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Crisis in the periodic Lorentz gas
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The attractor of the nonequilibrium Lorentz gas covers the whole of the accessible phase space at small
values of the field. Here we investigate the transition from this state to a state with fractal support, correspond-
ing to a discontinuity in the box dimension as a function of field. A number of numerical techniques are
employed, the most effective involving symbolic dynamics. It is found that above the transition, the dynamics
is effectively irreversible in a manner not evident below the transition. A similar crisis occurs at different
spacings and rotation angld§1063-651X%96)10111-7

PACS numbegs): 05.45+b, 05.70.Ln

I. INTRODUCTION with the solution
Certain nonequilibrium systems have the odd property, 1 tand/2
noted by Hoover and Morai], that although the dynamics t=to+ Zlntanaolz’ )
is dissipative, leading to phase-space contraction on the av-
erage and multifractal attractor,2], these attractors fill the 1 sing
available phase space and thus have a box dimension equal X=Xg+ ;Inﬁ, 4

to that of phase space. The most well understood such sys-

tem is the nonequilibrium periodic Lorentz gf&&-5] in two

dimensions, for which a number of rigorous results may be y=Yo+ 06— 6o ()

proved[6] for sufficiently small field. At this point it is natu- 0 e ’

ral to ask at what value of field the attractor ceases to be

space filling and what the nature of this transition is. Here we V= COHX+ Sindy. (6)

attempt to answer these questions, and find that the behavior

is quite subtle and is related to a breakdown of one form oHere a subscript zero indicates the initial vakre — ex, and

reversibility. the sign of6 is determined by the initial value and does not
The Lorentz gas is the simplest of a number of nonequichange during a free flight. The angle between the field and

librium molecular-dynamic§NEMD) models that are used a line of scatterers) is another parameter, which is usually

to relate the macroscopic properties of nonequilibrium stead¥et to zero. We consider nonzero values)dgh Sec. V. Note

states, such as transport coefficients, to microscopic dynanthat Hoover and Morafil] use a field of “3??/me,” which

ics [7]. The Lorentz gas is a classical model of electricalcorresponds to a field of=1.5 in our units, and also use
conduction and it shares many of the features of more elaboy= /6, unlike most other authors.

rate models. We discuss other NEMD models in Sec. VI. We  These equations are time reversible, so that any trajectory
consider a particle colliding with a periodic hexagonal arrayremains a trajectory with the time and velocity reversed.
of hard disks of radius 1. The distance between the centers is

2+w. See Fig. 1. A common spacingvs=0.236, which we

will use until Sec. V, where different are considered.

Between collisions, the particle is driven by a constant
external forceF together with a Gaussian thermosiat,
which ensures that the energy of the particle is constant, set
to 1/2. The presence of a thermostat in the equations permits
the system to reach a steady state, despite the continual input
of energy from the driving force. Other methods of simulat-
ing the loss of heat from the system all involve boundaries
[8] and thus are inhomogeneous. The thermostated equations
of motion are

