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1 Introduction

Lecturer; outline; problems, classes and credit; exam
This file was processed March 10, 2011.
Small text is supplementary non-examinable material, for example

from previous years. It will improve your understanding of the rest of

the course material.

1.1 Books

• “A first course in general relativity”, Bernard F Schutz,
Cambridge University Press, 1985, 400 pages. First
recommendation. Good beginner’s book with very lit-
tle assumed background. Covers the course but not
much more.

• “General Relativity”, Robert M Wald, U. Chicago
press, 1984, 500 pages. Not well suited to begin-
ners, but strong students with a more mathematical
background should consider it. Contains more recent
theory, so useful if you plan to take this subject further.

• “A short course on general relativity” J Foster,
Springer-Verlag, 1995 250 pages. Good beginner’s
book, concise and logical, but maybe too short ie. not
as much explanation as Schutz above.

• “Relativity” H. Stephani, Cambridge, third ed. 2004,
400 pages. A little too advanced on its own, but good
to extend a more elementary text. A more modern
approach, and more physical than Wald.

• “A concise overview of the classical theory” P A M
Dirac, 1996 Princeton University Press, 80 pages. Con-
cise and logical, but no modern developments, figures
or problems.

• “Gravitation” C W Misner, K S Thorne, J A Wheeler,
Freeman, 1973, 1300 pages. Exhaustive classic, not for
beginners, but good for detailed pictorial arguments on
many topics. Physical approach.

• “Geometrical methods of mathematical physics”
Bernard F Schutz, Cambridge University Press, 1980,
250 pages. Not a text on general relativity per se, but
delves deeper into the mathematical structure, and so
useful to extend one of the above texts. This book is
used in the differentiable manifolds unit.

1.2 History

Following success in 1905 in his Special Theory of Relativity
(abbreviated SR in these notes), incorporating the relativity
principle and electromagnetism, Einstein tried unsuccess-
fully to incorporate gravity into the theory. In particular, a
scalar theory (ie the gravitational potential is a scalar field)
does not predict that light is bent by a gravitational field,
which Einstein predicted and which was confirmed experi-
mentally later (1919); a vector theory such as electromag-
netism but with attraction of like “charges” leads to waves
of negative energy; a tensor theory is inconsistent with re-
gard to energy conservation. (more details: MTW chapter
7). In 1915 he succeeded by generalising the space-time
of the special theory using the theory of curved spaces for-
mulated by Georg Riemann in 1854. This is known as the
general theory of relativity (abbreviated GR in these notes).
More recent work (1950’s and 60’s) has shown that this
tensor theory may be made consistent, in a form equivalent
to the general theory! Since 1950 there have been a number
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1.4 Classical effects 1 INTRODUCTION

of interesting developments, including singularity theorems
and Hawking radiation from black holes (beyond the scope
of the course). Almost all weak field predictions of the the-
ory have agreed with experiment (exception: gravity waves
not yet observed), but only indirect evidence for strong field
predictions such as black holes.

We turn to the centrepiece of the new theory - the equiv-
alence principle, and use it to derive some important effects
of general relativity. We skip quickly over some aspects of
gravity and relativity for this description, but both will be
discussed more carefully later.

1.3 The equivalence principle

Why is gravity different to electromagnetism, and indeed
any other force (nuclear, etc.)? The gravitational force on
an object is proportional to the mass, as appears also in
Newton’s second law, while the other forces are not (eg. the
electric force is proportional to the electric charge.) Simply
stated,

ma = mg

and so the masses cancel - gravity can be thought of as an
acceleration, rather than a force.

The only other forces which are proportional to the mass
are the so called inertial forces, ie fictitious forces observed
in accelerated or rotating frames of reference. For example,
if

x′ = x+ bt2

d2x′

dt2
=
d2x

dt2
+ 2b

f ′ = m
d2x′

dt2
= m

d2x

dt2
+ 2mb = f + 2mb

so in the primed frame, the force is given as in the un-
primed frame, together with an extra, inertial force 2mb.
In rotating frames, there are two inertial forces called the
centrifugal and Coriolis forces.

Einstein understood this as a fundamental principle,
called the equivalence principle (1911):

Local laws of physics are the same in a gravita-
tional field as in an accelerated frame of reference.

The “local” is because the gravitational field is clearly not
constant; a different accelerating frame is needed near each
point in space and time (event). The EP states that gravity
is an inertial force.

In special relativity we had inertial frames of reference,
defined so that Newton’s first law held.

SR: An inertial frame is a coordinate system in
which a free particle moves with constant velocity.

Constant velocity of course means constant speed and di-
rection. We can now modify this definition:

GR: A local inertial frame is a local coordinate sys-
tem in which a particle free from non-gravitational
forces moves with constant velocity.

As in special relativity there are many local inertial frames,
with constant relative velocities. They are constructed as
before using standard rods, clocks and light beams. How-
ever they are now “local”, defined separately in a small
region around each space-time point. We can restate the
EP as

In local inertial frames, the usual laws of physics
hold as described by Special Relativity.

At the surface of the Earth we observe these local inertial
frames as freely falling, so these frames of reference are
also called freely falling frames. Objects are held stationary
with respect to the Earth by normal reaction forces from
the ground, so in the local inertial frame, these are seen
to be accelerating upwards with magnitude g. (Fig: two
pictures).

The gravitational field itself is not physically observable,
since it is not felt by a local inertial observer. For example
- we accelerate around the centre of the galaxy, but this is
hard to measure within the solar system since the sun and
planets have (almost) the same acceleration as each other.
Diagram. However, differences or gradients of gravitational
fields are observable. For example, we can compare notes
with people at the other side of the world, and discover
that we have a relative acceleration of 2g. The gradient of
the gravitational field is responsible for tidal forces, ie the
Avon rises in response to a stronger gravitational force from
the moon or sun than the ground when these are above us,
and to a weaker gravitational force when these are below
us (Fig).

1.4 Classical effects

The earliest effect, known before Einstein, was the peri-
helion precession of Mercury (diagram). After subtracting
known effects such as the gravitational perturbations of the
other planets, 43” per century can be attributed to rela-
tivistic effects. This is in good agreement with theory (we
will calculate a simplified version), but is not surprising in
itself as almost any perturbation breaks the invariance of
the Runge-Lenz vector associated with the closure of the
elliptical orbits.

The next effect, verified in 1919 and the first success
of the new theory, was the bending of light in a gravi-
tational field (in particular starlight passing near the sun
was observed during an eclipse in 1919, predicted deflection
1.75”). We predict this qualitatively using the equivalence
principle: a light ray moving horizontally in a frame accel-
erating with g towards the Earth clearly looks curved with
respect to a frame on the Earth’s surface, in the same way
as any horizontal projectile is deflected. Diagram. Recall
that this effect ruled out the special relativistic scalar theory
of gravity.

Finally, there is the gravitational time dilation.
Again we use the equivalence principle: Consider two people A and

B, moving in one dimension as follows:

xA = gt2/2

xB = gt2/2 + d
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we only consider times such that their speeds are much less than c (ie
t � c/g), and also assume that gd � c2 so that they have time to
exchange many light beams. If A emits a beam towards B at time tA,
its worldline is

xL = c(t− tA) + gt2A/2

so as to reach B when

c(tB − tA) + gt2A/2 = gt2B/2 + d

If A sends two beams with interval dtA, they will be received at B
with interval dtB = dtA × (dtB/dtA). Differentiating,

c(dtB/dtA − 1) + gtA = gtB(dtB/dtA)

dtB/dtA =
c− gtA
c− gtB

≈ 1 + g(tB − tA)/c ≈ 1 + gd/c2

thus B receives a lower rate than A sends. If B sends to A the argument
is reversed, d changes sign, and we still find that A receives beams
at a higher rate than B sends. In other words, A’s clock seems to be
moving slower than B’s in this accelerating frame. In the gravitational
context it means that a clock B a distance h above a clock A runs
faster by a factor approximately 1 + gd/c2. We will find a precise
prediction later.

Doppler shift argument: As above, but in the time d/c taken by
the light beam, B’s velocity has increased by gd/c. The result follows
using the Doppler red shift formula (f/f ′ = 1 + u cos θ/c, NR, f is
frequency, θ = 0, f ′ is moving receiver, f=stationary source).

Energy conservation argument: Use quantum mechanics,
in which the energy of a photon (light particle) is hf where
h = 6 × 10−34Js is Planck’s constant and f is frequency.
A mass m at position B (height d above A) is dropped
to A, giving it mgd kinetic energy. It is then converted
into a photon of energy mgd + mc2 of frequency m(gd +
c2)/h and sent back to B, where it is converted back to
mass again. We need to end up with the same amount of
mass, hence the frequency at A should be mc2/h. Thus
there is a gravitational redshift: fA/fB = 1 + gd/c2 =
1 + ∆Φ/c2 in general (Φ is graviational potential). Side
remark - energy/momentum conservation actually prohibits
conversion of mass to a single photon, but not conversion
to two or more photons. The argument follows in the same
manner.

Example: The GPS satellites have orbital periods of 12
hours. Compute their distance from the Earth’s centre and
velocity, and hence the SR and GR time dilation effects.
The atomic clocks are precise to one part in 1013; are rela-
tivistic effects important?

The orbital parameters are calculated using Newtonian
gravity:

RS =

(
GMET

2
S

4π2

)1/3

= 2.66× 107m

uS = 2πRS/TS = 3.87× 103ms−1

Here TS = 43200, G = 6.67 × 10−11, ME = 5.98 × 1024

in SI units.
SR effect (discussed later, for now just note formula):

γ = (1− u2
S/c

2)−1/2 ≈ 1 + u2
S/2c

2 = 1 + 8.33× 10−11

where c = 3×108 is the speed of light. The satellite’s time
appears to moves more slowly due to this effect.

The GR effect is 1 + ∆Φ/c2.

1+∆Φ/c2 = 1+(GM/RSc
2)−(GM/REc

2) = 1−5.28×10−10

where RE = 6.38 × 106 is the radius of the Earth. The
satellite’s time appears to move more quickly due to this ef-
fect, which dominates. Both are orders of magnitude larger
than the precision of the clock, and so must be taken into
account.

In addition to these classical effects, there are some ob-
servational effects that have been predicted since the theory
was established. These include the black holes and gravi-
tational waves, to be discussed later in the course. In both
of these cases, we have indirect evidence of their existence,
but this evidence is astronomical rather than solar system
measurements.

1.5 Curved space-time

The time dilation effect is an example of the breakdown of
usual geometrical principles in general relativity. In a space-
time diagram of A sending light rays to B, the parallelogram
defined by the equal angles has opposite sides of different
length. Even if light does not move in straight lines in the
space-time diagram, the parallel argument holds.

What does a curved space-time (for that matter a curved
space) look like? Example: ball. Locally it looks flat - this
corresponds to the local inertial frames discussed previously.
However these flat local regions are stitched together in a
nontrivial manner.

Straight lines may be generalised in at least two possible
ways - either they are defined as to look as straight as pos-
sible (“parallel transport of tangent vector”), or to satisfy
a variational condition such as being the shortest distance
between two points. Actually we will discover that these
two correspond to the same object, called a “geodesic”.
Free particles (ie with no non-gravitational forces) will move
along these geodesics.

Example: If I throw a ball up in a constant gravitational
field so that it returns in time T , what path does it take
in space-time? Brief answer: it takes the longest possible
proper time by moving further away from the Earth for a
while (increasing the time due to graviational time dilation)
but going too far is counterproductive as the SR time di-
lation effect takes over as it moves faster. The (nearly)
parabolic path in space-time gives the optimal balance be-
tween these effects.

Detailed answer:
Newtonian gravity: z = u0t− gt2/2 which is zero at t = T . Thus

u0 = gT/2 and the path taken is z = (T − t)gt/2.
Geodesic approach: We maximise the proper time (registered by

a clock moving with the ball), using time dilation associated with
velocity (special relativity) and height (general relativity), assuming
constant acceleration a for simplicity. If z = (T − t)at/2, and proper
time (ignoring higher order effects) is assumed to be

dτ = 1 + gz/c2 − u2/2c2 +O(1/c4)

τ =

∫ T

0
dτ

τ =

∫ T

0
dt(1 + ag(T − t)t/(2c2)− a2(T 2/4− Tt+ t2)/(2c2))

τ = T + aT 3(g/12− a/24)/c2

dτ

da
= T 3(g/12− a/12)/c2 = 0

a = g
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This also gives the time recorded:

τ = T + g2T 3/(24c2)

In other words, the ball follows a path in which to take advantage of
the faster clock rate at a higher altitude, while keeping a moderate
speed and hence minimising the special relativistic time dilation effect.
In the freely falling frame, everything looks simple: the ball remains
fixed, so it is clearly the “shortest” path in space-time. We make this
calculation more general and precise later.

Still further discussion: We are given the metric (assuming slow
moving weak sources of gravitational field; we derive this later)

ds2 = (1 + 2Φ)dt2 − (1− 2Φ)(dx2 + dy2 + dz2)

where c = 1, Φ � 1 is the Newtonian gravitational potential, for
example −GM/r outside a spherical mass. Assuming a particle moves
slowly u� 1 the rate of a clock is given by

dτ = ds = dt
√

1 + 2Φ− (1− 2Φ)u2 ≈ dt(1 + Φ− u2/2)

exhibiting both GR and SR time dilation effects. Now the Euler-
Lagrange equations (also derived later)

∂L

∂xi
=

d

dt

∂L

∂ẋi

compute the stationary value of
∫
Ldt where L(xi, ẋi) is the La-

grangian function, with the initial and final points of the path fixed.
The index i = 1, 2, 3 corresponds to x, y, z coordinates. Thus a
geodesic (stationary proper time) is given by the E-L equations for
L = dτ/dt, namely

∂Φ

∂xi
=

d

dt
(−

dxi

dt
)

which is just the Newtonian equations of motion.

We can construct more complicated geometrical figures
from these geodesics, but note that, for example, the angles
in a triangle of geodesics need not add to 180 degrees; we
have already noted that a parallelogram may have opposite
sides of different length.

We may attempt to compare vectors at different points
by transporting them along curves (“parallel transport”),
but notice that parallel transporting a vector back to its
original point may lead to a vector pointing in a different
direction! This means that vectors are only defined with
respect to a point in space-time, and care must be taken in
differentiating them.

Before concluding this section on curvature, we need to
make an important distinction, between intrinsic and extrin-
sic curvature. A two dimensional intrinsically flat surface (ie
with all the usual geometrical properties) can be embedded
into three dimensions as a curved surface, eg fold or roll a
piece of paper. The latter is called extrinsic curvature.

Example: the curved surface of a cylinder is intrinsically
flat, as is all but the apex of a cone (demonstration). A
sphere is, however, intrinsically curved, as anyone who has
tried to wrap a spherical present will know.

General relativity is a theory in which space-time is a four
dimensional intrinsically curved surface.

1.6 Overview

We are now in a position to describe the course and its
applications:

We will need to cover, perhaps in a slightly new lan-
guage, topics you may have seen before: Dimensional anal-
ysis, Newtonian gravity, variational mechanics (Lagrangians

and Hamiltonians), change of coordinates and special rela-
tivity, including tensors.

The mathematics of curvature comes in three parts - first
the curved space itself and its scalar vector and tensor fields,
including the metric, which gives lengths, angles and vol-
umes, and corresponds to the gravitational potential as we
have seen from the gravitational time dilation effect.

Then the derivative of the metric gives the “connection”,
from which comes the geodesic equation, parallel transport,
and differentiation of vectors and tensors. It corresponds to
the gravitational field, and, being unobservable can be set
to zero locally by a judicious choice of coordinates. At this
point the equations of physics in a gravitational field can
be constructed.

The second derivative of the metric gives the “curvature”
itself, corresponding to the tidal forces (derivative of the
gravitational field). At this point we discuss the other part
of the theory, how a mass distribution (actually an object
called the stress-energy tensor) determines the curvature of
space-time, the Einstein field equations.

Finally we discuss simple solutions to the Einstein field
equations, in particular the Schwarzchild metric correspond-
ing to the outside of a spherical mass distribution. We cal-
culate the perihelion precession, deviation of light and grav-
itational redshift, and then turn to more exotic predictions
of the solution, in particular black holes.

Other solutions we will discuss briefly are cosmological
(big bang) models, and gravitational waves (which have
yet to be found experimentally).

The mathematics of curved spaces has many other ap-
plications, for example spherical geometry and constrained
problems in mechanics. The techniques of change of vari-
ables are useful for solving partial differential equations with
different shaped boundaries. Last but not least, many study
the theory for its renowned power and elegance.

2 Preliminaries

[unfortunately somewhat fragmented, but necessary to
avoid distractions later on]

2.1 Dimensions

[The main concepts are used in many branches of mathe-
matics and physics; you may have seen this elsewhere. This
is used throughout the unit.]

There are two fundamental constants appearing in gen-
eral relativity: G = 6.67 × 10−11Nm2kg−2 is Newton’s
gravitational constant. c = 2.997792458× 108ms−1 is the
speed of light in a vacuum. These relate a length to a time:
l = ct, or a length to a mass: l = Gm/c2. Many people
use “geometricised units” in which G = c = 1. This is
accomplished by making times and masses have the units
of length. In general, this simplifies the algebra, but we
will reintroduce these constants when we do explicit calcu-
lations, or use, say, 1/c as an expansion parameter for the
nonrelativistic limit.
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Example: Find the lengths corresponding to (i) a
nanosecond, (ii) the mass of the Earth. A nanosecond
10−9s corresponds to 0.3m or about 1 foot. The mass of
the Earth 5.98 × 1024kg corresponds to 0.0044m or 3/16
inch.

Example: Show that Gm/c2 has dimensions of length.

[m] = M

[c] = LT−1

[G] = MLT−2L2M−2 = M−1L3T−2

[Gm/c2] = M−1L3T−2ML−2T 2 = L

Example: The event horizon of a black hole (beyond
which no light can escape) is given as r = 2m. In ordi-
nary units this would be r = 2Gm/c2. Incidentally, this
is also the Newtonian prediction obtained by setting the
escape velocity

√
2Gm/r equal to c. Warning: m and r

have not yet been defined in the context of general relativ-
ity. m will be the mass calculated from gravitational forces
at infinity not the amount of mass obtained by adding the
protons and neutrons, r will be the proper circumference
divided by 2π but will not measure radial distance.

Example: Obtain the gravitational redshift dt′/dt = 1 + z in terms
of g, d, G and c using dimensional analysis. The gravitational redshift
is a dimensionless ratio of two times or frequencies. The dimensions
of the quantities are:

[g] = LT−2

[d] = L

[c] = LT−1

[G] = MLT−2L2M−2 = M−1L3T−2

Suppose gαdβcγGδ is dimensionless, then

(LT−2)αLβ(LT−1)γ(M−1L3T−2)δ = 1

δ = 0

α+ β + γ + 3δ = 0

−2α− γ − 2δ = 0

thus
γ = −2α

β = α

(gd/c2)α is the only dimensionless combination.

If we consider three observers, we conclude that 1 + z(d1 + d2) =

(1 + z(d1))(1 + z(d2) ≈ 1 + z(d1) + z(d2) thus z(d) is linear in d,

and so we have z(d) = const× gd/c2.

2.2 Newtonian gravity

[Prior experience of electromagnetism helpful here; force
and potential energy are familiar from level 1 mechanics.
This is required for the rest of section 2, and for section 6.2
and following]

We cannot hope to describe a relativistic theory of gravity
without some understanding of the nonrelativistic theory.

Newton’s original theory of gravity consists of pairwise
inverse square forces.

mi
d2xi
dt2

= −
∑
j 6=i

Gmimj

r2
ij

r̂ij

where rij = xj − xi. The mass on the LHS is the “iner-
tial mass” while the masses on the RHS are “gravitational

masses”. Newton assumed that they were the same, as
does the equivalence principle, allowing us to cancel the mi

on both sides.
Newton’s theory is “action at a distance”, which we must

avoid in relativity; signals can travel only at the speed of
light. A local formulation is as follows:

fi = mig(xi)

where fi is the gravitational force on a mass mi due to a
gravitational field g at position xi. Aside: in electromag-
netism the force is qiE(xi) where the charge qi is analogous
to the mass, and the electric field E is analogous to the
gravitational field.

We also need an equation relating the gravitational field
at different points in space, and in particular to the mass
distribution that generated it:

∇ · g = −4πGρ

Here G is Newton’s constant and ρ is the mass per unit
volume. Aside: the analogous equation is ∇ ·E = ρe/ε0.

