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We propose that cycle expansions be ordered with respect to stability rather than orbit length fo
chaotic systems, particularly those exhibiting crises. This is illustrated with the strong-field Lorent
where we obtain significant improvements over traditional approaches. [S0031-9007(97)03297-
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Classical chaotic dynamical systems are inherently u
predictable, so that even if the initial conditions are know
with high accuracy, predictions of the state of the syste
may be made to only a short time of orderl

21
1 in the fu-

ture, wherel1 is the largest Lyapunov exponent. Despi
this unpredictability, much can be said about the avera
behavior of the system in many cases using only a sm
number of unstable periodic orbits or “cycles.” This ca
be achieved by using cycle expansions [1,2] of Ruelle
dynamical zeta function [3].

Cycle expansions have proved very useful in both cla
sical and quantum chaos, giving accurate estimates of
escape rate of open billiard systems [4] and the ene
levels of helium [5] using a surprisingly small number o
classical cycles. The main idea of this approach is th
a long generic trajectory may be approximated by vario
periodic orbits at different times, and that longer period
orbits may often be “shadowed” by shorter “fundamenta
cycles, closely following the shorter cycles along diffe
ent sections of its length. Thus averages are calcula
using fundamental cycles, with small corrections due
longer cycles. Periodic orbits which are exact repetitio
of smaller cycles are explicitly summed, so that all e
pressions are written in terms of the remaining “prime
cycles. The expansions work best when the symbolic d
namics is well understood, and long periodic orbits are w
shadowed by shorter ones. In this paper we investig
a system in which neither of these conditions holds, t
strong-field Lorentz gas. In spite of these difficulties, re
sonable results may be obtained by ordering the expans
in terms of stability rather than the length of periodic orbit
This approach should be valid wherever cycle expansio
can be applied, including flows for which a natural topo
logical “length” is difficult to define.

The origin of cycle expansions is a well develope
theory of trace formulas and dynamical zeta functio
[3,6]. Here we will need only the expression for th
classical time average of some quantityA in a closed
system [2],

kAlt ­

P
s21dksA1t1 1 · · · 1 AktkdysL1 · · · LkdP

s21dkst1 1 · · · 1 tkdysL1 · · · Lkd
. (1)

The sum is over all distinct nonrepeating combinatio
of prime cycles,t is the period of a cycle, andL is
0031-9007y97y78(22)y4201(4)$10.00
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magnitude of the expanding eigenvalue of the stabi
matrix, equal to expst

P
l1d, where

P
l1 is the sum of

the positive Lyapunov exponents. Note that for notatio
simplicity we have writtenL where other authors hav
jLj. Ai is the average of some quantity over a particu
orbit, and could be Lyapunov exponent, current, or t
number of collisions per unit time. An important chec
of the convergence of the expansion is given by

z s0, 0d21 ­ 1 1
X

s21dkysL1 · · · Lkd , (2)

which should be equal to zero for a closed system.
The sums are usually truncated up to a particular or

in the symbolic dynamics: for the Lorentz gas, the nu
ber of collisionsN. At each order the terms are groupe
into fundamental orbits that have a symbolic dynamics
separable into smaller cycles, and “curvature correctio
consisting of a composite orbit, with symbolic dynami
ab together with its componentsa andb. Often the com-
posite orbit has similar averages to its components; then
combined term2AabtabL

21
ab 1 sAata 1 AbtbdL21

a L
21
b

is small. If there are only a few fundamental orbits a
this cancellation occurs most of the time the cycle exp
sion converges rapidly as a function ofN . However, this
is often not the case, as we see for the Lorentz gas (Tab
below).

Occasionally, cycle expansions are truncated using
ferent criteria. The most notable is that of Dahlqvist a

TABLE I. The shortest cycles at a fielde ­ 2.4. Note the
lack of shadowing, in thatL244426 ¿ L2444L26. Also, L is not
strongly correlated withN , so that truncating a cycle expansio
at fixedN tends to omit significant orbits with smallL.

