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A “drivebelt” stadium billiard with boundary consisting of circular arcs of differing radius

connected by their common tangents shares many properties with the conventional “straight”

stadium, including hyperbolicity and mixing, as well as intermittency due to marginally unstable

periodic orbits (MUPOs). Interestingly, the roles of the straight and curved sides are reversed. Here,

we discuss intermittent properties of the chaotic trajectories from the point of view of escape

through a hole in the billiard, giving the exact leading order coefficient limt!1 tPðtÞ of the survival

probability P(t) which is algebraic for fixed hole size. However, in the natural scaling limit of small

hole size inversely proportional to time, the decay remains exponential. The big distinction between

the straight and drivebelt stadia is that in the drivebelt case, there are multiple families of MUPOs

leading to qualitatively new effects. A further difference is that most marginal periodic orbits in this

system are oblique to the boundary, thus permitting applications that utilise total internal reflection

such as microlasers. VC 2012 American Institute of Physics. [doi:10.1063/1.3685522]

Intermittency is a general dynamical phenomenon in

which a single chaotic trajectory is interrupted at appa-

rently random intervals by quasi-regular behavior of

varying and unbounded duration. While first described

in the context of turbulence, it is ubiquitous in nature

since one of the sources of intermittency, elliptic islands

approached more and more closely by the long quasi-

regular intervals, are generic features of Hamiltonian

systems. Another, and more mathematically tractable,

source of intermittency is that of marginally unstable

periodic orbits (MUPOs). In contrast to elliptic islands,

MUPOs can exist in systems with strong ergodic proper-

ties such as the celebrated stadium billiard introduced by

Bunimovich in 1974. This billiard consists of a particle

confined to a region bordered by two straight parallel

lines and two semicircles tangent to these, in which the

MUPOs are “bouncing ball” orbits reflecting between the

parallel sides indefinitely. Orbits with many consecutive

bounces on the straight segments are quasi-regular, and

when reaching a curved end of the billiard, they return to

make a quasi-regular sequence of similar length; only af-

ter many such sequences does the orbit return to the cha-

otic region of phase space. In the case of two circular arcs

connected by non-parallel tangents, the drivebelt sta-

dium, orbits between the straight segments are of

bounded length, but orbits close to periodic orbits in the

larger arc are now quasi-regular. After slowly precessing

and reaching a straight segment, an analogous return

takes place in a sequence of similar length in the reverse

direction. Now, however, there are potentially many such

families of MUPOs, leading to the richer phenomena of

multiple intermittency. Here, we quantify this multiple

intermittency by drilling a hole in the billiard and waiting

for the particle to escape. The probability of surviving

for a specified time, P(t) decays algebraically, with a

coefficient expressed exactly as a sum of contributions

from the MUPOs; numerical simulations confirm these

calculations. Properties of the straight stadium are

retained, but new possibilities arise from the multiple

intermittency, which resembles more closely a generic

mixed system with many elliptic islands. Applications in

atom, electron, and optical billiards are discussed; unlike

the straight stadium, the oblique reflections of typical

MUPOs in the drivebelt now allow total internal reflec-

tion, which allows trapping at the very small scales

needed for microlasers. These wave billiards also raise in-

triguing questions for the future—how is multiple inter-

mittency manifest in the quantum regime?

I. INTRODUCTION

The study of mathematical billiards1 has received much

attention in recent years as it facilitates a better understand-

ing of the underlying dynamics of many physical systems

while also providing useful models with applications in areas

ranging from nonlinear dynamics and statistical physics to

quantum optics. Classically, the billiard’s phase space is

defined by the position and momentum variables of a point

particle moving with constant speed in a straight line inside

a compact domain Q 2 Rd experiencing mirror-like reflec-

tions at the billiard boundary @Q. As the particle trajectories

do not depend on the overall energy, the billiard dynamics

(integrable, mixed or chaotic) is completely controlled by

the boundary geometry. The addition of a “hole” or “leak” in

phase space through which an initial ensemble of particles

may escape through was first suggested by Pianigiani and

Yorke.2 This made the survival probability P(t) (a monotoni-

cally decreasing function of time t) an important statistical

observable, able to describe and classify the internal dynam-

ics of the billiard or other dynamical systems. Moreover, it

motivates the following question: How do the long-time

a)Author to whom correspondence should be addressed. Electronic mail:

Carl.Dettmann@bris.ac.uk.
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escape properties depend on the dynamics, the size, and
position(s) of the hole(s)?