X=V, (1)
_E F-v 2
V=F——V
v 2
FIG. 1. Geometry of the Lorentz gas. For most of this paper we
* Electronic address: c.dettmann@unsw.edu.au usew=0.236 andd=0.
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Nevertheless, almost altelative to the Liouville measuye uted.D; gives the scaling of information required to locate a
initial conditions lead to motion along the field at an averagepoint in the distribution with length and equally weights
rate defined by the current parts of the distribution proportional to the measure con-
tained in them(see Sec. Y. D, gives the scaling of the two
point correlation function and similarly for higher integer
g. Dq1> qu if and only if g;=q, with equality if the dis-
tribution is uniform[11].
Depending ond, J may not be parallel té [5], butJ-F is The generalized dimensions may be calculated using Eq.
always positiveexcept in elliptic regions, below, where itis (8) by fitting a straight line to a log-log graph, but this re-
zerg and gives the rate of dissipation of energy in the sysquires a large number of data points, particularly for
tem. This is the usual sense in which these systems are ug<<0.5. Larger values of] are not such a problem, as the
derstood to be irreversible. A periodic orbit description maypeaks of the distribution dominate in the sum and also have
be found in Ref[9]. We can say that the system is micro- the best statistical accuracy. For still larger values, say
scopically reversiblgdue to the equations of motignbut >3, the limiting factor is the grid size, as the total number
macroscopically irreversibléue to the sign of the current  of contributing grid points becomes very small, leading to
We will introduce another form of irreversibility in Sec. lll. greater uncertainty. We evaluaig, in this paper to a rea-
The Lorentz gas at large values of field has been studiedonable degree of accuracy by counting an average of 8000
by Lloyd et al. [10], who found several different types of points per grid square, but other, more definite measures will
behavior, including a breakdown of ergodicity, integrable el-be used to identify the transition from space-filling to non-
liptic regions, and stable orbits. Here, as in R&0], ergod-  space-filling attractors in Sec. lIl.
icity is defined as the property that almost all initial condi-  For the special values af=1 andg=2 there are much
tions lead to the same attracting measure; other authors al$aster algorithms for finding the dimension of an attractor
require the attractor to be space filling. Thus there are differusing the correlation functiofiL1]. In addition, for our sys-
ent classes of chaotic crisis, depending on the features of titem, the Kaplan-Yorke relation
dynamics on either side of the transition. The crisis investi-
gated in most of this paper occurs for all values of the spac- A
ing (but see Sec. Vand lies between the space-filling region D;=Dyy=1+ m (10
at low field and an ergodic but non-space-filling region at 2

higher fields, which was not explicitly mentioned in Ref.
[10]. betweenD, and the Lyapunov exponents; holds when

N1>0 [6] and may be used to evaludde more accurately
than using the above box counting method. We have also
verified it numerically for a number of fieldSec. IlI).

There is often confusion about the precise meaning of Note also that it is possible to formulate an alternative
various terms in the chaos literature, so we begin with a fewdescription in terms of the singularity spectrdifw), which
definitions. Any absolutely continuous distributiomith re-  gives a measure of the distribution of points of singularity
spect to Liouville measujethat is evolved forwardback-  strengtha. See Ref.[12] or most other texts on fractals.
ward) in time approaches a stationary distribution, whichf(a) may be obtained implicitly fronD, using the relations
will be termed theattractor (repeller [6]. The generalized
(Reny) dimensionD, of a distribution is defined bj11]

In> pf
— lim —

9g-1, , Ine

 Ax
J=1lim T (7)

t—o

Il. GENERALIZED DIMENSIONS

d
a(Q)=d—q[(q—1)Dq], (11)

D

(8 f(qd)=qa(q)—(q—1)D, (12

Herep, is the measure contained in the cells of a grid of Sizeand eliminatingy. As we have already noted, it is difficult to

¢. Forq=0 only nonzercp; are included. Fog=1 the limit evaluate the dimensions for<0 numerically and this cor-
. < i i =

is taken on the above expression to obtain responds tox> a(0). However, atq.=0 it is _readily seen
from the above equations th&f«) is a maximum and is

equal toD,. Thus a transition involvindy will manifest
2 pilnp; itself clearly in thef(a) spectrum. Since this information is
D, = lim : . (9) equivalent toD,, we will restrict our investigations to the
eno Ine latter.
It is convenient to operate in the reduced phase space
The most commonly used dimensions &g called the ca- consisting of the angleg and ¢ after a collision(see Fig. 1
pacity or box counting ofinaccurately{12]) the Hausdorff In this two-dimensional phase space, the dynamics is an in-
dimension,D; the information dimension, ard, the corre-  vertible and piecewise smooth mapping. Dimensions of dis-
lation dimension. There are several equivalent ways to defin&gibutions in the full k,y,#) space are simply one more than
the sum in Eq.(8), such as covering the distribution with in the (¢,6) space. The allowed phase space consists of the
disks of radiuss (see Ref[12]). D, gives the dimension of values of¢p and @ for which the particle is moving outward,
the support of a measure, independent of how it is distribthat is,

q:



4784 C. P. DETTMANN AND G. P. MORRISS 54

2 0 As the field is decreased from 2.3 to 2.1, it can be seen
that the attractor and repeller approach one another, begin-
ning to overlap along the ling= 6 just abovee=2.2. At the
crisis point the overlap is a single periodic orbit of length
2, designated (2 8) by the symbolic dynamics of Sec. lll,
D, 4 together with a symmetry related orbit, with symbolic dy-
namics (4 10). As the field is decreased further, the attractor
and repeller “leak out” into the surrounding phase space. At
e=2.11itis clear that both fill the entire space. The amount of
attractor measure outside the original region of the attractor
0 increases with decreasing field. These considerations imply
° 05 ! 15 2 25 that Dy is exactly 2 below the transition and drops discon-
¢ tinuously to a value between 1 and 2 above the transition.
According to the classification of chaotic transitions in Chap.
8 of Ref.[13], it would appear to fit the general description
of crisis induced intermittency, but the dramatic difference in
- the nature of the attractor above and below the critical field
|p—06|< > (mod2mw). (13 indicates that a more detailed description is desirable.

05

FIG. 2. Generalized dimensions as a function of field. The dif-
ferent curves correspond to differemt

We have numerically simulated 3@ollisions for values
of field up to 2.2 and performed the box counting algorithm
described above to estimaf®, using grid sizes of up to It is difficult to make definite statements about the nature
512, For fields above 2.2 the box dimension of the attractorof the crisis from calculations dd,, where, as we have seen,
is smaller than 2, so a smaller number of collisionsthere are large uncertainties in the results. The phase-space
(1.6x10°) was necessary to obtain reliable values of theplots from which the dimension estimates were generated
dimensiongdiffering by less than 0.01 from a couple of test convey more information, but they are still only static invari-
cases using the larger number of collisipriBhe results are ants of the dynamics and contain no information as to which
shown in Fig. 2. It is clear thdD, remains very close to 2 parts of the attractor map to which other parts and so on. In
for fields up to about 2.1 before dropping rapidly. The di- this section we investigate several dynamic quantities around
mensions at large values @f decrease at a much more the transition point, which lead to a deeper understanding of
gradual rate. It looks quite likely from these data tbgtis  the nature of the crisis and also a more precise estimate of
exactly equal to 2 for small but finite values of the field, butthe transition point.
the nature of the transition to smaller values is not clear One example is the Lyapunov spectryd], which is
because it is difficult to get accurate results By as men-  related toD; by Eq.(10). The Lyapunov exponents are cal-
tioned above. culated by considering the evolution of small but finite

We gain a more detailed understanding of the nature of10 ’) perturbations of the trajectory from one collision to
the attractor by looking at it as a density plot in Fig. 3, whichthe next, followed by a Gram-Schmidt reorthonormalization.
shows the attractor and repeller for fields of 2.1, 2.2, andrhe resultdFig. 4) converge with three place accuracy rea-
2.3. The repeller is obtained by considering the time-sonably quickly, showing that the fluctuations shown in the
reversed motion, which in this case is a simple transformafigure are real, suggesting a continuous but nondifferentiable
tion of the attractor. In the case ef=2.1, the attractor and behavior as a function of field for all values of field in the
repeller are well on the way to filling up the entire phaserange (2.1,2.3), with no obvious features corresponding to
space, while fore=2.3 they are each fractals that are dis-the crisis. Thus Lyapunov exponents do not appear to be
joint. The casee=2.2 appears to be an intermediate situa-good indicators of the transition point. These results show
tion, with only partial overlap. Note the faint extensions of thatD; is also continuous over the transition, via the Kaplan-
the main parts of the attractor and repeller. Yorke relation(10), which we have also confirmed numeri-

