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Shape of shortest paths in random spatial networks
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In the classic model of first-passage percolation, for pairs of vertices separated by a Euclidean distance L,
geodesics exhibit deviations from their mean length L that are of order Lχ , while the transversal fluctuations,
known as wandering, grow as Lξ . We find that when weighting edges directly with their Euclidean span in various
spatial network models, we have two distinct classes defined by different exponents ξ = 3/5 and χ = 1/5, or ξ =
7/10 and χ = 2/5, depending only on coarse details of the specific connectivity laws used. Also, the travel-time
fluctuations are Gaussian, rather than Tracy-Widom, which is rarely seen in first-passage models. The first class
contains proximity graphs such as the hard and soft random geometric graph, and the k-nearest neighbor random
geometric graphs, where via Monte Carlo simulations we find ξ = 0.60 ± 0.01 and χ = 0.20 ± 0.01, showing a
theoretical minimal wandering. The second class contains graphs based on excluded regions such as β skeletons
and the Delaunay triangulation and are characterized by the values ξ = 0.70 ± 0.01 and χ = 0.40 ± 0.01, with
a nearly theoretically maximal wandering exponent. We also show numerically that the so-called Kardar-Parisi-
Zhang (KPZ) relation χ = 2ξ − 1 is satisfied for all these models. These results shed some light on the Euclidean
first-passage process but also raise some theoretical questions about the scaling laws and the derivation of the
exponent values and also whether a model can be constructed with maximal wandering, or non-Gaussian travel
fluctuations, while embedded in space.
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I. INTRODUCTION

Many complex systems assume the form of a spatial
network [1,2]. Transport networks, neural networks, com-
munication and wireless sensor networks, power and energy
networks, and ecological interaction networks are all impor-
tant examples where the characteristics of a spatial network
structure are key to understanding the corresponding emergent
dynamics.

Shortest paths form an important aspect of their study.
Consider for example the appearance of bottlenecks impeding
traffic flow in a city [3,4], the emergence of spatial small
worlds [5,6], bounds on the diameter of spatial preferen-
tial attachment graphs [7–9], the random connection model
[10–13], or in spatial networks generally [14,15], as well
as geometric effects on betweenness centrality measures in
complex networks [11,16] and navigability [17].

First-passage percolation (FPP) [18] attempts to capture
these features with a probabilistic model. As with percolation
[19], the effect of spatial disorder is crucial. Compare this
to the elementary random graph [20]. In FPP one usually
considers a deterministic lattice such as Zd with independent,
identically distributed weights, known as local passage times,
on the edges. With a fluid flowing outward from a point, the
question is as follows: What is the minimum passage time
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over all possible routes between this and another distant point,
where routing is quicker along lower weighted edges?

More than 50 years of intensive study of FPP has been
carried out [21]. This has led to many results such as the
subadditive ergodic theorem, a key tool in probability theory,
but also a number of insights in crystal and interface growth
[22], the statistical physics of traffic jams [19], and key ideas
of universality and scale invariance in the shape of shortest
paths [23]. As an important intersection between probability
and geometry, it is also part of the mathematical aspects of
a theory of gravity beyond general relativity, and perhaps
in the foundations of quantum mechanics, since it displays
fundamental links to complexity, emergent phenomena, and
randomness in physics [24,25].

A particular case of FPP is the topic of this article,
known as Euclidean first-passage percolation (EFPP). This
is a probabilistic model of fluid flow between points of a
d-dimensional Euclidean space, such as the surface of a
hypersphere. One studies optimal routes from a source node to
each possible destination node in a spatial network built either
randomly or deterministically on the points. Introduced by
Howard and Newman much later in 1997 [26] and originally
a weighted complete graph, we adopt a different perspective
by considering edge weights given deterministically by the
Euclidean distances between the spatial points themselves.
This is in sharp contrast with the usual FPP problem, where
weights are independent and identically distributed random
variables.

