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Stability Ordering of Cycle Expansions
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We propose that cycle expansions be ordered with respect to stability rather than orbit length for many
chaotic systems, particularly those exhibiting crises. This is illustrated with the strong-field Lorentz gas,
where we obtain significant improvements over traditional approaches. [S0031-9007(97)03297-3]

PACS numbers: 05.45.+b, 05.70.Ln

Classical chaotic dynamical systems are inherently unmagnitude of the expanding eigenvalue of the stability
predictable, so that even if the initial conditions are knownmatrix, equal to ex@r > A+ ), where> A, is the sum of
with high accuracy, predictions of the state of the systenthe positive Lyapunov exponents. Note that for notational
may be made to only a short time of order' in the fu-  simplicity we have writtenA where other authors have
ture, where), is the largest Lyapunov exponent. Despite|A|. A; is the average of some quantity over a particular
this unpredictability, much can be said about the averagerbit, and could be Lyapunov exponent, current, or the
behavior of the system in many cases using only a smatlumber of collisions per unit time. An important check
number of unstable periodic orbits or “cycles.” This canof the convergence of the expansion is given by
be achieved by using cycle expansions [1,2] of Ruelle’s
dynamical zeta function [3]. 20,007 =1+ Z(—l)"/(Al e Ag), (2)

Cycle expansions have proved very useful in both clas-
sical and quantum chaos, giving accurate estimates of th& X
escape rate of open billiard systems [4] and the energP/ The sums are usually tr_uncated up to a particular order

n the symbolic dynamics: for the Lorentz gas, the num-

levels of helium [5] using a surprisingly small number of L
classical cycles. The main idea of this approach is tha}?er of collisionsV. At each order the terms are grouped

a long generic trajectory may be approximated by varioydnto fundamental orbits that have a symbolic dynamics not

periodic orbits at different times, and that longer periodics‘ep""r"’1b|e into smaller cycles, and “curvature corrections

orbits may often be “shadowed” by shorter “fundamental"consisting of a c_omposite orbit, with symbolic dynamics
cycles, closely following the shorter cycles along differ- 42 tpgetherwﬂh _|ts_componentsanQb. Often the (?om-

ent sections of its length. Thus averages are calculatedgPSit€ Orbithas similar averages toits components; then the
using fundamental cycles, with small corrections due tfOmpPined erm—=Au,7a Auy + (AaTa + App)Ag Ay
longer cycles. Periodic orbits which are exact repetitionés.sma”' If there are only a few fundamental orbits and
of smaller cycles are explicitly summed, so that all ex_thls cancellation occurs most of the time the cycle expan-
pressions are written in terms of the remaining “prime"?"on converges rapidly as a function®f However, this
cycles. The expansions work best when the symbolic dy'S often not the case, as we see for the Lorentz gas (Table |
namics is well understood, and long periodic orbits are welP€lOW)- _ o
shadowed by shorter ones. In this paper we investigate Occasionally, cycle expansions are truncated using di-
a system in which neither of these conditions holds, th erent criteria. The most notable is that of Dahlgvist and
strong-field Lorentz gas. In spite of these difficulties, rea-

Sonable reSU“S_ may be obtained by ordering the ?XanSioﬂABLE I. The shortest cycles at a field = 2.4. Note the

in terms of stability rather than the length of periodic orbits.lack of shadowing, in thalsaaze > AssaaAse. Also, A is not
This approach should be valid wherever cycle expansionsirongly correlated withV, so that truncating a cycle expansion
can be applied, including flows for which a natural topo-at fixed N tends to omit significant orbits with small.

hich should be equal to zero for a closed system.

