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The attractor of the nonequilibrium Lorentz gas covers the whole of the accessible phase space at small
values of the field. Here we investigate the transition from this state to a state with fractal support, correspond-
ing to a discontinuity in the box dimension as a function of field. A number of numerical techniques are
employed, the most effective involving symbolic dynamics. It is found that above the transition, the dynamics
is effectively irreversible in a manner not evident below the transition. A similar crisis occurs at different
spacings and rotation angles.@S1063-651X~96!10111-2#

PACS number~s!: 05.45.1b, 05.70.Ln

I. INTRODUCTION

Certain nonequilibrium systems have the odd property,
noted by Hoover and Moran@1#, that although the dynamics
is dissipative, leading to phase-space contraction on the av-
erage and multifractal attractors@1,2#, these attractors fill the
available phase space and thus have a box dimension equal
to that of phase space. The most well understood such sys-
tem is the nonequilibrium periodic Lorentz gas@3–5# in two
dimensions, for which a number of rigorous results may be
proved@6# for sufficiently small field. At this point it is natu-
ral to ask at what value of field the attractor ceases to be
space filling and what the nature of this transition is. Here we
attempt to answer these questions, and find that the behavior
is quite subtle and is related to a breakdown of one form of
reversibility.

The Lorentz gas is the simplest of a number of nonequi-
librium molecular-dynamics~NEMD! models that are used
to relate the macroscopic properties of nonequilibrium steady
states, such as transport coefficients, to microscopic dynam-
ics @7#. The Lorentz gas is a classical model of electrical
conduction and it shares many of the features of more elabo-
rate models. We discuss other NEMD models in Sec. VI. We
consider a particle colliding with a periodic hexagonal array
of hard disks of radius 1. The distance between the centers is
21w. See Fig. 1. A common spacing isw50.236, which we
will use until Sec. V, where differentw are considered.

Between collisions, the particle is driven by a constant
external forceF together with a Gaussian thermostat@7#,
which ensures that the energy of the particle is constant, set
to 1/2. The presence of a thermostat in the equations permits
the system to reach a steady state, despite the continual input
of energy from the driving force. Other methods of simulat-
ing the loss of heat from the system all involve boundaries
@8# and thus are inhomogeneous. The thermostated equations
of motion are

ẋ5v, ~1!

v̇5F2
F•v

v•v
v, ~2!

with the solution
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Here a subscript zero indicates the initial valueF52e x̂, and
the sign ofu is determined by the initial value and does not
change during a free flight. The angle between the field and
a line of scatterersq is another parameter, which is usually
set to zero. We consider nonzero values ofq in Sec. V. Note
that Hoover and Moran@1# use a field of ‘‘3P2/ms,’’ which
corresponds to a field ofe51.5 in our units, and also use
q5p/6, unlike most other authors.

These equations are time reversible, so that any trajectory
remains a trajectory with the time and velocity reversed.
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FIG. 1. Geometry of the Lorentz gas. For most of this paper we

usew50.236 andq50.
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Nevertheless, almost all~relative to the Liouville measure!
initial conditions lead to motion along the field at an average
rate defined by the current

J5 lim
t→`

Dx

t
. ~7!

Depending onq, J may not be parallel toF @5#, but J•F is
always positive~except in elliptic regions, below, where it is
zero! and gives the rate of dissipation of energy in the sys-
tem. This is the usual sense in which these systems are un-
derstood to be irreversible. A periodic orbit description may
be found in Ref.@9#. We can say that the system is micro-
scopically reversible~due to the equations of motion!, but
macroscopically irreversible~due to the sign of the current!.
We will introduce another form of irreversibility in Sec. III.