Symbolic
N dynamics L t

2 26 13.92 1.459
3 264 2.557 2.706
4 2444 5.337 2.786
5 26264 60.50 4.133
5 24426 175.6 3.061
6 244426 736.6 4.147
7 2442644 1.536 5.763
7 2444264 37.16 5.471
7 2626264 907.9 5.594
© 1997 The American Physical Society 4201
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Russberg [7], who use the magnitude of the terms in
expansion. This has the advantage that it is independ
of the symbolic dynamics, but applied to Eq. (1) it has
number of disadvantages. It depends onA, so a differ-
ent set of orbits is required for each observable; it ord
the numerator and denominator of Eq. (1) differently, a
is not directly related to a cycle data set, which is mo
likely truncated according to orbit stabilityL.

We suggest that the orbit stabilityL may often be the
most convenient parameter with which to truncate t
cycle expansions. There are a number of reasons for
The cycles which make the greatest contribution to
expansions have smallL, which are not necessarily thos
of smallN . The cycles of smallestL are also found most
readily in numerical searches. Alternative methods
enumerating periodic orbits by exhaustive enumeration
symbol sequences (as in the zero field Lorentz gas
fail whenever the symbolic dynamics is not understo
completely and cycles exist which are not contained in
chaotic set. This is the case on one side of a chaotic cr
See Chap. 8 of Ref. [9], where a number of examples
discussed, including the windows of the logistic map, a
the Lorenz attractor. Another reason for truncating inL

rather thanN is that there may be significant cycles (sma
L) at comparatively largeN. Continuing the expansion to
include all cycles at largeN may be prohibitive due to the
large number of cycles, or that some of the cycles m
have very largeL and hence pose numerical problem
These issues are illustrated by our study of the stro
field Lorentz gas.

We now make the above prescription more preci
To retain the exponential convergence of traditional cy
expansions, it is clear that we must still make use
the close cancellation of curvature correction terms. T
comes naturally if we include all terms for which th
product ofL’s is less than a predetermined cutoffLmax.
Then, if the product ofL’s match, the canceling terms wil
be either included or excluded together. If the shadow
is poor, cancellation would not occur, whichever terms a
included. In any case, it is clear that the expansions w
not work well if cycles are missing, whether the expansi
is ordered with respect toN or L. Our prescription is thus:

Alternative truncation of cycle expansions: only tho
cycles and combination of cycles which have the prod
of L’s less than a cutoffLmax should be included in
the cycle expansion.Lmax is the largest value such tha
almost all the cycles are known.

For the remainder of this paper we show how this wor
for the strong-field Lorentz gas, obtaining significant
improved convergence.

The two dimensional nonequilibrium Lorentz gas is
classical model of current flow in a conductor, and sha
many of the properties of larger steady state nonequi
rium systems, including a simple relationship between
steady state current, and the sum of the Lyapunov ex
nentsJ ? E ­

P
l [10]. Here,E is the imposed electric
4202
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field. A single particle of chargee is scattered by a triangu-
lar lattice of circular disks of radius1 and nearest neighbo
spacing0.236. Between collisions it moves according t
the equations

Ùx ­ v , Ùv ­ eEym 2 av , (3)

wherea ­ ev ? Eymy2 is a Gaussian thermostatting co
efficient [11] which keeps the kinetic energy constant, p
mitting the system to reach a steady currentJ ­ kevlt .
The symbolic dynamics is determined by the sequence
disks with which the particle collides; see Fig. 1.

For small fields e ­ jeEymj ø 1 the dynamics is
known to be ergodic and leads to a steady current [1
There have been several previous investigations [8,
of the Lorentz gas at zero field (equilibrium) and sma
fields using both cycle expansions (above) and dir
calculation of measures based on periodic orbits. Th
used 103 –105 cycles to evaluate the largest Lyapuno
exponent, the diffusion coefficient (for zero field), and th
current (for nonzero field). In each case the expansio
were evaluated to a particular orbit lengthN , from 7
to 10. Most of the results have uncertainties of5%–
10%, the main exception being the evaluation of th
Lyapunov exponent in Ref. [8], which has an uncertain
of about 0.2%. This last calculation was performed i
the fundamental domain, making full use of the symme
of the lattice. The convergence for the Lorentz g
calculations is not as impressive as that in Refs. [4
because the grammar of the symbolic dynamics, that
the rules determining which symbol sequences occur
not well understood. Thus the amount to which long
orbits are shadowed by shorter ones is limited.

