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Abstract

A dynamical billiard consists of a point particle moving uniformly except for mirror-like collisions
with the boundary. Recent work has described the escape of the particle through a hole in the
boundary of a circular or spherical billiard, making connections with the Riemann Hypothesis. Unlike
the circular case, the sphere with a single hole leads to a non-zero probability of never escaping.
Here we study variants in which almost all initial conditions escape, with multiple small holes or a
thin strip. We show that equal spacing of holes around the equator is an efficient means of ensuring
almost complete escape, and study the long time survival probability for small holes analytically and
numerically. We find that it approaches a universal function of a single parameter, hole area multiplied
by time.

I Introduction

Mathematical billiards, in which a par-
ticle moves freely while confined in a cav-
ity, are of interest for many physical exper-
iments and applications (where the parti-
cle is an atom, electron, photon, etc). Bil-
liards are popular in both mathematics and
physics, exhibiting many dynamical features
(depending on the cavity shape), with appli-
cations from superconductors to the Lorentz
gas and ray optics [1]. One useful approach
for investigating the dynamics consists of
placing one or more holes in the boundary,
a random distribution of initial conditions in
the billiard, and considering the probability
of survival (not escaping) as a function of
time. For the single-hole spherical billiard,
there is incomplete escape with the survival
probability Psc(t) 6→ 0 as the time of survival,
t → ∞. Here we study the survival prob-
ability for long times in an open multi-hole
spherical billiard. We provide detailed calcu-
lations regarding two billiard configurations,
specifically holes centered on the equator of
a sphere and a sphere with a thin strip. We
show that equal spacing of holes around the
equator is an efficient means of ensuring al-
most complete escape. We also compare this
with a thin strip hole circling the equator.
Terms that vanish in the long time limit of
the survival probability in our configurations
comprising almost-complete escape are in-
vestigated analytically and numerically. We
find that this survival probability approaches

a universal function of a single parameter,
the total surface area of the hole(s) multi-
plied by time.

A mathematical billiard is a dynamical system
in which a particle is in motion via alternating
straight line movements in its interior and mirror-
like reflections with its boundary without losing
speed [2].

Mathematical billiards are of interest for a di-
verse collection of examples of dynamical systems
(depending on the cavity shape) [3, 4, 5, 6]. Ex-
amples of dynamics include chaotic (e.g. brownian
motion, Lorentz flows and the Sinai billiard [7]), in-
termittent, e.g. the drive-belt stadium billiard [8]
and regular [2, 9, 10, 11].

We will now consider open dynamical systems,
formed by the introduction of a small hole in the
boundary or in the interior allowing us to probe
their internal dynamical nature. In these systems,
the dynamics is no longer considered when reach-
ing the associated hole(s). The survival probability
for time t is defined as the chance of a particular
trajectory surviving for time t given a suitable dis-
tribution of initial conditions. In particular, we are
interested in open billiards including a 2-hole sta-
dium [12], billiards with holes in their interior [13]
and billiard problems in convex domains [14].

The circular billiard is known for its complete
integrability and its relation to a number of well
known geometries with chaotic or mixed phase
space. We provide an illustration of circle-type
billiards in figure 1. For example it is related
to the study of mushroom billiards with circular
arcs, since circular-billiard orbits occupy the cir-
cular part of the mushroom-shaped counterpart’s
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phase space, allowing mushroom billiards to be a
visible example of sharply divided phase space [15].
These billiards are widely studied both classically
and quantum mechanically [16]. Furthermore, for
mushroom billiards, typical values of a control pa-
rameter allow the existence of marginally unstable
periodic orbits (MUPOs) that exhibit stickiness,
specifically that unstable orbits approach regular
regions in phase space [17, 18]. In addition, the
prevalence of MUPOs in chaotic billiards is related
to the use of microwave experiments in annular bil-
liards [19], within which orbits resemble those from
the circular billiard. MUPOs are known for their
application in the context of directional emission
in dielectric microcavities [18]. We will denote the
probability of survival for time t, given a uniform
distribution of initial conditions, in the circular bil-
liard by Pc(t) (NB: Pc(t) 6→ 0 if the hole is in the
interior). The density of orbits at the boundary
implies that Pc(t) → 0 as t → ∞ since unper-
turbed periodic orbits constitute a zero-measure set
in phase space. Interestingly, the leading coefficient
of Pc(t) is related to the Riemann hypothesis (RH)
[11], an interesting problem related to number the-
ory [20].