logical “length” is difficult to define. Symbolic
The origin of cycle expansions is a well developed y dynamics A I
theory of trace formulas and dynamical zeta functions
[3,6]. Here we will need only the expression for theg 22(?4 1‘;"227 %‘;gg
clastswalztlme average of some quantityin a closed 4 oa4a 5 337 > 786
system [2], 5 26264 60.50 4.133
5 24426 175.6 3.061
XD AT+ A /(A A) 6 244426 736.6 4.147
(A = — 1)
S(=D*(rp + -+ + 1) /(AL --- Ag) 7 2442644 1.536 5.763
. - . T 4 2444264 37.16 5.471
The sum is over all distinct nonrepeating combinations; 2626264 907.9 5.504

of prime cycles,r is the period of a cycle, and is
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Russberg [7], who use the magnitude of the terms in afield. A single particle of chargeis scattered by a triangu-
expansion. This has the advantage that it is independetar lattice of circular disks of radiusand nearest neighbor
of the symbolic dynamics, but applied to Eq. (1) it has aspacing0.236. Between collisions it moves according to
number of disadvantages. It dependsAnso a differ- the equations

ent set of orbits is required for each observable; it orders . .

the numerator and denominator of Eq. (1) differently, and X=V, v=—eE/m — av, 3)

is not directly related to a cycle data set, which is more \ req = ey - E/mv? is a Gaussian thermostatting co-
likely truncated according to orbit stabilit. 9

We suggest that the orbit stability may often be the efficient [11] which keeps the kinetic energy constant, per-

most convenient parameter with which to truncate th mitting the system to reach a steady currdnt: (ev);.

. The symbolic dynamics is determined by the sequence of
cycle expansions. There are a number of reasons for thla.ISkS with which the particle collides; see Fig. 1

The cycles which make the greatest contribution to the ; = o
. ) . For small fieldse = |eE/m| < 1 the dynamics is
expansions have small, which are not necessarily those )
known to be ergodic and leads to a steady current [12].

of smallN. The cycles of smallesk are also found most . : s =
L . ; There have been several previous investigations [8,13]
readily in numerical searches. Alternative methods for : N
f the Lorentz gas at zero field (equilibrium) and small

enumerating periodic orbits by exhaustive enumeration of. . . .
. . jields using both cycle expansions (above) and direct
symbol sequences (as in the zero field Lorentz gas [8] ; i .
alculation of measures based on periodic orbits. They

fail whenever the symbolic dynamics is not understoo Lised 103105 cycles to evaluate the largest Lyapunov

completely and cycles exist which are not contained in the AP .y ;
. A . - ._.exponent, the diffusion coefficient (for zero field), and the

chaotic set. This is the case on one side of a chaotic crisis; ' )

current (for nonzero field). In each case the expansions

See Chap. 8 of Ref. [9], where a number of examples aré : .
: . . : . ere evaluated to a particular orbit length, from 7
discussed, including the windows of the logistic map, an S
T 0 10. Most of the results have uncertainties 596 —
the Lorenz attractor. Another reason for truncating\in . ; . ;
) A 10%, the main exception being the evaluation of the
rather thanv is that there may be significant cycles (small ; . .
A) at comparatively larg&/. Continuing the expansion to Lyapunov exponent in Ref. [8], which has an uncertainty
P y arger. 9 P of about0.2%. This last calculation was performed in

include all cycles at largs/ may be prohibitive due to the the fundamental domain, making full use of the symmetry

large number of cycles, or that some of t_he cycles MaYt the latice. The convergence for the Lorentz gas
have very largeA and hence pose numerical prObIemS'calculations is not as impressive as that in Refs. [4,5]

These issues are illustrated by our study of the strong.(—)ecause the grammar of the symbolic dynamics, that is

field Lorentz gas. - . )
o .__the rules determining which symbol sequences occur, is
We now make the above prescription more precise, ;
. . " not well understood. Thus the amount to which longer
To retain the exponential convergence of traditional cycle

. g . Prbits are shadowed by shorter ones is limited.
expansions, it is clear that we must still make use o