Howard’s model is defined on the complete graph con-
structed on a point process. Long paths are discouraged by
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FIG. 1. Illustration of the problem on a small network. The
network is constructed over a set of points denoted by circles
here and the edges are denoted by lines. For a pair of nodes (x, y)
we look for the shortest path (shown here by a dotted line) where
the length of the path is given by the sum of all edges length:
d (x, y) = |x − a| + |a − b| + |b − c| + |c − d| + |d − y|.

taking powers of interpoint distances as edge weights. The
variant of EFPP we study is instead defined on a Poisson point
process in an unbounded region (by definition, the number
of points in a bounded region is a Poisson random variable,
see, for example, Ref. [27]), but with links added between
pairs of points according to given rules [28,29] rather than the
totality of the weighted complete graph. More precisely, the
model we study in this paper is defined as follows. We take a
random spatial network such as the random geometric graph
constructed over a simple Poisson point process on a flat torus
and weight the edges with their Euclidean length (see Fig. 1).
We then study the random length and transversal deviation of
the shortest paths between two nodes in the network, denoted
x and y, conditioned to lie at mutual Euclidean separation
|x − y|, as a function of the point process density and other
parameters of the model used (here and in the following |x|
denotes the usual norm in Euclidean space). The study of the
scaling with |x − y| of the length and the deviation allow us to
define the fluctuation and wandering exponents (see precise
definitions below). We will consider a variety of networks
such as the random geometric graph with unit disk and
Rayleigh fading connection functions, the k-nearest neighbor
graph, the Delaunay triangulation, the relative neighborhood
graph, the Gabriel graph, and the complete graph with (in this
case only) the edge weights raised to the power α > 1. We
describe these models in more detail in Sec. III.

To expand on two examples, the random geometric graph
(RGG) is a spatial network in which links are made between
all pair of points with mutual separation up to a threshold. This
has applications in, e.g., wireless network theory, complex
engineering systems such as smart grid, granular materials,
neuroscience, spatial statistics, and topological data analyis
[30–32]. Another is the relative neighborhood graph, where
links are added between points where there is no third point
closer to both than they are to each other, with applications
in, e.g., pattern recognition, computational approaches to
perception, and computer graphics [33]. More generally, we
will distinguish proximity graphs which are determined by a
proximity rule such as the RGG, and excluded region graphs
based on the absence of points in a given region between two
nodes. Note that the term “proximity graphs” is also used
to describe a class of graphs that are always connected, see
Ref. [15].

This paper is structured as follows. We first recap known
results obtained for both the FPP and Euclidean FPP in Sec. II.
We also discuss previous literature for the FPP in nontypical

settings such as random graphs and tessellations. The reader
eager to view the results can skip this section at first reading,
apart from the definitions of II A; however, the remaining
background is very helpful for appreciating the later discus-
sion. In Sec. III we introduce the various spatial networks
studied here, and in Sec. IV we present the numerical method
and our new results on the EFPP model on random graphs.
In particular, due to arguments based on scale invariance, we
expect the appearance of power laws and universal exponents
[23, Sec. 1]. We reveal the scaling exponents of the geodesics
for the complete graph and for the network models studied
here and also show numerical results about the travel-time
and transversal deviation distribution. In particular, we find
distinct exponents from the Kardar-Parisi-Zhang (KPZ) class
(see, for example, Ref. [34] and references therein) which has
wandering and fluctuation exponents ξ = 2/3 and χ = 1/3,
respectively. Importantly, we conjecture and numerically cor-
roborate a Gaussian central limit theorem for the travel-time
fluctuations, on the scale t1/5 for the RGG and the other
proximity graphs and t2/5 for the Delaunay triangulation and
other excluded region graphs, which is also distinct from KPZ
where the Tracy-Widom distribution, and the scale t1/3, is the
famous outcome. Finally, in Sec. V we present some analytic
ideas which help explain the distinction between universality
classes. We then conclude and discuss some open questions in
Sec. VI.

II. BACKGROUND: FPP AND EFPP

In EFPP, we first construct a Poisson point process in Rd

which forms the basis of an undirected graph. A fluid or
current then flows outward from a single source at a constant
speed with a travel time along an edge given by a power α � 1
of the Euclidean length of the edge along which it travels [26].
See Fig. 2, where the model is shown on six different random
spatial network models.

Developing FPP in this setting, Santalla et al. [35] recently
studied the model on spatial networks, as we do here. Instead
of EFPP, they weight the edges of the Delaunay triangulation,
and also the square lattice, with independent and identically
distributed variates, for example, U[a, b] for a, b > 0, and
proceed to numerically verify the existence of the KPZ class
for the geodesics, see, e.g., Ref. [36]. Moreover, FPP on small-
world networks and Erdős-Renyi random graphs are studied
by Bhamidi, van der Hofstad, and Hooghiemstra in Ref. [37],
who discuss applications in diverse fields such as magnetism
[38], wireless ad hoc networks [10,12,39], competition in
ecological systems [40], and molecular biology [41]. See also
their work specifically on random graphs [42]. Optimal paths
in disordered complex networks, where disorder is weighting
the edges with independent and identically distributed random
variables, is studied by Braunstein et al. [43] and later by
Chen et al. [44]. We also point to the recent analytic results
of Bakhtin and Wu, who have provided a good lower bound
rate of growth of geodesic wandering, which in fact we find to
be met with equality in the random geometric graph [45].