To a first approximation, the exponential rate of escape

in strongly chaotic dynamical systems is proportional to the

size of the hole, inversely proportional to the size of the ac-

cessible part of the phase space and independent of the hole’s

position. We shall be concerned with two dimensional bil-

liards where this statement can be simply expressed as

c ¼ lim
t!1
� ln PðtÞ

t
¼ �

pjQj ; (1)

such that
pjQj
j@Qj is the mean free path between collisions, � is

the hole size, and jQj and j@Qj are the area and perimeter of

the billiard, respectively. The exponential decay follows

from the fact that the dynamics of strongly chaotic systems

resembles that of a random process with an escape probabil-

ity p at each collision of a typical trajectory such that

p ¼ �
j@Qj. Therefore, the probability of escaping after n� 1

collisions is approximately given by the binomial distribu-

tion pð1� pÞn�1 � pe�np if p� 1. A more precise deriva-

tion of the exponential decay requires rapid mixing in

continuous time, but this may be difficult to prove rigor-

ously; from a physical point of view it is sufficient that all

periodic orbits are exponentially unstable. The diamond bil-

liard studied in Ref. 3 is a good example of a strongly cha-

otic billiard satisfying both of these requirements.

Equation (1) is a good approximation for small holes

and times longer than the scale set by correlation decay

which is proportional to one over the Lyapunov exponent of

the chaotic saddle. Exact formulas for the subsequent correc-

tion terms were derived recently in Ref. 3 as sums of correla-

tion functions depending on both hole size and position and

were numerically tested in the dispersing diamond billiard

with a hole placed in coordinate space along the billiard

boundary. Holes in momentum space have also been consid-

ered and are of interest when studying for example emission

from dielectric micro-cavities.4 The full escape properties of

open systems are in theory described by the properties of the

invariant chaotic saddle(s) along which a conditionally

invariant measure concentrates in time5 but are however dif-

ficult to compute in practice.6 Nevertheless, although placing

holes through which particles may escape was originally a

perturbative approach for generating transient chaos,2,7 it has

also been successful as a kind of chaotic spectroscopy8 used

for retrieving information about the internal dynamics.3,9

Generic dynamical systems however such as the stand-

ard map10 are weakly chaotic and have a mixed phase space

where Kolmogorov-Arnold-Moser (KAM) hierarchical

islands coexist with a chaotic sea. Although the dynamics in

the hyperbolic regions of the phase space is exponentially

mixing, trajectories approaching the islands “stick” there for

arbitrarily long periods of time before they are re-injected

back into the “deep” hyperbolic regions of the chaotic sea.

The sticky dynamics11 described above is closely associated

with the more general phenomenon of intermittency and is

captured by a cross-over from exponential to an asymptotic

power-law decay in the survival probability PðtÞ � Ct�a,

with a � 1, and is independent of the hole’s position,

assuming that it is placed well inside the chaotic part of the

phase space. In recent studies,12 this was interpreted as an

effective splitting of the chaotic saddle into hyperbolic and

nonhyperbolic components. The question of a universal

power-law exponent in mixed phase space systems is still an

open problem though recent results suggest a � 0:57.13

It is important to note that although power-law decays

with a ¼ 1 are typically associated with integrable sys-

tems,14 it is no coincidence that they also appear in the

famous Bunimovich stadium billiard,15 a paradigmatic

example of chaotic billiards. The stadium billiard16 is com-

posed of two semicircles joined smoothly ðC1Þ by two paral-

lel straight lines. The defocusing mechanism of chaos

present guarantees a positive Lyapunov exponent (exponen-

tial separation rate of nearby trajectories) almost everywhere,

the exception being a zero-measure continuous family of pe-

riod two MUPOs called “bouncing ball” orbits trapped for-

ever between the stadium’s parallel walls. These orbits are

locally the same as those in a rectangle and thus lead to an

intermittent, quasi-regular behavior which effectively gives

the a ¼ 1 power-law asymptotic decay but also causes the

closed stadium to display some weaker chaotic properties

such as an algebraic decay of correlations17 and a non-

standard central limit theorem (CLT) requiring a tlogt nor-

malization.18,19 Note that “whispering gallery” orbits which

slide almost tangentially along the curved boundaries are

only intermittent in discrete time but not in continuous time

as their maximum length is bounded. Quantum mechani-

cally, bouncing ball orbits are known to cause scarring,20

deviations from random matrix theory (RMT) (especially in

the D3-statistics) if not treated appropriately,21,22 while the

system is not quantum uniquely ergodic23 and an �h depend-

ent “island of stability” appears to surround them.24 There-

fore, bouncing ball orbits and MUPOs in general are

important in understanding the quantum to classical corre-

spondence25 of the phenomenon of stickiness.

It was recently found by the authors that by positioning a

hole on the boundary as to intersect the continuous family of

bouncing ball orbits, it is possible to explicitly single out long

surviving orbits hence calculating the constant C in closed form

as a function of hole position26 hence supporting the interpreta-

tion of Ref. 12. Unlike past investigations of open stadia,27 this

result included the exact coefficient of the survival probability,

allowing for the accurate prediction and hence optimization of

escape time distributions while also providing answers to the

aforementioned motivational question. In this paper, we review

and generalize the approach of Ref. 26 to circular type MUPOs

in the context of the drivebelt billiard.17,28–30

The drivebelt billiard is constructed by two circles of

radii r and R > r with centers displaced by a distance d. The

circles are then connected by their common outer tangent

lines of length L (see Figure 1) and the interior arcs are

removed such that the boundary is C1 smooth and convex

and d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ ðR� rÞ2

q
. For the purpose of our current

investigation, only half the arc length of the larger circle

/ 2 ðp=2; pÞ needs to be known as shown in Figure 1. Note

that in the limits /! p=2 and /! p, the stadium billiard

and circle billiards are recovered, respectively.