If we apply the divergence theorem in a domain D∫
∂D

V · dS =

∫
D

∇ ·VdV

we find ∫
∂D

g · dS = −4πGM

where M is the total mass inside the region. If the region is
a sphere of radius r, and the mass distribution is spherically
symmetric so that g can be assumed to be radial, we find

4πr2|g| = −4πGM

g = −GM
r2

r̂

Note that the gravitational field depends only on the
amount of mass M within radius r, not its distribution.
This was first proved by Gauss, and a modified version also
holds in general relativity.

Thus we return to Newton’s formulation:

f = −GmM
r2

r̂

There is another equation for the gravitational field (im-
plicit in the assumption that g is spherically symmetric,
above; obviously required because the first equation is only
a single equation for the three components of g),

∇× g = 0

from which we deduce the existence of the gravitational
potential Φ,

g = −∇Φ

(cf E = −∇V). This follows since Φ = −
∫

g · dr is
uniquely defined: Apply Stokes’ theorem, and assume a
simply connected domain.
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The potential energy is obtained by multiplying this by
the mass,

U = mΦ

(cf U=qV) so we can write

f = mg = −m∇Φ = −∇U

U = −GmM
r

for a particle of mass m moving in the field of a mass M .
Thus we can write the equations of Newtonian gravity as

f = −m∇Φ

∇2Φ = 4πGρ

The solution to the second equation comes from summing
over the mass distribution:

Φ(x) = −
∫
D

Gρdx′

|x− x′|

Example: the gravitational potential in a uniform gravi-
tational field

g = −gk

is simply gz.
Example: the gravitational potential due to an infinite

line of mass per unit length λ along the z axis. Radial by
symmetry, so use a cylindrical domain,

2πrh|g| = 4πGλh

|g| = 2Gλ

r

Φ(r) = −
∫

g · dr = 2Gλ ln r

Example: the gravitational potential from a cone of
height h, radius R and density ρ measured along the axis.
We simply add contributions from different parts in cylin-
drical coordinates:

Φ(d) =

∫ h

z=0

∫ Rz/h

r=0

∫ 2π

φ=0

Gρrdrdzdφ√
r2 + (z − d)2

2.3 Galilean relativity and index nota-
tion

[Familiar concepts; new notation. Index notation is essential
for performing calculations in general relativity, and is used
from section 3.3 onwards.]

As a consequence of the fact that Newtonian gravity de-
termines the acceleration in terms of the positions of the
masses (not their velocities), the equations also satisfy a
symmetry of the equations, physically known as Galilean
Relativity:

x′ = x− vt

t′ = t

which has the following physical interpretation: An observer
O’ moves with velocity v as measured by observer O, and
measurements are made with respect to the same spatial
origin at t = 0. This is called “Standard configuration”
(also in special relativity). O and O’ agree about (Newto-
nian absolute) time (unlike in special relativity).

Example: A point marked on a rotating wheel has acceleration ω2r

in a frame of reference moving with its centre, so it also has this

acceleration with respect to the ground. Differentiate the Galilean

transformation twice.

In addition, the equations have translational and rota-
tional symmetry. To denote the rotation, we need to de-
velop some notation. Let the Latin letters i, j = 1, 2, 3
denote the three coordinates, xi as the ith component of
the vector x, and Λ1

2 or Λ1
2 or Λ12 or Λ12 as the element

of the matrix Λ in row 1, column 2. The transpose of a
matrix is simply

(ΛT )ij = Λji

Matrix equations can be written explicitly in terms of
their indices, for example A = BC is

Aik =
∑
j

BijCjk

Einstein Summation Convention: Any index appearing
twice in a product is automatically summed on. Thus we
write simply

Aik = BijCjk

In more detail: A term is a product of quantities with
indices; an equation involves equality of (sums of) terms.
An index can appear once in a term, in which case it is a
free index and appears once in every term in an equation.
The equation is thus really a set of equations in number
three (or the dimension) to the power of the number of free
indices. If an index appears twice in a term, it is called a
dummy index and is summed. An index cannot appear
more than twice in a term; if necessary dummy indices need
to be relabled to prevent this. When we use upper and lower
indices the free indices will be either upper in all the terms,
or lower, and the sum will always be over an upper and a
lower index. When we use primed indices, the primed and
unprimed versions (eg j and j′) will be considered distinct.
The reasons for these rules will become apparent later.

In the above example, i and k are free indices, together
taking a total of 32 = 9 values. j is a dummy index and
automatically summed.

Note that the following equations are equivalent:

Aik = CjkBij

The components are real numbers, for which multiplication
is commutative.

Aij = BikCkj

We can represent multiplication by a “column vector” y =
Ax,

yi = Aijxj

the dot product of two vectors c = x · y

c = xiyi = δijxiyj

Page 6. c©University of Bristol 2007. This material is copyright of the University unless explicitly stated otherwise. It is
provided exclusively for educational purposes at the University and is to be downloaded or copied for your private study only.



2.4 Variational mechanics 2 PRELIMINARIES

where δij (“Kronecker delta”) is one if i = j and zero
otherwise. The cross product of two vectors z = x× y

zi = εijkxjyk

where both j and k are repeated so they are summed, and
ε is a “3-index tensor” with values

ε123 = ε231 = ε312 = 1

ε132 = ε321 = ε213 = −1

and all others zero.
With this in mind, we introduce a rotation matrix Λ and

write
xi

′
= Λi

′

j x
j − vi

′
t− di

′

The reason for raising the index of the vector will become
clearer when we discuss relativity. Note that the sum is over
a lower and an upper index, and the free index is always up,
as mentioned above.

Note that the prime goes on the index, not on the vector.
This is because we think of the vector as an abstract object,
and the three numbers are its components with respect to a
particular (primed or unprimed) orientation of coordinates,
or “reference frame”.

For what rotations Λ is Newtonian gravity

Mnẍn =
∑
m 6=n

GMnMm

|xm − xn|3
(xm − xn)

is invariant under the generalised Galilean transformation?
NB: m and n denote particles here (and below), not spatial
components. We have

ẍi
′

= Λi
′

j ẍ
j

so the forces transform as

F i
′

= mẍi
′

= Λi
′

j F
j

Substituting into the equations of motion, we need only
that the distance |xm − xn| is preserved:

|∆x′|2 = gi′j′∆x
i′∆xj

′

= gi′j′Λ
i′

k∆xkΛj
′

l ∆xl

= Λi
′

k gi′j′Λ
j′

l ∆xk∆xl

= (ΛT gΛ)kl∆x
k∆xl

= gkl∆x
k∆xl

where gij = δij is the metric, which is just the unit matrix
in Euclidean space, but will become more complicated later.
In the last step, we needed the matrix equation

ΛT gΛ = g

but in this case g is just the identity matrix, so we have

ΛTΛ = I

that is, Λ is an orthogonal matrix.

Recall the definition of a group: a set G with a binary
operation satisfying, for all a, b, c ∈ G:

ab ∈ G closure

a(bc) = (ab)c associativity

ae = ea = a for some e ∈ G called the identity

aa−1 = a−1a = e for some a−1 ∈ G called the inverse of a

If, in addition, the operation is commutative, ie ab = ba for
all elements a and b, the group is called Abelian.

We can easily check that the product of orthogonal ma-
trices is orthogonal; matrix multiplication is associative; the
identity matrix is the group identity; the inverse of an or-
thogonal matrix exists and is orthogonal. Thus the set of
orthogonal matrices form a group, with the operation given
by matrix multiplication.

Example: To show that matrix multiplication is associa-
tive:

[(AB)C]ij = (AB)ikCkj = AilBlkCkj

= Ail(BC)lj = [A(BC)]ij

Example: To show that δij has the identity property:

(Aδ)ij =
∑
k

Aikδkj

but the sum has a contribution only when k = j, thus

(Aδ)ij = Aijδjj(no sum) = Aij

and similarly with (δA).
Matrix multiplication does not commute: AB 6= BA in

general, so groups of matrices are typically non-Abelian.
The matrix determinant satisfies det(AB) = det(A)det(B)
and so the determinant of an orthogonal matrix must be
±1. It is impossible to move continuously from a deter-
minant of 1 to a determinant of −1 so the rotation group
is in fact given by two separate pieces; the matrices with
positive determinant are rotations while those with negative
determinant are reflections.

2.4 Variational mechanics

[Covered in maths unit Mechanics 2. This is used in sections
4.2 and 5.3, both of which are the basis for later sections.]

Lagrangian and Hamiltonian mechanics will be useful to
us for a number of reasons:

1. As noted previously, the geodesic equation for the mo-
tion of particles in a gravitational field is elegantly for-
mulated as a variational principle, ie finding a curve of
extremal length.

2. Lagrangian mechanics is easily formulated in arbitrary
coordinate systems, as is general relativity.

3. A Hamiltonian formulation of the geodesic equation
will provide a quicker calculation of geodesics than the
standard formulation using the connection coefficients.
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4. Variational approaches also provide a good introduc-
tion to conserved quantities.

The idea is that free particles move in straight lines in
space-time, corresponding to minimal length; can curved
particle trajectories due to external forces be described as
minimising something more complicated than length? The
answer (you guessed) is yes.

In Lagrangian mechanics introduce arbitrary coordinates
qi describing the state of the system (for one particle moving
in 3 dimensions, i = 1..3). Fix the initial and final states
of the system, q(i),q(f) then find a stationary point of the
action, defined by

S =

∫ tf

ti

L(q, q̇, t)dt

where the Lagrangian function L is chosen so as to give
the desired dynamics, the dot indicates a time derivative,
and the stationary point is calculated over the space of all
functions q(t) satisfying the initial and final conditions.

Suppose we vary the trajectory by adding a small pertur-
bation δq vanishing at the endpoints. Then the new action
will be

S + δS =

∫ tf

ti

L(q + δq, q̇ + ˙δq, t)dt

δS =

∫ tf

ti

∑
i

(
∂L

∂qi
δqi +

∂L

∂q̇i
˙δqi)dt

Integrating the second term by parts, and noting that the
boundary terms vanish by assumption, we find

δS =

∫ tf

ti

∑
i

δqi(
∂L

∂qi
− d

dt

∂L

∂q̇i
)

This will vanish for any δqi if

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0

These equations (one for every i) are known as the Euler-
Lagrange equations.

Example: Suppose that q = (x, y, z) and

L(q, q̇, t) =
m

2
(ẋ2 + ẏ2 + ż2)− U(x, y, z)

where m is a constant and U is an arbitrary function. Then
Lagrange’s equations read

−∂U
∂x
−m d

dt
ẋ = 0

−∂U
∂y
−m d

dt
ẏ = 0

−∂U
∂z
−m d

dt
ż = 0

which is equivalent to Newton’s equations with a poten-
tial energy function U(x, y, z). Note that the Lagrangian
function is kinetic minus potential energy.

The statement that the action is invariant under small
perturbations makes no mention of any coordinates, there-
fore, kinetic minus potential energy in any coordinates gives
the correct equations of motion.

Example: Kepler problem in two dimensions. We use
polar coordinates:

x = r cos θ

y = r sin θ

and so
ẋ = ṙ cos θ − rθ̇ sin θ

ẏ = ṙ sin θ + rθ̇ cos θ

hence

L =
m

2
(ṙ2 + r2θ̇2) +

mM

r

(we have set G = 1). Lagrange’s equations are

mrθ̇2 − mM

r2
−mr̈ = 0

− d

dt
(mr2θ̇) = 0

The second equation states that a certain quantity, the an-
gular momentum, is conserved.

We note that in general, if L does not depend on qi,
∂L/∂q̇i is conserved. This allows us to reduce the number
of equations to be solved, a very important principle for
simplifying the solution to dynamical problems. We give
this quantity a new symbol:

pi = ∂L/∂q̇i

and call it the canonical momentum conjugate to qi. Thus
Lagrange’s equations can be written

ṗi =
∂L

∂qi

Note that the canonical momentum is equal to the usual
(mechanical) momentum in Cartesian coordinates, but not
otherwise. It also differs from the mechanical momentum
in the case of a magnetic field (not covered in this course).

We can further capitalise on the canonical momentum by
using it instead of the velocity q̇i, as follows: solve to obtain
q̇i = ui(qi, pi) and construct another function, called the
Hamiltonian, as

H(qi, pi, t) =
∑
i

piu
i(qi, pi)− L(qi, ui(qi, pi), t)

then we have Hamilton’s equations,

∂H/∂qi = −∂L/∂qi = −ṗi

∂H/∂pi = q̇i

dH/dt = −∂L/∂t

thus the Hamiltonian is conserved if L is independent of t.
Recall that L is kinetic minus potential energy; the Hamilto-
nian is usually kinetic plus potential energy, ie total energy.
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Example: the Hamiltonian of the 2D Kepler problem. We
find

pr =
∂L

∂ṙ
= mṙ

pθ =
∂L

∂θ̇
= mr2θ̇

which we invert (trivially)

ṙ = pr/m

θ̇ = pθ/(mr
2)

and write

H =
∑

piq̇i − L

= p2
r/m+ p2

θ/(mr
2)− 1

2m
(p2
r + p2

θ/r
2)−mM/r

=
1

2m
(p2
r + p2

θ/r
2)− mM

r

2.5 Nonrelativistic Kepler problem

[Mechanics 1 (maths) or Mechanics 207 (physics). This
is used in section 7.3, particularly the effective potential
technique.]

We have from above, two constants of motion:

L̃ = r2θ̇

is the angular momentum divided by the mass, and

Ẽ =
1

2
(ṙ2 + r2θ̇2)− M

r

is the energy divided by the mass. We can write this as

Ẽ = ṙ2/2 + Ṽ

where Ṽ = r2θ̇2/2 + Ũ = L̃2/2r2 + Ũ is the effective po-
tential. Diagram showing effective potential and qualitative
description of orbits.

A quantitative description is best obtained in terms of
ρ = 1/r; we have

ṙ =
dr

dρ

dρ

dθ

dθ

dt
= − 1

ρ2

dρ

dθ
L̃ρ2 = −L̃dρ

dθ

and hence

r̈ =
d

dθ

(
−L̃dρ

dθ

)
θ̇ = −L̃2ρ2 d

2ρ

dθ2

Substituting this into Lagrange’s equation for r̈, we get

d2ρ

dθ2
+ ρ =

M

L̃2

ρ = C cos(θ − α) +
M

L̃2

which is the polar equation for a conic section. The fact
that the planets move in ellipses with the sun as a focus
is Kepler’s first law. Orbits with positive energy (either a

large initial velocity or a repulsive inverse square force) are
parabolas or hyperbolas.

Kepler’s second law says that the planets trace out equal
areas in equal times. The area traced out by a planet is
dA/dt = r2θ̇/2, which is constant by conservation of an-
gular momentum.

We have area A = L̃T/2 = πab where a and b are the
semimajor and semiminor axes respectively. Thus

T =
2πab

L̃

The constant M/L̃2 appearing in the equation for the ellipse
is given by a/b2 so

T 2 =
4π2a2b2

Mb2/a
=

4π2a3

M

which is a statement of Kepler’s third law, the periods of
the planets are proportional to the cubes of the major axes
of the ellipses.

3 Special relativity

[This is a brief overview of the theory - consult a text on
special relativity for more details, eg Rindler, “Introduction
to special relativity”, OUP, 1991. Most texts on general
relativity have a short chapter on special relativity. I have
some notes and problems on the web from a former SR
unit.]

3.1 Minkowski space-time

The Newtonian description of the physical world, refor-
mulated by Hamilton and Lagrange, did not explain the
Michelson-Morley experiment (1880s) which showed that
light travelled at the same speed in all directions, irrespec-
tive of the motion of the Earth. Einstein resolved the prob-
lem by postulating new axioms:

1. The laws of physics are the same in all inertial refer-
ence frames

2. The speed of light is the same in all inertial reference
frames

and relaxing the previously held conviction that time is
the same for all observers. An inertial reference frame is one
in which Newton’s first law holds, ie bodies not subject to
external forces move with constant speed and direction. In
general relativity all these definitions will become “local”:
inertial observers in gravitational fields separated by large
distances will accelerate with respect to each other, but on
scales small enough to ignore tidal forces, the laws of special
relativity are assumed to hold.

In special relativity, each observer makes measurements
according to an array of rods and clocks with no relative
motion. The clocks are synchronised so that a light beam
emitted from the mid-point of a line (as determined by
the rods) reaches the ends at the same time. Observers
moving with different velocities do not agree on whether
two spatially separated events are simultaneous, ie t′ 6= t in
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general. In general relativity, an observer’s inertial reference
frame is local, ie no attempt is made to define a global
coordinate system associated with a given observer at a
particular point in space and time.

The reference frames of special relativity are related by
the Lorentz transformations, which differ from the Galilean
transformations of nonrelativistic physics (above). For a
complete derivation, please refer to a text on special relativ-
ity. We note that Einstein’s axioms imply that the Lorentz
transformations should be linear (because bodies move with
constant velocity in both frames), and should preserve the
interval (note c = 1, timelike convention)

∆s2 = ∆t2 −∆x2 −∆y2 −∆z2

for example, ∆s = 0 characterises the motion of light, in
any inertial reference frame. In general relativity, we still
have an invariant spacetime interval, but we demand that
it be expressed in local, differential form,

ds2 = dt2 − dx2 − dy2 − dz2

as we have not defined large distances in curved space-time.
We define an event as a single point in space-time. The

interval ∆s2 now splits space-time into three regions, the
past, the future, and elsewhere (diagram). An event can
only cause effects in its future light cone, and is only af-
fected by events in its past light cone. Intervals in the
future or past are called timelike, elsewhere are called space-
like, and on the light cone itself are called lightlike, or null.
We continue to use a topology (ie limits, continuity, open
sets, etc) based on the usual topology of IR4, quite distinct
from the interval. A world line is the trajectory of a particle
in space-time, given by a timelike (null) curve for massive
(massless) particles.

As in the Galilean case we can write the interval in terms
of a metric,

∆s2 = gµν∆xµ∆xν

where gµν = diag(1,−1,−1,−1), greek letters take values
0(time),1,2,3 and we sum over repeated indices as usual.
We solve for the condition that the interval is preserved:

xα
′

= Λα
′

β x
β

∆s′
2

= gµ′ν′Λµ
′

α ∆xαΛν
′

β ∆xβ

so that the interval is preserved if the matrix equation
ΛT gΛ = g is satisfied. This means, as in the Galilean
case, det Λ = ±1.

For the case of a 2× 2 matrix

Λ =

(
a b
c d

)
the above equation leads to a2−c2 = d2−b2 = 1, ab−cd =
0. If we write b = ± sinh η and c = ± sinhχ then the
equations lead to a = ± coshχ, d = ± cosh η, χ = η, and
an even number of negative signs among all terms. One
such possibility is

Λ =

(
cosh η − sinh η
− sinh η cosh η

)

which leads to

x′ = cosh η(x− t tanh η)

from which we interpret tanh η as the relative velocity v
in standard configuration, and so sinh η = v/

√
1− v2 and

cosh η = 1/
√

1− v2 = γ ≥ 1. If there is more than one
velocity (hence ambiguity) we might use function notation,
ie γ(v). We thus arrive at the Lorentz transformations in
standard configuration (recall: origins coincide at time zero,
O’ observer moving with speed v in x-direction as observed
by O).

t′ = γ(t− vx)

x′ = γ(x− vt)

y′ = y

z′ = z

The parameter η is called rapidity, and is the space-time
equivalent of the rotation angle. In other words, we should
understand Lorentz transformations, which relate observers
in constant relative motion, as rotations in a four dimen-
sional space-time, which preserve space-time “length” given
by the interval.

The set of suitable transformations Λ forms a group,
which is in four connected pieces: det Λ = −1 gives “im-
proper” Lorentz transformations; Λ0′

0 < 0 interchanges the
future and the past. Unless otherwise specified, we will re-
strict ourselves to the proper orthochronous transformations
with det Λ = 1 and Λ0′

0 > 0.

3.2 Applications of the Lorentz transfor-
mations

We understand from the above derivation that the Lorentz
transformations are a kind of rotation in four dimensional
space-time; but what do they look like in our previous three
dimensional conception of reality? We look at some exam-
ples.

Example: Two events are simultaneous and a distance
L apart along the x axis in a reference frame O. What is
the time interval between them in O’ corresponding to an
observer moving with speed v in the x direction?

Solution: The events are at (t, x, y, z) equal to (0, 0, 0, 0)
and (0, L, 0, 0) The situation is in standard configuration,
substitute to get t′ = γ(t− vx) = −vL/

√
1− v2. Accord-

ing to the moving observer the right most event occurred
first. Sketch on a space-time diagram.