To highlight the difference between these results and our
own, we have edge weights which are not independent random
variables but interpoint distances. As far as we are aware, this
has not been addressed directly in the literature.
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FIG. 2. Spatial networks, each built on a different realization of a simple, stationary Poisson point processes of expected ρ = 1000 points
in the unit square V = [−1/2, 1/2]2 but with different connection laws. The boundary points at time t = 1/2 of the first-passage process are
shown in red, while their respective geodesics are shown in blue. (a) Hard RGG with unit disk connectivity. (b) Soft RGG with Rayleigh
fading connection function H (r) = exp(−βr2); (c) 7-NNG; (d) relative neighborhood graph, which is the lune-based β skeleton for β = 2; (e)
Gabriel graph, which is the lune-based β skeleton for β = 1; and (f) the Delaunay triangulation.

A. First-passage percolation

Given independent and identically distributed weights,
paths are sums of independent and identically distributed
random variables. The lengths of paths between pairs of
points can be considered to be a random perturbation of the
plane metric. In fact, these lengths, and the corresponding
transversal deviations of the geodesics, have been the focus of
in-depth research over the since the late 1960s [21]. They exist
as minima over collections of correlated random variables.
The travel times are conjectured (in the independent and
identically distributed) case to converge to the Tracy-Widom
distribution (TW), found throughout various models of statis-
tical physics, see, e.g., Ref. [35, Sec. 1]. This links the model
to random matrix theory, where β-TW appears as the limiting
distribution of the largest eigenvalue of a random matrix in
the β-hermite ensemble, where the parameter β is 1, 2, or 4
[46].

The original FPP model is defined as follows. We consider
vertices in the d-dimensional lattice Ld = (Zd , Ed ), where
Ed is the set of edges. We then construct the function τ :
Ed → (0,∞), which gives a weight for each edge and is
usually assumed to be identically independently distributed
random variables. The passage time from vertices x to y is the
random variable given as the minimum of the sum of the τ ’s

over all possible paths P on the lattice connecting these points,

T (x, y) = min
P

∑
P

τ (e). (1)

This minimum path is a geodesic, and it is almost surely
unique when the edge weights are continuous.

The average travel time is proportional to the distance

E[T (x, y)] ∼ |x − y|, (2)

where here and in the following we denote the average of a
quantity by E(·) and where a ∼ b means a converges to Cb
with C a constant independent of x, y, as |x − y| → ∞. More
generally, if the ratio of the geodesic length and the Euclidean
distance is less than a finite number t (the maximum value of
this ratio is called the stretch), then the network is a t spanner
[47]. Many important networks are t spanners, including the
Delaunay triangulation of a Poisson point process, which has
π/2 < t < 1.998 [48,49]. The variance of the passage time
over some distance |x − y| is also important and scales as

Var[T (x, y)] ∼ |x − y|2χ . (3)

The maximum deviation D(x, y) of the geodesic from the
straight line from x to y is characterized by the wandering
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FIG. 3. Example Euclidean geodesics (blue) running between two end nodes of a simple, stationary Poisson point process (red). The
maximal transversal deviation is shown (vertical black line). The Euclidean distance between the endpoints is the horizontal black line. The
PPP density is equal for each model. (a) Hard RGG, (b) soft RGG with connectivity probability H (r) = exp(−r2), (c) 7-NNG, (d) RNG, (e)
GG, and (f) DT.

exponent ξ , i.e.,

E[D(x, y)] ∼ |x − y|ξ (4)

for large |x − y|. Knowing ξ informs us about the geometry
of geodesics between two distant points. See Fig. 3 for an
illustration of wandering on different networks.

The other exponent, χ , informs us about the variance of
their random length. Another way to see this exponent is
to consider a ball of radius R around any point. For large
R, the ball has an average radius proportional to R and the
fluctuations around this average grow as Rχ [35]. With χ < 1
the fluctuations die away R → ∞, leading to the shape theo-
rem, see, e.g., Ref. [21, Sec. 1].

