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We analyze complexity in spatial network ensembles through the lens of graph entropy. Mathematically, we
model a spatial network as a soft random geometric graph, i.e., a graph with two sources of randomness, namely
nodes located randomly in space and links formed independently between pairs of nodes with probability given
by a specified function (the “pair connection function”) of their mutual distance. We consider the general case
where randomness arises in node positions as well as pairwise connections (i.e., for a given pair distance, the
corresponding edge state is a random variable). Classical random geometric graph and exponential graph models
can be recovered in certain limits. We derive a simple bound for the entropy of a spatial network ensemble
and calculate the conditional entropy of an ensemble given the node location distribution for hard and soft
(probabilistic) pair connection functions. Under this formalism, we derive the connection function that yields
maximum entropy under general constraints. Finally, we apply our analytical framework to study two practical
examples: ad hoc wireless networks and the US flight network. Through the study of these examples, we illustrate
that both exhibit properties that are indicative of nearly maximally entropic ensembles.
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I. INTRODUCTION

The topological structure of networks has been studied
for many years through the lens of graph entropy [1]. This
formalism, which is deeply rooted in statistical physics and
information theory, allows one to quantitatively characterize
the complexity or inherent information content of systems that
can be described by a graphical model [2–7]. Applications of
entropy-based methods to the study of networked systems are
abundant and include problems related to molecular structure
classification [8], social networks [9,10], data compression
[11], quantum entanglement [12,13], and topological uncer-
tainty in communication networks [14–16]. Of course, this
diverse range of applications has led to the definition of
numerous entropic measures [17], and the study and unification
of such measures continues to garner interest [18].

To date, research on graph entropy has been mostly focused
on systems that do not depend on an underlying spatial
embedding or for which this embedding has been abstracted
or ignored. In this context, numerous measures of structural
entropy have been developed that allow one to quantify the
entropy of a single graph [10,17]. This is typically done by
identifying some characteristic of the network that is of interest
and defining a probability distribution on this characteristic
by using a frequency interpretation of occurring events. An
alternative approach to studying graph entropy is to consider
a measure on the entire ensemble, not just a single graph. In
this case, a probability distribution is defined on the ensemble,
and various measures of entropy (e.g., Gibbs entropy, Shannon
entropy, von Neumann entropy, and Rényi entropy) can be
calculated for the ensemble [6]. The canonical example that
one might begin with is the Erdős-Rényi (ER) model, for
which each edge exists independently with probability p. It is
straightforward to observe that the probability of a particular

graph G containing n nodes and k edges is just

P (G) = pk(1 − p)cn−k, (1)

where cn = n(n − 1)/2. Hence, a probability distribution is
well defined on the graph ensemble G for k = 0, . . . ,cn since
P (G) � 0 for all G ∈ G and

∑
G∈G P (G) = 1. Suppose we

wish to calculate the Shannon entropy of the ensembleG, which
admits the expression

H (G) = −
∑
G∈G

P (G) ln P (G). (2)

By enumerating the different combinations of edges that form
the graphs in G, it follows that the Shannon entropy of the ER
ensemble can be written as

H (G) = −cn[p ln p + (1 − p) ln(1 − p)]. (3)

In contrast to the spatially independent models discussed
above, geography has been shown to play an important role in
many engineered, physical, and social networks [19]. For ex-
ample, an empirical study conducted in Belgium and reported
in Ref. [20] demonstrated that social connectivity between two
individuals decays like r−2 over distances from about 1 to 100
km. Spatial network models have also been employed to study
the spread of epidemics [21] and mobile phone viruses [22] and
to analyze connectivity in wireless communication networks
[23]. Local structural observables that describe these networks,
such as the clustering coefficient and the degree distribution,
are well understood for simple models. However, while some
work has been done to characterize the entropy of spatial
networks [24], relatively little research has focused on the
entropy of spatial network ensembles. The notable exception
to this lack of available results in the literature is Ref. [25] and
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the works pertaining to wireless communication networks by
the first author [14–16].