026113-2 C. P. Dettmann and O. Georgiou Chaos 22, 026113 (2012)



This construction, also known as a “tilted” stadium, or a

“squash” was originally proposed by Bunimovich (unpub-

lished), investigated numerically and experimentally using

ultra cold atoms confined by lasers beams in Ref. 28, and

later rediscovered in Refs. 17 and 29, where it was first

called a “drivebelt” billiard and its polynomial mixing rates

were studied in detail. Recently, Bálint et al.30 have studied

a two-parameter set of two-dimensional billiards with one of

the limiting cases being the drivebelt and conjecture that

they obtain ergodic non-dispersing billiards which are close

to their drivebelt limit.30 The billiard is hyperbolic, ergodic,

and Bernoulli16 and remains chaotic no matter how short L
is, but turns into the integrable circle when L! 0. The

mechanism of chaos present is the defocusing one (same as

for the stadium billiard) where a parallel beam of rays

becomes convergent and then divergent after traveling twice

the focal length. Therefore, expansion in phase space is guar-

anteed almost everywhere,31 the exception here being a set

of zero-measure circle-type MUPOs which are locally the

same as those in a circle.

Circular type MUPOs (defined later) in a sense general-

ize bouncing ball orbits as they allow for periods s � 2.

They have also been observed in the mixed phase space an-

nular32 and mushroom billiards.33 In fact, in both of these

cases, an infinite number of them was shown to exist34 while

careful investigations involving continued fractions and

results from number theory have revealed a MUPO-free set

of mushrooms35 which can also be extended to the annular

billiard. In contrast, the drivebelt billiard has only a finite

number of MUPOs controlled by the parameter /, hence

motivating the term multiple intermittency. That is, a finite

number of regions of the billiard phase space individually

display quasi-regular behavior for long periods of time.

Interestingly and unlike bouncing ball orbits, circle type

MUPOs may have large incidence angles with the boundary

and, therefore, would be interesting to study in the context of

micro-resonators36 where total internal reflection will trap

some of them according to Snell’s law of refraction. Regard-

less of this, all aforementioned classical and quantum “side-

effects” due to bouncing ball orbits including nonstandard

CLT of Refs. 18 and 19 are expected to be inherited by the

drivebelt. Moreover, an interesting duality exists between

the stadium’s bouncing ball orbits and the drivebelt’s circu-

lar MUPOs as the roles of straight and curved boundary seg-

ments are reversed. Also, as we shall show, they exhibit very

similar reflection laws at the end of each quasi-periodic inter-

mittent sequence of reflections, a key property in our

approach for calculating the asymptotic survival probability.

In Sec. II, we formally present our model by defining

the relevant parameters and briefly discussing how MUPOs

affect the open and closed billiard dynamics. In Sec. III, we

numerically investigate the open drivebelt phase space and

observe the multiple intermittency manifested by the multi-

ple sticky regions surrounding the system’s MUPOs. In Sec.

IV, we adapt and extend the approach of Ref. 26 and obtain

an exact to leading order in t analytic expression for the as-

ymptotic survival probability function which we numerically

verify and discuss different scaling limits. In Sec. V, we con-

clude with a short discussion.

II. CIRCLE-TYPE MUPOS AND MULTIPLE
INTERMITTENCY IN THE DRIVEBELT BILLIARD

We define Birkhoff coordinates ðz; sin hÞ such that

z 2 ½0; j@QjÞ increases from zero anticlockwise from the

rightmost point of the billiard as shown in Figure 1 and

h 2 ð� p
2
; p

2
Þ is the angle of incidence. These coordinates are

volume preserving under the billiard map and are also the er-

godic equilibrium measure of the closed billiard and corre-

sponding volume element dl ¼ ð2j@QjÞ�1
cos h dhdz which

we use as initial particle ensemble in our numerical simula-

tions since the hole will typically be of small but finite size.

