
General relativity solution sheet 4

1. Use ~a·~b = gµνaµbν where gµν is a diagonal matrix with entries (1,−1,−1,−1).
We have

gµνaµ(αbν + βcν) = αgµνaµbν + βgµνaνcν

using the usual distributive law for multiplication of real numbers. The
second part is

gµνaµbν = gνµaνbµ = gνµbµaν = gµνbµaν

relabelling indices, commuting multiplication of real numbers and noting
that gµν is a symmetric matrix, ie gµν = gνµ. The third part is

∂t(gµνaµbν) = gµν(∂ta
µ)bν + gµνaµ(∂tb

ν)

using the product rule for real functions, and noting that gµν is constant
(in special relativity).

2. Let us write the 4-momenta as initial photon: ~p1, initial electron ~p2, final
photon: ~p3, final electron ~p4. We can write three of these immediately
(setting c = 1 for the moment).

~p1 = (E,E, 0, 0)

~p2 = (m, 0, 0, 0)

~p3 = (E′, E′ cos θ, E′ sin θ, 0)

assuming (without loss of generality) that the photon initially moves in the
x-direction, and scatters into the x, y plane. We write down 4-momentum
conservation as suggested by the hint,

~p4 = ~p1 + ~p2 − ~p3

and square both sides, noting that ~p · ~p is the mass squared.

~p2
4 = ~p2

1 + ~p2
2 + ~p2

3 + 2~p1 · ~p2 − 2~p1 · ~p3 − 2~p2 · ~p3

m2 = 0 + m2 + 0 + 2mE − 2(EE′ − EE′ cos θ)− 2mE′

E′ =
mE

m + E − E cos θ

Finally, using λ = hc/E and reintroducing the necessary factors of c, we
get

λ′ = λ +
h

mc
(1− cos θ)

3. Recall that the relativistic scalar product (and hence whether a 4-vector
is spacelike or timelike) does not depend on the choice of reference frame.
Since ~u is timelike, there is an observer with 4-velocity ~u/

√
~u · ~u with

respect to which ~u = (
√

~u · ~u, 0, 0, 0). A 4-vector orthogonal to this is of
the form ~v = (0, x, y, z) which is clearly spacelike. The converse is false:
(0, 1, 0, 0) and (0, 0, 1, 0) in any reference frame are clearly two orthogonal
spacelike vectors.

4. The relevant transformation laws are ~eα′ = Λβ
α′~eβ and ω̃α′

= Λα′

β ω̃β . From
the first, we have

Λβ
α′ =

(
1 1
0 1

)
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noting the convention that the upper index corresponds to the rows of the
matrix. The second transformation law has the primed and unprimed in-
dices in the opposite positions. Since the operation of both Λ (“Lorentz”)
transformations leads back to the first basis, corresponding to the identity
transformation, these two matrices are inverses. Thus we find

Λα′

β =
(

1 −1
0 1

)
and hence ω̃1′

= ω̃1 − ω̃2 and ω̃2′
= ω̃2.

5.

ω̃µ(~x) = ω̃µ(xν~eν) = xν ω̃µ(~eν) = xµ

using linearity of ω̃µ at the second step, and ω̃µ(~eν) = δµ
ν at the third

step.
g(~x, ~y) = x̃(~y) = xµω̃µ(~y) = xµyµ

since yµ = ω̃µ(~y) from above. We have xµ = x̃(~eµ) (analagous to the first
part). Therefore

xµ = x̃(~eµ) = g(~x,~eµ) = g(xν~eν , ~eµ) = gνµxν

since g is linear with respect to its first argument. For any vector ~x we
have

ẽµ(~x) = g(~eµ, ~x) = g(~eµ, xν~eν) = gµνxν = gµν ω̃ν(~x)

and therefore
ẽµ = gµν ω̃ν

6. For any one-forms ρ̃ and σ̃ and vectors ~a, ~b and ~c we have

T (ρ̃, σ̃,~a,~b,~c) = T (ραω̃α, σβω̃β , aγ~eγ , bδ~eδ, c
ε~eε)

= Tαβ
γδερασβaγbδcε

= Tαβ
γδε~eα(ρ̃)~eβ(σ̃)ω̃γ(~a)ω̃δ(~b)ω̃ε(~c)

= Tαβ
γδε~eα ⊗ ~eβ ⊗ ω̃γ ⊗ ω̃δ ⊗ ω̃ε(ρ̃, σ̃,~a,~b,~c)

The coefficients Tαβ
γδε are determined by the second equality:

Tαβ
γδε = T (ω̃α, ω̃β , ~eγ , ~eδ, ~eε)

7. The gradient of a scalar field is a one-form: ∇F = F,iω
i. We can convert

this into a vector with the help of the metric, (∇F )i = gijF,j . The curl
is a further antisymmetric derivative, by analogy with the ordinary cross
product: (∇×V)i = εij

kV k
,j . Thus we have

(∇×∇F )i = εij
kgklF,jl = εijlF,jl

noting that the metric does not depend on position. This is zero, be-
cause εijl is antisymmetric on (j, l), while F,jl is symmetric (since partial
derivatives commute). The argument is the same as in lectures: inter-
change indices and use the symmetry properties to return them to their
former places. This gives the original expression with a minus sign, thus
it must vanish.
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