In this contribution, we characterize the Shannon entropy
of spatial network ensembles by employing a soft random
geometric graph (RGG) framework [26]. Randomness in this
context is derived both from the node positions in space as well
as from inherent uncertainties associated with the edge states.
We begin by providing an upper bound on spatial network
ensemble entropy, which is derived from a simple result from
information theory. We then discuss entropy in theconditional
sense, whereby we assume some prior knowledge of the
underlying node locations and average the entropy over the
spatial distribution. In many physical systems, such knowledge
is available; hence, this measure of conditional entropy lends
itself nicely to practical interpretations.

Our approach to characterizing network entropy takes a
different route than the work reported in Ref. [25]. Specifically,
Ref. [25] considered the case where node positions are static
and known a priori, which enables the study of systems with
link specific constraints and even ensembles of multiplexes. In
contrast, we focus on extracting information about systems for
which node locations are, themselves, a source of randomness
by averaging over all possible spatial node configurations.
This is a conventional information-theoretic approach to un-
derstanding how one random variable yields information about
another; hence, our work can be viewed as a step towards a
larger information-theoretic framework for spatial networks.
Indeed, using our formalism facilitates the calculation of
the mutual information (more generally, the relative entropy)
between the network topology and the underlying point process
that statistically characterizes node locations [27]. Under this
formalism, we derive the connection function that yields
maximum entropy under general constraints. We then apply
our analytical methods to study two practical examples: ad hoc
wireless networks and the conterminous US flight network.
We illustrate the intriguing result that both systems exhibit
properties that are indicative of nearly maximally entropic
ensembles.

II. ENTROPY

Consider a set V of n nodes embedded in a space K ⊂ Rd ,
which has volume K = vol(K). The locations of the nodes are
denoted by r1, . . . ,rn, and these locations form a point process
in K. In this work, we will consider a simple, uniform point
process, which implies the spatial distribution of nodes can be
described by a constant, finite intensity of ρ = n/K nodes per
unit volume. In what follows, it will suffice to assume that n

is fixed. Hence, the triple (V,K,ρ) describes a binomial point
process. Similar results to those disclosed herein follow when
n is Poisson distributed.

An (undirected) edge exists between nodes i and j inV with
probability p(ri,j ), where ri,j denotes the distance between
points ri and rj . In this work, we assume the spatial embedding
is Euclidean, i.e., ri,j = ‖ri − rj‖. In the case where p(ri,j ) is
an indicator function that is 1 for r < r0 and zero otherwise,
with r0 denoting the maximum connection range, we recover
the hard disk model used in the classical RGG formalism
[28]. For other connection functions p—e.g., monotonically
decreasing functions in the distance argument—we have the

so-calledsoft RGG model [26,29]. As discussed above, we
denote the set of all graphs by G. For a particular graph G ∈ G,
the set of edges is signified by EG. Note that these sets are
defined without reference to a particular underlying spatial
embedding or even the spatial distribution of the vertices.

We are interested in quantifying the Shannon entropy of the
ensemble G. Each graph G ∈ G occurs with probability P (G),
which depends on the spatial distribution of the nodes and
the pair connection function p. The definition of the Shannon
entropy of G was given in Eq. (2). In contrast to the example of
ER graph ensembles, the existence of edge (i,j ) is a function
of the pair distance ri,j . Viewing a graph as a random variable
G with support G, we can easily deduce that the distribution
of G is equivalent to the distribution of the edge set only, since
the spatial embedding of the vertices is captured in the edge
probabilities. Let Xi,j denote a Bernoulli random variable that
models the existence of edge (i,j ). It follows that we can write
the entropy of the network ensemble as the joint entropy of the
sequence {Xi,j }, i.e.,

H (G) = H (X1,2,X1,3, . . . ,Xn−1,n). (4)

We can now invoke the well-known independence bound on
joint Shannon entropy to obtain the inequality

H (G) �
∑
i<j

H (Xi,j ), (5)

where equality holds if all {Xi,j } are independent. A more
thorough treatment of this bound in the context of spatial
network entropy is provided in Ref. [14].