The Lorentz gas at large values of field has been studied
by Lloyd et al. @10#, who found several different types of
behavior, including a breakdown of ergodicity, integrable el-
liptic regions, and stable orbits. Here, as in Ref.@10#, ergod-
icity is defined as the property that almost all initial condi-
tions lead to the same attracting measure; other authors also
require the attractor to be space filling. Thus there are differ-
ent classes of chaotic crisis, depending on the features of the
dynamics on either side of the transition. The crisis investi-
gated in most of this paper occurs for all values of the spac-
ing ~but see Sec. V! and lies between the space-filling region
at low field and an ergodic but non-space-filling region at
higher fields, which was not explicitly mentioned in Ref.
@10#.

II. GENERALIZED DIMENSIONS

There is often confusion about the precise meaning of
various terms in the chaos literature, so we begin with a few
definitions. Any absolutely continuous distribution~with re-
spect to Liouville measure! that is evolved forward~back-
ward! in time approaches a stationary distribution, which
will be termed theattractor ~repeller! @6#. The generalized
~Renyi! dimensionDq of a distribution is defined by@11#

Dq5
1

q21
lim
«→0

ln(
i
pi
q

ln«
. ~8!

Herepi is the measure contained in the cells of a grid of size
«. Forq<0 only nonzeropi are included. Forq51 the limit
is taken on the above expression to obtain

D15 lim
«→0

(
i
pi lnpi

ln«
. ~9!

The most commonly used dimensions areD0, called the ca-
pacity or box counting or~inaccurately@12#! the Hausdorff
dimension,D1 the information dimension, andD2 the corre-
lation dimension. There are several equivalent ways to define
the sum in Eq.~8!, such as covering the distribution with
disks of radius« ~see Ref.@12#!. D0 gives the dimension of
the support of a measure, independent of how it is distrib-

uted.D1 gives the scaling of information required to locate a
point in the distribution with length and equally weights
parts of the distribution proportional to the measure con-
tained in them~see Sec. IV!. D2 gives the scaling of the two
point correlation function and similarly for higher integer
q. Dq1

>Dq2
if and only if q1>q2 with equality if the dis-

tribution is uniform@11#.
The generalized dimensions may be calculated using Eq.

~8! by fitting a straight line to a log-log graph, but this re-
quires a large number of data points, particularly for
q,0.5. Larger values ofq are not such a problem, as the
peaks of the distribution dominate in the sum and also have
the best statistical accuracy. For still larger values, say
q.3, the limiting factor is the grid size, as the total number
of contributing grid points becomes very small, leading to
greater uncertainty. We evaluateDq in this paper to a rea-
sonable degree of accuracy by counting an average of 8000
points per grid square, but other, more definite measures will
be used to identify the transition from space-filling to non-
space-filling attractors in Sec. III.

For the special values ofq51 andq52 there are much
faster algorithms for finding the dimension of an attractor
using the correlation function@11#. In addition, for our sys-
tem, the Kaplan-Yorke relation

D15DKY[11
l1

ul2u
~10!

betweenD1 and the Lyapunov exponentsl i holds when
l1.0 @6# and may be used to evaluateD1 more accurately
than using the above box counting method. We have also
verified it numerically for a number of fields~Sec. III!.

Note also that it is possible to formulate an alternative
description in terms of the singularity spectrumf (a), which
gives a measure of the distribution of points of singularity
strengtha. See Ref.@12# or most other texts on fractals.
f (a) may be obtained implicitly fromDq using the relations

a~q!5
d

dq
@~q21!Dq#, ~11!

f ~q!5qa~q!2~q21!Dq ~12!

and eliminatingq. As we have already noted, it is difficult to
evaluate the dimensions forq,0 numerically and this cor-
responds toa.a(0). However, atq50 it is readily seen
from the above equations thatf (a) is a maximum and is
equal toD0. Thus a transition involvingD0 will manifest
itself clearly in thef (a) spectrum. Since this information is
equivalent toDq , we will restrict our investigations to the
latter.