At a field of e ­ 2.2 the ergodic attracting measur
is abruptly replaced by an attractor with fractal suppo
characterized by a very restricted symbolic dynam
ics [14]. In particular (see Fig. 1), the only symbo
are h2, 4, 6, 8, 10j, the allowed pairs of symbols are
h26, 28, 48, 410, 62, 64, 68, 610, 82, 84, 104, 106j, and the
triplesh262, 264, 1068, 10610j are prohibited. These rules

FIG. 1. The symbolic dynamics for the Lorentz gas at hig
field, for which only nearest neighbor collisions occur. W
reduce the symbol set still further by noting that10 is
equivalent to2 by symmetry, and similarly8 is equivalent to4.
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determine that the particle moves in one direction alo
a channel formed by the disks, as described in Ref. [1
Making use of the fact that the system is invariant und
a reflection in thex axis, we note that the symbols2 and
10 are equivalent, and likewise4 and8. Thus the above
permitted sequences becomeh24, 26, 42, 44, 62, 64j, with
no restrictions on the triples. It is easy to check that ea
symbol sequence of the restricted set corresponds to
actly two equivalent sequences with the original symbo
Note that there are many other prohibited sequence
three or more symbols, depending on the field, so t
system suffers from pruning in a similar fashion to th
small field case. The range of fields we consider is2.2
to 2.4, above which stable orbits appear, rendering
attractor nonhyperbolic.

The symbolic dynamics of this system is so restrict
that ate ­ 2.4 there are only nine orbits with seven o
fewer collisions; see Table I. There are a couple of poi
to note from this table. First, there is very little shadowin
of orbits. Five of the cycles are fundamental in that th
cannot be constructed from smaller cycles. In additio
the cycles that can be constructed from smaller cycles
not have eigenvaluesL which are close to the produc
of the constituentL’s, so curvature corrections obtaine
with these orbits are not particularly small. Secondly, t
most significant orbits (with smallL) do not occur at small
N . There are twoN ­ 10 orbits more significant than the
N ­ 2 orbit, and 20 orbits withL , 100, including one
with N ­ 34. Most of the longer orbits are partly cancele
in curvature corrections, but it is clear from the numeric
results (below) that they are necessary to obtain optim
convergence.

It is clear that obtaining all periodic orbits with fewe
than, say, 30 collisions is quite unfeasible, sinceN ­ 7 is
already approaching the limit. In any case, this is not
line with the basic philosophy of describing the dynami
with as few cycles as possible. Thus we proceed
truncate the expansions usingL rather thanN .

We numerically generated105 collisions for each of the
field values from2.2 to 2.4 in steps of0.001, searching
for periodic orbits of up toN ­ 40. This generates abou
170 cycles for each field value, substantially fewer th
Refs. [8,13], which considered a much smaller numb
of field and disk spacing values. Seven of the orbits
Table I were found, those with the smallestL. To get
a more precise estimate of theL value at which cycles
are first being missed, we plot the logarithm of the to
number of cycles found as a function of lnL in Fig. 2. The
graph turns sharply down at aboutL ­ 600, indicating
that the optimumLmax should be around this value.

We computedz s0, 0d21 using Eq. (2) at each field
value summing terms up to different values ofN and
Lmax, and also evaluated the Lyapunov exponentsl1, l2,
and the currentJ using Eq. (1) under the same condition
The rms averagedz s0, 0d21 values are shown in Fig. 3
The cycle expansion values forl1, l2, andJ were then
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FIG. 2. The distribution of cycles found using our numerica
routine, using bins of equal size in terms of lnL. The
maximum occurs at aboutL ­ 600, suggesting this as the
optimal value ofLmax.

compared with direct simulation results at each fiel
value, to give the rms differences exhibited in Table II.

