General relativity solution sheet 4

1. Usea-b = g0’ where g,,,, is a diagonal matrix with entries (1, -1, -1, —1).
We have
guwat (ab” + Bc”) = agu,a’'b” + Bgua”c”

using the usual distributive law for multiplication of real numbers. The
second part is

G @b’ = g,,a"b = g, b"a” = g, b"a”

relabelling indices, commuting multiplication of real numbers and noting
that g, is a symmetric matrix, ie g, = g,,. The third part is

O (g @) = gy (00" 0" + gy @’ (007)

using the product rule for real functions, and noting that g,, is constant
(in special relativity).

2. Let us write the 4-momenta as initial photon: p7, initial electron ps, final
photon: pj3, final electron py. We can write three of these immediately
(setting ¢ = 1 for the moment).

ﬁl = (EvEuoaO)

ﬁQ = (m7 07 07 0)
p3 = (E', E' cosf, E'sin0,0)
assuming (without loss of generality) that the photon initially moves in the

z-direction, and scatters into the x, y plane. We write down 4-momentum
conservation as suggested by the hint,

Ps=Dp1+p2—P3
and square both sides, noting that p- p'is the mass squared.
Pi =D + D5 + D5+ 2P1 - Po — 2P0 - Ps — 202 - P
m? =0+m?+0+2mE — 2(EE' — EE’ cos ) — 2mE’
; mE
 m+E— Ecosf

Finally, using A = h¢/FE and reintroducing the necessary factors of ¢, we
get

N =X+ i(1 — cos )
me

3. Recall that the relativistic scalar product (and hence whether a 4-vector
is spacelike or timelike) does not depend on the choice of reference frame.
Since 4 is timelike, there is an observer with 4-velocity @/vV @ - @ with
respect to which @ = (V@ - 4,0,0,0). A 4-vector orthogonal to this is of
the form ¥ = (0, z,y, z) which is clearly spacelike. The converse is false:
(0,1,0,0) and (0,0, 1,0) in any reference frame are clearly two orthogonal
spacelike vectors.

4. The relevant transformation laws are €,, = Ag,é'g and @@ = Agldjﬁ. From

the first, we have
8 _ 1 1
AP, = ( Ll )



noting the convention that the upper index corresponds to the rows of the
matrix. The second transformation law has the primed and unprimed in-
dices in the opposite positions. Since the operation of both A (“Lorentz”)
transformations leads back to the first basis, corresponding to the identity
transformation, these two matrices are inverses. Thus we find

o (1 -1
BV o 1

~ 17
and hence &*

using linearity of @* at the second step, and &*(€,) = J# at the third
step.

9(7,9) = 2(§) = 0" () = wuy”
since y* = @*(y) from above. We have z, = Z(€,,) (analagous to the first
part). Therefore

Z, = j(gu) = g(z,gu) = g(x"é‘y7 gp) = guuxy

since g is linear with respect to its first argument. For any vector & we
have

—

eu(T) = 9(€u, T) = g(Eu, 27€)) = gu” = gu”(7)

and therefore

€n = g’
. For any one-forms p and 6 and vectors d, b and & we have
T(p,6,d,b,0) = T(pai®, 050 "8y, b5, c¢,)

= To‘géepaU,@vcﬂb‘sc6

= T°05.8u(p)E3(5)7 (@) (b)a(?)

= T ®E 00" @0 ®a%(p,5,d,b,¢)

The coefficients T“g s are determined by the second equality:

a3
T yde

=T (& &% &, é5,¢)

. The gradient of a scalar field is a one-form: VF = F,w’. We can convert
this into a vector with the help of the metric, (VF)" = ¢ F ;. The curl
is a further antisymmetric derivative, by analogy with the ordinary cross
product: (V x V) =€, V¥, Thus we have

(VXVF) =e? g"F; =e'Fy

noting that the metric does not depend on position. This is zero, be-
cause €' is antisymmetric on (j,1), while Fj; is symmetric (since partial
derivatives commute). The argument is the same as in lectures: inter-
change indices and use the symmetry properties to return them to their
former places. This gives the original expression with a minus sign, thus
it must vanish.