It is convenient to operate in the reduced phase space
consisting of the anglesu andf after a collision~see Fig. 1!.
In this two-dimensional phase space, the dynamics is an in-
vertible and piecewise smooth mapping. Dimensions of dis-
tributions in the full (x,y,u) space are simply one more than
in the (f,u) space. The allowed phase space consists of the
values off andu for which the particle is moving outward,
that is,
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uf2uu<
p

2
~mod2p!. ~13!

We have numerically simulated 109 collisions for values
of field up to 2.2 and performed the box counting algorithm
described above to estimateDq using grid sizes of up to
5122. For fields above 2.2 the box dimension of the attractor
is smaller than 2, so a smaller number of collisions
(1.63107) was necessary to obtain reliable values of the
dimensions~differing by less than 0.01 from a couple of test
cases using the larger number of collisions!. The results are
shown in Fig. 2. It is clear thatD0 remains very close to 2
for fields up to about 2.1 before dropping rapidly. The di-
mensions at large values ofq decrease at a much more
gradual rate. It looks quite likely from these data thatD0 is
exactly equal to 2 for small but finite values of the field, but
the nature of the transition to smaller values is not clear
because it is difficult to get accurate results forD0 as men-
tioned above.

We gain a more detailed understanding of the nature of
the attractor by looking at it as a density plot in Fig. 3, which
shows the attractor and repeller for fields of 2.1, 2.2, and
2.3. The repeller is obtained by considering the time-
reversed motion, which in this case is a simple transforma-
tion of the attractor. In the case ofe52.1, the attractor and
repeller are well on the way to filling up the entire phase
space, while fore52.3 they are each fractals that are dis-
joint. The casee52.2 appears to be an intermediate situa-
tion, with only partial overlap. Note the faint extensions of
the main parts of the attractor and repeller.

We can understand this in the following manner. It is
clear that the attractor is smooth in the unstable direction at a
point in phase space and varies rapidly in a fractal manner in
the stable direction. The repeller does the opposite. Now, if
the attractor and repeller contain a common point, then they
must also both contain all the iterates of that point since they
are both invariant measures. All but a set of zero~attractor!
measure points on the attractor have iterates that are dense on
the attractor, so if the common point is one such point, the
repeller will be dense on the attractor and vice versa. In this
case, both sets will be continuous in both the stable and
unstable directions and so will be dense in phase space. This
is not a proof since it depends on the overlap being at ‘‘ge-
neric’’ points. However, it does provide a picture that seems
to apply in our situation.

As the field is decreased from 2.3 to 2.1, it can be seen
that the attractor and repeller approach one another, begin-
ning to overlap along the linef5u just abovee52.2. At the
crisis point the overlap is a single periodic orbit of length
2, designated (2 8) by the symbolic dynamics of Sec. III,
together with a symmetry related orbit, with symbolic dy-
namics (4 10). As the field is decreased further, the attractor
and repeller ‘‘leak out’’ into the surrounding phase space. At
e52.1 it is clear that both fill the entire space. The amount of
attractor measure outside the original region of the attractor
increases with decreasing field. These considerations imply
thatD0 is exactly 2 below the transition and drops discon-
tinuously to a value between 1 and 2 above the transition.
According to the classification of chaotic transitions in Chap.
8 of Ref. @13#, it would appear to fit the general description
of crisis induced intermittency, but the dramatic difference in
the nature of the attractor above and below the critical field
indicates that a more detailed description is desirable.

III. DYNAMIC PROPERTIES AND ORDER PARAMETERS

It is difficult to make definite statements about the nature
of the crisis from calculations ofD0, where, as we have seen,
there are large uncertainties in the results. The phase-space
plots from which the dimension estimates were generated
convey more information, but they are still only static invari-
ants of the dynamics and contain no information as to which
parts of the attractor map to which other parts and so on. In
this section we investigate several dynamic quantities around
the transition point, which lead to a deeper understanding of
the nature of the crisis and also a more precise estimate of
the transition point.