Example: A at x = 0 sends a message to B at x = L at
some speed u faster than light. Show that in some reference
frame the two events are simultaneous, ie any such message
would violate causality.

Solution: In the original frame we have A at (0, 0, 0, 0)
and B at (L/u, L, 0, 0). An observer with speed v along
the x axis observes B at (γL(1/u − v), γL(1 − v/u), 0, 0)
where γ = 1/

√
1− v2. The events are simultaneous if the

time at B is the same as A (ie zero), hence 1/u − v = 0,
v = 1/u which is possible since u > 1.
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Example: Time dilation: Show that a clock moving with
constant velocity runs slowly by a factor γ.

Solution: In the observer’s frame, the clock moves with
speed v in the x direction, ie its worldline is given by x = vt,
ie a typical event is (t, vt, 0, 0). In the clock’s frame O’ the
coordinates of this event are (t(1−v2)/

√
1− v2, 0, 0, 0), ie

t′ = t
√

1− v2 and time measured by the clock is reduced by
a factor 1/γ. Remark: This is routinely observed in particle
physics experiments, in which moving unstable particles are
observed to live longer in our reference frame.

Example: The twin paradox: Alice travels 4 light years
at 0.8c and then returns home at the same speed. Her
twin Bob remains at home. Bob says that because Alice
has moved with respect to him she will be younger than
him when she returns; Alice uses the same argument to say
he will be younger. What is their age difference when she
returns, and in what direction?

Solution: Alice is not in an inertial frame since she
changes her direction of motion. Bob is in an inertial frame,
and has the correct explanation. The return travel time is
2 × 4/0.8 = 10 years, γ = 1/

√
1− v2 = 5/3, thus Alice

has aged 6 years and Bob 10 years. We get this result in
any inertial frame, for example in Alice’s outgoing frame
Bob is always moving, but Alice is moving really close to
the speed of light on her return, and the answers are the
same. Sketch.

Example: Velocity addition: O’ moves with speed v rel-
ative to O, and O” moves with speed w relative to O’, how
fast does O” move with respect to O? All velocities are in
the positive x direction.

Solution: O” has world line x′ = wt′. We invert the
Lorentz transformations (ie change the sign of v) to get

x = γ(x′ + vt′) = γ(w + v)t′

t = γ(t′ + vx′) = γ(1 + vw)t′

thus the required speed is

x

t
=

w + v

1 + wv

which you may remember as the addition formula for tanh,
ie it is rapidity not velocity that adds, at least in one dimen-
sion. We will do the multidimensional version in the next
section. Note also that any velocity added to 1 (the speed
of light) is 1: light moves at the same speed in all inertial
frames.

Example: Length contraction: Show that a moving ob-
ject contracts by a factor γ in the direction of motion (only),
compared to its own reference frame.

Solution: Consider a rod of length L in its own reference
frame, ie “proper length”. Its ends are at x′ = 0 and
x′ = L. We have

x′ = γ(x− vt)

thus in the lab frame the ends are at

x = vt

x = vt+ L/γ

ie a shortening. Note that in the lab frame we have to
compare at fixed t; if we had used t′ we would have obtained
the wrong answer. In the y and z directions there is no
effect, since y′ = y and z′ = z.

Example: A cube of length L is located a large distance
along the y axis and moves along the x axis with speed v.
How does it appear from the origin?

Solution: In the lab frame it is contracted in the x direc-
tion by a factor γ. However we also need to take account
of the different travel time of light from the further to the
nearer side, a time L. In this time the cube has moved a dis-
tance Lv. Thus we see the near face with length L

√
1− v2

and the rear face with length Lv, ie in total longer than
before!

3.3 Scalars and vectors in special relativ-
ity

Now we introduce the concept of a (Lorentz) scalar: this
is any quantity which is the same in all inertial frames of
reference. Examples are m (the “rest” mass of a particle)
and ds2. Clearly the time registered by a moving clock (its
proper time) is also a Lorentz scalar. This is simply

dτ = dt in its reference frame

= ds in its reference frame

= ds in all frames since a scalar

In a general reference frame we would compute a proper
time derivative as

d

dτ
=
dt

dτ

d

dt
= γ

d

dt

Here, we computed dt/dτ = (ds2/dt2)−1/2 = (1 −
u2)−1/2 = γ. Note that this is the (special relativistic)
time dilation effect: moving clocks run slowly by a factor
γ.

We define a new object, called the 4-velocity as

uµ =
d

dτ
xµ = (γ, γu)

This has the same transformation properties as the 4-
position xµ due to the invariance of the proper time:

uα
′

=
d

dτ
xα

′
=

d

dτ
Λα

′

β x
β = Λα

′

β

d

dτ
xβ = Λα

′

β u
β

In full, this reads (for two frames in standard configuration):

γ(u′) = γ(v)(γ(u)− vγ(u)ux)

γ(u′)u′x = γ(v)(γ(u)ux − vγ(u))

γ(u′)u′y = γ(u)uy

γ(u′)u′z = γ(u)uz

Dividing the last three equations by the first, we find

u′x =
ux − v
1− uxv
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u′y =
uy

γ(v)(1− uxv)

u′z =
uz

γ(v)(1− uxv)

which is what you would obtain by differentiating the
Lorentz transformations, and reduces to the nonrelativistic
u′x = ux − v; we already did the x component above.

Example: Stellar aberration: A star is located at a large
distance and angle θ from the x axis, in the sun’s reference
frame. The Earth in its motion around the sun is momen-
tarily moving in the x direction with speed v. At what angle
is the star observed from the Earth?

Solution: The photon has velocity ux = − cos θ, uy =
− sin θ, thus we have

u′x =
− cos θ − v
1 + v cos θ

u′y =
− sin θ

γ(v)(1 + v cos θ)

θ′ = arctan

(
u′y
u′x

)
= arctan

(
sin θ

γ(v)(cos θ − v)

)
If we put in real numbers we find that v = 10−4 (almost
exactly). Thus the aberration for θ = π/2 is roughly this in
radians, ie about 20 arc seconds, well within the range of
small telescopes.

Definition: a 4-vector is a set of four components that
transforms the same as xµ under Lorentz transformations.
The 4-velocity is thus a 4-vector. The advantage of using
4-vectors is that the inner product, defined using the metric,

~a ·~b = a0b0 − a1b1 − a2b2 − a3b3 = gµνa
µbν

is a scalar. Proof:

gµ′ν′aµ
′
bν

′
= gµ′ν′Λµ

′

α a
αΛν

′

β b
β = gαβa

αbβ

since ΛT gΛ = g. Thus the scalar ~u · ~u is the same in all
inertial reference frames. This quantity is

~u · ~u = γ2 − γ2u2 = 1

so this doesn’t tell us anything new, except that ~u is time-
like.

Remark on dimensions: it is most natural to give the
components of 4 − vectors the same dimension, so that,
if we want to reintroduce c at some point, we would write
~u = (γc, γu).

The 4-velocity of an observer in their own reference frame
is (1, 0, 0, 0), and this fact can be used to great advantage.
For example, the γ factor of particle A in particle B’s ref-
erence frame is simply ~uB · ~uA = (1, 0, 0, 0) · (γ, γu) in B’s
reference frame. But this is a scalar, so it is valid in all
reference frames.

Example: Particle A moves in the x direction with speed
3/5 (of the speed of light), and particle B moves in the
direction of the line x = y with speed 4/5. What is their
relative velocity?

~uA = (5/4, 3/4, 0, 0)

~uB = (5/3, 2
√

2/3, 2
√

2/3, 0)

γ = ~uA · ~uB = 25/12− 1/
√

2

v =
√

1− γ−2 ≈ 0.687

We can differentiate again with respect to proper time,
obtaining the 4-acceleration:

~a =
d

dτ
~u

aµ =
duµ

dτ
= (γ

dγ

dt
,uγ

dγ

dt
+ γ2a)

In the instantaneous rest frame of the particle, this is simply
(0,a). The “proper acceleration” is thus

α =
√
−~a · ~a

and we note that ~a is spacelike. Since ~u · ~u is constant, we
also have

~u · ~a = 0

The mass of a particle measured in its reference frame
(also called “rest mass”) is also a scalar, and will be de-
noted simply m (some authors use m0). By analogy with
nonrelativistic mechanics, we construct the 4-momentum

~p = m~u = (γm, γmu)

which we interpret as (E,p). Note that p reduces to the
nonrelativistic momentum as γ → 1. For energy we need
to expand in a power series:

E = γm = m+mu2/2 + 3mu4/8 + . . .

The first term is mc2 (in usual units), and is called the “rest
energy”. It is a constant, so it is ignored in nonrelativistic
mechanics. The second term is the nonrelativistic kinetic
energy, and the remaining terms are relativistic corrections
to the kinetic energy. In high energy physics it is possible to
change the number of particles, and in this case conserva-
tion of energy implies that the first term needs to be taken
into account.

We note the following relations:

~p · ~p = m2

E2 = p2 +m2

u = p/E

The first holds in the particle’s frame, but as the scalar
product does not depend on the reference frame, it holds
in all frames, and leads to the second relation.

The momentum and energy both diverge as the speed
approaches that of light, making it impossible for massive
particles to reach or exceed this value. However, the equa-
tions above make perfect sense if m = 0, u = c and p = E.
Such particles exist, and always travel at the speed of light.
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Examples are photons (light particles) and gravitons (quan-
tised gravity waves). For these particles, the 4-velocity is
infinite, but the 4-momentum is finite.

Example: a proton strikes a stationary target, and the
following reaction takes place: p+ p→ p+ p+ p+ p̄. The
p̄ is an antiproton, with the same mass as a proton. What
is the minimum kinetic energy of the incoming proton? We
write down conservation of 4-momentum:

~p1 + ~p2 = ~pf

then square both sides,

m2 + 2m2γ +m2 = (4m)2

since the right hand side has four stationary particles in the
minimum energy case. Thus

γ = 7

so the total energy of the incoming proton is 7m and its
kinetic energy is 6m.

3.4 Vectors and covectors: general the-
ory

[Covered in maths units Linear Algebra 2, differentiable
manifolds; the latter is also relevant to the next two sec-
tions]

We now codify this logic more formally, and extend it
to tensors. We note that a 4-vector ~V is defined by its
transformation properties,

V α
′

= Λα
′

β V
β

where Λ is any Lorentz transformation. It is easy to show
that the set of 4-vectors satisfy the axioms for a vector
space V.

In particular, a vector space has a set of objects called
vectors, and a set of scalars (here real numbers). The vec-
tors have a binary operation (“addition”), under which it
is an abelian group (see section 2.3) with the zero vector
as the identify element. There is an operation in which a
scalar is multiplied by a vector to produce a vector, that
satisfies (for a, b ∈ IR, ~V , ~W ∈ V):

a(~V + ~W ) = a~V + a ~W

(a+ b)~V = a~V + b~V

(ab)~V = a(b~V )

1(~V ) = ~V

A linearly independent set of vectors {~Vi} is one in which
the equation ∑

i

ai ~Vi = 0

has only the solution a1 = a2 = . . . = 0.
A spanning set of vectors {~Vi} is one in which for any vec-

tor ~W ∈ V there exist real numbers ai called components
of ~W with respect to {~Vi}, such that

~W =
∑
i

ai~Vi

A basis is a linearly independent spanning set, and a fun-
damental result of linear algebra is that if there is a finite
basis, all other bases have the same number of elements,
called the dimension of the vector space.

The vector space used in special relativity is four dimen-
sional, that is, we can find a basis ~eα (α = 0, 1, 2, 3). In

other words, for any vector ~V we write

~V = V α~eα

where V α are the components of the vector ~V with respect
to the basis {~eα}. Any inertial observer defines a basis
which is simply given by ~e0 = (1, 0, 0, 0), ~e1 = (0, 1, 0, 0)
etc. in his/her own reference frame. The above transfor-
mation thus defines a transformation of the basis:

~V = V α
′
~eα′ = Λα

′

β V
β~eα′ = V β~eβ

if we have
~eβ = Λα

′

β ~eα′

which is easy to remember, since we must match the indices.
Specifically, each term has the same index/indices in the
same position (a lower β in the above equation); other
indices come in up-down pairs and are summed using the
Einstein Summation Convention.

Associated with the vector space V is a dual space V∗,
defined as follows: Let ρ̃ : V → IR be a linear scalar valued
function on V, that is, ρ̃(~V ) is a scalar, and

ρ̃(a~U + b~V ) = aρ̃(~U) + bρ̃(~V )

It is clear that the set of such linear functions also forms a
vector space, with the obvious addition and multiplication
by a scalar,

(aρ̃+ bσ̃)(~V ) = aρ̃(~V ) + bσ̃(~V )

Due to linearity, the action of ρ̃ on any vector is completely
determined by its action on the basis vectors,

ρ̃(~V ) = V αρ̃(~eα) = V αρα

where ρα as defined above is the component of ρ with re-
spect to a dual basis ω̃α, if we have

ρα = ρ̃(~eα) = ρβω̃
β(~eα)

that is,
ω̃β(~eα) = δβα

We note that everything is symmetrical between the vectors
and the covectors, hence the name “dual vector space”.
The transformation of covectors is again straightforwardly
determined from our above definitions and the fact that a
scalar is invariant:

V α
′
ρα′ = Λα

′

β V
βρα′ = V βρβ

if we have
ρβ = Λα

′

β ρα′
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and similarly

ρ̃ = ραω̃
α = Λβ

′

α ρβ′ ω̃α = ρβ′ ω̃β
′

if we have

ω̃β
′

= Λβ
′

α ω̃
α

In both cases we need just match the indices. We note
that everything is symmetrical between the vectors and the
covectors, hence the name “dual vector space”. This is
completely independent of the scalar product, which we
have not yet introduced here. Nomenclature: vectors are
also called “contravariant vectors” and upper indices “con-
travariant components”; covectors are also called 1-forms
(see later for the definition of 2-forms etc.) or “covariant
vectors” with “covariant components”. We will not use the
terms contravariant and covariant in this course.

One place you may have already seen a dual vector space
is quantum mechanics (bra and ket notation); our work
is simpler since we have only a finite dimensional space,
and no complex conjugation needed. There is also a geo-
metrical picture, in which vectors are arrows with a point
(V 0, V 1, V 2, V 3), and covectors are sets of parallel planes

ρ0x
0+ρ1x

1+ρ2x
2+ρ3x

3 = n. The action of ρ̃(~V ) = ~V (ρ̃)
gives the number of planes pierced by the vector.

3.5 Tensors: metric and Levi-Civita

Tensors are simply linear, scalar valued functions of several
vectors, and-or covectors. Let us start with a few examples.

The metric tensor g is a linear function of two vectors, ie

g(~U, ~V ) = ~U · ~V

It has components

gαβ = g(~eα, ~eβ) = ~eα · ~eβ

which are simply diag(1,−1,−1,−1) if the basis vectors
correspond to an inertial observer. In general we say an
orthonormal basis is one in which the basis vectors are nor-
malised and mutually orthogonal, so the metric is diagonal
with diagonal entries ±1. The above equation leads to the
relation

~U · ~V = gαβU
αV β

We can also expand the metric tensor in terms of a basis,
this time of a 16 dimensional vector space V∗ ⊗ V∗,

g = gαβω̃
α ⊗ ω̃β

where the outer product is defined by

(ρ̃⊗ σ̃)(~U, ~V ) = ρ̃(~U)σ̃(~V )

We obtain the transformation properties as before, to get
the result (again match indices...)

gα′β′ = Λγα′Λ
δ
β′gγδ

The metric is a

(
0
2

)
tensor, so described because of the

placement of its indices. It is also symmetric, which may
be expressed as either

g(~U, ~V ) = g(~V , ~U)

or
gαβ = gβα

This property does not depend on the choice of basis. The
symmetry implies that the metric has only 10 independent
components (in 4 dimensions).

The metric can also be used to convert vectors to cov-
ectors and vice versa, or in component language, raise and
lower indices. For any vector ~V we can define a covector Ṽ
by

Ṽ (~U) = g(~V , ~U)

with components
Vα = gαβV

β

How can we reverse this operation? We need a

(
2
0

)
tensor (also denoted g) so that

~V (ρ̃) = g(Ṽ , ρ̃)

that is,
V α = gαβVβ

Combining this with the other equation we find

Vα = gαβg
βγVγ

which, if true for all vectors ~V implies that gβγ is the ma-
trix inverse of gαβ . In the basis corresponding to an inertial
observer, this is still diag(1,−1,−1,−1). In the geomet-
rical interpretation, raising or lowering indices corresponds
to finding a set of parallel lines which is perpendicular to a
particular vector.

What happens when we raise one of the indices of the
metric itself?

gαβ = gαγgγβ = δαβ

since the upper and lower forms of g are matrix inverses.
Example (2002 Exam): Given a two dimensional metric

gαβ =

(
1 2
2 3

)
and a 1-form Pα = (4, 5) compute the components gαβ

and Pα.
The metric with upper components is simply the matrix

inverse:

gαβ =

(
−3 2
2 −1

)
The index of the 1-form is raised using the metric:

Pα = gαβPβ

That is, P 1 = g11P1 + g12P2 = −3 × 4 + 2 × 5 = −2,
P 2 = g21P1 + g22P2 = 2× 4− 1× 5 = 3.
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Example: Calculate all these quantities if ~e1′ = ~e1 + ~e2

~e2′ = −~e1 + 2~e2, and ~V = 2~e1 − ~e2.
We have ~eα′ = Λβα′~eβ so

Λβα′ =

(
1 −1
1 2

)
noting that the upper index gives the row for the matrix
and the lower index gives the column.

The inverse matrix is

Λα
′

β =
1

3

(
2 1
−1 1

)
which allows us to calculate ω̃α

′
= Λα

′

β ω̃
β :

ω̃1′
=

2

3
ω̃1 +

1

3
ω̃2

ω̃2′
= −1

3
ω̃1 +

1

3
ω̃2

Now we have V α = (2,−1) so we can use V α
′

= Λα
′

β V
β

to find V α
′

= (1,−1). Thus ~V = ~e1′ − ~e2′ .
The metric is gα′β′ = ~eα′ · ~eβ′ so we find

gα′β′ =

(
2 1
1 5

)
The inverse metric is the matrix inverse of this:

gα
′β′

=
1

9

(
5 −1
−1 2

)
The corresponding 1-form Ṽ has components Vα =

(2,−1) since the metric is diagonal in unprimed coordi-
nates. We use Vα′ = gα′β′V β

′
to obtain Vα′ = (1,−4).

We check that

Ṽ = ω̃1′
− 4ω̃2′

=
2

3
ω̃1 +

1

3
ω̃2 +

4

3
ω̃1 − 4

3
ω̃2 = 2ω̃1 − ω̃2

We also check raising the indices again,

V α
′

= gα
′β′
Vβ′

so

V 1′
=

5

9
1 + (−1

9
)(−4) = 1

V 2′
=
−1

9
1 +

2

9
(−4) = −1

As a second example, let us consider the cross product
of vectors in three dimensions (briefly mentioned before).
Like the scalar product, it is linear, so it is described by a

tensor. This is a three index (specifically

(
1
2

)
tensor,

(a× b)(ρ̃) = ε(a,b, ρ̃)

or in components

(a× b)k = ε k
ij a

ibj

with respect to the basis of the 27 dimensional space V∗ ⊗
V∗ ⊗ V

ε = ε k
ij ω̃

i ⊗ ω̃j ⊗ ek

The transformation properties are

ε k′

i′j′ = Λli′Λ
m
j′ Λ

k′

n ε
n

lm

and we know from the properties of the cross product that
this tensor is antisymmetric in its first two indices,

ε(a,b, ρ̃) = −ε(b,a, ρ̃)

ε k
ij = −ε k

ji

however no symmetry can be defined with respect to the
third index, as it is of a different type.

A closely related tensor is obtained when we discuss the
triple product of vectors a × b · c which gives the volume
of a parallelepiped, alternatively the determinant of a 3× 3
matrix. We have

a× b · c = gklε
k

ij a
ibjcl = εijla

ibjcl

so the relevant tensor is just the same, with a lowered index.
We know that the volume does not depend on a cyclic
permutation of the vectors (and hence the indices), and
changes sign when the orientation reverses from right to
left handed. This means we have

εijk =

 1 even permutation of 123
−1 odd permutation of 123
0 otherwise

in an orthonormal right handed basis. This ε is completely
antisymmetric in each of its indices when they are lowered.