Figure 1: Circle-type billiard dynamics. Mush-
room, annulus and drivebelt in the left, middle and
right respectively

We stress that open three dimensional billiards
have hardly been studied. In our case, we note that
no orbits are dense in the sphere since orbits are all
contained in planes passing through the centre of
the sphere. There are, however, a number of qual-
itative differences between two and three dimen-
sional billiards. For example, the defocusing phe-
nomenon in spaces of dimensions of at least three is
different to that in two dimensions due to the opti-
cal phenomenon of astigmatism [21]. The spherical
billiard is of particular interest for applications, e.g.
whispering gallery mode emission from a spherical
microcavity [22], while simple due to its symmetric
geometry and hence we expect to easily obtain re-
sults for such a configuration. The variation of the
rate of decay of such a billiard’s survival probability
with time is generally dependent on the hole shape,
which is trivial in two dimensions, but allows a rich

variety of possibilities in three dimensions.

We will now describe the recently completed
single-hole spherical billiard work [9]. An interest-
ing discovery in the work presented in [9], is that
the O(1t ) term in the long-time survival probabil-
ity expansion associated with the square-shaped-
hole configuration generally increases with hole size
whereas this is found to decrease in the circular-
shaped-hole configuration. In our previous work on
the single-hole spherical billiard configurations [9],
it was observed that the particle almost always es-
capes from the circle but not the sphere; here we are
interested in situations involving the sphere with al-
most complete escape. In addition, the expansion
of the long-time survival probability for our single-
hole spherical billiard (as per [9]) is attributed to
the RH via consideration of the relevant integration
of circular planes. The relevant analytic results are
and/or can be obtained using analogous asymptotic
as well as complex-analysis approaches in [11] and
[9].

In this current work we study hole configura-
tions with almost complete escape, namely P (t)→
0 as t → ∞ (where P (t) denotes our survival
probability associated with the particular config-
urations in question). We consider two different
forms of holes are involved specifically a collection
of circular-shaped holes and a thin-strip hole hence
an indication of a variation in the rate of decay of
the associated survival probabilities. To aid this, we
consider a spherical billiard with a thin strip across
its equator as an appropriate comparison of the for-
mer configuration, specifically both associated sur-
vival probabilities’ decay rates are inversely pro-
portional to the relevant hole’s/holes’ total surface
area in the limit of the parameter k. The relevant
numerical results are obtained using an approach
based on simulating trajectories within these spher-
ical billiard configuration extensions and analysing
the range of survival times for a large number of tra-
jectories. Furthermore, analogous to a result from
[11] we find numerically that the survival proba-
bility associated to our multi-hole spherical billiard
configuration converges to a universal function of
the product of the total surface area of the holes
and time. Interestingly, we find that asymptotic
results with associated limits for our multi-hole bil-
liard configuration are similar to that in [11], specif-
ically the long-term survival probabilities tending
to 0 as time tends to infinity at a rate which is in-
versely proportional to the total surface area of the
holes. This work is extended from and related to
the spherical billiard problem with a single hole, for
which similar results regarding the long-time sur-
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vival probability within our multi-hole spherical bil-
liard configuration are found. There are key ques-
tions regarding this problem, related to the conver-
gence of the relevant distribution of particles that
have not escaped by a particular time to a limiting
long-time distribution [13].

The relevant theoretical calculations are pre-
sented in Section II. The corresponding numerical
results, are presented in Section III. Analogous re-
sults corresponding to our thin-strip comparisons
are presented in Section IV. Concluding remarks
regarding the results of such configurations as well
as further related areas of study are provided in
Section V.

II Theoretical analysis

II.1 Objective

We describe an approach in establishing a spher-
ical billiard configuration with a multiple number of
holes of a particular size, such that the objective of
preventing any trajectory of a particle undergoing
internal reflections with the boundary from surviv-
ing infinitely, apart from a zero-measure set of tra-
jectories, is achieved.

Furthermore, efficiency in terms of minimizing
the number of holes to obtain the above objective
will be discussed.