One example is the Lyapunov spectrum@13#, which is
related toD1 by Eq. ~10!. The Lyapunov exponents are cal-
culated by considering the evolution of small but finite
(1027) perturbations of the trajectory from one collision to
the next, followed by a Gram-Schmidt reorthonormalization.
The results~Fig. 4! converge with three place accuracy rea-
sonably quickly, showing that the fluctuations shown in the
figure are real, suggesting a continuous but nondifferentiable
behavior as a function of field for all values of field in the
range (2.1,2.3), with no obvious features corresponding to
the crisis. Thus Lyapunov exponents do not appear to be
good indicators of the transition point. These results show
thatD1 is also continuous over the transition, via the Kaplan-
Yorke relation~10!, which we have also confirmed numeri-
cally ~Table I!. The small discrepancies are mostly due to the
use of a finite size grid when evaluatingD1.

Another powerful tool for analyzing chaotic systems is
symbolic dynamics. Phase space is partitioned into disjoint
subsets, each of which is given a ‘‘symbol.’’ A trajectory can
thus be represented as an infinite symbol sequence, perhaps
nonuniquely. For the Lorentz gas, the obvious partition~Fig.
5! is the one that determines with which disk the particle will
collide next.

At zero field, the available symbols are 0211, but out of
the 144 possible pairs of such symbols, only 96 actually
occur: the symbolic dynamics is ‘‘pruned.’’ As the field is
increased, other symbols become available and some infor-
mation about the dynamics can be obtained by measuring the
relative frequencies of various symbols or short sequences.

FIG. 2. Generalized dimensions as a function of field. The dif-
ferent curves correspond to differentq.
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FIG. 3. Phase-space plots of the attractor~left! and repeller~right! for fields of 2.1 ~top!, 2.2 ~middle!, and 2.3~bottom!. White
corresponds to a large amount of measure and black to little or no measure, with a logarithmic gray scale in between. The horizontal axis
in each plot isf and the vertical axis isu.
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Below the transition, the available symbols appear to be
$022,428,10,11,18%, with 1, 11, and 18 quite rare. As the
field is increased from 2.1 to just above 2.2, the frequencies
of these, and also 0, 5, and 7 decrease to zero, leaving just
$2,4,6,8,10%. The pairs of symbols that are seen to occur
above 2.2 are$2→6,2→8,4→8,4→10,6→2,6→4,6→8,
6→10,8→2,8→4,10→4,10→6%, with 6→2 and 6→4 al-
ways preceded by 10 and 6→8 and 6→10 always preceded
by 2. From this we can see that, given a particular symbol
sequence, there are at most two possibilities for the next
symbol, so it is possible to relabel the symbolic dynamics in
terms of only two symbols. From Fig. 5 it can be seen that
these two choices do not permit more than one trajectory
segment in a row to be against the general direction of the
field. The overall motion of the particle is along a channel
formed by the disks, in the direction of the field.

The transition from a space-filling to a fractal attractor has
thus broken one form of reversibility: Below the transition a
generic~i.e., with initial conditions chosen with respect to
the Liouville measure! trajectory will fill phase space with a
multifractal distribution defined by the attractor. On the av-
erage, there is a general drift in the direction of the field at a
rate given by the currentJ; however, on rare occasions the
particle moves against the field for a short time. Because the
equations of motion are reversible and the trajectory fills up
phase space, the particle moves an arbitrary distance against
the field, but with a frequency that is inversely proportional
to the exponential of the distance. Above the transition, how-
ever, a generic trajectory as defined above has some transient
behavior after which it never has more than one collision
opposite the field in a row. In a very real sense the behavior
is irreversible on small scales as well as large ones, discount-
ing the set of zero~Liouville! measure initial conditions that
lead to, for example, the time reversal of generic trajectories.
We term thismesoscopic irreversibility. In terms of the con-
cepts used in Sec. II, the attractor and repeller have become
disjoint, so once a trajectory is close to the attractor, it never
moves close to the repeller.