Example: calculate ε j
ij This is

gjkεijk = gkjεijk = gjkεikj = −gjkεijk

using the symmetry/antisymmetry properties of g and ε,
and relabeling the indices in the middle step. Since this is
equal to the negative of itself, it must be zero.

We can construct a similar completely antisymmetric ten-
sor in four dimensions, called the Levi-Civita tensor, with

εαβγδ =

 1 even permutation of 0123
−1 odd permutation of 0123
0 otherwise

in a right handed orthochronous orthonormal basis. This
tensor will be useful in defining a 4-dimensional volume ele-
ment corresponding to a hyperparallelepiped obtained from
four vectors,

εαβγδa
αbβcγdδ

and also a 3-dimensional volume form

Σα = εαβγδa
βbγcδ

which gives a 1-form (set of parallel planes) aligned to
three 4-vectors of magnitude equal to the volume of the
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3-dimensional parallelpiped. The flux of a vector ~v through
the volume element is then

Σαv
α

Symmetry and antisymmetry: For any

(
0
2

)
tensor Tαβ

we can decompose it into a symmetric part T(αβ) and an
antisymmetric part T[αβ], as follows:

Tαβ = T(αβ) + T[αβ]

T(αβ) =
1

2
(Tαβ + Tβα)

T[αβ] =
1

2
(Tαβ − Tβα)

and note that the 16 independent components have been
split into 10 (the symmetric part) plus 6 (the antisymmet-

ric part). This works analagously for

(
2
0

)
tensors. We

can define symmetry and antisymmetry over more than two
indices by summing over all permutations (with negative
signs for odd permutations in the case of antisymmetry),
but there is no simple decomposition in this case.

Example: antisymmetrise a

(
0
3

)
tensor:

T[αβγ] =
1

6
(Tαβγ − Tαγβ − Tβαγ + Tβγα + Tγαβ − Tγβα)

A purely antisymmetric

(
0
p

)
tensor is called a p-form.

An antisymmetric tensor product between p-forms is called
the wedge product, a generalisation of the cross product of
vectors in 3D.

(ρ ∧ σ)a1...apb1...bq =
(p+ q)!

p!q!
ρ[a1...apσb1...bq ]

In some ways the calculus of forms is simpler than general
tensors, but we will not need them in any essential way in
this course.

3.6 Tensors: general theory

Tensors, which describe any linear relation between vectors,
have many applications in physics. One example you may
have seen in the inertia tensor Iij in rigid body dynamics,
that relates the angular momentum and angular velocity,

Li = Iijω
j

this is also a symmetric tensor. Unlike the metric and an-
tisymmetric tensors, this tensor has components which are
generally not 0, 1, or −1 in an orthonormal basis.

We can now summarise a number of properties of tensors:

An

(
m
n

)
tensor T , defined as a multilinear real valued

function acting on m covectors and n vectors, transforms
as

Tα
′
1α

′
2...α

′
m

β′
1β

′
2...β

′
n

= Λα
′
1

γ1 Λα
′
2

γ2 . . .Λα
′
m

γm Λδ1β′
1
Λδ2β′

2
. . .Λδnβ′

n
T γ1γ2...γmδ1δ2...δn

So far we have seen a number of operations on tensors
which generate other tensors (proof easy): If A and B are(
m
n

)
tensors and C is a

(
k
l

)
tensor, we have

• Multiplication by a scalar: cA is a

(
m
n

)
tensor, for

example (cA)αβγ = cAαβγ .

• Addition: A+B is a

(
m
n

)
tensor, for example (A+

B)αβγ = Aαβγ +Bαβγ .

• Contraction of indices: trA is a

(
m− 1
n− 1

)
tensor.

Note that in general there are many ways to calculate
a trace, for example a tensor Aαβγ has two traces given

by Aαβα and Aαββ ; the contraction must be over one
upper and one lower index.

• Transpose: AT is a

(
m
n

)
tensor. As with contrac-

tion, there are many way to take a transpose, but the
transposed indices must both be up, or both be down;
Aαβγδε has 12 permutations (including the original), for

example Aαγβεδ .

• Outer product: A ⊗ C is a

(
m+ k
n+ l

)
tensor. For

example (A⊗ C)αβ δ
γ ε = AαβγC

δ
ε.

• Division: If A⊗D = C then D is a

(
k −m
l − n

)
tensor.

These tensor operations form the basis for the Einstein
Summation Convention rules introduced previously; if any
equation is written using these rules, and all but one ob-
ject in the equation are tensors of the specified types, the
remaining quantity must also be a tensor.

These properties are straightforward to prove, for exam-
ple addition:

Aα
′β′

+Bα
′β′

= Λα
′

γ Λβ
′

δ A
γδ + Λα

′

γ Λβ
′

δ B
γδ

= Λα
′

γ Λβ
′

δ (Aαβ +Bαβ)

so the sum is a tensor. But we cannot add tensors of dif-
ferent type, for example

Aα
′
+Bα′ = Λα

′

β A
β + Λβα′Bβ

does not transform as any type of tensor.

Example (2002 exam): Tαβ is a

(
1
1

)
tensor. Show

that the trace Tµµ is a scalar.
By the definition of a tensor, the components of T trans-

form as
Tα

′

β′ = Λα
′

γ Λδβ′T
γ
δ

Setting β′ = α′ and summing, we have

Tα
′

α′ = Λα
′

γ Λδα′T
γ
δ = δδγT

γ
δ = T γγ
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The second step is the statement that Λα
′

γ and Λδα′ are
matrix inverses, and the third step is simply multiplication
by the identity matrix. Thus the trace is invariant under
Lorentz transformation, and hence a scalar.

Definition: a tensor field is a tensor defined at each point
in space(-time), ie T : IRd → Vm ⊗ V∗n. Finally, we can
differentiate a tensor field with respect to x. Let us take
this in detail. Consider a scalar field φ(~x), that is, a scalar
that depends on position.

∂φ

∂xα′ =
∂xβ

∂xα′

∂φ

∂xβ

however we have (for rotations and Lorentz transforma-
tions)

∂xβ

∂xα′ = Λβα′

so ∂φ
∂xβ

is a

(
0
1

)
tensor, ie a 1-form. For this reason

we use the notation φ,α for ∂φ/∂xα. It is easy to see
that the same logic applies to derivatives of more general
tensors. Note that here we are assuming that the basis
is derived from an inertial frame of reference; in another
basis φ,α will not be the derivative of φ with respect to
anything in particular. Note also that the equality of the
transformation matrix with the partial derivative is more
general than rotations or Lorentz transformations, and we
will use it for general coordinate transformations when we
talk about curvature.

We will use three derivative operators in GR, ∂̃ corre-
sponds to the above partial derivative, d̃ is an antisymmetric
derivative for use with forms, and ∇̃ is a “covariant deriva-
tive” which will generate valid tensor equations. All three
are the same as applied to scalar fields, and ∂̃=∇̃ when the
bases are constant (as we assume in this section).

Example: write the multidimensional Taylor series of a
function f using tensor notation.

f(xα + aα) = f(xα) + aαf,α(xα) +
1

2
aαaβf,αβ(xα)

+
1

6
aαaβaγf,αβγ(xα) + . . .

This takes care of all the combinatoric factors, since for
example, there are two terms for each α 6= β, but a single
term when α = β in the second derivative term.

3.7 Continua in special relativity

We need to find the relativistic equivalent to the mass den-
sity ρ which generated the gravitational field in nonrela-
tivistic gravity. We consider a continuous medium, and
measure properties in its Momentarily Comoving Reference
Frame (MCRF), that is, in the reference frame of an ob-
server who is moving at the same velocity as the medium
at a particular time, and sees zero net flux of particles. In
particular, we are interested in the densities of number of
particles, energy-momentum and possibly other conserved
quantities.

The number of particles passing through a 3-volume Σ̃
is the product of the volume and the “density” however
described in special relativity; we thus derive

N = ΣµJ
µ

where Jµ is a vector, the “particle current” or “number
flux” density. In the MCRF, the number of particles passing
through the surface Σ̃ = d̃t = (1, 0, 0, 0) is simply the
proper density n, so Jµ = (n, 0, 0, 0) = nuµ in this frame
(where ~u is the MCRF 4-velocity). However this is a tensor
equation, thus

Jµ = nuµ = n(γ, γu)

in all reference frames. The γ factors can be understood as
the SR length contraction, and density times velocity gives
the flux.

Conservation of particles implies that the total flux of
particles through a hypercube of size δ is zero. The amount
through the d̃t surfaces is

δ3J0|t+δ/2 − δ3J0|t−δ/2 = j0
,0δ

4

and similarly for the other surfaces. Finally we obtain

Jµ,µ = 0

or in 3D notation,

∂

∂t
(nγ) +∇ · (nγu) = 0

This is known as the continuity equation. Conservation
equations are always expressed in SR as the vanishing of a
4-divergence.

We could also express conservation as a global equation,
dN/dt = 0 where N =

∫
nd3x; this is equivalent to the

above equation (use the divergence theorem):

dN

dt
=

∫
D

∂J0

∂t
d3x = −

∫
D

∇ · jd3x = −
∫
∂D

j · ds = 0

... but of less use in SR as it is frame-dependent.
In a similar manner, the amount of energy-momentum

pµ passing through the volume is also linear; we have

pµ = ΣνT
µν

where T is called the stress-energy tensor. The elements
of this tensor are: T 00 is energy density, T 0i is energy flux,
T i0 is momentum density and T ij is momentum flux, also
called the (NR) stress tensor; in simple cases it is pδij where
p is pressure.

We will now argue that T is a symmetric tensor. Energy
flux is energy density multiplied by its speed, but momen-
tum is energy times speed (ie u = p/E), so this is momen-
tum density. For the spatial components, we note that an
element of size ε exerts a force F i(j) = T ijε2 on the ele-
ment in direction j and minus this in the opposite direction.
Diagram. This leads to a torque in the z direction of

τz =
∑

x× F = (T yx − T xy)ε3
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however the moment of inertia cMR2 where c is a constant
is proportional to ε5, so this torque leads to infinite angular
acceleration α = τ/I ∼ ε−2 unless

T xy = T yx

Thus T is symmetric.
Conservation of each component of the energy-

momentum implies, using the same argument as for number
of particles, that

Tµν,ν = 0

Example: A rod with energy density ρ and compressive
stress F and cross-sectional area A along its length in the
x direction moves with velocity u in the y direction.

In its rest frame the stress energy tensor has only nonzero
components T 00 = ρ and T 11 = F/A. We can apply
a Lorentz transformation to move back the the laboratory
frame:

Tµ
′ν′

= Λµ
′

α Λν
′

β T
αβ

or in matrix notation

T ′ = ΛTΛT = γ 0 γu
0 1 0
γu 0 γ

 ρ 0 0
0 F/A 0
0 0 0

 γ 0 γu
0 1 0
γu 0 γ


=

 ργ2 0 ργ2u
0 F/A 0

ργ2u 0 ργ2u2


omitting the z components. So the energy density appears
as an energy flux (no surprise) and a pressure (surprise).

Example: A perfect fluid (no viscosity or heat con-
duction). The stress-energy in the MCRF is T =
diag(ρ, p, p, p) where ρ is the energy density and p is the
pressure. We have T 0i = 0 since the heat conduction is
zero, and the spatial components must be a multiple of
the identity since this is the only 3-tensor which is diagonal
(no shear stress) in all orientations. We can write this in a
relativistically invariant manner as

Tµν = (ρ+ p)uµuν − pgµν

=

(
γ2ρ+ γ2u2p γ2u(ρ+ p)
γ2u(ρ+ p) γ2u⊗ u(ρ+ p) + pI

)
where I is the identity matrix; this expression is valid in all
frames. A dust in relativity means a perfect fluid with zero
pressure.

Let us write down the conservation of energy-momentum
explicitly:

Tµν,ν = 0

The µ = 0 equation reads

∂

∂t
(γ2ρ+ γ2u2p) +∇ · (γ2(ρ+ p)u) = 0

which becomes in the NR limit (γ → 1, ρc2 � p and ρ
dominated by the mass density)

∂ρ

∂t
+∇ · (ρu) = 0

which is the NR continuity equation. The µ = i equation
reads

∂

∂t
(γ2(ρ+ p)u) +∇ · (γ2(ρ+ p)u⊗ u + pI) = 0

which in the NR limit becomes

∂

∂t
(ρu) +∇ · (ρu⊗ u + pI) = 0

that is,

∂

∂t
(ρu) + ρ(u · ∇)(u) + u∇ · (ρu) +∇p = 0

Applying the continuity equation to two derivatives involv-
ing ρ, we obtain

(
∂

∂t
+ u · ∇)u +

1

ρ
∇p = 0

This is the Euler equation, ie the Navier-Stokes equation
for a fluid with the viscosity set to zero.

Remarks on the use of the stress-energy tensor in general
relativity: The source term for the field equations (deter-
mining the curvature from the matter distribution) cannot
be the rest mass (a scalar) because this is not conserved:
an electron and a positron can annihilate (although Einstein
was not aware of this process at the time). It should involve
energy (which is conserved), however the energy density is
just T 00 so a relativistically invariant theory must involve
the whole of the stress-energy tensor.

We thus conclude that pressure also contributes to grav-
ity. The reason we so not normally observe this is that
p� ρc2 except at very high density (eg a neutron star) or
very high temperature (relativistic particles). This effect,
however means that there is a limit to the mass of any sta-
ble object: the larger the pressure at the centre, the larger
the gravitational field, etc. so collapse is inevitable.

4 The metric

4.1 Curvilinear coordinates

In our previous discussion of vectors and tensors, we as-
sumed that it was possible to construct a basis which does
not depend on position. However, our qualitative descrip-
tion of curvature indicated that it is not possible to define
vectors (for example basis vectors) globally, so we must
make do with a local definition. We can do this without
invoking curvature, by looking at arbitrary coordinate sys-
tems.

Consider an arbitrary coordinate system. We demand
only that the coordinates cover the space in a (sufficiently)
differentiable fashion, and be one-to-one.

For example, polar coordinates x = r cos θ, y = r sin θ
are well behaved except at the origin: x = 0, y = 0 corre-
sponds to an infinite number of values of θ. The origin of
polar coordinates is called a coordinate singularity, which
describes a pathology of the coordinate system but not the
underlying space.

Page 18. c©University of Bristol 2007. This material is copyright of the University unless explicitly stated otherwise. It is
provided exclusively for educational purposes at the University and is to be downloaded or copied for your private study only.



4.2 Length, angle and volume 4 THE METRIC

We will use xα to denote the coordinates, for example
x1 = r and x2 = θ.

A scalar field φ(xα) has a gradient in terms of the new
coordinates

φ,α =
∂φ

∂xα

If we want to discuss this with respect to another coordinate
system, the components are related by

φ,α′ = Λβα′φ,β

where

Λβα′ =
∂xβ

∂xα′

is a transformation matrix which now depends on position
(but reduces to the NR rotation matrix and the SR Lorentz
transformation). Note, however that the transformation
between the components is linear, unlike the transformation
between the coordinate systems.

Example: Let xα denote (x, y) and xα
′

denote (r, θ). We
have

Λ =

(
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

)
=

(
cos θ −r sin θ
sin θ r cos θ

)
which is just the Jacobian matrix.

We would like φ,α to be the components of an abstract

1-form d̃φ with respect to a 1-form basis ω̃α, ie

d̃φ = φ,αω̃
α

What is this basis? Well, if φ is given by one of the coordi-
nates xβ we get

d̃xβ = xβ,αω̃
α = δβαω̃

α = ω̃β

Recall that geometrically a 1-form corresponds to a set
of parallel planes. The 1-form field d̃φ is thus the contour
surfaces of the function φ, which has a larger magnitude
when the surfaces are closer together, ie the gradient of φ
is larger.

Example: write the 1-form basis for polar coordinates in
terms of the 1-form basis for Cartesian coordinates.

ω̃r = d̃r = r,αω̃
α =

x√
x2 + y2

ω̃x +
y√

x2 + y2
ω̃y

ω̃θ = d̃θ = θ,αω̃
α = − y

x2 + y2
ω̃x +

x

x2 + y2
ω̃y

Diagram showing d̃θ in polar coordinates.
Now we define vectors as linear functions of 1-forms (as

before). In particular the basis vectors satisfy

~eα(ω̃β) = δβα

What is the geometrical interpretation of these basis vec-
tors? A vector (as before) is a line with an arrow at one
end. This will cut through only one set of surfaces d̃xα if
is pointing along the xα curve, ie the curve on which xα

varies but all others are constant. Thus ~eα is a “tangent”
vector to the xα curve.

More precisely, a curve is a mapping IR→ IRd described
by a function xα(s) from a parameter s ∈ IR to a coordinate
value xα ∈ IRd. Note that it is possible to parametrise
the same path by many different curves, just by choosing a
different parameter. Now a scalar function φ will vary along
the curve as described by

dφ

ds
= φ,α

dxα

ds
= d̃φ(

~∂

∂s
)

Here we have used the fact that dφ/ds does not depend on
the coordinates (ie it is a scalar), thus the linear function

acting on d̃φ must be a vector ~V = ~∂
∂s called the “tangent

vector to the curve xα(s)” with coordinates

V α =
dxα

ds

In the special case of the coordinate curve α, with s = xα

and φ = xβ , we have

δβα =
dφ

ds
= d̃xβ(

~∂

∂xα
)

so ~∂
∂xα = ~eα as required.

Vectors transform as before:

V α
′
ρα′ = V α

′
Λβα′ρβ = V βρβ

as long as
V β = V α

′
Λβα′

Note that xα is no longer a vector, since it obeys a different
transformation law. However, an infinitesimal displacement
~dx is,

dxα
′

=
∂xα

′

∂xβ
dxβ

4.2 Length, angle and volume

Tensors are defined by complete analogy with SR, in par-
ticular, the element of length (a scalar) defines the metric
tensor

ds2 = g( ~dx, ~dx)

Its components in a general coordinate system are given by
the usual tensor transformation law,

gα′β′ = Λγα′Λ
δ
β′gγδ =

∑
γ

∂xγ

∂xα′

∂xγ

∂xβ′

if the unprimed coordinates correspond to Cartesian coor-
dinates.

Example: polar coordinates again. Using the above equa-
tion we find

gα′β′ =

 (
∂x
∂r

)2
+
(
∂y
∂r

)2
∂x
∂r

∂x
∂θ + ∂y

∂r
∂y
∂θ

∂x
∂r

∂x
∂θ + ∂y

∂r
∂y
∂θ

(
∂x
∂θ

)2
+
(
∂y
∂θ

)2


=

(
1 0
0 r2

)
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which is usually written

ds2 = dr2 + r2dθ2

Note that this is exactly what we calculated when we wrote
down the kinetic energy gµν ẋ

µẋν in arbitrary coordinate
systems for the Lagrangian formalism.

The inverse metric is given by the matrix inverse:

gα
′β′

=

(
1 0
0 1

r2

)
in polar coordinates.

NR variational mechanics in tensor language: if we have

L =
m

2
gij ẋ

iẋj − U

then

pi =
∂L

∂ẋi
= mgij ẋ

j

and note that pi is a 1-form according to tensor operations.
We invert these equations to obtain

ẋi =
1

m
gijpj

where the inverse metric gij performs the inversion opera-
tion (which is linear in this case). Finally we have

H = piẋ
i − L =

1

2m
gijpipj + U

Remark: This (without the potential, and a new defini-
tion of “time”) is just the Lagrangian/Hamiltonian we will
use to generate geodesics.

The angle between two vectors at a point is defined as
usual using the metric,

cos θ =
g(~u,~v)√

g(~u, ~u)g(~v,~v)

these expressions are valid in arbitrary coordinate systems.
In special relativity we know that “ cos θ′′ = γ if both vec-
tors are timelike. In general “ cos θ′′ can be greater or less
than one, or also imaginary. The angle between two curves
is defined the angle between their tangent vectors, but does
not depend on the parametrisation. Note that the angle is
invariant under transformations which scale the metric,

gµν → φ(xα)gµν

These are called conformal transformations.
The volume is determined as before using a totally an-

tisymmetric tensor ε with as many indices as dimensions.
For example, in four dimensions we have

εαβγδdx
αdxβdxγdxδ

for the volume of a parallelepiped. The tensor is completely
antisymmetric in all coordinate systems, but its components
are only zero, one and minus one in an orthonormal basis.