II.2 Setup

We start by finding a condition under which a
plane (which will contain the trajectory) intersects
a circular hole. This is based on parameterizing
a plane in our unit sphere S2 = {r : |r| = 1}
by a unit vector normal to it, which we will de-
note by n. We will let each hole be identical with
radius ε and center r0 ∈ S2 which we define as
{r ∈ S2 : cos−1 (r · r0) ≤ ε} (we have no absolute
| · | function within the cos−1 (·) function otherwise
we have a hole on the opposite side as well), where
(·) denotes the dot product of two vectors.

We define spherical polar coordinates,
(x, y, z) = (r sin θ cosφ, r sin θ sinφ, r cos θ). A suit-
able approach is considering an array of circular
planes in the sphere, specifically the collection of
planes defined by {φ ∈ { πN ,

2π
N , . . . ,

(N−1)π
N , π};N ∈

N; θ ∈ [0, π2 ] }, tending towards an infinite set. This
set will be sufficiently large when π

N < 2ε =⇒
N = d π2εe. Without loss of generality we can place
these holes centered on the equator of the sphere
without them overlapping.

We will also use (φ, θ) to define a plane by ob-
taining an expression for θ in terms of φ. We let φ⊥

and θ⊥ denote angular displacements of n.

Furthermore, we introduce a hole in the spher-
ical billiard centered at the point (φε, θε) and with
radius ε. We can see that the angle between the vec-
tor normal to the plane, n, and the vector pointing
to the center of the hole, h, satisfies ψ ∈ [π2−ε,

π
2 +ε].

A key point is that we assume ε < π
2 to avoid in-

evitable intersections with the would-be hemispher-
ical hole. We also derive the following expression for
n · h:

cosψ = n · h
= cos (φ⊥ − φε) sin θ⊥ sin θε + cos θ⊥ cos θε,

(1)

where cos (φ⊥ − φε) = cosφ⊥ cosφε +
sinφ⊥ sinφε. Therefore, we find the following con-
ditions for the intersection of a circular plane with
this hole:

π
2 − ε < ψ < π

2 + ε

cos (π2 + ε) < cosψ < cos (π2 − ε)
|n · h| < sin ε, (2)

where we use cos (π2 ± ε) = ∓ sin ε.

II.3 Special configurations

II.3.1 Odd number of holes centered at the
equator

We will show that an odd number of identical
holes in the spherical billiard, centered along its
equator, and separated by each of their diameter
(a rational multiple of π) allows our objective of all
trajectories, other than periodic orbits, escaping.
We provide the example of k = 1 in figure 2. We
define the center of each hole by:

(φε, θε) =

(
4lεk,

π

2

)
, k; l ∈ N, l ∈ {0, . . . , 2k}, (3)

where the radius of each of our holes is defined
by εk = π

2(2k+1) .
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Figure 2: Multi-hole spherical billiard configuration
for k = 1

Therefore, in this case

n · h = cos

(
φ⊥ − 4lεk

)
sin θ⊥ sin

(
π

2

)

+ cos θ⊥ cos

(
π

2

)

= sin

(
π

2
+ φ⊥ − 4lεk

)
sin θ⊥,

where we can choose θ⊥ = π
2 to maximize

n ·h. Hence, (π2 +φ⊥− 4lεk) ∈ [− π
2(2k+1) ,

π
2(2k+1) ]∪

[π − π
2(2k+1) , π + π

2(2k+1) ] =⇒ φ⊥ ∈ [ 2lπ
2k+1 ±

π
2 −

π
2(2k+1) ,

2lπ
2k+1 ±

π
2 + π

2(2k+1) ] (since | sinx| ≤ 1

∀x ∈ R). In addition, we can have that sin θ⊥ <
π

2(2k+1) =⇒ θ⊥ ∈ [0, π
2(2k+1) ] ∪ [π − π

2(2k+1) , π].

However, ∪2kl=0{[
2lπ
2k+1 −

π
2 −

π
2(2k+1) ,

2lπ
2k+1 −

π
2 +

π
2(2k+1) ], [

2lπ
2k+1 + π

2 −
π

2(2k+1) ,
2lπ
2k+1 + π

2 + π
2(2k+1) ]} =

[0, 2π) and therefore all planes intersect some hole
in this configuration.