Also, because the motion is along a single channel in the
lattice above the transition, the perpendicular (y) component
of J is less than a lattice spacing divided by the time, while
below the transition, there are fluctuations proportional to
t21/2. The parallel component continues to fluctuate in this
manner until the attractor collapses entirely, leaving stable
periodic orbits. This anisotropy in the fluctuations ofJ is
probably the best macroscopic indicator of the transition.

The symbolic dynamics may also be used as an ‘‘order
parameter’’ to make a quantitative measure of the dynamics
as the crisis is approached from below. In particular, we
count the number of times each symbol occurs in a long
sequence. Another order parameter is suggested by the phase
space plots~Fig. 3!. The attractor and repeller are related by
a simple transformation about the lineu5f, which corre-
sponds to perpendicular collisions. Above the crisis, all col-
lisions haveuu12pmu.ufu, if the value of the integerm is
chosen so thatuu12pm2fu,p/2. Referring back to Fig. 1,
in these collisions, the particle leaves the scatterer in a direc-
tion that is closer to the direction of the field than a perpen-
dicular collision, except possibly ifmÞ0 in which case the
particle’s direction is at least closer to the field than opposite
it. We will call such a collision a ‘‘forward’’ collision and a
collision that does not fit into this category a ‘‘backward’’
collision. As the crisis is approached from below, the number
of backward collisions decreases to zero.

We have generated a logarithmic plot of the frequencies
of both the 0 and the sum of 5 and 7 symbols, and the
backward collisions as a function of field in Fig. 6. The 5
and 7 symbols are equivalent by symmetry, so they are in-
cluded together. The vertical distances between the three
curves, that is, the logarithm of the ratios, are constant, indi-
cating that all of these measures of the distance from the
transition are related. We will attempt to describe this math-
ematically in the following section. Note that the curves are
by no means smooth, so that no ‘‘critical exponents’’ may be
defined. The critical field is shown to be just greater than
2.2.

IV. DISTRIBUTION ANSATZ

In this section we formulate an approximate mathematical
representation of the attracting measure in the vicinity of the

FIG. 5. Symbolic dynamics for the Lorentz gas. The symbol is a
number determined by the relative separation of one disk and the
next, using the central disk above as a reference point. For example,
the symbol 0 corresponds to a translation of one lattice vector in the
x direction, opposite the field.

TABLE I. Confirmation of the Kaplan-Yorke relation~10! near
the transition.

Field 2.1 2.15 2.2 2.25 2.3

D1 1.45 1.37 1.30 1.25 1.22
DKY 1.451 1.381 1.321 1.270 1.221

FIG. 4. Lyapunov exponents as a function of field.
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crisis. This fits a number of the results we have so far into a
consistent framework and permits predictions to be made
concerning the behavior ofDq near the transition, which is
difficult to measure directly.

The order parameters used at the end of the preceding
section were all based on the amount of attracting measure in
certain regions of phase space, which vary gradually with
field. This suggests that, to some level of approximation, the
distribution in the phase space that is not included in the
attractor just above the transition is proportional to some
constant distribution multiplied by a scale factor that de-
pends on field in a manner given by Fig. 6. The rest of the
distribution lies along what becomes the attractor. We can
write this mathematically as

m~e!5g~e!m11@12g~e!#m2 , ~14!

wherem is the full attracting measure,m1 is the part that
vanishes at the transition, andm2 is the part that remains
nearly constant. All three measures are normalized to 1, and
g(e) is proportional to the curves in Fig. 6 and tends to zero
at the transition. Of course, this relation is not intended to be
exact, as bothm1 andm2 are expected to change slowly in
both their support and how the measure is distributed on that
support as a function of field.

Equation~14! may be substituted into the generalized di-
mension formula~8! to obtain

Dq~m!5
1

q21
lim
«→0

1

ln«
lnFgq(

i
p1i
q 1~12g!q(

i
p2i
q G

5 lim
«→0

1

ln«
ln@c1q

1/~q21!gq/~q21!«D1q1c2q
1/~q21!