An infinitesimal volume element can be defined by an alter-
native formula, ∣∣det(Λαβ′)

∣∣ dx0′
dx1′

dx2′
dx3′

where the unprimed coordinate system is the original Carte-
sian coordinates. There is an even more useful expression
in terms of the determinant of the metric. We write down
the expression for the transformation of the metric,

gµ′ν′ = Λαµ′Λ
β
ν′gαβ

and take the determinant,

g′ = det(Λ)2g

where g = det(gµν) is a common notation. Now we have
g = ±1 so the volume element is (now omitting the primes)

√
gd3x

for 3D Euclidean space with a general metric, and

√
−gd4x

for SR in an arbitrary coordinate system. In general√
|g|dnx

In polar coordinates we have ds2 = dr2 + r2dθ2 so g = r2

and the proper volume element is

rdrdθ

Finally we remark that instead of a basis directly derived
from a coordinate system, it is sometimes useful to use an
orthonormal basis. For example in polar coordinates we
have

~er̂ =
~er
|~er|

= ~er

~eθ̂ =
~eθ
|~eθ|

=
1

r
~eθ

In this new basis we have

gαβ = ~eα · ~eβ = δαβ

which looks simpler than the coordinate basis derived ear-
lier. We will not use an orthonormal basis much, however,
because an expression like

φ,α

makes sense as a partial derivative, but an expression

φ,α̂

while it can be defined by its transformation properties, is
no longer the partial derivative with respect to anything.
Nor is the 1-form basis

ω̃µ̂ =
ω̃µ

|ω̃µ|
=
d̃xµ

|ω̃µ|
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nor the transformation matrices Λ. Specifically, we see that
we need

Λµ̂ν =

(
1 0
0 1/r

)
the zeros imply that the putative r̂ and θ̂ coordinates de-
pend only on r and θ, respectively. However this is not
consistent with

∂θ̂

∂θ
=

1

r

thus θ̂ and r̂ do not exist.

4.3 Differentiable manifolds

Finally we are in a position to describe curved spaces. A
differentiable manifold is a general space described below,
which can be defined without reference to a metric tensor.
With a positive definite metric it is a Riemannian manifold,
an indefinite metric a pseudo-Riemannian manifold and a
SR (+—) type metric a Lorentzian manifold. The precise
definition will become clear when we define the signature
of the metric, below.

We want space-time to be locally like SR in its topology
and metric structure, but differ in terms of curvature prop-
erties at finite distances (which we discussed qualitatively
in section 1), and possibly its global topological properties.
For example, a sphere has a different topological structure
to a plane, in that a closed curve can be deformed to a
point either “inwards” or “outwards”. In order to consider
only local topology, we do not demand that the whole man-
ifold can be described by a single coordinate system (in fact
spherical coordinates are ill-defined at the poles), but by a
collection of overlapping coordinate systems.

A n dimensional manifold is defined as follows: It is a set
Rn together with subsets {Oα} with the following proper-
ties:

1. Each p ∈ Rn lies in at least one Oα, ie the Oα cover
Rn.

2. For each α, there is a one-to-one onto map ψα : Oα →
Uα where Uα is an open set of IRn. These maps are
called “charts” or “coordinate systems”. They are
necessarily open so that their intersections are large
enough to define parallel transport, etc. uniquely from
one chart to the next. The collection of charts is some-
times called an atlas.

3. If two sets Oα and Oβ overlap, we can consider the
map ψβ ◦ψ−1

α which takes points in the relevant subset
of Uα to the relevant subset of Uβ . This map must be
sufficiently smooth (typically C∞ although we will use
only about four derivatives.).

We induce a topology of Rn from IRn (requiring it to be
preserved in the maps ψβ ◦ ψ−1

α ), that is, we define open
sets in Rn as the image of open sets by the ψ−1, and define
limits, continuity and so forth from there.

A scalar field is a map Φ : Rn → IR. In coordinate
notation we would write φ(xα) = Φ(ψ−1(xα)).

In order to define vectors and 1-forms we have a choice:
we can define vector fields as first order differential opera-
tors

~V = V α
~∂

∂xα

and 1-forms as linear functions on vectors. Alternatively,
we can define 1-forms as gradients of scalars

ρ̃ = ραd̃x
α

and vectors as linear functions on 1-forms. In either case,
we must remember that these vectors and 1-forms live in a
vector space defined separately at each point in the mani-
fold: Vx or V∗x with x ∈ Rn. We cannot directly compare
vectors at different points in the manifold, nor think of a
“displacement vector” as an arrow joining two points. The
“tangent space” TRn is the set of all local vector spaces,
ie the set of {x,~v} with x ∈ Rn and ~v ∈ Vx.

All we have defined for SR tensors holds at each point in
the manifold, and all that we discussed regarding curvilinear
coordinate systems holds, for example the basis vectors and
1-forms, curves, the metric structure.

Theorem: There is a basis which reduces any symmetric
invertible metric gµν to the form of a diagonal matrix with
entries ±1 at one point.

Proof: In matrix notation, the change of basis formula for
the metric looks like g′ = ΛT gΛ. It is a theorem of linear
algabra that such a matrix Λ exists which diagonalises any
real symmetric matrix. The elements can be reduced to ±1
or zero by suitable diagonal Λ (ie rescaling the basis vec-
tors) and permuted by permutation matrices (ie permuting
the basis vectors). If the metric is invertible, none of the
diagonal entries is zero.

Note that we cannot change the number of ±1 entries in
a metric by change of basis. The invariant quantity given
by the sum of the diagonal elements is called the signature
of the metric, ie 4 for Euclidean 4-space and −2 for GR
(with the timelike convention).

Note also that the definition of the proper volume ele-
ment depends on the existence of coordinates in which gµν
takes the usual SR form.

For the case of a manifold embedded in a higher dimen-
sional flat space, it is possible to calculate the induced met-
ric.

Example: A sphere in the usual spherical coordinates
x = r sin θ cosφ, y = r sin θ sinφ and z = r cos θ, with
r constant (not a coordinate). We have

ds2 = dx2 + dy2 + dz2

where

dx =
∂x

∂θ
dθ +

∂x

∂φ
dφ = r cos θ cosφdθ − r sin θ sinφdφ

etc. leading to

ds2 = r2(dθ2 + sin2 θdφ2) = r2dΩ2

where dΩ is shorthand for solid angle.
Of course, there are many possible coordinate systems

for a sphere, with correspondingly different metrics.
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5 The connection

5.1 Curvilinear coordinates

Now we return to flat space for a discussion of the differen-
tiation of vectors. In general coordinate systems, we cannot
just differentiate the components of a vector, we need to
also differentiate the basis vectors. For example:

∂

∂xβ
~V =

∂

∂xβ
(V α~eα) = V α,β~eα + V α

∂

∂xβ
~eα

In polar coordinates, we find for example

∂

∂r
~er =

∂

∂r
(cos θ~ex + sin θ~ey) = 0

∂

∂θ
~er =

∂

∂θ
(cos θ~ex + sin θ~ey) = − sin θ~ex + cos θ~ey

=
1

r
~eθ

∂

∂r
~eθ =

∂

∂r
(−r sin θ~ex + r cos θ~ey) = − sin θ~ex + cos θ~ey

=
1

r
~eθ

∂

∂θ
~eθ =

∂

∂θ
(−r sin θ~ex + r cos θ~ey) = −r cos θ~ex − r sin θ~ey

= −r~er

In general, the term
∂

∂xβ
~eα

is a vector, so it can be written as a linear combination
of basis vectors. We introduce a new symbol Γαβγ called a
“Christoffel symbol”, or “connection coefficient”, and write

∂

∂xβ
~eα = Γµαβ~eµ

Since Γ is not a tensor (it is zero in Cartesian coordinates
and nonzero in other coordinate systems), we do not bother
with spacing its indices.

In our above calculation, we have obtained the connec-
tion coefficients for polar coordinates:

Γθrθ = Γθθr =
1

r

Γrθθ = −r

and all the rest zero.
Let us write the equation for the derivative of a vector in

a different manner by interchanging index labels:

∂~V

∂xβ
=
(
V α,β + V µΓαµβ

)
~eα

We define new notation

V α;β = V α,β + V µΓαµβ

We also define the covariant derivative of a vector field ~V
as

∇̃~V =
∂~V

∂xβ
⊗ ω̃β = V α;β~eα ⊗ ω̃β

which is a

(
1
1

)
tensor. In Cartesian coordinates, all the

Christoffel symbols are zero, so V α,β = V α;β but in other
coordinate systems (and generally in curved manifolds) this
will not be the case.

We can also define “directional” covariant derivatives:

∇α~V = V β;α~eβ

∇~U ~V = UαV β;α~eβ

where clearly
∇α = ∇~eα

We already know the derivative d̃f of a scalar field f is
a tensor, so we define

∇̃f = d̃f

We can also compute the divergence of a vector field,
which is a scalar,

V µ;µ

In polar coordinates this is

V µ;µ = V µ,µ + ΓαµαV
µ

with

Γαrα = Γrrr + Γθrθ =
1

r

Γαθα = Γrθr + Γθθθ = 0

Thus

V µ;µ = V µ,µ +
1

r
V r =

1

r

∂

∂r
(rV r) +

∂

∂θ
V θ

which is the usual formula for divergence in polar coordi-
nates. The Laplacian operator ∇2 is obtained by taking the
gradient of a scalar, converting it into a vector (φ,r, φ,θ/r

2),
and using the above formula:

∇2φ =
1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2

∂2φ

∂θ2

What is the covariant derivative of a 1-form? Take the
equation

φ = ραV
α

where φ is a scalar, ρ̃ is a 1-form and ~V is a vector. Then

φ,β = ρα,βV
α + ραV

α
,β = ρα,βV

α + ρα(V α;β − ΓαµβV
µ)

Rearranging terms and relabling indices, we find

φ,β = (ρα,β − ρµΓµαβ)V α + ραV
α
;β

Now everything except the parenthesised term is a tensor,
thus

ρα;β = ρα,β − ρµΓµαβ

must be a tensor. Then we have

(ραV
α);β = ρα;βV

α + ραV
α
;β
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which is just the product rule for differentiation. We can
remember these formulae using the rule that the differenti-
ated index appears last in Γ, the sign is negative for 1-forms,
and everything else follows from the Einstein summation
convention. The same procedure leads to the following for
tensors:

Tµν;ρ = Tµν,ρ − TανΓαµρ − TµαΓανρ

Tµν;ρ = Tµν,ρ + TανΓµαρ − TµαΓανρ

Tµν;ρ = Tµν,ρ + TανΓµαρ + TµαΓναρ

where we see that each index leads to a Γ term, like that
of a vector or a 1-form depending on its position.

Now we will show that Γ is symmetric on its lower two
indices in a coordinate basis. For a scalar field φ we have

φ,αβ = φ,βα

since partial derivatives commute (in a non-coordinate basis
this doesn’t work, since the comma operator is no longer a
derivative). In cartesian coordinates, this is identical to the
valid tensor equation

φ;αβ = φ;βα

which must therefore hold with respect to all bases (coor-
dinate or not). This reads

φ,αβ − φ,µΓµαβ = φ,βα − φ,µΓµβα

In a coordinate basis, we can cancel the second derivative
terms, and find

Γµαβ = Γµβα

How does the metric relate to the connection? In Carte-
sian coordinates we have

gµν;ρ = gµν,ρ = 0

gµν;ρ = gµν,ρ = 0

so the covariant derivative must be zero in all bases. This
means we can raise and lower indices of covariant derivatives
of tensors. That is

gµνV
ν
;ρ = (gµνV

ν);ρ = Vµ;ρ

and so forth. In addition, we can compute the connection
from the metric. We write down gµν;ρ = 0 in three ways:

gαβ,µ = Γναµgνβ + Γνβµgαν

gαµ,β = Γναβgνµ + Γνµβgαν

−gβµ,α = −Γνβαgνµ − Γνµαgβν

next we add these equations, grouping terms using the sym-
metry of g:

gαβ,µ + gαµ,β − gβµ,α =

(Γναµ − Γνµα)gβν + (Γναβ − Γνβα)gνµ + (Γνβµ + Γνµβ)gαν

Now, in a coordinate basis, we can use the symmetry of Γ
to cancel the first two terms, leaving

gαβ,µ + gαµ,β − gβµ,α = 2gανΓνβµ

Now we use the fact that gαγ is the matrix inverse of gαν ,
and find

1

2
gαγ(gαβ,µ + gαµ,β − gβµ,α) = Γγβµ

The fact that this formula only works in coordinate bases
gives another reason for working with coordinate bases. We
note that the connection coefficients are linear in the first
derivative of the metric, but nonlinear in the metric itself.

Example: In polar coordinates,

Γθrθ =
1

2
gαθ(gαr,θ + gαθ,r − grθ,α)

with grθ = 0 and gθθ = r−2 we have

Γθrθ =
1

2r2
(gθr,θ+gθθ,r−grθ,θ) =

1

2r2
gθθ,r =

1

2r2
(r2),r =

1

r

5.2 Curved manifolds

In order to use the results of the previous section, we need
to understand to what extent a general curved manifold is
“locally flat”. In other words, can we construct a coordinate
system near an arbitrary point with properties similar to
the Cartesian coordinates. From the picture of a “tangent
plane” we expect that the curvature should show up at the
second derivative. Let us count components:

A change of coordinates relates the 10 components of
gµν to the 16 components of Λαβ′ . We have already seen
that we can find a coordinate system in which gµν takes the
SR form, assuming that the original metric had one positive
and three negative eigenvalues. The remaining 6 degrees of
freedom correspond to the parameters of the Lorentz group
(3 boosts, 3 rotations).

Differentiating this relation, we have 40 components of
gµν,α which are related to 40 components of Λαβ′,γ′ . In both
cases we have a 3-index tensor that is symmetric on a pair
of indices.

Differentiating again, we find that the 100 components
of gµν,αβ cannot fixed by the 80 components of Λαβ′,γ′δ′ :
the remaining 20 components will turn out to correspond
to the Riemann curvature tensor.

Formally we have the “local flatness theorem”: at each
point of a Riemannian manifold, we can find a coordinate
system in which

gµν = ηµν +O(x2)

where ηµν is a diagonal matrix with only ±1 entries. This
means that we can use the results of the previous section,
which required Γαβγ = 0 in some coordinate system. In
particular, we can show that gµν;α = 0 and Γαβγ = Γαγβ in
a coordinate basis.

The physical interpretation of this result is that there ex-
ist local inertial frames, in which the SR laws of physics can
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be formulated. However, we must be careful to restrict our-
selves to one covariant derivative at this stage: two covari-
ant derivatives (except of a scalar field) lead to derivatives
of Γ, which are generally nonzero. Thus ∇̃ satisfies all the
usual rules for differential operators, except that ∇α and
∇β do not commute (more on this later...) Having formu-
lated physical laws in the local inertial frame, we follow the
simple prescription of “comma goes to semicolon”, to give
a result valid in all coordinate systems.

Example: conservation of energy-momentum in GR takes
the form

Tµν,ν = 0

in SR, and hence (by the equivalence principle) in a local
inertial frame (coordinate system in which Γαβγ = 0 locally)
but this is equivalent to

Tµν;ν = 0

in that coordinate system. The latter equation is valid in
all coordinate systems.

Remark: it is possible to define manifolds with a connec-
tion, but no metric. Of course we will always use a metric,
from which the connection can be derived.

5.3 Parallel transport and geodesics

Parallel transport of a vector along a curve simply says that,
in the local inertial frame, the vector remains constant. Re-
call that a curve xα(λ) (with parameter λ) has tangent

vector uα = dxα/dλ. Parallel transport of a vector ~V in a
local inertial frame is thus

0 =
dV α

dλ
= uβV α,β = uβV α;β

the last of which applies generally. Other notations are

uβV α;β = [∇~u~V ]α =

[
D~V

dλ

]α

Parallel transport preserves the scalar product of vectors
(ie their lengths and angles):

d

dλ
(gµνv

µwν) = uα(gµνv
µwν);α

= uαgµν(vµ;αw
ν + vµwν;α) = 0

if both vectors are parallel transported.
In a flat space, a vector that is parallel transported back

to its original point remains unchanged. Let us try this in
polar coordinates along the curve r = a, θ = λ. We have

uα =
dxα

dλ
= (0, 1)

A vector ~V is transported as

0 =
D~V

dλ
= ∇~u~V = ∇θ~V

or in coordinates

0 = V α;θ = V α,θ + ΓαβθV
β

We recall the connection coefficients Γθrθ = Γθθr = 1/r,
Γrθθ = −r with all the rest zero. Thus we have

V θ,θ = −V r/a

V r,θ = aV θ

and so
V θ,θθ = −V θ

and hence
V θ = A sin θ +B cos θ

V r = −aV θ,θ = −aA cos θ + aB sin θ

where the constants A and B are determined bu the initial
values of V r and V θ. Note that a complete rotation ∆θ =
2π has no effect on ~V , which we expect for a flat space.

A geodesic curve is one that “looks locally flat”, ie one
that parallel transports its tangent vector. Thus its equation
is

0 =
Duα

dλ
= uβuα;β

= uβ(uα,β + Γαγβu
γ) =

d2xα

dλ2
+ Γαγβ

dxβ

dλ

dxγ

dλ

Note that this equation is invariant under transformations
λ′ = aλ + b. A parameter λ for which this equation is
satisfied is called an “affine” parameter; the same path with
a non-affine parameter is technically not a geodesic.

Let us measure length along a geodesic:(
ds

dλ

)2

= gµν
dxµ

dλ

dxν

dλ
= gµνu

µuν

but the magnitude of a vector is unchanged under parallel
transport, so this is constant: an affine parameter is pro-
portional to length, or else the length is zero. In any case, a
geodesic which begins timelike, spacelike or null will remain
that way. Hence we can talk about timelike, spacelike or
null geodesics. In the case of massless particles, it makes
sense to choose a parameter λ such that the tangent vector
is the (finite) 4-momentum ~p.

The path of a free massive (massless) particle in GR will
be a timelike (null) geodesic according to the equivalence
principle, if we assume that the mass is sufficiently small
not to affect the spacetime in which it moves.

A geodesic can also be defined as the shortest path be-
tween two points in spacetime. Let us derive the geodesic
equation this way:

L(xµ, uµ) =
√
gµνuµuν

where uµ = dxµ/ds and the parameter s is for the present
arbitrary. Lagrange’s equations are

∂L

∂xµ
=

d

ds

∂L

∂uµ
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that is,
gµν,σu

µuν

2
√
gµνuµuν

=
d

ds

gσνu
ν

√
gµνuµuν

Knowing that the total length is independent of the
choice of parameter s, we now fix it to proper time, so√
gµνuµuν = 1. Thus we have

1

2
gµν,σu

µuν = gσν,µu
µuν + gσν

duν

ds

and using the symmetry of µ and ν for the gσν,µ term, and
the inverse metric, we find

duρ

ds
+

1

2
gρσ(gσν,µ + gσµ,ν − gµν,σ)uµuν = 0

which is the geodesic equation.
It is easy to show that we could have used the simpler

L =
m

2
gµνu

µuν

as the Lagrangian. The canonical momentum for this La-
grangian is

pµ =
∂L

∂uµ
= mgµνu

ν = muµ

which is why we added the factor of m/2. The Hamiltonian
is

H = pµu
µ − L =

1

2m
gµνpµpν

For massless particles we would prefer to use a parameter
given by the limit of τ/m. This has the effect of dropping
the m in the above Hamiltonian.