We illustrate this with an example of 3 equally
spaced and identical holes (θε = θ

π
6 ). Hence, we

have

(
φε, θε

)
=

(
φ
π
6 , θ

π
6

)
=

{(
2lπ

3
, θ

π
6

)}
,

for l ∈ {0, 1, 2}. We try the best and sim-
plest choice of avoiding the holes by selecting φ⊥ =
0, since we would have |n · h| = | cos 2lπ

3 | =

| sin (π2 + 2lπ
3 )| = | sin (3+4l)π

6 | = sin (π6 ) ⇐⇒ l ∈
{1, 2} (similarly for other odd numbers of holes).
Therefore,

n · h = cosφ
π
6 sin θ⊥ sin θ

π
6 + cos θ⊥ cos θ

π
6 . (4)

We need l = 1 (equivalent to l = 2 while avoid-
ing intersection with l = 0). We have that

cosφ
π
6 = cos

2π

3
= −1

2

n · h = cos θ⊥ cos θ
π
6 − 1

2
sin θ⊥ sin θ

π
6

On the equator θε = θ
π
6 = π

2 . Therefore,

n · h = −1

2
sin θ⊥

|n · h| = sin θ
π
6 if θ⊥ =

π

2
.

For all θ⊥, |n · h| ≤ sin π
6 .

II.3.2 Odd number of holes centered at
same height above the equator

We show that the same collection of holes
shifted above the equator does not block all planes.
In this case, we have θε < π

2 . We involve the use
of computing the maximum of n · h with respect to
θ⊥.

d

dθ⊥
n · h = cos (φ⊥ − φε) cos (θ⊥) sin θε

− sin θ⊥ cos θε = 0

=⇒ θ⊥max = tan−1 (cos (φ⊥ − φε) tan θε),

which yields the following extremal value of n · h:
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n · hmax = cos (θ⊥max) cos θε

+ cos (φ⊥ − φε) sin θ⊥max sin θε

=
cos θε√

cos2 (φ⊥ − φε) tan2 θε + 1

+ cos (φ⊥ − φε) cos (φ⊥ − φε) tan θε√
cos2 (φ⊥ − φε) tan2 θε + 1

sin θε

=
√

cos2 (φ⊥ − φε) + (1− cos2 (φ⊥ − φε)) cos2 θε

> | cos (φ⊥ − φε)|

since θε 6= π
2 hence cos2 θε 6= 0 where we use

cos (tan−1 x) = 1√
x2+1

and sin (tan−1 x) = x√
x2+1

.

Therefore, n · h is greater than sin
(
εk

)
if

π

2
+ φ⊥ − φε ∈

[
εk, π − εk

]
∪
[
π + εk, 2π − εk

]
,

for some φε = 4lεk so that a non-zero measured
set of planes does not intersect a hole.

We now justify that a plane with a unit normal
vector pointing to the center of one of our holes
does not intersect any other hole. We have that the
relevant dot product in this case is:

cos
(

4l1εk

)
cos
(

4l2εk

)
+ sin

(
4l1εk

)
sin
(

4l2εk

)
= cos

(
4(l1 − l2)εk

)
= sin

(π
2

+ 4(l1 − l2)εk
)
,

from which we find that if it is assumed that
nπ−εk ≤

(
π
2+4(l1−l2)εk

)
≤ nπ+εk for some integer

n we can find that−1 ≤ (2k+1)(1−2n)+4(l1−l2) ≤
1 which is only possible if |(2k+ 1)(1− 2n) + 4(l1−
l2)| = 1 since (2k+ 1)(1− 2n) + 4(l1− l2) is an odd
integer.

To illustrate the general derivations above, we
now consider the case of θε = θ

π
6 < π

2 , (2k + 1 =
3, ε = π

6 ).

d

dθ⊥
n · h = − sin θ⊥ cos θ

π
6 − 1

2
cos θ⊥ sin

(
π

6

)
= 0

=⇒ θ⊥ = tan−1

(
− 1

2
tan θ

π
6

)
,

which yields the following extremal value of n · h:

n · h = cos

(
tan−1

(
1

2
tan θ

π
6

))
cos θ

π
6

+
1

2
sin

(
tan−1

(
1

2
tan θ

π
6

))
sin θ

π
6

=
cos θ

π
6√

1
4 tan2 θ

π
6

+
1

2

1
2 tan θ

π
6√

1
4 tan2 θ

π
6

sin θ
π
6

=

√
1

4
+

3

4
cos2 θ

π
6 > sin

(
π

6

)

for any θ
π
6 6= π

2 . Therefore, we cannot establish the
result of blocking all planes by shifting above the
equator. We provide an alternative way of justify-
ing this.