The drivebelt billiard is a non-uniformly hyperbolic sys-

tem due to the existence of circle-type MUPOs in the larger

of its two circular arcs. MUPOs in the drivebelt are a subset

of periodic orbits of the circle billiard and hence have inci-

dence angles given by hs;j ¼ p
2
� jp

s , where s � 2 and j � 1

are coprime integers describing the period and rotation num-

ber, respectively. The number of MUPOs in the drivebelt

grows approximately as �3=ð2ðp� /Þ2Þ, hence we coin the

term “multiple intermittency.” This is because a MUPO of

period s will exist only if it satisfies 2p
s > 2ðp� /Þ and the

number of integers coprime to s goes like �6s=p2. We,

therefore, define the set containing all MUPOs for a given /

FIG. 1. (Color online) The drivebelt bil-

liard is defined by the ratio of the small

and big radii r
R 2 ð0; 1Þ and the arc of the

larger of the two circular arcs

/ 2 ðp=2; pÞ which in turns defines

which MUPOs exist in the drivebelt’s

phase space. Left: Drivebelt with
r
R ¼ 0:3 and / ¼ 2:5. The period two di-

ametrical MUPO ðs; jÞ ¼ ð2; 1Þ, the pe-

riod three triangle MUPO ðs; jÞ ¼ ð3; 1Þ,
and the period four square MUPO

ðs; jÞ ¼ ð4; 1Þ are shown. Right: These

MUPOs can be oriented within a certain

range depending on the value of /. A

small hole is placed near the edge of the

larger arc as to intersect the range of all

3 MUPOs present.

026113-3 The open drivebelt billiard Chaos 22, 026113 (2012)



by S/¼ fð2; 1Þ[ðs; jÞj3 � s < p
p�/ ; 1 � j � bs�1

2
c; gcdðs; jÞ

¼ 1g.
The mountain-plot in Figure 2 shows how MUPOs

come into existence as / is increased from p
2

to p from top to

bottom. Also in Figure 2 and the right panel of Figure 1, we

can see how the families of MUPOs define a range along

which they can be oriented inside the larger of the two circu-

lar arcs. The example case shown in the right panel of Figure

1 with / ¼ 2:5 is also highlighted in Figure 2 as a red hori-

zontal line.

The linear stability (monodromy matrix) eigenvalues of

MUPOs are both equal to one hence any small perturbation of

a MUPO will initially grow linearly (not exponentially) with

time as the orbit precesses in the perturbed direction. Some

examples are shown in Figure 1. MUPOs remain periodic af-

ter a small perturbation in z and hence form continuous fami-

lies while perturbations in h will cause them to precess and

exhibit long periods of quasi-regular behavior (approximately

periodic), before leaving the vicinity of the periodic orbit and

exploring the rest of the ergodic phase space uniformly and

exponentially fast. This quasi-regular, non-dispersive behavior

can cause the formation of scars in quantum billiards and is of

particular interest in optical microlasers where total internal

reflection can pick out some of the MUPOs while allowing

others to cause directional emission.36

Although MUPOs occupy zero volume in phase space

and hence do not affect the overall ergodicity of the system,

they govern long time statistical properties of the closed sys-

tem, such as the rate of mixing (the rate of the decay of cor-

relations) CðtÞ � t�1 (Ref. 29) and the Poincaré recurrence

times distribution QðtÞ � t�2 (Ref. 37) which is also inti-

mately related38 with the long time survival probability

PðtÞ � t�1 (Ref. 39) of the open system. Furthermore, the

exponents of these power-laws appear to be a universal fin-

gerprint of non-uniform hyperbolicity and stickiness, at least

for one and two dimensional area preserving maps with

sharply divided phase space.39

To this end, we note that the large number of consecutive

collisions that occur in a MUPO’s close vicinity in phase

space does not violate Kac’s40 famous lemma. That is, the

mean recurrence time to a small box surrounding a MUPO

equals one over the measure of the box. This is of course

nothing more than an artifact of ergodicity in that the long

times spent by a trajectory stuck in the vicinity of the MUPOs

are on average compensated by an apparent “difficulty” in

entering such sticky regions in the first place.27 Note however

that due to the sticky dynamics, the second and higher

moments of the recurrence times distribution diverge.41

The long periods of quasi-regular behavior and the er-

godic compensation mechanism are particularly interesting

to discuss in the multiple intermittency setting of the drive-

belt billiard. This is because by defining conditional return

and transmission distributions, one may succeed in breaking

the usual independence between events observed in chaotic

systems. For example, consider small boxes A, B, etc. in

phase space enclosing the MUPOs. Mixing of this billiard

says that the probability of being in A at some time and B at

a much later time approaches lðAÞlðBÞ. A priori, it does not

say what happens at closely spaced times, and in particular,

whether the probability of reaching B rather than C immedi-

ately following A is proportional to their respective meas-

ures. If we require a given number n > 1 collisions within

each region, the measures are reduced according to the colli-

sion rules where the MUPO reaches the straight segments,

which leads to a dependence on the period of the orbit. Pre-

liminary investigations (omitted) suggest that these condi-

tional transmission probabilities are remarkably close to the

default independence prediction, but deviations must be evi-

dent at some level, in a way that reveals deeper structure of

the dynamics of this, or indeed other, system with multiple

intermittency. We leave further investigation of this point to

future work, but note that such a situation is particularly rele-

vant to optical microlasers where MUPO resonances can

interact via different mechanisms36,42–44 and a minimum

number of collisions inside the cavity is needed to achieve

high quality factors. In Sec. III, we perform a numerical

investigation of the open drivebelt phase space and identify

the set of sticky orbits responsible for the power-laws dis-

cussed above.