From this we deduce constants of motion: the Hamilto-
nian itself, which has the value m/2. Also, if the metric
does not depend on one of the coordinates xα (say, the
time, or an angle), then pα (say the energy, or angular mo-
mentum) is conserved. We can show this explicitly: the
geodesic equation can be written

pαpβ;α = 0

or

m
dpβ
dτ
− Γγβαp

αpγ = 0

now the connection term is

Γγαβp
αpγ =

1

2
gγν(gνβ,α + gνα,β − gαβ,ν)pαpγ

=
1

2
(gνβ,α + gνα,β − gαβ,ν)pαpν

but two terms cancel due to the symmetry of α and ν so
we finally have

m
dpβ
dτ

=
1

2
gνα,βp

νpα

which makes the conservation obvious. Alternatively, we
could have used Hamilton’s equation

dpα
dτ

= − ∂H
∂xα

= − 1

2m
gµν,αpµpν

Example: the sphere,

ds2 = r2dθ2 + r2 sin2 θdφ2

where r is constant and θ and φ are the coordinates. We
have Γφφθ = Γφθφ = cot θ and Γθφφ = − sin θ cos θ (see
problem 6.4). Thus the geodesic equation reads:

duφ

dλ
+ 2 cot θuθuφ = 0

duθ

dλ
− sin θ cos θ(uφ)2 = 0

where uα = dxα/dλ, λ is an affine parameter, ie a linear
function of distance. This form of the equation is not very
helpful in finding a solution. Let us instead use the Hamil-
tonian, and set m = 1, so that the parameter λ will be
simply distance s:

H =
1

2
gµνpµpν =

1

2r2
(p2
θ +

p2
φ

sin2 θ
)

Hamilton’s equations give:

uθ =
dθ

dλ
=
∂H

∂pθ
= pθ/r

2

uφ =
dφ

dλ
=
∂H

∂pφ
= pφ/(r

2 sin2 θ)

dpθ
dλ

= −∂H
∂θ

=
cos θ

r2 sin3 θ
p2
φ

dpφ
dλ

= −∂H
∂φ

= 0

thus we have two conserved quantities, the Hamiltonian
itself, and pφ. It is easy to check the original form of the
geodesic equation:

duφ

dλ
=

d

dλ

pφ

r2 sin2 θ
=
pφ
r2

−2 cos θ

sin3 θ
uθ = −2 cot θuθuφ

duθ

dλ
=

1

r2

dpθ
dλ

=
cos θ

r4 sin3 θ
p2
φ = sin θ cos θ(uφ)2

Let us consider a geodesic which starts from the point
(θ, φ) = (θ0, 0) and is directed east, ie parallel to ~eφ. Its
tangent vector uα is thus proportional to (0, 1), but will be
normalised so that 1 = gµνu

µuν = r2 sin2 θ0(uφ)2 that is,
~u = (0, 1/(r sin θ0)) initially. Geometrically, we see that
closer to the pole, the geodesic spans many lines of longi-
tude per unit distance.

Thus the conserved quantities are

pφ = r2 sin2 θuφ = r sin θ0

1

2r2
(p2
θ +

p2
φ

sin2 θ
) =

r2

2
((uθ)2 + sin2 θ(uφ)2) =

1

2

thus at general angle θ we have

uφ =
sin θ0

r sin2 θ
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uθ = ±1

r

√
1− sin2 θ0

sin2 θ

from which we can calculate the angle between the tangent
vector and the basis vector ~eφ:

cosψ =
~u · ~eφ
|~u||~eφ|

=
r sin θ0

1.r sin θ
=

sin θ0

sin θ

If we construct a spherical triangle from a segment of geodesic and
two segments to the pole, we see this formula is just the sine rule for
spherical triangles, where A etc are angles and a etc are the lengths
of the opposite sides in units of the radius (ie angles subtended at the
centre of the sphere):

sin a

sinA
=

sin b

sinB
=

sin c

sinC

There is also a cosine rule

cos c = cos a cos b+ sin a sin b cosC

obtained by an appropriate (messy) integration of the uφ and uθ

equations. We get the usual (Euclidean) forms of these rules using

the small angle approximations of sine and cosine.

We can also use the Lagrangian formulation of the
geodesic equation to compute the connection coefficients.
For example in polar coordinates we have

L =
1

2
(ṙ2 + r2θ̇2)

from which we find

rθ̇2 =
d

dt
(ṙ)

0 =
d

dt
(r2θ̇)

These give us
r̈ − rθ̇2 = 0

θ̈ +
2

r
ṙθ̇ = 0

from which we read off

Γrθθ = −r

Γθrθ =
1

r

as before.
Now we are in a position to fully answer the question posed earlier:

how to construct a coordinate system near a point for which all the
connection coefficients are zero. The following construction is called
“Riemann normal coordinates”. Take a point Xα (in an arbitrary
corrdinate system) and a vector V α. Solve the geodesic equation
with initial conditions xα(0) = Xα, dxα/dλ(0) = V α (in general λ is
not proper length since V α may not be normalised). Label the point
at λ = 1 on the geodesic by the components V α: these become the
new coordinates. In these coordinates, all geodesics passing through
the original point are straight lines with constant tangent vector by
definition. Thus all the connection coefficients are zero at that point.

Let us try this for the sphere, using the north pole θ = 0 as the
initial point. Locally, we choose coordinates (ξ, η) such that ξ ∼ cosφ
and η ∼ sinφ. All geodesics from the north pole all lines of constant
φ, with distance given simply by θ. Thus the new coordinates are
related to the old ones by

ξ = θ cosφ

η = θ sinφ

The metric is

ds2 = dθ2 + sin2 θdφ2

=
dξ2

θ4
(ξ2θ2 + η2 sin2 θ) +

dη2

θ4
(η2θ2 + ξ2 sin2 θ)

where θ =
√
ξ2 + η2. The metric reduces to δαβ and is clearly an

even function of ξ and η, so the connection coefficients vanish at

ξ = η = 0 as expected.

Finally, we can easily incorporate non-gravitational forces
in GR: for example, in SR electromagnetism we have

maµ = qFµνu
ν

where m is rest mass, ~a is 4-acceleration, q is charge, F
is the electromagnetic field tensor, and ~u is the 4-velocity.
With an appropriate choice of the components of F , this is
equivalent to the usual Lorentz force law

dp

dt
= q(E + u×B)

This becomes:

m(
duα

dτ
+ Γαβγu

βuγ) = qFµνu
ν

which is another example of the comma-to-semicolon rule.

6 Curvature

6.1 The curvature tensor

As we have seen, the non-flat aspects of a manifold become
apparent at the second derivatives of the metric, which can-
not all be set to zero at some point generally (in contrast
to the first derivatives) by a change of coordinates.

Let us consider a vector ~V which is parallel transported
around a coordinate rectangle (x1, x2) = (a, b) → (a +
δa, b) → (a + δa, b + δb) → (a, b + δb) → (a, b). Points
denoted A,B,C,D,A. From the parallel transport law

∇1
~V = 0

we conclude
V α,1 = −Γαµ1V

µ

so at the end of the first segment

V α(B) = V α(A)−
∫
AB

Γαµ1V
µdx1

and similarly for the other segments. The total change in
V α around the loop is

δV α = −
∫
AB

Γαµ1V
µdx1 −

∫
BC

Γαµ2V
µdx2

+

∫
CD

Γαµ1V
µdx1 +

∫
DA

Γαµ2V
µdx2

where the positive sign is due to the negative direction.
These do not cancel, because Γ and V are not constant: to
first order we get

δV α ≈
∫ a+δa

a

δb(Γαµ1V
µ),2dx

1 −
∫ b+δb

b

δa(Γαµ2V
µ),1dx

2
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δV α ≈ δaδb[(Γαµ1V
µ),2 − (Γαµ2V

µ),1]

Now we write the derivatives of V α in terms of the Γ as at
the beginning, and relabel indices, to find:

δV α = δaδb[Γαµ1,2 − Γαµ2,1 + Γαν2Γνµ1 − Γαν1Γνµ2]V µ

Now the difference δV is a vector that depends linearly on
three vectors, ~V , and the infinitesimal displacements δa~e1

and δb~e2. Thus, it corresponds to a

(
1
3

)
tensor, called

the Riemann curvature tensor:

δ~V (ρ̃) = R(ρ̃, ~V , ~δa, ~δb)

δV α = RαβγδV
β(δa)γ(δb)δ

where

Rαβγδ = Γαβδ,γ − Γαβγ,δ + ΓαµγΓµβδ − ΓαµδΓ
µ
βγ

Remark: there are unfortunately countless conventions on
the sign and placement of indices in the Riemann tensor.
Note that the Riemann tensor is linear in the first derivative
of the connection, but nonlinear in the connection itself.
Thus it is linear in the second derivative of the metric, but
nonlinear in the metric itself and in its first derivative. The
above equation is what we will use to compute the Riemann
tensor. Slightly shorter methods exist, but are beyond the
scope of the course. This is a good candidate for computer
algebra packages.

We have two equivalent statements: a (simply con-
nected) manifold is “flat” as defined by globally defined
vectors, and the Riemann tensor is zero everywhere.

The other significant place the Riemann tensor appears
is when we try to commute two covariant derivatives. In
a local inertial frame (connection is zero but its derivatives
are not) we have

∇α∇βV µ = (∇βV µ),α = V µ,βα + Γµνβ,αV
ν

and so the commutator

[∇α,∇β ]V µ ≡ ∇α∇βV µ−∇β∇αV µ = (Γµνβ,α−Γµνα,β)V ν

since the partial derivatives commute. Now this is equiva-
lent to the tensor equation

[∇α,∇β ]V µ = RµναβV
ν

which is thus true in any basis. The commutator of covari-
ant derivatives is, in effect, performing the same operations
as the parallel transport around a rectangle.

Remark: we can explicitly add “curvature coupling”
terms to GR equations we have obtained using the comma-
to-semicolon rule. This does not affect the SR limit.
Whether such terms are in fact correct depends on experi-
ment, or failing that, aesthetics. Such curvature terms may
appear naturally as a result of combining two equations with
covariant derivatives, or by demanding a special symmetry,
such as conformal invariance.

Let us compute the Riemann tensor in a local inertial
frame. We have

Γαβγ,δ =
1

2
gαµ(gµβ,γδ + gµγ,βδ − gβγ,µδ)

and so

Rαβγδ =
1

2
gαµ(gµβ,δγ + gµδ,βγ − gβδ,µγ

− gµβ,γδ − gµγ,βδ + gβγ,µδ)

=
1

2
gαµ(gµδ,βγ − gβδ,µγ − gµγ,βδ + gβγ,µδ)

by commuting partial derivatives. Lowering the first index
we find

Rαβγδ =
1

2
(gαδ,βγ − gβδ,αγ − gαγ,βδ + gβγ,αδ)

This leads to the following symmetries:

Rαβγδ = −Rβαγδ = −Rαβδγ = Rγδαβ

Rαβγδ +Rαγδβ +Rαδβγ = 0

which must therefore hold in all bases. Due to these iden-
tities, the Riemann tensor has only 20 independent compo-
nents in four dimensions. From our previous argument, it
thus completely expresses the curvature.

We obtain the 20 components as follows: an antisymmet-
ric second rank tensor has 6 components. The Riemann
tensor is composed of two such tensors, in a symmetric
way, thus it is like a symmetric second rank tensor in a 6
dimensional space - this makes 21 components. Finally, the
last relation is trivial unless all four indices are different.
When they are different, it relates the three components
of the Riemann tensor which have four different indices, so
provides one extra condition, leaving 20 independent com-
ponents.

In 2D polar coordinates we could have only one indepen-
dent component, say

Rrθrθ

We recall that Γθrθ = Γθθr = 1/r, Γrθθ = −r. Thus we have
contributions only from

Rrθrθ = Γrθθ,r − ΓrθθΓ
θ
θr = −1− (−r)(1/r) = 0

as expected.
Differentiating the expression for the Riemann tensor and

considering a local inertial frame at a point P,

Rαβγδ,ε = Γαβδ,γε − Γαβγ,δε

from which we show that at P,

Rαβγδ,ε +Rαβδε,γ +Rαβεγ,δ = 0

which is equivalent to

Rαβγδ;ε +Rαβδε;γ +Rαβεγ;δ = 0

which is thus valid in all bases and at all points. This last
relation is called the Bianchi identities.
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6.2 The Einstein field equations

We have discussed the formulation of physical laws in
curved spacetime, and now turn to the question as to what
should replace the Newtonian equation (with G = 1):

∇2Φ = 4πρ

We already discussed the right hand side of the equation
- the relativistic generalisation is the stress energy tensor
Tµν which is symmetric and divergence-free. For the left
hand side we need a second rank tensor with the following
properties

1. It should be symmetric

2. It should be divergence free (cf Maxwell’s equations
which automatically imply conservation of charge:
Fµν,ν = 4πJµ in SR).

3. It should be linear (for simplicity) in the second deriva-
tives of the metric.

We will now construct the most general such tensor using
the Riemann tensor (which contains all the non-redundent
information about the second derivatives of the metric) and
the metric tensor itself. The Bianchi identities

Rαβγδ;ε +Rαβδε;γ +Rαβεγ;δ = 0

give us hope that something constructed from the Riemann
tensor can be divergence free - but there are too many
indices (and no “divergence” as such yet). We contract on
α and γ:

gαγ(Rαβγδ;ε +Rαβδε;γ +Rαβεγ;δ) = 0

Note that we didn’t have any option about the choice of
indices: If we contract on α and β, or on any two of the last
three indices we get zero from the symmetry. If we choose
any other pair, we get the same expression or its negative,
again from the symmetry. This leads to

Rβδ;ε +Rαβδε;α −Rβε;δ = 0

where
Rβδ = Rαβαδ

is the Ricci tensor, obtained by (again) the only possible
contraction of the Riemann tensor (up to a sign). The
Ricci tensor is symmetric (using the symmetries of the Rie-
mann tensor). It can be defined without a metric, since the

original Riemann tensor was of

(
1
3

)
type. We still have

a four-index tensor, so we contract again,

gβδ(Rβδ;ε +Rαβδε;α −Rβε;δ) = 0

Again, the other possible contractions lead to the same
equation or 0 = 0. We find

R;ε −Rαε;α −Rαε;α = 0

where R = Rαα is the Ricci scalar, the only scalar linear in
the curvature. We have

(Rgαε − 2Rαε);α = 0

which leads finally the divergence a symmetric second rank
symmetric tensor

Gµν = Rµν − 1

2
gµνR

which is called the Einstein tensor.
Can we construct any other tensors from the metric and

its first derivative? The first covariant derivative is zero, so
this is no use. The metric itself is symmetric and divergence
free. Thus we are led to the most general form satisfying
the above requirements:

Gµν − Λgµν = 8πTµν

Here, the 8π is a constant, which will be justified later
by taking the Newtonian limit. Λ is called the cosmological
constant. A positive constant (with our sign conventions...)
leads to a uniform effective positive energy density and neg-
ative pressure, making the Universe tend to expand.

The cosmological constant has a colourful history - at
first Einstein included it in order to stop the Universe (then
thought static) from collapsing in on itself. In 1928 Hub-
ble discovered that the galaxies were receding from each
other, making the cosmological constant unnecessary - at
that point Einstein called it “his greatest blunder”. Much
more recently, astronomical evidence is in favour of a small
cosmological constant.

There are also arguments from particle physics for a cos-
mological constant: each type of particle has “vacuum fluc-
tuations” that give rise to a stress-energy of the vacuum
proportional to the metric. However, realistic estimates
(barring possible almost cancelation) lead to a value for
the cosmological constant which is about 10120 too high,
possibly the most embarrassing result of theoretical physics.

We will ignore the cosmological constant in what follows.
For systems much smaller than the Universe, its effect is
negligible.

The Einstein field equations related the ten independent
compoenents of the Einstein tensor to those of the stress-
energy tensor. Actually there are only six equations, since
arbitrary coordinate transformations can set conditions on
four of the components. This arbitrary freedom can be put
to good use in solving the equations, but it also complicates
the analysis in, for example, variational approaches. Note
that the field equations do not determine the Riemann ten-
sor (20 components): there are solutions to the equations in
vacuum (ie no stress-energy), both outside massive objects,
and as propagating gravitational waves. Because the equa-
tions are numerous and nonlinear, they are very difficult to
solve in general.

Another important point is that energy-momentum con-
servation is guaranteed by the field equations. This means
that, for example, the two centre problem is well defined in
Newtonian gravity (the masses are held by unspecified non-
gravitational forces) and in electromagnetism (unspecified
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6.3 Weakly curved spacetimes 6 CURVATURE

nonelectromagnetic forces), but in GR the forces explic-
itly appear, and are described by the stress-energy tensor.
There is in fact a solution of the GR field equations in-
volving two black holes with enough charge to balance the
gravitational attraction, with the stress-energy given by the
appropriate electric field.

There are also more complicated theories of gravity. We
could have theories which involve the square of the curva-
ture, or theories where curvature is supplemented by addi-
tional (eg scalar) fields. There are two considerations for
acceptance of these theories. The first is observational. GR
as formulated by Einstein and Hilbert agrees with all obser-
vations so far, but has yet to be tested directly in the strong
field regime. The second consideration is aesthetic. GR is
simpler than other theories, so it has found more acceptance
to the present day.

There is as yet, no generally accepted theory of quantum
gravity, although calculations can be performed that involve
only weak gravitational fields, or quantum matter in curved
spacetime. Discussion of these theories is beyond the scope
of the course, and an active area of current research.

6.3 Weakly curved spacetimes

We need to check that the Einstein field equations do in-
deed reproduce Newtonian gravity in the NR limit, and in
particular that the constant 8π is correct. Let us suppose
that SR is “nearly correct” in that we can write

gµν = ηµν + hµν

where ηµν = diag(1,−1,−1,−1) is the usual SR metric,
and |hµν | � 1 is a small correction. Of course, there are
only a restricted set of spacetime manifolds that can be
reduced to this form in any coordinate system, and for those
that can, only in a restricted set of coordinate systems. In
this case we have used the complete coordinate freedom of
GR to write the metric in a form in which the calculations
will be simplest.

Let us consider the effect of coordinate transformations
that preserve this form. We have Lorentz transformations

xµ
′

= Λµ
′

ν x
ν

where Λ is a constant metrix given by a SR Lorentz trans-
formation (ie ΛT ηΛ = η): this is indeed a highly restricted
set of coordinate transformations. The metric transforms
as

gα′β′ = Λµα′Λ
ν
β′gµν = Λµα′Λ

ν
β′ηµν + Λµα′Λ

ν
β′hµν

= ηα′β′ + hα′β′

where η takes the same form as before, and

hα′β′ = Λµα′Λ
ν
β′hµν

that is, hµν transforms like a SR

(
0
2

)
tensor. Thus we

can think of the full GR equations as being written in terms
of SR tensors. Note that for sufficiently extreme Lorentz

transformations, the components of hµν will violate the
smallness condition.

Another type of transformation that preserves the “al-
most flat” form of the metric are “infinitesimal” transfor-
mations, also called “gauge transformations”,

xα
′

= xα + ξα(xβ)

where we insist |ξα,β | � 1. Thus

Λα
′

β =
∂xα

′

∂xβ
= δαβ + ξα,β

Λαβ′ = δαβ − ξα,β + . . .

where we ignore quadratic terms. Then we find

gα′β′ = Λγα′Λ
δ
β′gγδ = (δγα − ξγ,α)(δδβ − ξδ,β)(ηγδ + hγδ)

= ηαβ + hαβ − ξα,β − ξβ,α

where we define
ξα = ηαβξ

β

Thus we have transformed

hα′β′ = hαβ − ξα,β − ξβ,α

Note that the primes in these equations denote the coor-
dinate system, but we assume that α′ takes the same nu-
merical value as α. These are obviously not valid tensor
equations, since they relate quantities in different coordi-
nate systems, rather than general laws valid for all coordi-
nate systems.

We will now derive the weak field Einstein equations,
regarding the GR tensors as SR tensors (ie under Lorentz
transformations), and raising/lowering indices using η: this
is permitted for small tensors, since we drop quadratic
terms. The gauge transformations are not Lorentz trans-
formations, but lead to equations with the same physical
content.

We can calculate the Riemann tensor to first order,

Rαβµν =
1

2
(hαν,βµ + hβµ,αν − hαµ,βν − hβν,αµ)

independent of the gauge, since a small change of coordi-
nates will not affect these already small quantities.

We define the trace

h = hαα

and trace reverse tensor

h̄αβ = hαβ −
1

2
ηαβh

so that
h̄ = −h

hαβ = h̄αβ −
1

2
ηαβh̄

thus we find

Gαβ = −1

2
(h̄ µ
αβ,µ + ηαβh̄

,µν
µν − h̄ µ

αµ,β − h̄
µ

βµ,α )
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6.3 Weakly curved spacetimes 6 CURVATURE

We would like to use our four arbitrary functions ξµ to
require four conditions on hµν , namely the Lorentz gauge
condition,

h̄µν,ν = 0

Under a gauge transformation, we find

h̄µ′ν′ = h̄µν − ξµ,ν − ξν,µ + ηµνξ
α
,α

then
h̄µ

′ν′

,ν′ = h̄µν,ν − ξµ,νν

so that we can make h̄µ
′ν′

,ν′ = 0 by setting

�ξµ ≡ ξµ,νν = h̄µν,ν

the 4D Laplacian operator, � is given explicitly as

� =
∂2

∂t2
−∇2

and it turns out that a given ξµ can always be found to
solve this equation. Thus, in the Lorentz gauge, we write

Gαβ = −1

2
�h̄αβ

so that Einstein’s equations become

�h̄µν = −16πTµν

In Newtonian gravity, we also make a nonrelativistic (low
velocity) assumption, that T 00 = ρ and all other compo-
nents are small. Also, time derivatives are going to be small
compared to space derivatives so we have

∇2h̄00 = 16πρ

Comparing this with Newtonian gravity

∇2Φ = 4πρ

we need
h̄00 = 4Φ

now since all other components of h̄ are negligible, we com-
pute

h̄ = 4Φ

and using

hαβ = h̄αβ −
1

2
ηαβh̄

we find
hαβ = 2Φδαβ

in other words

ds2 = (1 + 2Φ)dt2 − (1− 2Φ)(dx2 + dy2 + dz2)

We can immediately recognise the (weak field) gravita-
tional redshift

dτ = ds = (1 + Φ)dt

but there is also a scaling of lengths evident in this equation,
corresponding to a curved spatial metric.