; . . At a field of e = 2.2 the ergodic attracting measure
the close cancellation of curvature correction terms. Th|?S abruptly replaced by an attractor with fractal Support
comes naturally if we include all terms for which the Py Tep y bp

product of A’s is less than a predetermined Cutdf,y,. characterized by a very restricted symbolic dynam-

; , . . ics [14]. In particular (see Fig. 1), the only symbols
Then, if the product of\’s match, the canceling terms will are {2.4,6,8,10}, the allowed pairs of symbols are

be either included or excluded together. If the shadowm(%%’ 28, 48,410, 62. 64, 68,610, 82, 84, 104, 106}, and the
I

is poor, cancellation would not occur, whichever terms areg . =
included. In any case, it is clear that the expansions wi riples{262, 264, 1068, 10610} are prohibited. These rules

not work well if cycles are missing, whether the expansion

is ordered with respect ¥ or A. Our prescription is thus:
Alternative truncation of cycle expansions: only those

cycles and combination of cycles which have the product

of A’s less than a cutoffA,.x should be included in
the cycle expansion A,y is the largest value such that
almost all the cycles are known.

For the remainder of this paper we show how this works
for the strong-field Lorentz gas, obtaining significantly
improved convergence.

The two dimensional nonequilibrium Lorentz gas is a
classical model of current flow in a conductor, and shares E

many of the properties of larger steady state nonequilib-

. . . . . - FIG. 1. The symbolic dynamics for the Lorentz gas at high
rium systems, including a simple relationship between theﬁeld, for which only nearest neighbor collisions occur. We

steady state current, and the sum of the Lyapunov expQeduce the symbol set still further by noting tha® is
nentsJ - E = > A [10]. Here,E is the imposed electric equivalent ta2 by symmetry, and similarly is equivalent tot.
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determine that the particle moves in one direction along 8
a channel formed by the disks, as described in Ref. [14].
Making use of the fact that the system is invariant under 7
a reflection in thex axis, we note that the symbao?sand

10 are equivalent, and likewise and8. Thus the above 6

permitted sequences becorid, 26,42, 44,62, 64}, with Ins #
no restrictions on the triples. It is easy to check that each 5
symbol sequence of the restricted set corresponds to ex-
actly two equivalent sequences with the original symbols. .
Note that there are many other prohibited sequences of
three or more symbols, depending on the field, so this

system suffers from pruning in a similar fashion to the 0 2 4 & 8 1
small field case. The range of fields we conside?.is InA

to 2.4, above which stable orbits appear, rendering theriG. 2. The distribution of cycles found using our numerical
attractor nonhyperbolic. routine, using bins of equal size in terms of An The

The symbolic dynamics of this system is so restrictedn@ximum occurs at abou = 600, suggesting this as the
that ate = 2.4 there are only nine orbits with seven or OPtimal value ofA .
fewer collisions; see Table I. There are a couple of points
to note from this table. First, there is very little shadowing

of orbits. Five of the cycles are fundamental in that theycompared with direct simulation results at each field
cannot be constructed from smaller cycles. In additionyalue, to give the rms differences exhibited in Table II.
the cycles that can be constructed from smaller cycles do From Fig. 3 we note that for each value of the cutoff
not have eigenvalued which are close to the product there is an initial regime in which convergence is expo-
of the constituent\’s, so curvature corrections obtained nential with N, as usual for cycle expansions in hyper-
with these orbits are not particularly small. Secondly, thepolic systems [2]. AtAm., = 600 this holds to about
most significant orbits (with small) do not occur atsmall N = 24, while at A, = % (no cutoff) convergence is
N. There are twaV = 10 orbits more significant than the exponential only taV = 15. Subsequently, the behavior
N = 2 orbit, and 20 orbits wit/A < 100, including one is determined by the limitations of the data set. If al-
with N = 34. Most of the longer orbits are partly canceled most all of the cycles are present (as faf., < 600), the
in curvature corrections, but it is clear from the numericalnormalization improves slightly, and then remains con-
results (below) that they are necessary to obtain optimadtant, otherwise it gets worse. A cutoff which is too
convergence. high (Amax = 10%) can be more harmful than no cut-
It is clear that obtaining all periodic orbits with fewer off, presumably because the unbalanced corrections at
than, say, 30 collisions is quite unfeasible, sinte= 7is 600 < A < 10* are partly canceled by the more numer-
already approaching the limit. In any case, this is not inpus terms with opposite signs at larger
line with the basic philosophy of describing the dynamics The results for the Lyapunov exponents and the current