3gq/~q21!«D2q#, ~15!

where we have substituted

(
i
pi
q5cq«

~q21!Dq ~16!

andcq is of order unity. As« is decreased, it passes a value

«c5gq/@DD~q21!#, ~17!

where the two terms in the logarithm are roughly equal
(DD5D2q2D1q), after which the term with the largestDq
~for q,1) or smallestDq ~for q.1) dominates. Atq51 we
must use Eq.~9!, and both terms contribute. The dimension
of the whole measure is thus

Dq~m!5H max@Dq~m1!,Dq~m2!#, q,1

gDq~m1!1~12g!Dq~m2!, q51

min@Dq~m1!,Dq~m2!# q.1

~18!

below the transition. Unfortunately, these results may not be
seen using box counting algorithms, as quite modest values
of the parameters~say,q50.5, g50.1, andDD50.3) can
lead to very small values of«c ~here 531024), which cor-
respond to grids that are not feasible numerically either be-
cause of lack of space or because too many iterations are
required to achieve acceptable statistics. Paradoxically, the
best case here is very small~or very large! q.

Above the transition,Dq(m)5Dq(m2). Now we expect
that the dimensions ofm1 are larger than those ofm2 since
the latter corresponds to the highly restricted binary dynam-
ics that we have seen already. In any case,D0(m1)52 since
it covers the whole space andD0(m2) is much smaller, prob-
ably around 1.4.

For q,1, the maximum of the two dimensions is discon-
tinuous at the transition, but forq>1 the generalized dimen-
sions are expected to be continuous, as found forq51 at the
beginning of Sec. III. Thus we have reproduced the main
features of Fig. 2.

One of the consequences of Eq.~14! that seems unphysi-
cal is the prediction thatDq as a function ofq is discontinu-
ous atq51 below the transition. In reality, we are consider-
ing a single attractor that has a single multifractal spectrum,
albeit one that has singular properties at the crisis point, so
we would expect continuity inq. The discrepancy arises be-
cause, although Eq.~14! is a good approximation for the
large regions of phase space counted by the order parameters
of Sec. III, it must fail on very small scales, at which all parts
of the attractor appear to have the same dimensions. It may
be useful here to define fractal dimensions as a function of
scale. One is reminded of the fact that a fractal description of
structures in physics is usually valid for only a finite range of
length scales, when the limitations of atomic structure, quan-
tum mechanics, and so on are taken into account.

V. DEPENDENCE ON SPACING AND FIELD DIRECTION

In the first part of this paper we have described the tran-
sition from a space-filling to a non-space-filling attractor for
a particular state point in the Lorentz gas,w50.236 and
q50. Now we generalize the results to other state points.

We may use an algorithm based on backward collisions
~see Sec. III! to find the crisis field as a function of spacing
w. The results are shown in Fig. 7 as the curve markedD0.
Unlike many of the functions associated with this chaotic
system, it appears to be smooth. For small spacings, that is,
w,0.15, the transition can be found for some initial condi-
tions and not others, and an analysis of bifurcation diagrams
indicates that this is due to large elliptic regions in phase
space, which contain backward collisions. Initial conditions

FIG. 6. Frequencies of ‘‘backward’’ collisions and the symbols
0, 5, and 7~which are equal due to symmetry! together below the
transition. Note that the ratios between the various curves are
roughly constant.
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of u5f51.0 appear to avoid the elliptic regions in most
cases.

There is thus another way in which the attractor can cease
to fill the whole of phase space: the dynamics can cease to be
hyperbolic. The elliptic region and its relation to the margin-
ally stable branch of the (4 10) periodic orbit~and the sym-
metry related (2 8) orbit! is described in Ref.@10#. The low-
est field at which it occurs is determined by a glancing
collision with another sphere, turning (4 10) into
(2 6 10), which is unstable, and the highest field is deter-
mined by the disappearance of the (4 10) orbit. Both of these
fields may be readily evaluated numerically, leading to the
other two curves in Fig. 7.