We can consider the motion of relativistic particles (in-
cluding photons) in this metric, but for the moment we are
interested in nonrelativistic particles. The geodesic equa-
tion in lower components reads

m
dpβ
dτ

=
1

2
gνα,βp

νpα

In the NR approximation, we have τ = t and the only
significant component of pα on the RHS is p0 = m. Thus
we have

1

2
gνα,βp

νpα ≈ 1

2
m2g00,µ = m2Φ,µ

The geodesic equation then reduces to

dp0

dt
= m

∂Φ

∂t

−dpi
dt
≈ dpi

dt
= −m∇iΦ

which are just a statement of conservation of energy (if the
gravitational potential is constant in time) and Newton’s
second law. The second statement is obvious; for the first
we have

m2 = gµνp
µpν = (1 + 2Φ)(p0)2 − (1− 2Φ)p2

thus

p0 =

√
m2

1 + 2Φ
+ p2(1− 2Φ) ≈ (1− Φ)

√
m2 + p2

and so

p0 = g00p
0 ≈ (1 + Φ)

√
m2 + p2 ≈ m+mΦ + p2/2m

which is the total (gravitational plus kinetic) energy.
This is energy of a particle - it is possible to define en-

ergy of a system as a whole? In general we have trouble
because vectors (such as ~p) cannot be compared at different
places in a curved manifold. However, if we assume that
there is an isolated system surrounded by a stationary weak
gravitational field, we have

∇2h̄µν = 0

which has solution (vanishing at infinity)

h̄µν = Aµν/r +O(r−2)

for some constant Aµν . In addition we must have the gauge
condition

0 = h̄µν,ν = h̄µj,j = −Aµjnj/r2 +O(r−3)

where nj = xj/r. But this is true for all xi, thus

Aµj = 0

and hence only h̄00 survives. Thus far from a source, we
can use the previous Newtonian approximation, even if the
field is strong at the source. By comparing with Newtonian
far field, we find A00 = −4M . Thus we can define the
mass of a stationary strong field solution by the motion of
geodesics at large distances. Note that this is not the mass
obtained by adding up constituent particles etc, or energy
density.
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7 SPHERICAL SYMMETRY

6.4 Gravitational waves

In vacuum (Tαβ = 0) the linearised equations in the Lorentz gauge
become:

�h̄αβ =

(
∂2

∂t2
−∇2

)
hαβ = 0

which is the wave equation for each component of h̄αβ It has solutions
of the form

h̄αβ = Aαβe−ikαx
α

for some constant tensor Aαβ , and the wave-vector kµ = (ω,k).
Let us align the axes so that the spatial component is in the z-

direction:
kµ = (ω, 0, 0, k)

Then the solution is

h̄αβ = Aαβei(kz−ωt) = Aαβeik(z−ut)

which is a plane wave moving with speed u = ω/k in the positive
z direction. The wavelength is λ = 2π/k and the frequency is f =
ω/(2π). The surfaces of constant phase correspond the geometrical
description of the one-form k̃.

Substituting into the equation we find

0 = ηµν h̄αβ,µν = −ηµνkµkν h̄αβ

which means that
kµk

µ = 0

in other words
ω = |k|

so that the velocity of the wave is one, ie the same as light.
We also require the Lorentz gauge condition, so we have

h̄αβ,β = 0

that is
Aαβkβ = 0

which gives four conditions on Aαβ . We can actually require another
four conditions:

Aαα = 0

Aαβu
β = 0

for a certain arbitrarily chosen timelike vector ~u for example the 4-
velocity of an observer. These conditions are imposed by using the
remaining gauge freedom allowed within the Lorentz condition. The
first condition is that A is traceless, and the second is that A is
transverse. Thus this is called the transverse traceless gauge. In the
observer’s frame, we have

ATT
αβ =


0 0 0 0
0 Axx Axy 0
0 Axy −Axx 0
0 0 0 0


which has two degrees of freedom for the z direction. The trace
condition implies

h̄TTαβ = hTTαβ
Now the geodesic equation for a free particle initially at rest is

duα

dτ
= −Γαµνu

µuν = −Γα00

= −
1

2
ηαβ(hβ0,0 + h0β,0 − h00,β) = 0

so that stationary particles are not accelerated, relative to this coordi-
nate system. Note that this does not imply that the gravitational wave
has no physical meaning - it just means that the coordinate system
is attached to particles at rest in the observer’s frame. The proper
distance between two of these particles will change with time, at least
in the x and y directions. Diagram of circular ring of particles with
both polarisations.

Let us consider a gravitational wave impinging on a spring in the x
direction, with mass m at either end, natural length l0, spring constant
k and damping constant ν. Without the gravitational wave, we have

mẍ1 = −k(x1 − x2 + l0)− ν(ẋ1 − ẋ2)

mẍ2 = −k(x2 − x1 − l0)− ν(ẋ2 − ẋ1)

now defining
ξ = x2 − x1 − l0
ω2

0 = 2k/m

γ = ν/m

we have
ξ̈ + 2γξ̇ + ω2

0ξ = 0

which is the usual damped harmonic oscillator.
Now because the masses are slow moving, the geodesic equation is

unchanged to lowest order, so there is no direct force on the masses
due to the gravitational wave. There are forces, however, due to the
fact that the spring differs from its natural length. Its proper length
is

l(t) =

∫ x2(t)

x1(t)

√
1 + hTT

xx (t)dt

and the spring equations are

mẍ1 = −k(l0 − l)− ν
d

dt
(l0 − l)

mẍ2 = −k(l − l0)− ν
d

dt
(l − l0)

We define ω0 and γ as before, then

ξ = l − l0 = x2 − x1 − l0 +
1

2
hTT
xx (x2 − x1)

which we can solve to get

x2 − x1 = l0 + ξ −
1

2
hTTxx l0

ignoring higher order terms. Finally we have

ξ̈ + 2γξ̇ + ω2
0ξ =

1

2
l0ḧ

TT
xx

which gives a sinusoidal forcing to the spring. In order to detect
gravitational waves, we should adjust the natural frequency ω0 as
close as possible to the expected frequency of the gravitational waves,
and make the damping γ as small as possible.

What sort of gravitational waves might we expect to detect? Sup-
pose we have some oscillating strong gravitational field: this might be
two solar mass neutron stars or black holes in close orbit. Knowing
that solutions to the wave equation decay as 1/r (we can also derive
this for conservation of energy since all waves have energy density
proportional to the square of their amplitude), we expect roughly

hxx ∼
RS

RD

where RS is the radius of the source (in the above case a few kilo-
metres) and RD is the distance to the detector (a typical galactic
distance is about 1020m) so we expect deviations of length by 10−17.
Actually this is somewhat optimistic: more detailed calculations give
more common events as 10−20. Major efforts are underway to detect
these gravitational fields (using laser interferometers), but none have
succeeded yet. One indirect detection mechanism involves observing
a close binary spiralling together due to loss of energy in gravitational
waves. This has been observed.

We have mentioned energy in gravitational waves, but there are

a few difficult problems of principle here: this energy is not in Tµν

since gravitational waves can travel in a vacuum. In the linearised

theory it makes sense to talk of conservation of gravitational and

nongravitational energy by constructing an effective Tµν from h̄µν ,

but this fails in general: conservation of energy itself does not make

sense in nonstationary spacetimes.

7 Spherical symmetry

7.1 Spherical symmetry in GR

In the general, nonlinear case, our only hope of finding solu-
tions to the Einstein field equations is to impose symmetry,
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7.2 Spherical stars 7 SPHERICAL SYMMETRY

in a similar fashion to Gauss’ theorem in Newtonian grav-
ity. One possiblity of such a symmetry is planar symmetry
of gravitational waves. The other case of high symmetry is
that of spherical symmetry.

Spherical symmetry implies that the spacetime is com-
prised of spheres with metric ds2 = R2dΩ2 = R2(dθ2 +
sin2 θdφ2) where R is the “radius” as defined by measure-
ments on the sphere; in particular it is the circumference
divided by 2π. Theorem: there is no spherically symmet-
ric vector field on the sphere. Thus any other basis vec-
tors ~er and ~et must be orthogonal to each sphere, hence
grθ = grφ = gtθ = gtφ = 0.

Note that R determines distances only on the sphere -
it does not determine the distance between neighbouring
spheres. It does not determine the distance to a centre of
symmetry, or even that such a centre of symmetry exists: a
torus has circular symmetry, but no point of the torus can
be considered the “centre”.

For Schwarzchild coordinates we choose r = R (OK when
R is monotonic - not obvious) and ~et orthogonal to ~er, so
gtr = 0.

Thus we can write

ds2 = gttdt
2 − |grr|dr2 − r2dΩ2

as the most general spherically symmetric spacetime.
An alternative to Schwarzchild coordinates are “isotropic

coordinates”, for which the radial coordinate is redefined so
that

ds2 = gttdt
2 − |grr|(dr2 − r2dΩ2)

or by the usual transformation back to Cartesian coordi-
nates,

ds2 = gttdt
2 − |grr|(dx2 + dy2 + dz2)

These coordinates reduce naturally to the almost flat space-
time we discussed in the previous section.

Another symmetry we can impose is that of stationarity,
that is, the metric does not depend on time. This time
variable t could be different to the time variable needed to
remove the grt component, so we write

ds2 = gttdt
2 + 2grtdrdt− |grr|dr2 − r2dΩ2

with gtt,t = grt,t = grr,t = 0 for this case.
In addition, we say that a spacetime is static, if it is

stationary and time reversal invariant, which kills the grt
term. Thus we end up with

ds2 = gttdt
2 − |grr|dr2 − r2dΩ2

with gtt,t = grr,t = 0 for this case. A rotating star is an
example of a spacetime which is stationary but not static:
under time reversal, the direction of rotation is reversed.
However, a rotating star is not spherically symmetric.

The physical interpretation of the metric components is
as follows: the distance between two points along a radial
line is determined as

s =

∫ b

a

√
|grr|dr

which is generally not r itself.
The gtt component tells the rate of clocks at different

positions. The time measured (in coordinate time t) by a
stationary clock (at constant (r, θ, φ) is given by

dτ

dt
=
√
gtt

thus in the stationary case, the gravitational time dilation
can be defined by this component. We can also obtain
the redshift effect using energy arguments: pt = gttp

t is
conserved for a particle (possibly a photon) moving along a
geodesic. The energy observed by a stationary observer is
simply ~p · ~u where ~u is the 4-velocity of such an observer.
This 4-velocity is simply

uα =
dxα

dτ
= (1/

√
gtt, 0, 0, 0)

which is also obviously normalised, ~u · ~u = 1. Thus

Elocal = ~p · ~u = ptu
t = pt/

√
gtt

which gives the gravitational redshift. Photons look “bluer”
as they move towards a massive object.

We will also demand “asymptotic flatness” by which gtt
and grr approach unity as r →∞. This ensures that the t
coordinate gives time as registered by a distant clock, and
that the spatial geometry approaches that of flat spacetime.

7.2 Spherical stars

We write the spherically symmetric metric in the conven-
tional form

ds2 = e2Φdt2 − e2Λdr2 − r2dΩ2

where Φ and Λ are functions of r that approach zero at
infinity. In the Newtonian limit, Φ becomes the usual grav-
itational potential. The Einstein tensor takes the form

Gtt =
e2Φ

r2

d

dr
[r(1− e−2Λ)]

Grr = − 1

r2
e2Λ(1− e−2Λ) +

2

r
Φ′

Gθθ = r2e−2Λ[Φ′′ + (Φ′)2 + Φ′/r − Φ′Λ′ − Λ′/r]

Gφφ = sin2 θGθθ

with off diagonal components zero.
We equate this to a static stress-energy tensor for a perfect fluid,

in order to describe a spherical star. Neutron stars have very strong
gravitational fields since r ≈ 4M and so a GR description is essential.

Tµν = (ρ+ p)uµuν − pgµν

where ~u has only a time component (for static matter). Thus

ut = eΦ

for normalisation (ututgtt = 1). Then we have

Ttt = ρe2Φ

Trr = pe2Λ

Tθθ = pr2
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Tφφ = sin2 θTθθ

Energy-momentum conservation Tµν;ν = 0 is trivial except µ = r
which gives

(ρ+ p)
dΦ

dr
= −

dp

dr
In the Newtonian limit this is just

ρ|g| = −
dp

dr

which says that the pressure increases inwards at a rate given by the
extra force required to hold up the local matter, ρ|g|.

Two of Einstein’s equations are nontrivial: the time-time compo-
nent gives

dm(r)

dr
= 4πr2ρ

where

m(r) =
1

2
r(1− e2Λ)

In the Newtonian case m(r) is simply the mass within radius r, but
in GR it is not: we did not use the proper volume element, involving√
|g|. The difference is the gravitational potential energy, which has

the effect of making the total mass of a star less than its constituent
particles. Note that we have set m(0) = 0, which follows from the
fact that the space-time should be locally flat at the centre.

The r − r component gives

dΦ

dr
=
m(r) + 4πr3p

r(r − 2m(r))

which reduces in the Newtonian limit to

|g| = −
m(r)

r2

which is just the usual expression for the gravitational field in a spher-
ical object.

Eliminating dΦ/dr from this equation and the equation of hydro-
static equilibrium, we obtain the Oppenheimer-Volkov equation,

dp

dr
= −

(ρ+ p)(m+ 4πr3p)

r(r − 2m)

which, together with an equation of state p = p(ρ) can be solved from
an initial pressure p(0) = outwards. The edge of the star occurs when
the pressure drops to zero.

Using equations of state derived from quantum statistical mechan-
ics (for white dwarfs: degenerate electrons with massive nuclei, neu-
tron stars: degenerate neutrons), it is found that despite a pressure
approaching infinity at the centre, the total mass is limited to approx
1.4 times the mass of the sun. This is called the Chandrasekhar limit.
It is due to the apprearance of the pressure on the right hand side
of the OV equation, ie pressure effectively contributes to the gravi-
tational field. The observation of collapsed objects with greater than
this mass is evidence for black holes (discussed below).

Outside the star, we have ρ = p = 0, so m(r) is a constant M .

[Alternative text if small text is omitted:]
Setting Gtt = 0 by Einstein’s equations for a vacuum, we

find
e−2Λ = 1− 2M/r

where M is an unknown constant (which will turn out to
be the mass).

[end alternative text]
The remaining equation is then

dΦ

dr
=

M

r(r − 2M)

Φ =
1

2
ln(1− 2M/r)

so we have

ds2 = (1− 2M/r)dt2 − (1− 2M/r)−1dr2 − r2dΩ2

from which we deduce that M is indeed the mass as de-
termined by measurements at large distances. This is the
Schwarzchild solution. For ordinary spherical objects, the
solution continues until the surface of the object; for com-
plete gravitational collapse, we treat the spacetime as being
described entirely by this solution (in these or other coordi-
nates). Such an object is called a black hole.

It turns out that we could drop the static assumption:
the only solution of the vacuum Einstein equations that is
spherically symmetric is the Schwarzchild solution.

Dimensional remark: Recall that ct and GM/c2 both
have dimensions of length.

7.3 Orbits in Schwarzchild spacetime

The Schwarzchild solution clearly has interesting behaviour
at r = 2M , but we will leave this to the next section.

First, we consider stationary observers, that is, observers
at fixed (r, θ, φ). We have already calculated the gravita-
tional time dilation: a clock measures time

dτ =
√

1− 2M/rdt

where t is time measured by a distant, stationary observer.
What is the acceleration of gravity at position r? This

is just given by the magnitude of the 4-acceleration of the
stationary observer. The 4-velocity is

uµ =
dxµ

dτ
= ((1− 2M/r)−1/2, 0, 0, 0)

The 4-acceleration is

aµ =
Duµ

dτ
=
duµ

dτ
+ Γµαβu

αuβ

Now the first term is zero (the components uµ do not de-
pend on time) and the only contribution we will get is from
connection coefficients of the form Γµtt. Now the metric is
diagonal, so we have

Γµtt =
1

2
gµµ(gtµ,t + gtµ,t − gtt,µ)

from which only

Γrtt =
1

2
(1− 2M/r)(2M/r2) =

M

r2
(1− 2M/r)

Thus
aµ = (0,M/r2, 0, 0)

This looks like just the standard Newtonian result, but we
must remember to compute the proper acceleration

α =
√
−~a · ~a =

√
−grrarar =

M

r2
(1− 2M/r)−1/2

In general, to compare with local observer’s measurements,
we could use the orthonormal basis:

ar̂ = (0, (M/r2)(1− 2M/r)−1/2, 0, 0)

Note also that the sign of the acceleration is positive: the
stationary observer is accelerating outwards with respect to
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a local inertial frame. The acceleration (and hence the force
required to maintain a stationary position) is greater than
the usual Newtonian result.

Next, we consider orbits of massive particles. Without
loss of generality, we consider orbits in the equatorial plane
θ = π/2: thus uθ = 0 and sin θ = 1. We have three
“instant” constants of motion, the energy pt, the angular
momentum pφ and the mass squared ~p · ~p. Dividing by the
masses, we have

Ẽ = E/m = ut = gttu
t = (1−2M/r)ut = (1−2M/r)

dt

dτ

L̃ = L/m = −uφ = −gφφuφ = r2uφ = r2 dφ

dτ

1 = ~u·~u = (1−2M/r)(ut)2−(1−2M/r)−1(ur)2−r2(uφ)2

At infinity, the energy and angular momentum revert to
their SR values:

Ẽ =
dt

dτ
= γ

L̃ = r2 dφ

dτ
= γub

where b is the impact parameter.
Thus we find

(ur)2 = Ẽ2 − Ṽ 2

where
Ṽ 2 = (1− 2M/r)(1 + L̃2/r2)

is the effective potential (refer back to section 2.5). We
determine where orbits go as in the Newtonian case: for a
given L̃ plot the effective potential. Then, for fixed Ẽ the
particle can move at the radii determined by where Ẽ2 >
Ṽ 2.

For zero angular momentum (radial motion), the effec-
tive potential is just 1− 2M/r so the particle travels from
infinity to the black hole without restriction. Notice that
Ẽ > 0 for any r > 2M : the mass energy is always greater
in magnitude than the (negative) gravitational potential en-
ergy. What is the time taken to fall to r = 2M?

dr

dτ
= ur

is always finite, so the proper time is finite (from some finite
radius). The coordinate time is given by

dr

dt
=
dr/dτ

dt/dτ
=
ur

ut
=
ur

Ẽ
(1− 2M/r)

which when integrated,

t ≈ Ẽ

ur

∫
rdr

r − 2M

gives a logarithmic singularity: infall takes infinite coordi-
nate time.

In the case of large angular momentum, there is a high
peak in the effective potential: there are Newtonian bound
orbits in the shallow trough, and orbits very close to the
black hole which cannot escape.

Circular orbits occur where ur = 0, ie the stationary
points of the effective potential. The Newtonian circular
orbit is stable, while the orbit close to the black hole is
unstable. In detail:

d

dr
Ṽ 2 = 0

2M

r2
(1 +

L̃2

r2
)− (1− 2M

r
)
2L̃2

r3
= 0

Mr2 − L̃2r + 3ML̃2 = 0

r =
L̃2 ±

√
L̃4 − 12M2L̃2

2M
=

L̃2

2M2
(1±

√
1− 12M2/L̃2)

The two solutions are combined when the argument of the
square root is zero:

L̃2 = 12M2

for which
r = 6M

This is the last stable orbit. For smaller angular momenta,
there are no circular orbits.