The random variable Xi,j is physically related to nodes i

and j , but it should be stressed that P (Xi,j = 1) �= p(ri,j ),
since pair distance information is marginalized in Eq. (5). More
accurately, we can write

P (Xi,j = 1) =
∫ D

0
f (ri,j )p(ri,j )dri,j , (6)

which is just the probability that edge (i,j ) exists averaged
over all pair distances, where D = supri ,rj ∈K ‖ri − rj‖ is the
diameter of the domain K and f (ri,j ) is the pair distance
probability density corresponding to nodes i and j . By noting
that the pair distance density and the pair connection function
are, respectively, identical for all i �= j , we can simply let
p := P (Xi,j = 1) and write

H (G) � cnH2(p), (7)

where

H2(p) = −p ln p − (1 − p) ln(1 − p) (8)

is the binary entropy function. So by assuming pair distances
are independent in the soft RGG case, we obtain an ER-like
result, but where the pair connection probability is averaged
over the pair distance distribution. Clearly, when p = 1/2, the
bound is maximized.

III. CONDITIONAL ENTROPY

To enable us to study the effect of a particular embedding on
the entropy of a soft RGG ensemble, we turn to the information-
theoretic notion of conditional entropy. In the context of our
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problem, the conditional entropy of the graph ensemble given
the distribution of vertex locations is defined as

H (G|R) = 〈H (G|r1, . . . ,rn)〉 , (9)

where the notation 〈·〉 denotes the average of a function over
the vertex positions, which for uniformly distributed vertices
in K is given by

〈F (r1, . . . ,rn)〉 = 1

Kn

∫
Kn

F (r1, . . . ,rn)dr1 · · · drn. (10)

This quantity can be more conveniently expressed in terms of
an average over the pair distances

H (G|R) = 〈H (G|r1,2,r1,3, . . . ,rn−1,n)〉 , (11)

where the average is defined in the appropriate manner with
respect to the joint pair distance density f (r1,2,r1,3, . . . ,rn−1,n).
By using a similar argument to that employed in Eq. (5), it is
possible to show that

H (G|r1,2, . . . ,rn−1,n) =
∑
i<j

H (Xi,j |ri,j ), (12)

where equality follows since, in this case, the edge states
{Xi,j } are independent conditioned on the pair distances {ri,j }.
Averaging the right-hand side of Eq. (12) over the density
f (r1,2,r1,3, . . . ,rn−1,n) leads naturally to

H (G|R) = cn

∫ D

0
f (r)H2(p(r))dr. (13)

A fundamental result of information theory states that
conditioning reduces uncertainty [27]. Combining this notion
with Eq. (7) manifests in the relation

H (G|R) � H (G) � cnH2(p). (14)

In fact, the lower and upper bounds follow directly from the
concavity of Shannon entropy and Jensen’s inequality, i.e.,
the left-hand side is the average of the entropy, whereas the
right-hand side is the entropy of the average. The tightness of
each bound depends on the pair connection function p(r). In
practical networks, such as social networks or communication
networks, the underlying system parameters dictate the form
of this function. In general, very soft pair connection functions
lead to relatively tight bounds in this context since there is
little dependence on the spatial embedding. On the other hand,
if p(r) = 1 for 0 � r < r0 and p(r) = 0 otherwise, then we
recover the classical RGG formalism and H (G|R) = 0, but
the upper bound on H (G) is still O(n2).

IV. ENTROPY MAXIMIZING CONNECTION FUNCTIONS

Understanding how different parameters affect uncertainty
in spatial networks is of great importance. Hence, it is of
interest to determine the function p(r) that maximizes the
conditional entropy of the network ensemble. Without further
information, we can immediately observe that the entropy
maximizing function (in the conditional sense) is just p(r) =
1/2, in which case H (G|R) = H (G) = cn ln 2. This is rather
uninteresting, however, since we are back to the ER graph
ensemble in which the spatial embedding is irrelevant. To
make progress beyond this benchmark, we note that practical
spatial networks typically exhibit certain properties, which we

may wish to incorporate into the maximization task through
constraints. For example, the mean degree of a geometric graph
ensemble can be written as

δ̄ = (n − 1)
∫ D

0
f (r)p(r)dr. (15)

Considering a network with a given mean degree, we can
formulate a constrained variational problem, which has La-
grangian

L(p) = cnf (r)H2(p(r)) − μ(n − 1)f (r)p(r) (16)

with μ denoting the required multiplier for the mean degree
constraint. Setting Lp = 0 and using the constraint to solve for
the multiplier yields the stationary function p = δ̄/(n − 1) for
all r ∈ [0,D], and thus we again see that the spatial embedding
of the graph does not affect the maximum entropy probability.
Hence, by using Eqs. (6), (7), and (13), we arrive at the entropy
relation