We can understand this in the following manner. It iscally (Table ). The small discrepancies are mostly due to the
clear that the attractor is smooth in the unstable direction at ase of a finite size grid when evaluatiiy .
point in phase space and varies rapidly in a fractal manner in Another powerful tool for analyzing chaotic systems is
the stable direction. The repeller does the opposite. Now, ifymbolic dynamics. Phase space is partitioned into disjoint
the attractor and repeller contain a common point, then thegubsets, each of which is given a *symbol.” A trajectory can
must also both contain all the iterates of that point since theyhus be represented as an infinite symbol sequence, perhaps
are both invariant measures. All but a set of zétiractoj ~ nonuniquely. For the Lorentz gas, the obvious partitieiy.
measure points on the attractor have iterates that are dense onis the one that determines with which disk the particle will
the attractor, so if the common point is one such point, thecollide next.
repeller will be dense on the attractor and vice versa. In this At zero field, the available symbols are-Q1, but out of
case, both sets will be continuous in both the stable anthe 144 possible pairs of such symbols, only 96 actually
unstable directions and so will be dense in phase space. Thigcur: the symbolic dynamics is “pruned.” As the field is
is not a proof since it depends on the overlap being at “geincreased, other symbols become available and some infor-
neric” points. However, it does provide a picture that seemanation about the dynamics can be obtained by measuring the
to apply in our situation. relative frequencies of various symbols or short sequences.

Ill. DYNAMIC PROPERTIES AND ORDER PARAMETERS
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FIG. 3. Phase-space plots of the attracfieft) and repeller(right) for fields of 2.1 (top), 2.2 (middle), and 2.3(bottom). White
corresponds to a large amount of measure and black to little or no measure, with a logarithmic gray scale in between. The horizontal axis
in each plot is¢ and the vertical axis i%.
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FIG. 4. Lyapunov exponents as a function of field.
FIG. 5. Symbolic dynamics for the Lorentz gas. The symbol is a
Below the transition, the available symbols appear to benumber determined by the relative separation of one disk and the
{0—2,4-8,10,11,18, with 1, 11, and 18 quite rare. As the next, using the central disk above as a reference point. For example,
field is increased from 2.1 to just above 2.2, the frequencied!e Symbol 0 corresponds to a translation of one lattice vector in the
of these, and also 0, 5, and 7 decrease to zero, leaving justdirection, opposite the field.