We can find the angular momentum in terms of the ra-
dius:

L̃2 =
Mr2

r − 3M

which shows that there are no circular orbits (even unstable
ones) with r < 3M . Thus

Ẽ2 = Ṽ 2 = (1− 2M/r)(1 + L̃2/r2)

= (1− 2M/r)(1 +M/(r − 3M)) =
1

r

(r − 2M)2

r − 3M

The “angular velocity at infinity”,

ω =
dφ

dt
=
uφ

ut
=
L̃

r2

(1− 2M/r)

Ẽ

ω2 =
M

r2(r − 3M)

r − 3M

r
=
M

r3

This is just Kepler’s third law (only for circular orbits). The
period (in coordinate time) is

Tφ = 2π/ω = 2π
√
r3/M

We can calculate the perihelion precession for slightly
perturbed circular orbits. For small oscillations about the
minimum in the effective potential, we use

d2Ṽ 2

dr2
=
−4Mr2 + 6L̃2r − 24ML̃2

r5

=
2Mr − 12M2

r3(r − 3M)
∼ 2M

r3

substituting the value of L̃2 and making a Newtonian limit
for comparison. Recall the NR harmonic oscillator:

v2 = 2
E

m
− kx2

m
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with period
2π
√
m/k

Thus the period of oscillations in the radius is

∆τ = 2π

√
r3(r − 3M)

Mr − 6M2
∼ 2π

√
r3/M

Note that in the Newtonian case, it is just the period of the
orbit, so there is no precession. In the relativistic case we
need to convert this to coordinate time

Tr = ut∆τ = Ẽ(1− 2M/r)−1∆τ =

√
r

r − 3M
∆τ

=
2πr2

√
Mr − 6M2

=
Tφ√

1− 6M/r

Example: a massive particle orbits a black hole in the
unstable orbit at r = 7M/2. It is perturbed so that it
escapes: what velocity and impact parameter does it have
at infinity?

For circular orbits we have

L̃2 =
Mr2

r − 3M
= 49M2/2

Ẽ2 =
1

r

(r − 2M)2

r − 3M
= 9/7

The reduced energy Ẽ is simply γ at infinity, thus we have
u =
√

2/3 and γu =
√

2/7. The reduced angular momen-

tum L̃ is γub where b is the impact parameter. Thus we
have

b =
L̃

γu
=

7M/
√

2√
2/7

=
M7
√

7

2

Example: a particle in the stable circular orbit at r = 8M
is perturbed so that it is no longer quite circular. Draw the
orbit.

The oscillations in r have period T/
√

1− 6M/r = 2T .
Thus the particle returns to its initial radius after orbiting
the central mass twice (diagram).

Recall that another of the classical tests of GR was the
bending of light in the gravitational field of the sun. We
now turn to massless particles. We now avoid dividing by
the mass:

E = (1− 2M/r)pt

L = r2pφ

0 = (1− 2M/r)(pt)2 − (1− 2M/r)−1(pr)2 − r2(pφ)2

which becomes

(pr)2 = E2 − (1− 2M/r)L2/r2

These are momenta not velocities, so they do not corre-
spond to derivatives with respect to proper time (which
does not now exist), but we can still for example, write a
derivative like

dr

dφ
=
pr

pφ
= ±

√
r4E2/L2 − r(r − 2M)

Thus the shape of the orbit depends only on L/E, which
from SR we can compute is simply the impact parameter b.

The effective potential still has a stationary point, corre-
sponding to an unstable circular orbit. We have

dV 2

dr
=

d

dr

[
L2

r2
(1− 2M

r
)

]
= −L

2

r3
(2− 6M/r)

which gives the orbit at

r = 3M

and

V 2 = (1− 2M/r)L2/r2 =
L2

27M2

Thus any photon with b = L/E < 3
√

3M will be captured
by the black hole. A photon with just this impact parameter
will spiral around, approaching the circular orbit. A photon
with slightly more than this impact parameter will spiral for
a while, finally escaping in any direction. Thus shining a
light towards a black hole gives a “target” effect.

Let us calculate the directions a photon must travel in
order to escape from a black hole, relative to a stationary
observer. Such an observer will measure the momentum of
the photon using an orthonormal basis:

pφ̂ =
√
|gφφ|pφ = −L/r

This is also
pt̂ sin δ

where δ is the angle to the radial direction and

pt̂ =
√
|gtt|pt = (1− 2M/r)−1/2E

is the local energy, which is also the magnitude of the mo-

mentum,
√
p2
φ̂

+ p2
r̂. We now have two cases: in order for

a photon at r > 3M not to cross the barrier, it can move
outwards, or inwards, such that

E2 < V 2
max =

L2

27M2

thus

sin2 δ =
L2

r2E2
(1− 2M/r) > 27

M2

r2
(1− 2M/r)

If the observer is at r < 3M the photon must move out-
wards, so that

sin2 δ < 27
M2

r2
(1− 2M/r)

To calculate the amount of light deflection in the limit of
large distances, we need to integrate the equation relating
r and φ. We introduce u = M/r and ub = M/b, then we
have (

du

dφ

)2

+ (1− 2u)u2 = u2
b

now differentiating with respect to u we have

d2u

dφ2
+ u = 3u2

Page 35. c©University of Bristol 2007. This material is copyright of the University unless explicitly stated otherwise. It is
provided exclusively for educational purposes at the University and is to be downloaded or copied for your private study only.



7.4 The event horizon, singularity and extensions 7 SPHERICAL SYMMETRY

for which the right term is small far from the central mass.
Expanding in powers of a parameter ε� 1

u = εu1 + ε2u2

and equating coefficients we find

d2u1

dφ2
+ u1 = 0

d2u2

dφ2
+ u2 = 3u2

1

The solution of the first equation is

u1 = A cosφ

using the initial condition we find A = ub and shifting φ by
a constant if necessary. This is just a straight line. Substi-
tuting into the second equation we write

d2u2

dφ2
+ u2 =

3A2

2
(1 + cos 2φ)

u2 =
A2

2
(3− cos 2φ)

Thus we have

u = A cosφ+
A2

2
(3− cos 2φ) + . . .

which has zeros at

±(π/2 + 2A)

thus the total deflection of light is 4A = 4M/b to this
approximation.

Deflection of light can be observed experimentally, not
just in the gravitational field of the sun, but also of distant
objects, so called “gravitational lensing”. Thus the light
of a quasar has been observed to bend in the gravitational
field of a galaxy on the line of sight, leading to a double
image (diagram). On a smaller scale, observations of light
curves of stars in nearby galaxies can be used to measure
dark massive objects in our own galaxy.

Remark: differentiating the equation in this way is also
necessary for numerical work, since the original equation in
the form derivative equals squareroot omits the sign infor-
mation. The second order equation has two initial condi-
tions, and is thus not independent of L and E.

7.4 The event horizon, singularity and
extensions

What is the nature of the surface r = 2M? This is a
subtle question that was not answered properly until 1960.
We know from polar coordinates on the plane and spherical
coordinates on the sphere that the metric can break down
(specifically develop zero or infinite eigenvalues) without a
pathology in the underlying manifold. Such a singularity is
called a coordinate singularity, and is completely resolved
by an appropriate change of coordinates.

What kind of more pathological singularities can exist?
It is very difficult to give a watertight definition, but two of
the more common approaches are as follows:

A curvature singularity is where scalar quantities calcu-
lated from the curvature diverge. We include here not only
the Ricci scalar, but also quantities quadratic in the Rie-
mann tensor, etc. which contain other curvature informa-
tion than the Ricci scalar.

However, this definition is problematic. Consider a cone:
it is flat everywhere except at the apex. Thus we cannot de-
fine it to have a curvature singularity - all curvature scalars
are zero near the apex. Another example of this is the weak
singularities obtained from ordinary matter such as the se-
quence of spheres in problem 2.3(b): they should not cause
a problem since geodesics (and other physical equations)
are well behaved.

This leads us to the better concept is that of geodesic
incompleteness in which geodesics (the worldlines of free
particles) cannot be continued beyond a certain point, at
finite affine parameter (ie proper time for massive particles).
The geodesic incompleteness definition gives a singularity in
the conical case, but no singularity in the weak singularity
case, as we would like. The definition is not perfect: it
is possible for geodesics to be complete, but accelerated
observers to be incomplete, etc. but it will suffice here.

For our purposes, we will be content to show that the
curvature diverges, as this is a conceptually simpler calcu-
lation. For the case of Schwarzchild and other commonly
encountered GR spacetimes, this will be equivalent to the
geodesic incompleteness criterion.

With these ideas in mind, we turn to the Schwarzchild ge-
ometry. We have seen that a freely falling observer reaches
r = 2M at finite proper time but infinite coordinate time.
Let us assume for the moment that this pathology is due to
a poor choice of coordinates. If we compute the curvature
components in an orthonormal frame, we find that all of
them are CM/r3 where C = 0,±1,±2. Thus the surface
r = 2M seems well behaved, from the point of view of
an infalling observer. We already noted that a stationary
observer has singular properties in this limit.

The fact that gtt → 0 at r = 2M indicates that this
surface does not have finite 3-volume: either it is lower
dimensional, or null. The fact that |grr| → ∞ does not
indicate an infinite distance: a radial line has distance

s =

∫ √
|grr|dr =

∫
dr√

1− 2M/r

which is finite.
Suppose that a geodesic makes it past r = 2M : what

next? In the original coordinates, we see that t has become
a spacelike coordinate, while r is timelike! Thus all timelike
and null trajectories are drawn towards r = 0, where the
metric again breaks down. The curvature components in
the orthonormal basis are now infinite; the Ricci tensor is of
course zero since this is a vacuum solution, but the quantity

RαβγδR
αβγδ =

48M2

r6
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is clearly a scalar, and diverges at r = 0 so we have a
curvature singularity there.

Does a timelike geodesic hit this singularity in finite
proper time? We use the effective potential for zero an-
gular momentum as before,

(ur)2 = Ẽ2 − (1− 2M/r)

Now for r < 2M the RHS is greater than Ẽ2, thus the
particle must hit the singularity in a proper time given by

τ =

∫ 2M

0

dr√
Ẽ2 + (2M/r − 1)

< 2M/Ẽ

For the case Ẽ = 1 (particle falling from infinity), we have

τ =

∫ 2M

0

dr
√
r/2M = 4M/3

We clearly need a well behaved coordinate system to
cover r = 2M . We proceed as follows: Ignore the an-
gular variables. Write down expressions for the null radial
geodesics. This is

0 = (1− 2M/r)(ut)2 − (1− 2M/r)−1(ur)2

so that
dt

dr
=
ut

ur
= ±(1− 2M/r)−1

The solution is
t = ±r∗ + const

where the “Regge-Wheeler tortoise coordinate” r∗ is

r∗ = r + 2M ln(r/2M − 1)

so that dr∗/dr = (1 − 2M/r)−1. Thus we can define null
coordinates by

u = t− r∗
v = t+ r∗

in terms of which, the metric takes the form

ds2 = (1− 2M/r)dudv

where r is now viewed as a function of u and v, obtained
as

r + 2M ln(r/2M − 1) = r∗ = (v − u)/2

We can now rewrite the metric in a nonsingular form, mul-
tiplied by functions of u and v,

ds2 =
2Me−r/2M

r
e(v−u)/4Mdudv

The singularity is still present here: our coordinates u
and v are infinite at r = 2M . Now we transform again,
reparametrising the null geodesics,

U = −e−u/4M

V = ev/4M

to finally obtain a nonsingular metric

ds2 =
32M3

r
e−r/2MdUdV

To rewrite the metric in terms of a spacelike and a timelike
variable, write

T = (U + V )/2

X = (V − U)/2

to finally obtain the simplest “good” coordinate system
Kruskal-Szekeres:

X = (r/2M − 1)1/2er/4M cosh(t/4M)

T = (r/2M − 1)1/2er/4M sinh(t/4M)

when r > 2M and

X = (1− r/2M)1/2er/4M sinh(t/4M)

T = (1− r/2M)1/2er/4M cosh(t/4M)

when r < 2M in terms of which

ds2 = (32M3/r)e−r/2M (dT 2−dX2)−r2(dθ2 +sin2 θdφ2)

where
(r/2M − 1)er/2M = X2 − T 2

t

2M
= ln(

X + T

X − T
) = 2 tanh−1(T/X)

Note that the coordinate transformation is singular at r =
2M as it must be. Let us draw a spacetime diagram in terms
of the spacelike coordinate X and the timelike coordinate
T (suppressing θ and φ). Null curves are always at 45
degree angles on such a diagram, by construction. This is in
contrast to Schwarzchild coordinates (diagram). Constant
r corresponds to X2−T 2 = const which are hyperbolas. In
particular, r = 0 corresponds to T 2 = X2 + 1 and r = 2M
corresponds to X = ±T : we see this is actually a null
surface. Constant t corresponds to X/T = const which
are radial lines emanating from the centre of the diagram.
We see that all timelike or null curves that go to r < 2M
hit the singularity. The surface r = 2M is called the event
horizon since it marks the boundary of what can or cannot
escape from the black hole.

Perhaps the most interesting aspect of the new coordi-
nates is that the spacetime is extended: not only do we have
region I (external) and region II (future), but also region
(IV) past and region III (elsewhere). Thus the Schwarzchild
coordinates are only a chart on a limited part of the full
spacetime. Unfortunately it is impossible to get to region
III: it can only be achieved by spacelike curves.

If a star undergoes gravitational collapse, the spacetime
will initially be well behaved, but eventually an event horizon
will form, and the matter of the star fall onto a newly cre-
ated singularity (diagram). This excludes regions III and IV
of the fully extended system. The region outside the star is
guaranteed to be Schwarzchild, since this is the only spher-
ically symmetric solution to the Einstein vacuum equations.
To an outside observer, the star will appear to be “frozen”
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at the point r = 2M , with a few highly redshifted photons
emitted (also some that orbit at r = 3M). However, a
later observer going near the event horizon cannot explore
the surface of the star - it is in the past, according to the
spacetime diagram.

One obvious question at this point is whether singulari-
ties are inevitable, or a consequence of making special as-
sumptions such as spherical symmetry. It turns out there
are very general theorems, forcing singularities whenever
there is an event horizon, although not determining that all
timelike/null curves must pass through such a singularity
(eg Reissner-Nordstrom). Whether singularities can exist
without an event horizon is called the “cosmic censorship
conjecture” and is unknown. A “naked singularity” would
of course be very interesting to study, although quantum
effects might make it unobservable.

It is quite possible that in a full quantum theory of grav-
ity, the singularities are removed (quantum mechanics does
quite a good job at removing singularities from NR mechan-
ics), but this is also conjecture.

8 Experimental tests of GR

The equivalence principle

The equivalence principle is comprised of a number of
testable ideas. It is very general, and common to metric
theories of gravity (ie the idea that spacetime is a curved
manifold). Some tests that have been carried out include
checking that the acceleration of different bodies in a grav-
itational field is the same (to 10−12), SR Lorentz invariance
(tested daily in particle accelerators), and measurements to
ensure that the speed of light, mass and nuclear energy
levels (to 10−22!) are independent of direction.

SR tests include the Michelson Morley experiment
(isotropy of the speed of light), the observation of time di-
lation (longer half lives for moving unstable particles), and
conservation of 4-momentum as defined in SR.

Weak field, slowly varying

PPN formalism Next, we consider slowly varying weak
field effects. There are alternative (more complicated) the-
ories of gravity which differ for some of these effects. Since
all gravitational theories must reproduce Newtonian grav-
ity, it is possible to enumerate all the possible deviations of
“post-Newtonian” quantities using a limited number of pa-
rameters, without specifying the full theory. This approach
is called the Parametrised Post-Newtonian (PPN) formal-
ism.

Classical solar system tests: Light bending: we cal-
culated this previously. It was first observed in a solar eclipse
in 1919, being the first successful prediction of the new
theory. Using Very Long Baseline Interferometry, it is pos-
sible to pinpoint astronomical sources to milliseconds of
arc, leading to light bending checks to order 10−3. This
corresponds to the PPN parameter γ, which measures the

amount of space-time curvature associated with a given
mass. Light bending has also been observed leading to
gravitational lensing in astronomical contexts.

Light delay: the time taken for a light beam to travel
through a gravitational field is increased from the Newto-
nian value. This is a consequence of the geodesics in the
Schwarzchild metric that we studied, but the derivation is
more complicated and has been omitted. This has been
tested to about 10−2. This is also associated with the PPN
parameter γ.

Gravitational redshift: this is a consequence of the equiv-
alence principle. This is tested by a number of experiments
to an accuracy of 10−4. In addition, the GPS navigation
system depends on this value being correct.

Perihelion precession: we calculated this for circular or-
bits; of course this can be extended to weak field elliptical
orbits. In the case of Mercury, the precession is 5600 sec-
onds per century, mostly due to non-GR preturbations from
Jupiter etc. The GR term is 43 seconds. This was one of the
few experimental results available to Einstein while he was
constructing the theory. This effect depends on the PPN
parameter β, which describes the amount of nonlinearity in
superposed gravitational fields. This has been measured to
within 10−3.

Other effects: More recently investigated effects include
geodetic precession, in which a gyroscope in orbit about
a mass should precess, and gravitomagnetic precession, in
which additional precession is obtained from the mass itself
spinning. Again PPN parameters are restricted to GR values
to at least 10−3. Current measurements are being carried
out by Gravity Probe B (final report due Dec 2007).

Weak field: rapidly varying

We can also have quickly varying weak field effects - these
are called gravitational waves: too weak for direct detection
so far in terrestrial laboratories, but see below. The current
laser interfermeter LIGO and VIRGO detectors (4km in size)
are on the limit of detecting probable gravitational waves,
with a sensitivity of about 10−21. A space-based version,
LISA, (5 million km!) may become operational in about
2015, and be more sensitive still.

Compact objects

Neutron stars Now we turn to astrophysical evidence.
Pulsars emit regular pulses of radio waves (and sometimes
light and X-rays) once in a few seconds up to several hun-
dred times a second. Because nothing as large as the Earth
can pulsate or rotate this fast, they must be extremely small
and dense. From a theoretical point of view, they are best
described as rapidly rotating neutron stars, with radii about
10km and masses up to about 2 solar masses. Because
the pulses are very precisely timed (in fact equal to our
best atomic clocks), pulsars in a binary system (orbiting
another star) have their motion very precisely measured us-
ing the time delay effects (ie Doppler shift for motion and
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gravitational time delay). In 1974, the first “binary pul-
sar” PSR1913+16 was discovered, consisting of two neu-
tron stars in a close elliptical orbit with a period of 7.75
hours. This has allowed tests of the energy loss due to
gravitational radiation (ruling out a number of theories of
gravity which predict more radiation than GR due to strong
field effects), and strong field perihelion precession. Several
other binary pulsars have been discovered since. In March
2005, the first system in which emissions from both pulsars
can be detected was discovered; this should provide even
more stringent tests.

Black holes Black hole binaries have also been observed,
at least a very small star of mass greater than any theory
will permit for a neutron star. Both neutron stars and black
holes can have accretion disks, ie matter from the other
(larger) star in orbit around the star. At about r = 6M it
spirals in as predicted by GR; in the case of the neutron star
it can be observed hitting the surface at very high velocity.
For both neutron stars and black holes, relativistic collisions
in orbiting matter leads to very high temperatures and X-ray
emission.

Larger mass black holes with accretion disks have been
observed in the centres of star clusters and galaxies. They
emit highly Doppler shifted radiation from accreting mate-
rial, and sometimes jets along the axes of rotation. Our
own galaxy has a 3.6 million solar mass black hole at the
centre which stars orbit with periods as low as 14 years. In
some galaxies, the central black hole is absorbing so much
matter that it radiates more strongly than its galaxy; this
is the most likely explanation for “active galactic nucleii”,
and, at larger distances and earlier times, quasars.

Cosmology

GR has detailed predictions for the Universe as a whole -
cosmology. This is covered in the parallel unit: relativistic
cosmology; see also the notes for the postgraduate lectures
I gave on cosmology. Unfortunately, the uncertainties in the
rate of expansion and the mass density have made it difficult
to verify its predictions; recent observations are just starting
to connect surveys of galaxies with that of inhomogeneities
in the cosmic background radiation, the red shifted black
body radiation arising from the big bang. Current evidence
is for an acclerated expansion, which requires a cosmologi-
cal constant, or perhaps a “dark energy” field with bizarre
properties. These results (from WMAP and other observa-
tions) also give the age of the Universe as 13.7 billion years,
and the content of the energy density as about 4% atoms,
22% dark matter and 74% dark energy. So what we know
is far less than what we don’t know.
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