with as few cycles as possible. Thus we proceed tqTable Il and Fig. 4) are more or less what would be
truncate the expansions usiAgrather thanv.

We numerically generatet)® collisions for each of the
field values from2.2 to 2.4 in steps 0f0.001, searching
for periodic orbits of up tav = 40. This generates about
170 cycles for each field value, substantially fewer than 15
Refs. [8,13], which considered a much smaller number 2
of field and disk spacing values. Seven of the orbits in
Table | were found, those with the smallest To get Ing(o,o)ﬁgf‘
a more precise estimate of the value at which cycles 3
are first being missed, we plot the logarithm of the total
number of cycles found as a function ofAnin Fig. 2. The
graph turns sharply down at aboit= 600, indicating -
that the optimum\,,.x should be around this value. 5

We computed/(0,0)"! using Eg. (2) at each field N
value summing terms up to different values 8f and ) o ) _
Amax, and also evaluated the Lyapunov exponentsis, FIG. 3. Superior normalization of cycle expansions with

. iy stability cutoff, using Eqg. (2). All expansions with,,,x > 10
and the currenf using Eq. (1) under the same conditions. c,nyerge exponentially ta/ — 15, after which the expansion

The rms averaged(0,0)”' values are shown in Fig. 3. with no cutoff (Am. — o) diverges slightly, while the optimal
The cycle expansion values far, A,, andJ were then cutoff (A.x = 600) continues to improve up t&v = 30.
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TABLE Il. Cycle expansion results, showing the average u
number of periodic orbits used,,, and the rms differences
of the other quantities from the direct simulation results. All
contributions up tav = 40 are included. The best convergence
is obtained withA ., = 600, a factor of3 better than no cutoff
(Amax = OO)'

Amax #av 5(0, ());mls A/\l-rms A/\Z-rms Aers

10 3.7 0.2283 0.0559 0.0865  0.0249
30 10.2 0.0647 0.0648 0.0774  0.0136
100 26.8 0.0292 0.0226 0.0312  0.0061
300 62.9 0.0153 0.0095 0.0125  0.0029

600 104.0 0.0134 0.0074 0.0102  0.0025
1000 1311 0.0519 0.0162 0.0205  0.0039
10000 157.6 0.1640 0.1814 0.1525  0.0256 o .
- 169.2 0.1264 0.0190 0.0331 0.0083 FIG. _5. The norm.allzat|on av = 40 as a function of Im\ .«

showing exponential convergence up toAlpg.x = 6.3. The
solid line has a gradient 0f0.69.

In Amax

predicted from the normalization, except that thg,, =

» results are unexpectedly good, and comparable tgiso quantum systems, where formulas such as Eq. (1) are
Amax = 100. Given that/ =~ 0.7, the relative error inthe  replaced by more involved expressions, but still written
cycle expansion expression férat Am.x = 600 is about in terms of classical periodic orbits. It could also be

0.3%, comparable to the best results in Ref. [8], whichgpplied to flows for which no natural Poincaré section

required an order of magnitude more cycles. is known. This work was supported by the Australian
Finally, we use the results fof(0,0)"! to estimate Research Council.

the rate of convergence of the expansion when almost
all the cycles are known, that i§,,,x < 600. Note that
because a hyperbolic system hAs~ ¢V, exponential
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