H (G|R) = H (G) ∼ δ̄

2
n ln n (17)

for large n. Although the previous two examples are inde-
pendent of the spatial embedding and are, in some sense,
uninteresting in the context of the present discussion, it is worth
noting the difference in entropies for the dense and the sparse
cases: H (G) = O(n2) for the dense network with p = 1/2 and
H (G) = O(n ln n) for the sparse network with p = O(n−1).

Many geometric networks observed in our physical world
are characterized by more than just the mean degree. Other
local features often play an important role in the overall
structure of the network. For example, in wireless communica-
tion networks, pairwise connections often have a well-defined
statistical makeup, which is governed by the modulation and
demodulation techniques used at each node and the arrange-
ment of scatterers in the environment [30]. From a more general
perspective, we may consider a graph ensemble where the pair
connection function obeys a set of constraints,

∫ D

0
θ�(r)p(r)dr = k�, � = 1, . . . ,L, (18)

where {θ�} and {k�} are independent of n. In such a case,
we might seek the maximizing function p(r) subject to these
constraints. We now have a constrained variational problem
comprised of Eq. (13) and the constraints given in Eq. (18).
Solving the associated Euler-Lagrange equation yields the
stationary function

p(r) = 1

eψ(r) + 1
, (19)

where

ψ(r) = 1

cnf (r)

L∑
�=1

λ�θ�(r) (20)

and {λ�} are the undetermined multipliers. This solution points
to explicit dependence on the spatial embedding through the
pair distance density f and the constraints captured by {θ�}.
Note that if θ�(r) = g�(r)f (r) for some function g� and � =
1, . . . ,L, then the maximizing pair connection function is in-
dependent of f . Of course, the multipliers {λ�} still depend on
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the geometric properties of the network in this case. It will have
occurred to many readers that Eq. (19) resembles the classical
entropy maximizing distribution pertaining to quantum state
occupancy in systems of noninteracting fermions. Park and
Newman pointed out a similar relation for exponential random
graphs in Ref. [31]. Here, we have arrived at a similar result
for spatial network ensembles in bounded domains.

For finite network domains, f is independent of n. Assum-
ing for large n that ψ = O(n−ε) for ε > 0, we have p(r) =
1/2 + O(n−ε). But this yields a degenerate outcome in which
the constraints are independent of the pair connection function.
Hence, we must have that ψ(r) = O(1), i.e., the multipliers
scale like n2. The entropy maximizing connection function
yields a dense network in the large n limit, i.e., H (G) = O(n2).
The mean degree of this network is asymptotically

δ̄ ∼ n

∫ D

0

f (r)

eψ(r) + 1
dr. (21)

In finite networks, it is meaningful to consider adding a
mean degree constraint to the set of constraints defined in
Eq. (18). In this case, the entropy maximizing connection
function is

p(r) = 1

eψ(r)+2μ/n + 1
. (22)

Applying a mean degree constraint induces sparsity if the
constraint is kept fixed for any n. However, positive constraints
cannot be satisfied in the large-n limit for p ∼ 1/n [see
Eq. (18)]. Rigorously, this follows from a fundamental result
from calculus, which states that for all smooth functions ξ (r) on
the interval [0,D],

∫ D

0 ξ (r)p(r)dr = 0 if and only if p(r) = 0
on the interval. Hence, stationary functions do not exist for
some constraint conditions.

V. EXAMPLES

Various examples of real-world spatial networks exist, and
each is governed by particular connection rules and design
constraints. Here we explore two such examples.