III. NUMERICAL INVESTIGATIONS OF DRIVEBELT
PHASE SPACE

We begin our investigations with some phase space

images of a drivebelt billiard with R¼ 1, r¼ 0.3, and

/ ¼ 2:5. Notice that S/ ¼ fð2; 1Þ; ð3; 1Þ; ð4; 1Þg. Figure 3

shows 105 randomly chosen initial conditions (ICs) (initially

distributed on the billiard boundary according to the equilib-

rium density) which do not escape after time t¼ 2000

through a small hole of size � ¼ 0:1 placed at z 2 ð2:8; 2:9Þ.
Note that the hole is placed well inside the ergodic compo-

nent of the phase space but is also away from any sticky

regions. The hole can be clearly identified as the thin gray

vertical strip on the right of the figure. We notice that long

surviving initial conditions seem to populate the sticky

regions surrounding the locations of the MUPOs. We also

FIG. 2. (Color online) As / 2 ðp=2; pÞ is increased, more and more MUPOs

come into existence. Only the first 7 MUPOs are shown here. The total range

they cover also increases monotonically with / and is shown on the horizon-

tal axes. The range covered by MUPOs for the example case of / ¼ 2:5 is

explicitly shown (also see right panel of Figure 1).
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notice that these ICs are supported on spike-like fractal-look-

ing structures which correspond to the unstable manifold of

the hole up to t¼ 2000. The coarse grained ICs surrounding

these spikes correspond to trajectories that move from one

MUPO to another but do not intersect the hole up to

t¼ 2000. Moreover, these long surviving heteroclinic orbits

contribute to the asymptotic power-law decay even though

they exhibit stable and unstable directions in phase space.

Figure 4 shows 105 randomly chosen initial conditions

which do not escape after time t¼ 2000 through a small hole

of size � ¼ 0:1 intentionally placed at z 2 ð2:3; 2:4Þ as to

overlap part of all three MUPO ranges. Note that the number

of initial conditions plotted in Figures 3 and 4 are the same

while now the hole clearly repeats itself in all sticky regions.

The density of long surviving orbits in regions away from

MUPOs appears to have decreased while the spike like struc-

ture has shrank dramatically. We, therefore, zoom in and

take a closer look (see Figure 5). The magnified phase space

corresponds to z 2 ð2:45; 2:5Þ which is right where the larger

circular arc meets with the straight. The spike-like fractal-

looking structure observed previously is retained for negative

h but is linear for positive h. This pattern is preserved in all

MUPO vicinities (not shown) suggesting that for long but

fixed survival times t, small and positive h perturbations of

MUPOs have a linear dependence with distance to the hole

while negative h perturbations have a more interesting de-

pendence and can also sustain larger perturbation magni-

tudes. In Sec. IV, we clarify these two types of behaviors at

long times by classifying them as ICs precessing towards/

away from the hole.

IV. ASYMPTOTIC SURVIVAL PROBABILITY

Assuming that for large enough times, the long surviv-

ing initial conditions are dense only in the close vicinity of

MUPOs, then a hole which overlaps part of all MUPO ranges

will separate the long surviving ICs into two simple families:

(1) orbits initially precessing towards the hole and (2) orbits

initially precessing away from the hole. We clarify this clas-

sification as follows. A small perturbation gi � 1 in the

angle of incidence hs;j of a MUPO will cause the orbit to pre-

cess in a quasi-periodic fashion. If the orbit is precessing

towards the hole and gi is small enough then the orbit may

survive for an unbounded amount of time and hence will

contribute to the asymptotic power-law � t�1 tail of P(t). In

fact such orbits correspond to the ICs with h > 0 shown in

Figure 5 and are bounded linearly from above as the precess-

ing velocity is proportional to the perturbation strength. If

the orbit is precessing away from the hole and the gi is small

enough, the orbit will experience a nonlinear collision proc-

esses which reverses the orbit’s precession direction and is

of the type C … CSCs�1ðSÞC … C until escape. We have

used here a symbolic dynamics where the symbols S and C
correspond to collisions on straight and curved boundary

segments, respectively. The s in the superscript corresponds

to the period of the nearest MUPO in phase space. Also the S
in brackets, as we shall see later only occurs when the first

straight segment collision does not reverse the precessing

orbit’s direction. After the precessing direction is reversed,

the orbit will approach the hole with a final angle of inci-

dence which is not far from hs;j and may again have

unbounded survival time. Such ICs as we shall soon see con-

stitute the spike-like structure observed for h < 0 in Figure

5. With this classification, we expect that

FIG. 3. (Color online) Phase space plot of drivebelt billiard showing 105

randomly chosen initial conditions which survive up to time t¼ 2000 with

drivebelt parameters / ¼ 2:5, R¼ 1, r¼ 0.3, and a hole of size � ¼ 0:1 posi-

tioned at z 2 ð2:8; 2:9Þ.

FIG. 4. (Color online) Phase space plot of drivebelt billiard showing 105

randomly chosen initial conditions which survive up to time t¼ 2000 with

drivebelt parameters / ¼ 2:5, R¼ 1, r¼ 0.3, and a hole of size � ¼ 0:1 posi-

tioned at z 2 ð2:3; 2:4Þ.