From Fig. 3 we note that for each value of the cutof
there is an initial regime in which convergence is expo
nential with N, as usual for cycle expansions in hyper
bolic systems [2]. AtLmax ­ 600 this holds to about
N ­ 24, while at Lmax ­ ` (no cutoff) convergence is
exponential only toN ­ 15. Subsequently, the behavior
is determined by the limitations of the data set. If al
most all of the cycles are present (as forLmax , 600), the
normalization improves slightly, and then remains con
stant, otherwise it gets worse. A cutoff which is too
high (Lmax ­ 104) can be more harmful than no cut-
off, presumably because the unbalanced corrections
600 , L , 104 are partly canceled by the more numer
ous terms with opposite signs at largerL.

The results for the Lyapunov exponents and the curre
(Table II and Fig. 4) are more or less what would b

FIG. 3. Superior normalization of cycle expansions with
stability cutoff, using Eq. (2). All expansions withLmax . 10
converge exponentially toN ­ 15, after which the expansion
with no cutoff (Lmax ­ `) diverges slightly, while the optimal
cutoff (Lmax ­ 600) continues to improve up toN ­ 30.
4203
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TABLE II. Cycle expansion results, showing the averag
number of periodic orbits used,#av , and the rms differences
of the other quantities from the direct simulation results. A
contributions up toN ­ 40 are included. The best convergenc
is obtained withLmax ­ 600, a factor of3 better than no cutoff
(Lmax ­ `).

Lmax #av z s0, 0d21
rms Dl1-rms Dl2-rms DJrms

10 3.7 0.2283 0.0559 0.0865 0.0249
30 10.2 0.0647 0.0648 0.0774 0.0136
100 26.8 0.0292 0.0226 0.0312 0.0061
300 62.9 0.0153 0.0095 0.0125 0.0029
600 104.0 0.0134 0.0074 0.0102 0.0025
1000 131.1 0.0519 0.0162 0.0205 0.0039
10000 157.6 0.1640 0.1814 0.1525 0.025
` 169.2 0.1264 0.0190 0.0331 0.0083

predicted from the normalization, except that theLmax ­
` results are unexpectedly good, and comparable
Lmax ­ 100. Given thatJ ø 0.7, the relative error in the
cycle expansion expression forJ at Lmax ­ 600 is about
0.3%, comparable to the best results in Ref. [8], whic
required an order of magnitude more cycles.

Finally, we use the results forz s0, 0d21 to estimate
the rate of convergence of the expansion when alm
all the cycles are known, that isLmax , 600. Note that
because a hyperbolic system hasL , eN , exponential
convergence inN is equivalent to exponential conver
gence in lnLmax, that is a power law inLmax. This is
shown in Fig. 5, where we findz s0, 0d21

rms , L20.69
max , or

z s0, 0d21
rms , 22 ln Lmax . The rate of convergence is thus

comparable with that of cycle expansions performed up
a givenN. The choice of which approach to take depen
on whether it is more convenient to enumerate all orb
to a fixedN or a fixedL, and the distribution of periodic
orbits for the given system.

It would be interesting to compare this method wit
the traditional approach for other classical systems, a

FIG. 4. The current at high field (center). Note the hig
degree of structure, which is reproduced in the cycle expansio
with Lmax ­ 600 (top) and to a lesser degreeLmax ­ `
(bottom). The cycle expansion results are shifted by0.05 for
clarity.
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FIG. 5. The normalization atN ­ 40 as a function of lnLmax
showing exponential convergence up to lnLmax ø 6.3. The
solid line has a gradient of20.69.

also quantum systems, where formulas such as Eq. (1)
replaced by more involved expressions, but still writte
in terms of classical periodic orbits. It could also be
applied to flows for which no natural Poincaré sectio
is known. This work was supported by the Australian
Research Council.
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