A. Wireless communication networks

The first example we will explore is related to ad hoc
deployments of electronic devices that have the capability to
communicate wirelessly. In this example, a pairwise connec-
tion between two nodes separated by a distance r forms with
probability [23]

p(r) = e−(r/r0)η . (23)

The parameter r0 denotes the typical connection range; it
depends on physical quantities such as the wavelength of the
transmission and antenna gains at the transmitter and receiver.
The parameter η > 0, known as the path loss exponent, is
typically an experimentally determined number that indicates
how quickly a transmission is attenuated as it propagates
through the wireless medium. Equation (23) follows from
information-theoretic arguments but possesses two convenient
properties: (1) It is intuitive in that it exhibits a connection
rule that captures a monotonically decreasing probability of
pairwise connectivity as the distance between nodes increases
and (2) the parameter η serves to define the degree of pairwise
uncertainty experienced in the network, with η → ∞ signify-
ing a hard connection rule whereby two nodes are connected

FIG. 1. Conditional entropy normalized with respect to the total
number of possible edges plotted against the typical connection range
in a wireless communication network. The network domain is a sphere
of unit radius in three dimensions; f (r) = 3r2(1 − 3r/4 + r3/16).
Three different exponents η = 1,2,3 were used to show how an
increase in edge certainty (increasing η) reduces entropy.

with probability one if they are separated by less than r0 and
are not connected otherwise, i.e., η → ∞ signifies the classical
RGG formalism.

Figure 1 illustrates the effect that certainty in each
pairwise connection has on the conditional entropy. This
figure relates to a network residing in a sphere of unit
radius in three dimensions. As we increase η, the pairwise
uncertainty decreases and the conditional entropy of the
ensemble correspondingly decreases. Clearly, as η → ∞, the
conditional entropy tends to zero, although the unconditional
entropy H (G) remains positive.

In wireless networks, it is natural to consider a system
in which both the average pair connection function and the
correlation between the connection function and distance are
constrained, i.e.,

k� =
∫ D

0
r�−1p(r)f (r)dr, � = 1,2. (24)

The correlation constraint somewhat captures the monotoni-
cally decreasing nature of the likelihood of pairwise connec-
tivity as node separation increases, whereas the average con-
nection probability constraint gives an indication of average
performance in the network. Let us consider the exponential
test function given in Eq. (23) with η = 3. For each value of
r0, one can easily calculate the integrals in Eq. (24). Here, we
consider the case where the network domain is a sphere of unit
radius in three dimensions: f (r) = 3r2(1 − 3r/4 + r3/16).
This sets the constraints, which can be used to solve for the
undetermined multipliers that define the entropy maximizing
function [Eq. (19)]. In this way, we can compare the test
function and the maximum entropy connection probability
as a function of distance r (Fig. 2). Our analysis provides
an interesting approach to studying complexity in wireless
networks by allowing one to compare practical connection
functions to the maximum entropy curves. In the example
discussed here, it is clear that the practical test function is
extremely close to the entropy maximizing function. In fact,
the test functions depicted in Fig. 2 yield conditional entropies
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FIG. 2. Test function defined in Eq. (23) (solid lines) and maxi-
mum conditional entropy function (dashed lines) plotted as a function
of node separation for a network ofn = 10 nodes. For the test function,
η = 3 and r0 = 0.5, 1.0, 1.5. Average connection probability and
correlation constraints were imposed for the maximization.

of over 99.4% of the maximum in each case. This result points
to the intriguing conclusion that wireless networks adhering to
the model studied here are nearly maximally complex (under
the specified constraints).

B. Flights in the United States

Another example with practical significance can be found in
the analysis of airline routes in the United States. For this case,
we have analyzed all direct routes between primary airports—
i.e., airports listed by the Federal Aviation Administration
(FAA) as those that provide scheduled passenger services
and which process over 10 000 boardings per year—in the
conterminous states. This analysis focused on 336 airports and
2422 unique routes. Data were obtained from Refs. [32,33].
A histogram of the connection probability, viewed as a
function of distance between cities, was constructed, and a
polynomial fit was produced from these data. An eighth-order
polynomial was chosen to ensure that an adequate goodness
of fit was achieved (sum of squared errors: 2.36 × 10−3) while
capturing the physical characteristics at the boundaries, i.e.,
the probability of connectivity should go to zero for short
and long node separations. The polynomial was truncated
at these boundaries. The average connection probability and
correlation between distance and the connection function
were calculated to be k1 = 0.043 and k2 = 28.990 miles,
respectively. These constraints were then applied separately
to compute the corresponding maximum entropy connection
functions. The maximum entropy function was also computed
when both constraints are active. The polynomial fit and the
maximum entropy function are depicted in Fig. 3. There is
clearly a discrepancy between each of the maximum entropy
curves and the interpolated observed connection function.
Yet it is interesting to note that the entropy resulting from
the observed connection function is greater than 99.5% that
of the maximum predicted value when both constraints are
applied. However, this high value should be benchmarked.
Comparing this to the case where only the mean constraint
is applied, we found that the ratio was 95.3%, a high value