{2,4,6,8,19. The pairs of symbols that are seen to occur also, because the motion is along a single channel in the
above 2.2 are{2—6,2-8,4-8,4-10,6-2,6-4,6-8, |attice above the transition, the perpendiculgy component
6—10,8-2,8-4,10—-4,10-6}, with 6—2 and 6-4 al-  of J is less than a lattice spacing divided by the time, while
ways preceded by 10 and-68 and 6— 10 always preceded below the transition, there are fluctuations proportional to
by 2. From this we can see that, given a particular symbot~%2, The parallel component continues to fluctuate in this
sequence, there are at most two possibilities for the nexnanner until the attractor collapses entirely, leaving stable
symbol, so it is possible to relabel the symbolic dynamics inperiodic orbits. This anisotropy in the fluctuations bfis
terms of only two symbols. From Fig. 5 it can be seen thaprobably the best macroscopic indicator of the transition.
these two choices do not permit more than one trajectory The symbolic dynamics may also be used as an “order
segment in a row to be against the general direction of thgarameter” to make a quantitative measure of the dynamics
field. The overall motion of the particle is along a channelas the crisis is approached from below. In particular, we
formed by the disks, in the direction of the field. count the number of times each symbol occurs in a long
The transition from a space-filling to a fractal attractor hasSe€gquence. Another order parameter is suggested by the phase
thus broken one form of reversibility: Below the transition a SPace plotsFig. 3). The attractor and repeller are related by
generic(i.e., with initial conditions chosen with respect to @ simple transformation about the lirte= ¢, which corre-
the Liouville measurgtrajectory will fill phase space with a Sponds to perpendicular collisions. Above the crisis, all col-
multifractal distribution defined by the attractor. On the av-lisions havel 6+2mm|>|¢|, if the value of the integem is
erage, there is a general drift in the direction of the field at &hosen so thd®+27m— ¢|<w/2. Referring back to Fig. 1,
rate given by the Curren]:; however’ on rare occasions the in these CO”iSiOﬂS, the particle leaves the scatterer in a direc-
particle moves against the field for a short time. Because th#on that is closer to the direction of the field than a perpen-
equations of motion are reversible and the trajectory fills ugdicular collision, except possibly ih#0 in which case the
phase space, the partic|e moves an arbitrary distance agairmrtide’s direction is at least closer to the field than opposite
the field, but with a frequency that is inversely proportionalit. We will call such a collision a “forward™ collision and a
to the exponential of the distance. Above the transition, howcollision that does not fit into this category a “backward”
ever, a generic trajectory as defined above has some transieigtllision. As the crisis is approached from below, the number
behavior after which it never has more than one collisionof backward collisions decreases to zero.
opposite the field in a row. In a very real sense the behavior We have generated a logarithmic plot of the frequencies
is irreversible on small scales as well as large ones, discoun@f both the 0 and the sum of 5 and 7 symbols, and the
ing the set of zerdLiouville) measure initial conditions that backward collisions as a function of field in Fig. 6. The 5
lead to, for example, the time reversal of generic trajectoriesand 7 symbols are equivalent by symmetry, so they are in-
We term thismesoscopic irreversibilityin terms of the con- cluded together. The vertical distances between the three
cepts used in Sec. Il, the attractor and repeller have beconfg!rves, that is, the logarithm of the ratios, are constant, indi-
disjoint, so once a trajectory is close to the attractor, it nevegating that all of these measures of the distance from the
moves close to the repeller. transition are related. We will attempt to describe this math-
ematically in the following section. Note that the curves are
TABLE I. Confirmation of the Kaplan-Yorke relatiofi0) near by no means smooth, so that no “critical exponents” may be

085
o
680

©
()

the transition. defined. The critical field is shown to be just greater than
2.2.
Field 2.1 2.15 2.2 2.25 2.3
IV. DISTRIBUTION ANSATZ
D, 1.45 1.37 1.30 1.25 1.22
Diy 1.451 1.381 1.321 1.270 1.221 In this section we formulate an approximate mathematical

representation of the attracting measure in the vicinity of the



54 CRISIS IN THE PERIODIC LORENTZ GAS 4787

O T T T T ] where the two terms in the logarithm are roughly equal
A ] (AD=Dq—D,), after which the term with the largeBt,
SETO e T ] (for g<1) or smallesD (for g>1) dominates. Aj=1 we
Lo < e ] must use Eq(9), and both terms contribute. The dimension
. - IR of the whole measure is thus
np -10 A
I A maxDq(x1).Dg(n2)], <1
E D Bak ] Dq(#)=1 9Dg(1)+(1=9)Dg(nz), a=1 (19
20 b min[Dy(u1) Dy(p2)]  a>1
21 212 214 216 218 22

€
below the transition. Unfortunately, these results may not be

) o seen using box counting algorithms, as quite modest values

FIG. 6. Frequencies of “backward” collisions and the symbols of the parameterg¢say, q=0.5, g=0.1, andAD=0.3) can

0, 5, and 7(which are equal due to symmelriogether below the lead to very small values af, (here 5x 10—4) which cor-
transition. Note that the ratios between the various curves ar?espond to grids that are noct feasible nume’rically either be-
roughly constant. cause of lack of space or because too many iterations are
required to achieve acceptable statistics. Paradoxically, the

crisis. This fits a number of the results we have so far into .
est case here is very smédlr very large g.

consistent framework and permits predictions to be mad Above the transitionDg(u) = (). Now we expect

concerning the beha\_nor @, near the transition, which is that the dimensions of, are larger than those gf, since
difficult to measure directly. the latter corresponds to the highly restricted binary dynam-