For spacings greater than 0.15, such as 0.236, which we
have been discussing, the transition from space filling to
fractal occurs at a lower field than the emergence of the
elliptic region and so the only effect of the latter transition is
that some of the trajectories do not end up on the fractal
attractor. However, for spacings less than 0.15, there is a
region in field at which phase space is divided into a space-
filling attractor and elliptic regions surrounding the (2 8) and
(4 10) orbits. An example of this is shown in Fig. 8. Then, at
some higher field, what remains of the attractor undergoes
the space-filling–fractal transition we discussed previously.
At fields that are higher still, there is a complicated set of
crises, leading to a combination of stable orbits and chaotic
attractors, reducing finally to a few stable orbits, as described
in Ref. @5#. It is clearly impractical to show this in detail in
Fig. 7.

Now we turn to our final investigation of the Lorentz gas:
the effect of rotating the lattice so thatqÞ0. In particular,
we chooseq5p/6 ~as do Hoover and co-workers@1,3#! and
w50.236 as before. The ‘‘channels’’ through the lattice have
now disappeared, so that the dynamics at large fields is quite
different. In particular, a much larger field is required before
stable orbits appear. Symbolic dynamics remains a useful
tool in this situation, using Fig. 5 as before, but rotated by an
anglep/6 in a counterclockwise direction, so that the field
direction is now 5. The hallmark of mesoscopic irreversibil-
ity as described in Sec. III is the presence of symbols in the
symbolic dynamics for which the reverses do not appear, or

periodicity, showing that the attractor is a stable periodic
orbit.

From the limited amount of information available in a
bifurcation diagram~Fig. 9! it appears that there are two
possible behaviors for this system: space-filling attractors
and stable periodic orbits. We focus our attention on the first
major transition from one to the other, occurring just above a
field of 2.95. It is difficult to be locate the first such transi-
tion, since there may be very narrow stable windows not
shown in Fig. 9. A study of the symbolic dynamics and
Lyapunov exponents near the transition reveals the follow-
ing.

FIG. 7. Partial phase diagram for the Lorentz gas. The curve
markedD0 shows the transition from space-filling to non-space-
filling attractors, at which the box dimension is discontinuous. The
curves markedE1 and E2 show the range of fields for which
elliptic regions are known to occur.

FIG. 8. Phase-space plot ate53.5 andw50.05, showing the
elliptical regions, which are not reached from the given initial con-
dition.

FIG. 9. Bifurcation diagram for the rotated Lorentz gas at
w50.236, obtained by mapping au projection of the attractor as a
function of field.
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~i! e.2.950 29. The symbol sequence is periodic with the
repeating sequence (0 64 0 6 10 4 6 10 4) and amaximum
Lyapunov exponent about20.08.

~ii ! 2.950 23,e,2.950 29. The sequence is the same as
the above symbol sequence~i!, with the first 4 replaced by
0→5 or the last 6 replaced by 10→5 in about 0.1 of the
cycles. The spacing between the 5’s varies unpredictably be-
tween fixed minimum and maximum values. The maximum
Lyapunov exponent is about10.02 and varies with field.

~iii ! e,2.950 23. The sequence has the same behavior as
that of ~ii !, but interrupted intermittently with numerous
combinations of 2, 8, 11, and 18, as well as the above sym-
bols in different orders. Each interruption lasts approxi-
mately 30 collisions. The frequency of interruptions and the
maximum Lyapunov exponent both increase with decreasing
field, until there is no trace of the original periodic sequence.

It seems from this that above a field of 2.950 29 there is a
stable periodic orbit of length 10~or possibly a multiple
thereof!. As the field is decreased, this orbit is pruned, that is,
it passes through a scatterer, leading to the extra collisions
described above. The collision is not sufficient, however, to
knock the particle out of the immediate basin of attraction of
the pruned orbit and it is then attracted towards the orbit
before being scattered again. For still lower fields the particle
sometimes escapes from this immediate basin of attraction
and wanders through phase space before being captured
again.