FIG. 3. Pair connection function derived from US flight data
(solid line) and maximum conditional entropy functions for different
sets of constraints (dashed lines) plotted as a function of the distance
between primary airports in the conterminous US. Markers indicate
raw histogram data obtained from [32,33] centered in bins 47.3 miles
wide. The solid line is an eighth-order polynomial fit of the marker
data truncated at the boundaries.

despite the dissimilar connection functions (Fig. 3). When
only the correlation constraint is applied, the ratio is 84.9%.

It is important to note that the idea of ensemble entropy
viewed in this context relates to a typical flight network derived
from an identical connection rule to that observed in this
example. To elucidate this point, observe that the pair connec-
tion function estimated here is taken from data that describe
a single network. So the Shannon entropy of the ensemble
associated with this connection function would appear to bear
little value. Yet, we know that the entropy of the ensemble is
approximately equal to the logarithm of the size of the typical
set of networks, and any particular network belonging to the
typical set is observed with probability approximately equal
to the reciprocal of the size of the set. The US flight network
can be viewed as a member of the typical set of networks that
arise from the corresponding pair connection function and pair
distance distribution. Through this reasoning, we can relate the
notion of entropy defined in Eq. (2) to our study of a single
realization of a practical network.

To explore this example further, degree-preserving edge
permutations were carried out on the airline route data [34,35],
and the randomized networks were analyzed in a similar
manner. All examples that were studied exhibited very similar
behavior. The results for one such study are shown in Fig. 4.
Predictably, the randomization procedure had the effect of
“softening” the pair connection function, since the permu-
tations were made independent of internode distance. Inter-
estingly, the entropy resulting from the observed connection
function in the randomized network is greater than 99.6% of the
maximum predicted value when both constraints are applied.
The ratio when only the mean constraint is applied is also
approximately 99.6%, and the ratio corresponding to just the
active correlation constraint is 73.7%. Although these results
may first appear to contradict those obtained for the original
data, it should be noted that the maximum entropy function in
this example is matched to the new constraints, and hence the
observations are reasonable. More importantly, the conclusion
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FIG. 4. Pair connection function derived from US flight data by
executing a degree-preserving randomization procedure (solid line)
and maximum conditional entropy functions for different sets of
constraints (dashed lines) plotted as a function of the distance between
primary airports in the conterminous US. All parameters are the same
as for Fig. 3.

that we can draw from these two examples and that of the
synthetically generated wireless network is that by limiting
the network through both mean and correlation constraints
matched to practical systems, we observe nearly maximally
entropic behavior.

VI. CONCLUSIONS

In this paper, we introduced a comprehensive framework for
analyzing the Shannon entropy of spatial network ensembles.

We first derived a simple upper bound on the (unconditional)
entropy of an ensemble. The tightness of the bound relates
to the degree of independence observed in the set of edge
states. We then defined the conditional entropy of a spatial
network ensemble to be the entropy of the graph topology
ensemble conditioned on the underlying statistical distribution
of the node locations. This formalism was exploited to calculate
entropy maximizing pair connection functions conditioned on
various constraints. Applying this result to two physical exam-
ples illustrated that maximally entropic engineered systems
exist in practice.

Numerous extensions and modifications of the framework
detailed herein can be explored. For example, characterizing
the entropy of temporal network ensembles is a natural task
that could shed light on spatial network dynamics. Directed
network ensembles can also be studied. Furthermore, one could
define different connection functions for different layers in
a spatial multiplex and apply the method proposed here to
study such ensembles. In general, the formalism adopted in
this work can be used to derive a general theory of infor-
mation related to spatial network structure. Along with such
a theory would come operational interpretations of entropy
in spatial networks—e.g., minimum description length of the
network topology—and these interpretations will lead to better
understanding and more optimal design (where applicable) of
physical networks.
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