The order parameters used at the end of the precedin P gnly y dy

s that we have seen already. In any cd3g(u,) =2 since

section were all based on the amount of attracting measure [ the whol . h I b
certain regions of phase space, which vary gradually witH{: COVErs the whole space aith(x.,) is much smaller, prob-
gbly around 1.4.

field. This suggests that, to some level of approximation, th Fora<1. th . f th di . is di
distribution in the phase space that is not included in the, ~°'d=1.the maximum of the two dimensions is discon-

attractor just above the transition is proportional to somdnuous at the tranjmog, but for=1 the ge;nerah;ed dm;]en-
constant distribution multiplied by a scale factor that de-SIONS are expected to be continuous, as foundjfol at the

pends on field in a manner given by Fig. 6. The rest of thebeginning of Sec. Ill. Thus we have reproduced the main

distribution lies along what becomes the attractor. We caf€aiures of Fig. 2. _
write this mathematically as One of the consequences of Ef@4) that seems unphysi-

cal is the prediction thaD as a function ofj is discontinu-
we)=g(e)ui+[1—g(e)]uy, (14  ous atq=1 below the transition. In reality, we are consider-

ing a single attractor that has a single multifractal spectrum,
where u is the full attracting measurey, is the part that albeit one that has singular properties at the crisis point, so
vanishes at the transition, and, is the part that remains we would expect continuity i. The discrepancy arises be-
nearly constant. All three measures are normalized to 1, anchuse, although Eq14) is a good approximation for the
g(€) is proportional to the curves in Fig. 6 and tends to zerdarge regions of phase space counted by the order parameters
at the transition. Of course, this relation is not intended to bef Sec. lll, it must fail on very small scales, at which all parts
exact, as bothu,; and i, are expected to change slowly in of the attractor appear to have the same dimensions. It may
both their support and how the measure is distributed on thdte useful here to define fractal dimensions as a function of

support as a function of field. scale. One is reminded of the fact that a fractal description of
Equation(14) may be substituted into the generalized di- structures in physics is usually valid for only a finite range of
mension formula8) to obtain length scales, when the limitations of atomic structure, quan-

tum mechanics, and so on are taken into account.

1 1
Dy(p)=g—7lim -=In g°> pfi+(1-9)1 pj
q s—o M€ I I V. DEPENDENCE ON SPACING AND FIELD DIRECTION

In the first part of this paper we have described the tran-

1
— lim —— 1(q-1)4a/(g—1) D 1(q-1) . - S
= lim .—In[c1q% VgY@ VeP1a+ c3y sition from a space-filling to a non-space-filling attractor for

+-olne a particular state point in the Lorentz gag=0.236 and
X g¥(a= 1) gDaq], (15) J=0. Now we generalize the results to other state points.
We may use an algorithm based on backward collisions
where we have substituted (see Sec. Il to find the crisis field as a function of spacing

w. The results are shown in Fig. 7 as the curve matfRgd
S pi=c (010 (16) Unlike many of the functions associated with this chaotiq
= Fi system, it appears to be smooth. For small spacings, that is,
w<0.15, the transition can be found for some initial condi-
andc, is of order unity. Ase is decreased, it passes a valuetions and not others, and an analysis of bifurcation diagrams
indicates that this is due to large elliptic regions in phase
g,=g¥AD@E=D] (17)  space, which contain backward collisions. Initial conditions
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FIG. 7. Partial phase diagram for the Lorentz gas. The curve
markedD, shows the transition from space-filling to non-space-
filling attractors, at which the box dimension is discontinuous. The
curves markede, and E_ show the range of fields for which
elliptic regions are known to occur.

of §=¢=1.0 appear to avoid the elliptic regions in Most k5 g phase-space plot at-3.5 andw=0.05, showing the

cases. _ _ elliptical regions, which are not reached from the given initial con-
There is thus another way in which the attractor can ceasgion.

