]

(
2π

[n, q]
−∆

)2

+

sinj
πm

n
(118)

where [n, q] = nq̃ is the least common multiple, and again the sum is over
1 ≤ m < n with (m,n) = 1. Applying the Möbius and Mellin transforms as
before, Eq, (2) becomes

Psym
j,q (∆) =

1

2πi

∫ C+i∞

C−i∞
P (∆, s)F sym

j (q, s)ds (119)

F sym
j (q, s) = aj

∑
n

1

[n, q]s+1

∑
d|n

µ(d)Cj(n/d) (120)

We can substitute Eq. (76). In addition, the multiplicative structure in the
sums imply the identity

∞∑
n=1

1

[n, q]s+1

∑
d|n

µ(d)

(
d

n

)2k−1

=
1

qs+1

∞∑
n=1

(n, q)s+1

ns+2k

∏
p|n

(1− p2k−1)

=
1

qs+1

∏
p

1 + (1− p2k−1)

∞∑
j=1

p−(s+1)max(j−β,0)−(2k−1)j

 (121)

=
1

qs+1

∏
p

1 + (1− p2k−1)

 β∑
j=1

p−j(2k−1) + pβ(s+1)
∞∑

j=β+1

p−j(s+2k)


=

1

qs+1

∏
p

[
p−β(2k−1) 1− p−(s+1)

1− p−(s+2k)

]
=

ζ(s+ 2k)

ζ(s+ 1)qs+2k

where β = ordp(q) and j = ordp(n). By putting this together we obtain the
statement of Theorem 4.

For the poles where only k = 0 contributes, that is, s = 1 or j ∈ {2, 2′}, the
residue is proportional to q−s. For example, we have from Eq. (83)

Ress=1P (∆, s)F
sym
j,q (s) =

6αj
π2∆q

(122)
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10 Sum of real residues

Here we state and prove a lemma that demonstrates convergence of the sum
over the residues on the real axis.

Lemma 2. Let q ∈ {1, 2, 3, 4, 6}, then
∞∑
l=1

Ress=−lP (∆, s)Fj(2π/q, s) < C∆

∣∣∣∣ln ∆

2π

∣∣∣∣2 (123)

where C > 0 is a constant.

Note that to have non-overlapping holes, we must have ∆ < 2π
q . The right

hand side is determined by the pole at s = −1, so the presence of the logarithm
depends on the order of this pole; see Tab. 2. We write it as ln(∆/(2π)) rather
than ln∆ as the latter is zero when ∆ = 1. Where there is no pole (even l
except perhaps l = 2), we consider its residue to be zero.
Proof. The sum over k converges (see the end of the proof of Theorem 3) and
so each residue is finite and O(∆l| ln(∆/(2π))|2) as ∆ → 0. Thus, we need only
a bound on the residue for large l.

For the Riemann zeta function, we have the functional equation

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s) (124)

Now 1 < ζ(s) ≤ ζ(2) for s ≥ 2. Thus the factor 1
ζ(s+1) in Fj(2π/q, s) con-

tributes a factorial 1
Γ(l+1) = 1

l! in the residue. All the other factors are at most

exponential in l, except for ζ(s+ 2k) in the numerator, that gives (l − 2k)! for
k < l/2. There are O(l) of such terms, bounded by the largest, k = 0, where
the factorial and exponential factors from the zeta functions cancel. The k = 0
term has (∆/(2π))l from P (∆, s) and the term qs+2k from the denominator of
Fj(2π/q, s), thus showing convergence for ∆ < 2π

q .

11 Numerical results

The numerical results in this section are given in support of Conj. 1, that the
sum of residues is absolutely convergent and gives the coefficient of the long time
survival probability. The sum of the absolute value of the residues is plotted in
Fig. 4, showing convergence.

The infinite time limit of the survival probability Pj,θ(∆) was estimated by
direct simulation, using a sample of 109 initial points distributed with respect
to the relevant measure. Then, the leading term Ress=1P (∆, s)Fj(θ, s) was
subtracted from this, for different values of ∆. The results are as in Fig. 5.
The only case where the subleading behaviour appears positive is that of q = 2,
j = 3, which is the only case where the relevant pole (at s = −1) has a positive
residue. This ignores the poles on the critical axis with real part −1/2, which
have residues of magnitude about 10−3 due to the denominator of P (∆, s). The
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Figure 4: Sum of the absolute value of the residues in Conj. 1, plotted against
the maximum absolute value of s∗, showing convergence. The left panels are
for q = 1 and the right panels for q = 2. From top to bottom, they are for
j ∈ {1, 2, 2′, 3}. The hole size ∆ = 2π/q, the supremum of possible values.
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Figure 5: Numerically computed Pj,θ(∆) as a function of ∆, after subtracting
the leading (∼ ∆−1) term. Top left: q = 1. Top right q = 2. Middle left: q = 3.
Middle right q = 5, r = 1. Lower panel: θ = (3−

√
5)π.

curves do not approach zero for q = 5 due to the pole at s = 0. For θ = (3−
√
5)π

we do not have an expression in terms of L-functions but subtract the same
leading term. Again, the curves do not approach zero, suggesting a pole at
s = 0.
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