We note that for θ⊥, θε ∈ [0, π], cos (φ⊥ − φε) ≥
−1. Therefore cosψ ≥ cos (θ⊥ + θε). Hence,
cosψ ≥ sin ε ⇐⇒ θ⊥ + θε ∈ [0, π2 − ε] ∪ [3π2 +
ε, 2π] =⇒ θ⊥ ∈ [−θε, π2−ε−θ

ε]∪[3π2 +ε−θε, 2π−θε].
However, without loss of generality, we assume
that θ⊥ ∈ [0, π]. Therefore, we have that θ⊥ ∈
[0, π2 − ε− θ

ε]. Therefore, we have found a domain
of values for which there are planes that do not in-
tersect any hole centered above the equator of the
sphere.

III Numerical results

We begin this section by finding out the effect
(if any) of increasing the number, 2k + 1 (k ∈ N),
of equally spaced holes each with corresponding ra-
dius π

2(2k+1) centered on the equator on the survival

probability Ps,mhs(t). We present this in figure 3
for k ∈ {10, 100, 1000} as well as for the case of 108

samples and a maximum time limit of 105.
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Figure 3: Effect of k on Ps,mhs(t), at large t, Ps,mhs(t) ∼ const
t

From the above plot, there is an indication that
Ps,mhs(t) increases with k, since the total area of
the holes decreases with k.

We now describe numerical results for approx-
imation of Ps,mhs(t) for small hole sizes as well as
large times of survival. We find that initial condi-
tions are less probable in surviving for a large time.

Due to the geometry of holes resulting in a zero-
measure set of planes that does not intersect a hole,
we select fits that each have 0 as their constant
coefficient. We observe that the leading term in
Ps,mhs(t) as t→∞ is const

t and so define

Bs,mhs = lim
t→∞

tPs,mhs(t) (5)

hence use fits of the form

Ps,mhs(t) ≈
B

t
+
C

t2
(6)

Furthermore, for large k, the total area

As,mhs(k) = 2π(2k + 1)

(
1− cos

(
π

2(2k+1)

))
≈ π3

8k .

Figure 4: Plot of Bs,mhsAs,mhs(k) vs k and
Bs,mhsπ

3

8k vs k
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We are provided with an indication that Bs,mhsAs,mhs(k) tends to a constant as k →∞.

Figure 5: Ps,mhs(t) vs As,mhs(k)t

From figure 5, we see that Ps,mhs(t) follows an

O
(

1
As,mhs(k)t

)
trend for large As,mhs(k)t. In gen-

eral there is a scaling to a universal function of
As,mhs(k)t in the limits of large time and small hole
size hence an analogous trend to that in [10, 11].

IV Thin-strip comparison model

We now describe an analogous configuration in
the limit of large k (hence in the limit of a large
number of holes, 2k + 1).

Figure 6: Spherical billiard with a thin strip

We will theoretically justify that asymptotic re-
sults for the case of our special multi-hole configura-
tion as well as this thin-strip configuration (the ap-
proximate limiting hole shape) approximately agree
in the limit in question. For brevity we define the
radius of each of our holes as well as the corre-
sponding rectangle by εk = π

2(2k+1) . Specifically,
we have a configuration of a thin strip defined by
{φ ∈ [0, 2π], θ ∈ [π2 − εk,

π
2 + εk]}, where φ denotes

the angular displacement of a point on the sphere
with respect to the positive x-axis and θ denotes its
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angular displacement with respect to the positive z-
axis. We explain further by recalling that billiard
orbits in the spherical billiard lie on planes. There-
fore, our consideration of an orbit is reduced to an
open circular billiard problem. The resulting size of
each hole on each side of a circular plane inside our
thin-strip configuration with particular orientation
for particular θ is

h = π − 2 cos−1

(
cos (π2 − εk)

cos θ

)