to fill the whole of phase space: the dynamics can cease to be
hyperbolic. The elliptic region and its relation to the margin- periodicity, showing that the attractor is a stable periodic
ally stable branch of the (4 10) periodic orlénd the sym-  grbit.
metry related (2 8) orbjtis described in Ref.10]. The low- From the limited amount of information available in a
est field at which it occurs is determined by a glancingpifurcation diagram(Fig. 9) it appears that there are two
collision ~with another sphere, turning (4 10) into possible behaviors for this system: space-filling attractors
(2 6 10), which is unstable, and the highest field is deterand stable periodic orbits. We focus our attention on the first
mined by the disappearance of the (4 10) orbit. Both of thesenajor transition from one to the other, occurring just above a
fields may be readily evaluated numerically, leading to thefield of 2.95. It is difficult to be locate the first such transi-
other two curves in Fig. 7. tion, since there may be very narrow stable windows not

For spacings greater than 0.15, such as 0.236, which wehown in Fig. 9. A study of the symbolic dynamics and
have been discussing, the transition from space filling tq yapunov exponents near the transition reveals the follow-
fractal occurs at a lower field than the emergence of theng.
elliptic region and so the only effect of the latter transition is
that some of the trajectories do not end up on the fractal
attractor. However, for spacings less than 0.15, there is a
region in field at which phase space is divided into a space-
filling attractor and elliptic regions surrounding the (2 8) and
(4 10) orbits. An example of this is shown in Fig. 8. Then, at
some higher field, what remains of the attractor undergoes
the space-filling—fractal transition we discussed previously.
At fields that are higher still, there is a complicated set of
crises, leading to a combination of stable orbits and chaotic
attractors, reducing finally to a few stable orbits, as described
in Ref. [5]. It is clearly impractical to show this in detail in
Fig. 7.

Now we turn to our final investigation of the Lorentz gas:
the effect of rotating the lattice so that=0. In particular,
we choosed = 7/6 (as do Hoover and co-workef%,3]) and
w=0.236 as before. The “channels” through the lattice have
now disappeared, so that the dynamics at large fields is quite
different. In particular, a much larger field is required before
stable orbits appear. Symbolic dynamics remains a useful
tool in this situation, using Fig. 5 as before, but rotated by an ¢
angle 7r/6 in a counterclockwise direction, so that the field
direction is now 5. The hallmark of mesoscopic irreversibil-  FIG. 9. Bifurcation diagram for the rotated Lorentz gas at
ity as described in Sec. lll is the presence of symbols in thev=0.236, obtained by mapping@projection of the attractor as a
symbolic dynamics for which the reverses do not appear, ofunction of field.




54 CRISIS IN THE PERIODIC LORENTZ GAS 4789

The high-field region is clearly a stable orbit; the interme-
diate region is chaotic, but mesoscopically irreversible in the
sense of Sec. lll; the low-field region has all the characteris-
tics of a space-filling attractor. This is further illustrated by a
finer bifurcation diagram, Fig. 10, which illustrates the fea-
tures outlined above, in particular, the extra collision that
takes place just beloyw|=2. The main point to note here is
that the crisis found aft=0 appears to be quite generic for
the Lorentz gas and appears for a wide range of spacings and
orientations. In particular, it is not simply due to the presence
of “channels” between the disks at=0.