FIG. 5. (Color online) Magnification of phase space plot in Figure 4 at

z 2 ð2:45; 2:5Þ and sin h 2 ð�0:0004; 0:0004Þ showing how the long surviv-

ing t > 2000 initial conditions populate the area near the period two diamet-

rical MUPO.
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lim
t!1

tPðtÞ ¼ lim
t!1

tðP1ðtÞ þ P2ðtÞÞ; (2)

where P1ðtÞ and P2ðtÞ correspond to the leading order contri-

butions of the two types of ICs.

A. Precessing towards the hole

Consider a small hole of size � situated at

z 2 ðh�; hþÞ 	 ð0;/Þ, such that it overlaps all MUPO ranges

and hþ ¼ h� þ �. An example is shown in the right panel of

Figure 1. We perform a change of variables and consider ICs

ð/i; hiÞ such that /i 2 ð0;/� hþÞ is the angular distance of

the IC from the nearest edge of the hole in the direction of

precession and hi ¼ hs;j þ gi is the angle of incidence such

that the perturbation gi � 1 causes the orbit to precess

towards the hole. Since the precessing angular velocity is

proportional to the perturbation strength gi, the condition

jgij <
�

2s
; (3)

guarantees that the IC does not “jump over” the hole. Hence,

such an orbit will escape in time t given by

tð/i; hiÞ ¼
�

/i

2gis

�
s2R coshi

¼ R/i coshs;j

gi

þOð1Þ:
(4)

Notice that we have obtained the escape time in a continuous

time frame from discrete iterations of the billiard map. This

is allowed here since the time between collisions is fixed.

From the above information, we can obtain a lower bound

on the relevant time scales for which our results are valid

jgij < min

�
�

2s
;
R/i coshs;j

t

�
; (5)

and hence when

t >
4pR

�
; (6)

since supð/iÞ ¼ 2p=s.

We can now integrate the area described by the above

inequalities with respect to the equilibrium measure

ð2j@QjÞ�1
dzd sin h ¼ ð2j@QjÞ�1Rðcos hs;j � gisin hs;jÞd/idgi

as follows:

I 1¼
ð/1Rcoshs;j

t

0

ð/1

tgi
Rcoshs;j

Rðcoshs;j�gisinhs;jÞ
2j@Qj d/idgi

¼R2/2
1ð3t�R/1 sinhs;jÞcos2hs;j

12j@Qjt2

¼R2/2
1 cos2hs;j

4j@Qjt þO 1

t2

� �
;

(7)

where /1ðsÞ is the angular distance available within the

range of the MUPO on the corresponding side of the hole.

Similarly, we obtain the asymptotic contribution from ICs pre-

cessing towards the hole but from the other side of the hole,

I 2 ¼
R2/2

2 cos2hs;j

4j@Qjt þO 1

t2

� �
; (8)

and the total contribution to the asymptotic survival proba-

bility is

P1ðtÞ ¼
X
ðs;jÞ2S/

spðI 1 þ I 2Þ þ O
1

t2

� �
; (9)

where the p¼ 1 if s¼ 2 and p¼ 2 otherwise as to account for

the vertical symmetry of the phase space and s accounts for

the multiplicity of the MUPOs as seen in Figures 3 and 4.

We next turn to the contribution P2ðtÞ due to ICs precessing

away from the hole.

B. Precessing away from the hole

We now consider ICs ð/i; hiÞ such that the perturbation

gi � 1 causes the orbit to initially precess away from the

hole. Here, we define /i 2 ð0;/� hþÞ to be the angular dis-

tance of the IC from the edge of the circular arc at z ¼ /.

The precessing orbit will first collide with the straight seg-

ment after sn 2Nþ consecutive C-type collisions with the

boundary during which time hi is constant. n here is the num-

ber of MUPO periods the IC will complete just after travers-

ing the available curved distance to z ¼ /. The first S-type

collision will occur at z ¼ /þ d1 where d1 ¼ 2jgijsn� /i

þOðg2
i Þ � 0. Since the collision occurs on a straight seg-

ment of the billiard’s boundary, we may “unfold” the billiard

using the image reconstruction trick33 (see Figure 6). The

resulting angle of incidence with the curved segment is to

leading order hf ¼ hi � 2d1 ¼ hs;j þ gf . Hence, we conclude

that the nonlinear collision process described above causes

an orbit initially perturbed by gi to have a final incidence

angle hf which is gf away from the original MUPO angle hs;j

such that
gf

gi
¼ 1� 2d1

gi
. If 2jgf js > d1, then the orbit will start

to precess towards the hole and will eventually escape with-

out jumping over the hole if 2jgf js < �. The later is guaran-

teed for t large enough. The symbolic dynamics

characterizing the trajectory of such an IC is, therefore, given

by C…CSC…C. If however 2jgf js < d1, then a second

S-type collision will occur such that the final angle is now

hf ¼ hs;j þ gf ¼ hs;j þ 4d1ð1� 2sÞ þ gið4s� 1Þ. The sym-

bolic dynamics sequence of such a collision process is hence

given by C…CSCs�1SC…C. The appropriate scaling which

linearizes jgf =gij is given by k ¼ d1

2jgijs
. Using this, we arrive

at a small perturbation collision rule given by

				gf

gi

				 ¼ �16s2kþ sð4þ 8kÞ � 1; 0 � k <
1

4s� 1
; f ¼ 2

4ks� 1;
1

4s� 1
� k < 1; f ¼ 1:

8><
>:

(10)

where f¼ 1, 2 is the corresponding number of curved colli-

sions during the nonlinear collision process. This is plotted

in Figure 7 for the period two diametrical orbit. Notice that
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when jgf =gij > 1, the return precessing speed of the IC is

increased and occurs with higher probability than a decrease.

Also, a double (f¼ 2) collision scenario is much less proba-

ble than a single one (f¼ 1).

We now formulate the time to escape function

tð/i;hiÞ ¼
�

/i

2jgijs

�
s2Rcoshiþ

�
/1

2jgf js

�
s2Rcoshf þ d

� R/i coshs;j

jgij
þR/1 coshs;j

jgf j
;

(11)

to leading order where d ¼ s2R coshs;j þOðgiÞ and we have

assumed that both gi and gf are small. Notice that again, we

have obtained the escape time in a continuous time frame

from discrete iterations of the billiard map. This is allowed

here since the time between collisions is fixed and deviates

only slightly during the nonlinear collision process. We drop

the modulus signs from here on, neglect higher order terms

in gi and gf , and rearrange to obtain

0 ¼ Rgf /i coshs;j þ Rgi/1 coshs;j � tgigf ; (12)

which is a conic section since it is quadratic in both /i and gi

due to the definition of d1. Substituting gf into Eq. (12) and

writing everything in terms of /i and gi, we obtain two

hyperbolas for each value of n. Each pair of hyperbolas enc-

loses an area which stretches and tilts in a non-overlapping

fashion as n is increased. Figure 8 shows how this approxi-

mation reproduces the area occupied by the long surviving

orbits in the vicinity of the diametrical period two MUPO.

Noticing that the hyperbolas defined by Eq. (12) look

like straight lines in Figure 8, we use the intersection coordi-

nates at the top and bottom of each spike to form lines which

maintain the general structure of the enclosed surviving set.

Note that the error in this approximation is only of order

Oðt�2Þ. This allows for easy integration and summation over

the area of each spike in order to obtain P2ðtÞ to leading

order. However, care must be taken at large values of n since

the spikes will tilt into the hole and hence modifications are

necessary. For a step-by-step explanation, see Ref. 26.

Finally, adding all MUPO contributions and expanding

for large t, we obtain

P2ðtÞ ¼
P

ðs;jÞ2S/

sp R2ð/2
1 þ /2

2Þcos2hs;j

4j@Qjt

� �


 1þ ð4s� 1Þ
2sð2s� 1Þ lnð4s� 1Þ


 �
; (13)

where p was defined in the previous subsection and /1 and

/2 are the allowed ranges on either side of the hole and

hence implicitly depend on s. Note that this equation is valid

for times t � t̂ ¼ 8ðs/�pÞ
� which is larger than Eq. (6) and can

be derived in a similar way.

C. Asymptotic P(t) and numerical simulations

In the previous subsections, we first classified long sur-

viving ICs into two simple families: (1) orbits initially

FIG. 6. (Color online) A slightly perturbed in angle MUPO with initial

angle of incidence hi ¼ hsj þ gi is “unfolded” when it collides on a straight

boundary segment giving a new angle of hf ¼ hi � 2d1 ¼ hs;j þ gf .

FIG. 7. (Color online) The dependence of j gf

gi
j on k for the period two dia-

metrical MUPO (s¼ 2), where gi � 1 and k ¼ d1

2gis
as described in Eq. (10).

FIG. 8. (Color online) The first 100 spikes produced by the hyperbolas of

Eq. (12) for the same parameter values as in Figure 5.
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precessing towards the hole and (2) orbits initially precessing

away from the hole. This simplification was achieved by

placing the hole as to overlap all MUPO ranges. We then

derived conditions defining the sets of the ICs surviving up

to time t for each classification and integrated their volume

in phase space. Adding the two contributions and taking the

limit, we obtain for the survival probability of the open driv-

ebelt with initial conditions chosen according to the invariant

measure on the boundary

C¼ lim
t!1 tPðtÞ¼

X
ðs;jÞ2S/

sp
R2ð/2

1þ/2
2Þcos2hs;j

4j@Qj

� �


 2þ ð4s�1Þ
2sð2s�1Þlnð4s�1Þ


 �
: (14)