= π − 2 cos−1

(
sin (εk)

cos θ

)
. (7)

Furthermore, the dominant contributions to the

survival probability come from periodic orbits of ro-
tation number m and period n, which are enumer-
ated with m and l = dn2 e. We also have that m and
n are coprime: (m,n) = 1. We recall that numeri-
cally the survival probability for large time t in our
multi-hole configuration is Ps,mhs(t) = O(kt ) and
provide a brief justification of this which is analo-
gous to the single hole sphere in [9]. In the deriva-
tion of equation (8) from [9], we split the sum over
n (the period of trajectories in an open circular bil-
liard that never escape and which are perturbed by
a small amount) into two parts, over odd numbers
and even numbers so that for time t, and orbit pa-
rameters l and m and each identical hole’s size h,
the asymptotic survival probability for small h in a
circular billiard contained within a spherical billiard
with a thin-strip hole is

Pc,str(t) =
3

2πt

[ ∞∑
l=1

(
l−1∑

m = 0
(m, 2l) = 1

2lG
(π
l
− h
)

sin3 πm

2l
cos

πm

2l

+
l−1∑

m = 0
(m, 2l − 1) = 1

(2l − 1)2G
( π

2l − 1
− h
)

sin3 πm

2l − 1
cos

πm

2l − 1

)]
,

≈ 3

2πt

[∫ π
h

0

2

π2

∫ l

0
2l
(π
l
− h
)2

sin3 πm

2l
cos

πm

2l
dmdl

+

∫ π
2h

+ 1
2

0

4

π2

∫ 2l−1
2

0
(2l − 1)2

( π

2l − 1
− h
)2

sin3 πm

2l − 1
cos

πm

2l − 1
dmdl

]
≈ 3

πht
(8)

as h → 0, where we use 2
π2 as the asymptotic

probability that two positive integers are coprime
as well as that their maximum is even, 4

π2 as the
asymptotic probability that two positive integers
are coprime as well as that their maximum is odd
(see Appendices A and B) and let θ′ denote the
angular displacement between two identical holes if
they were exactly in the same position (mod 2π

n )
as well as

θ′ =

{
0 if n is even
π
n if n is odd.

(mod
2π

n
) (9)

(which appears in G(θ′ − h) and G(2πn − θ
′ − h)

from equation (2) in [11]) and

G(x) =

{
x2 if x ≥ 0

0 if x < 0.
(10)

We stress that the expression in equation (8)

is significantly different from reference [9] because
each circular billiard now has two symmetrically
placed holes rather than one.

From integrating equation (8) over circular
planes, introducing the transformation θP = (π2 −
εk)τk (where θP denotes the angular displacement
of a circular plane from the positive z-axis), ex-
panding a circular plane’s corresponding hole size

h = π − 2 cos−1

(
cos (π

2
−εk)

cos θP

)
= 2εk

cos
(
π
2
τk

) + . . . for

small εk, integrating equation (8) from τk = 0 to
τk = 1 (similar to [9]) as well as taking leading order
terms, the corresponding asymptotic survival prob-
ability for the spherical billiard with a thin strip as
εk → 0 is

Ps,str(t) ∼
3k

2πt
(11)
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Figure 7: Spherical billiard with a thin strip’s confirmation of equation (11)

We also provide additional numerical results in
support of equation (11) in figure 8. In this case,
we are provided with indication that our numerical

simulation curves for various values of k converge
to equation (11) in the limit of k →∞.

Figure 8: Effect of k on Ps,str(t) at large t compared with our analytical result in equation (11)

We define As,str(k) = 4π sin

(
π

2(2k+1)

)
as the

surface area of our thin-strip configuration’s strip-
shaped hole. Furthermore, we find that As,str(k) ≈
π2

k as k →∞. Hence we have the following approx-
imation:

Ps,str ∼
3k

2πt
≈ 3π

2As,str(k)t
. (12)
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V Conclusion

In this work, we have described and attained an
objective of establishing a multi-hole billiard con-
figuration that prevents only a zero-measure set of
trajectories from escaping. In particular, we can
see that the long-time survival probability for our
multi-hole billiard configuration is approximately
inversely proportional to the product of the total
surface area of the holes and time. Furthermore,
we can see from the analysis and calculations un-
dertaken that the number of holes of a particular
size needed to fulfill this objective decreases with
increasing hole size as well as that the survival prob-
ability for our multi-hole billiard configuration in-
creases as k increases.