25

VI. DISCUSSION

e To conclude, we summarize the main points and consider

the applicability and importance of these results to other non-
0 equilibrium systems. Given a genefielative to the Liou-
29502 295022 295024 295026 295028 2.0503 ville measurg initial condition, there appear to be four pos-
€ sible long-time behaviors for the nonequilibrium Lorentz
gas, summarized in Table II. The transition from space filling
FIG. 10. Close up of Fig. 9. Note that above a field of to fractal occurs at a critical field that depends on the spacing
2.950 23, the attractor does not reach large regions of phase spacsf. the disks and leads to crisis induced intermittency below
it appears to do so in this figure only because of éherojection.  the transition and a discontinuous chang®inat the crisis
) ] o point. Above the transition, the attractor and repeller are dis-
(i) €>2.950 29. The symbol sequence is periodic with thejoint, leading to a lack of reversibility on intermediate scales.
repeating sequence (0 406 104 6 10 4) and maximum  Below the transition, it can be useful to approximate the
Lyapunov exponent about 0.08. _ attractor measure as the sum of two measures, one of which
(i) 2.950 23<€<2.950 29. The sequence is the same agjisappears at the crisis point. The most effective tool for
the above symbol sequende, with the first 4 replaced by jnyestigating the nature of the crisis appears to be symbolic
0—5 or the last 6 replaced by 105 in about 0.1 of the dynamics.
cycles. The spacing between the 5's varies unpredictably be- An exhaustive answer to the question of how much of the
tween fixed minimum and maximum values. The maximumahove analysis applies to other nonequilibrium systems is
Lyapunov exponent is about0.02 and varies with field.  peyond the scope of this paper, but a few comments may be
(iii) €<2.950 23. The sequence has the same behavior @fade here. A more extensive account will be deferred to
that of (i), but interrupted intermittently with numerous future papers.
combinations of 2, 8, 11, and 18, as well as the above sym- There are a number of other NEMD models for processes
bols in different orders. Each interruption lasts approxi-such as Couette flow and heat conduct[@h Dimension
mately 30 collisions. The frequency of interruptions and thecalculations for two particle Gaussian thermostatted planar
maximum Lyapunov exponent both increase with decreasin@ouette flow(the sLLOD algorithm) were carried out in Ref.
field, until there is no trace of the original periodic sequence[2]. Here the reduced phase space is three dimensional, so
It seems from this that above a field of 2.950 29 there is aaccruing enough data points to fill a lattice of reasonable size
stable periodic orbit of length 1Qor possibly a multiple (192 in this casgis even more difficult. Nevertheless, the
thereoj. As the field is decreased, this orbit is pruned, that iscalculated values db did not decrease significantly until a
it passes through a scatterer, leading to the extra collisionshear rate of about=2. It thus seems at least plausilfit
described above. The collision is not sufficient, however, tamore evidence is requirgdhat the attractor for smallbut
knock the particle out of the immediate basin of attraction ofnonzerd shear rates is space filling. At much larger shear
the pruned orbit and it is then attracted towards the orbitates there are stable periodic orbits, but it not known
before being scattered again. For still lower fields the particlevhether mesoscopically irreversible attractors with fractal
sometimes escapes from this immediate basin of attractiogupport similar to those in the Lorentz gas exist.
and wanders through phase space before being captured For systems with larger numbers of particles, it becomes
again. totally impractical to calculate the box dimension of the at-
tractor, due to the dimensionality of phase space. However,
“the other techniques used in this paper, that is, Lyapunov
exponents and in particular symbolic dynamics, are both
very much applicable to larger systems and we would rec-

TABLE II. Phases in the Lorentz gas. Abbreviations: MR, me
soscopic reversibility; SD, symbolic dynamics.

Description MR SD Dg Dq Ny Ao ommend their use.

space filling yes rich 2 <2 + - Another approach would be to study toy models that are
fractal no restricted <2 <2 + - analytically tractable in the hope that features of the transi-
elliptic yes periodic 1 1 0 0 tions in these models are similar to those in more intrinsi-
stable no periodic 0 0o - - cally interesting systems. In this regard we note that very

recently two-dimensional time-reversible dissipative piece-
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wise linear maps have been constructed that appear to leadtiore of the mesoscopically irreversible phase would $ec.
space-filling attractorfl4]. IIl') the absence of fluctuations in only some components of
If this type of crisis is generic to many nonequilibrium the dissipative flux, which is the generalization of the cur-

systems, it would signal the existence of phases that are quitent. There is much to be discovered about steady states far
different to those near equilibrium. The macroscopic signafrom equilibrium.
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