The high-field region is clearly a stable orbit; the interme-
diate region is chaotic, but mesoscopically irreversible in the
sense of Sec. III; the low-field region has all the characteris-
tics of a space-filling attractor. This is further illustrated by a
finer bifurcation diagram, Fig. 10, which illustrates the fea-
tures outlined above, in particular, the extra collision that
takes place just belowuuu52. The main point to note here is
that the crisis found atq50 appears to be quite generic for
the Lorentz gas and appears for a wide range of spacings and
orientations. In particular, it is not simply due to the presence
of ‘‘channels’’ between the disks atq50.

VI. DISCUSSION

To conclude, we summarize the main points and consider
the applicability and importance of these results to other non-
equilibrium systems. Given a generic~relative to the Liou-
ville measure! initial condition, there appear to be four pos-
sible long-time behaviors for the nonequilibrium Lorentz
gas, summarized in Table II. The transition from space filling
to fractal occurs at a critical field that depends on the spacing
of the disks and leads to crisis induced intermittency below
the transition and a discontinuous change inD0 at the crisis
point. Above the transition, the attractor and repeller are dis-
joint, leading to a lack of reversibility on intermediate scales.
Below the transition, it can be useful to approximate the
attractor measure as the sum of two measures, one of which
disappears at the crisis point. The most effective tool for
investigating the nature of the crisis appears to be symbolic
dynamics.

An exhaustive answer to the question of how much of the
above analysis applies to other nonequilibrium systems is
beyond the scope of this paper, but a few comments may be
made here. A more extensive account will be deferred to
future papers.

There are a number of other NEMD models for processes
such as Couette flow and heat conduction@7#. Dimension
calculations for two particle Gaussian thermostatted planar
Couette flow~theSLLOD algorithm! were carried out in Ref.
@2#. Here the reduced phase space is three dimensional, so
accruing enough data points to fill a lattice of reasonable size
(1923 in this case! is even more difficult. Nevertheless, the
calculated values ofD0 did not decrease significantly until a
shear rate of aboutg52. It thus seems at least plausible~but
more evidence is required! that the attractor for small~but
nonzero! shear rates is space filling. At much larger shear
rates there are stable periodic orbits, but it not known
whether mesoscopically irreversible attractors with fractal
support similar to those in the Lorentz gas exist.

For systems with larger numbers of particles, it becomes
totally impractical to calculate the box dimension of the at-
tractor, due to the dimensionality of phase space. However,
the other techniques used in this paper, that is, Lyapunov
exponents and in particular symbolic dynamics, are both
very much applicable to larger systems and we would rec-
ommend their use.

Another approach would be to study toy models that are
analytically tractable in the hope that features of the transi-
tions in these models are similar to those in more intrinsi-
cally interesting systems. In this regard we note that very
recently two-dimensional time-reversible dissipative piece-

FIG. 10. Close up of Fig. 9. Note that above a field of
2.950 23, the attractor does not reach large regions of phase space:
it appears to do so in this figure only because of theu projection.

TABLE II. Phases in the Lorentz gas. Abbreviations: MR, me-
soscopic reversibility; SD, symbolic dynamics.

Description MR SD D0 Dq l1 l2

space filling yes rich 2 ,2 1 2

fractal no restricted ,2 ,2 1 2

elliptic yes periodic 1 1 0 0
stable no periodic 0 0 2 2
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wise linear maps have been constructed that appear to lead to
space-filling attractors@14#.

If this type of crisis is generic to many nonequilibrium
systems, it would signal the existence of phases that are quite
different to those near equilibrium. The macroscopic signa-

ture of the mesoscopically irreversible phase would be~Sec.
III ! the absence of fluctuations in only some components of
the dissipative flux, which is the generalization of the cur-
rent. There is much to be discovered about steady states far
from equilibrium.
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