We have produced calculations regarding spe-
cial spherical-billiard configurations, specifically:

1) An odd number of holes centered on the equa-
tor (from which we find that the objective is ful-
filled);

2) An odd number of holes centered at the same
height above the equator (from which we find that
not all arbitrarily selected circular planes within the
spherical billiard intersect a hole) and;

3) A Thin-Strip configuration.

Further potential areas of study include multi-
hole billiard configurations with non-circular holes
(e.g. the square-shaped hole in [9]); multi-hole
billiard configurations with holes placed at asym-
metric locations; multi-hole billiard configurations
with holes of varying radii; time-dependent thin-
strip holes; and escape and transmission survival
probabilities (injection through one hole and escape
through another) for a multi-hole billiard configura-
tion (similar to [12]). The study of time-dependent

holes seems most interesting since the survival prob-
ability can vary irregularly [23].
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A The probability that m and
n are coprime given that
max(m,n) is even

We first need the sum
∑

d odd
µ(d)
d2

which we find
as follows

∑
d even

µ(d)

d2
= − 1

22

∑
d odd

µ(d)

d2

=⇒
∑
d

µ(d)

d2
=

3

4

∑
d odd

,

∑
d

µ(d)

d2
=

6

π2

=⇒
∑
d odd

= 4
3 ·

6
π2 =

8

π2

Without loss of generality as well as for simplic-
ity we consider pairs (m,n) such that m ≤ n. We
first provide the following calculation of the asymp-
totic probability that two integers are coprime given
that their maximum is even:

∑l
i=1

∑2i
d|(2i) µ(d)

∑2i
m = d
d|m

1

2l + 2(l − 1) + . . .+ 2
=

∑l
i=1

∑2i
d|(2i) µ(d)2id

l(l + 1)
=

∑l
i=1

∑2i
d|(2i)
d odd

µ(d)2id

l(l + 1)

+

∑l
i=1

∑2i
d|(2i)
d even

µ(d)2id

l(l + 1)
=

∑l
d odd µ(d)2

d(1+...+b l
d
c)

d

l(l + 1)

+

∑l
d′=1 µ(2d′)

d′(1+...+b l
d′ c)

d′

l(l + 1)

→
l→∞

∑
d odd

µ(d)

d2
− 1

2

∑
d′ odd

µ(d′)

d′2

=
4

π2
,

where µ(·) denotes the Möbius function and
d = 2d′ in the case of d even. We now provide
the following calculation for the asymptotic proba-

bility that two integers are coprime as well as that
their maximum is even:

10



4

π2
· 2l + 2(l − 1) + . . .+ 2

2l + 2l − 1 + . . .+ 1
=

4

π2
· l(l + 1)
1
2 · 2l · (2l + 1)

→
l→∞ 2

π2

B The probability that m and
n are coprime given that
max(m,n) is odd

Similar to the previous appendix, we provide
the following calculation of the asymptotic proba-

bility that two integers are coprime given that their
maximum is odd:

∑l
i=1

∑2i−1
d|(2i−1) µ(d)

∑2i−1
m = d
d|m

1

2l − 1 + 2(l − 1)− 1 + . . .+ 1
=

∑l
i=1

∑2i
d|(2i−1) µ(d)2i−1d
l2

=

∑l
i=1

∑2i−1
d|(2i− 1)
d odd

µ(d)2i−1d

l2

=

∑2l−1
d odd µ(d)

d(1+3+...+b 2l−1
d
c)

d

l2
→

l→∞
∑
d odd

µ(d)

d2

=
8

π2
,

and similar to the even case, we provide the
following calculation for the asymptotic probabil-

ity that two integers are coprime as well as that
their maximum is odd:

8

π2
· 2l − 1 + 2(l − 1)− 1 + . . .+ 1

2l + 2l − 1 + . . .+ 1
=

8

π2
· l2

1
2 · 2l · (2l + 1)

→
l→∞ 4

π2
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