We now confirm our theoretical predictions through numeri-

cal simulations. These are shown in Figure 9 indicating an

excellent agreement with the theory. Other simulations with

different / and � have also been performed but are not

included here. Moreover, the numerical simulations suggest

that the survival probability function exhibits a coexistence

of exponential and power law decay as in typical weakly

chaotic systems45 given by

PðtÞ ¼
irregular; for t < t̂

e�ct þ C
t
; for t > t̂

;

(
(15)

where we have neglected terms of order � t�2. The

“irregular” short-time behavior shows small fluctuations

which are a result of geometry dependent short orbits. These

become less important if the hole is small. Also, the coeffi-

cient of the exponential term is approximately 1 since for

small holes, mixing causes the system to forget its initial

state and, therefore, the probability decays as a Poisson pro-

cess. Finally, Eq. (15) supports the arguments of Ref. 12 in

that the chaotic saddle splits into a hyperbolic (exponential)

and nonhyperbolic (power-law) part which give separate

contributions to P(t).

D. Scaling

The natural scaling limit for open billiards (or indeed

other dynamical systems) is when s ¼ �t is kept constant

while �! 0 and t!1. Substituting this into Eqs. (1) and

(15) above, we get that

lim
�!0

Pðs=�Þ ¼ e�
s

pjQj; (16)

since C=t ¼ �C=s with C constant vanishes in this limit.

Hence, the open drivebelt billiard (and also the straight sta-

dium which has a similar form of the survival probability)

satisfies an exponential scaling limit in common with more

chaotic systems of Eq. (1). In other words, such scaling

approaches “miss” the asymptotic tails and cannot discrimi-

nate between strongly chaotic and weakly chaotic systems. It

is worth mentioning that this exponential scaling limit is also

intimately connected with limiting distributions of recur-

rence times.46,47 An exception to exponential behaviour is

the completely regular circular billiard which shows

(numerically) a nontrivial scaling law.9

V. DISCUSSION AND CONCLUSIONS

We have considered the open drivebelt billiard and gen-

eralized the approach of Ref. 26 in order to obtain exact to

leading order expressions for the asymptotic survival proba-

bility PðtÞ � C=t. We have confirmed our predictions

through numerical simulations and have obtained a full

description of P(t) to leading order. The generalization of

our previous results is based on a small perturbation collision

rule derived at the vicinity of smoothly connected circular

and straight boundary segments. Therefore, our approach is

now complete and can further be applied to a variety of

smooth billiards constructed of conic components and

straight lines (for example elliptical stadia).

The quantitative result offered by Eq. (14) and its deriva-

tion goes beyond previous investigations of open billiards

which were only of qualitative nature in that it provides

answers to question like where to place the hole achieve max-

imum/minimum escape.48 This can be done by minimizing or

maximizing C as a function of hole position. For the drive-

belt, we find that the maximum C is attained when the hole is

placed right at the edge of the arc i.e., at z 2 ð/� �;/Þ. The

minimum is a more complicated function of /.

Our approach for obtaining the constant C is however re-

stricted to the case of a hole positioned as to intersect all

MUPO ranges and thus splitting the chaotic saddle into non-

hyperbolic and hyperbolic parts such that the former occu-

pies a simple region in phase space which can be isolated

and integrated over. The case of a hole not intersecting all

MUPO ranges remains an open problem although the power-

law asymptotic decay � t�1 is expected to persist. Interest-

ingly, the multiple intermittency of the drivebelt will cause

multiple escape paths to exist. For instance, a sticky orbit

FIG. 9. (Color online) Log-linear plot of the Survival probability P(t) as a

function of time t for the open drivebelt with / ¼ 2:5, R¼ 1, r¼ 0.3, and a

hole of size � ¼ 0:1 positioned at z 2 ð2:3; 2:4Þ as can be seen in the inset.

The blue curve is given by the analytic prediction of Eq. (15) while the

empty black circles are from a numerical simulation consisting of 108 initial

conditions. The inset is a plot of tPðtÞ showing the agreement with the ana-

lytic expressions for the constant C.
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may exit and then enter into a different sticky mode with

some transfer probability before escape occurs. Such scenar-

ios motivate investigations of escape through multiple holes

where different mechanisms can be utilized to produce for

example asymmetric transport as observed in the stadium

billiard.49 Similarly, one may consider how an increased

number of holes intersecting different MUPOs can affect

escape through shadowing effects.50 Such considerations are

very relevant in the field of controlling chaos since the

escape route through one of the holes may be considerably

reduced by other holes.

The results on the asymptotic survival probability in the

open drivebelt and the improved understanding of stickiness

due to MUPOs presented in this paper are hoped to shed new

light on the otherwise not so well understood quantum ana-

logue of stickiness (scarring and anti-scarring). Similarly, we

hope to extend our results in a semiclassical regime thus

offering important ramifications in the context of quantum

chaos with experimental applications such as electronic

transport through open ballistic nano-structures (quantum

dots).51 Finally, by defining conditional recurrence time dis-

tributions, we expect to be able to manipulate and adapt the

multiple intermittency in the drivebelt as to investigate

physically interesting scenarios such as achieving high qual-

ity factors and directional emission from dielectric cavities.4
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