1. Sublinear variance in FPP

According to Benjamini, Kalai, and Schramm,
Var[T (x, y)] grows sublinearly with |x − y| [50], a major
theoretical step in characterizing their scaling behavior. With
C some constant which depends only on the distribution of
edge weights and the dimension d , they prove that

Var[T (x, y)] � C|x − y|/ log |x − y|. (5)

The numerical evidence, in fact, shows this follows the non-
typical scaling law |x − y|2/3. Transversal fluctuations also
scale as |x − y|2/3 [21]. In this case, the fluctuations of T
are asymptotic to the TW distribution. According to recent
results of Santalla et al. [51], curved spaces lead to similar
fluctuations of a subtly different kind: If we embed the graph
on the surface of a cylinder, then the distribution changes
from the largest eigenvalue of the GUE, to GOE, ensembles
of random matrix theory.

When we see a sum of random variables, it is natural
to conjecture a central limit theorem, where the fluctuations
of the sum, after rescaling, converge to the standard normal
distribution in some limit, in this case as |x − y| → ∞. Dur-
rett writes in a review that “. . . novice readers would expect
a central limit theorem being proved,. . . however physicists
tell us that in two dimensions, the standard deviation is of
order |x − y|1/3” (see Ref. [50, Section 1]). This suggests
that one does not have a Gaussian central limit theorem for
the travel-time fluctuations in the usual way. This has been
rigourously proven [52–54].

2. Scaling exponents

A well-known result in the two-dimensional lattice case
[55] is that χ = 1/3, ξ = 2/3. Also, another belief is that
χ = 0 for dimensions d large enough. Many physicists, see,
for example, Refs. [55–61], also conjecture that independently
from the dimension, one should have the so-called KPZ
relation between these exponents

χ = 2ξ − 1. (6)

This is connected with the KPZ universality class of random
geometry, apparent in many physical situations, including
traffic and data flows, and their respective models, including
the corner growth model, ASEP, TASEP, etc. [19,62,63]. In
particular, FPP is in direct correspondence with important
problems in statistical physics [34] such as the directed
polymer in random media (DPRM) and the KPZ equation,
in which case the dynamical exponent z corresponds to the
wandering exponent ξ defined for the FPP [35,64].
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3. Bounds on the exponents

The situation regarding exact results is more complex
[21,36]. The majority of results are based on the model on
Zd . Kesten [65] proved that χ � 1/2 in any dimension, and
for the wandering exponent ξ , Licea et al. [66] gave some
hints that possibly ξ � 1/2 in any dimension and ξ � 3/5 for
d = 2.

Concerning the KPZ relation, Wehr and Aizenman [67]
and Licea et al. [66] proved the inequality

χ � (1 − dξ )/2 (7)

in d dimensions. Newman and Piza [68] gave some hints
that possibly χ � 2ξ − 1. Finally, Chatterjee [36] proved
Eq. (6) for Zd with independent and identically distributed
random edge weights, with some restrictions on distributional
properties of the weights. These were lifted by independent
work of Auffinger and Damron [21].

B. Euclidean first-passage percolation

Euclidean first-passage percolation [26] adopts a very dif-
ferent perspective from FPP by considering a fluid flowing
along each of the links of the complete graph on the points at
some weighted speed given by a function, usually a power, of
the Euclidean length of the edge. We ask, between two points
of the process at large Euclidean distance |x − y|, What is the
minimum passage time over all possible routes?

More precisely, the original model of Howard and Newman
goes as follows. Given a domain V such as the Euclidean
plane, and dx Lesbegue measure on V , consider a Poisson
point process X ⊂ V of intensity ρdx, and the function φ :
R+ → R+ satisfying φ(0) = 0, φ(1) = 1, and strict convex-
ity. We denote by KX the complete graph on X . We assign
to edges e = {q, q′} connecting points q and q′ the weights
τ (e) = φ(|q − q′|), and a natural choice is

φ(x) = xα, α > 1. (8)

The reason for α > 1 is that the shortest path is otherwise the
direct link, so this introduces nontrivial geodesics.

The first work on a Euclidean model of FPP concerned the
Poisson-Voronoi tessellation of the d-dimensional Euclidean
space by Vahidi-Asl and Wierman in 1992 [69]. This sort of
generalization is a long term goal of FPP [21]. Much like
the lattice model with independent and identically distributed
weights, the model is rotationally invariant. The correspond-
ing shape theorem, discussed in Ref. [21, Section 1], leads to
a ball. The existence of bigeodesics (two paths, concatenated,
which extend infinitely in two distinct directions from the
origin, with the geodesic between the endpoints remaining
unchanged), the linear rate of the local growth dynamics (the
wetted region grows linearly with time), and the transversal
fluctuations of the random path or surface are all summarized
in Ref. [70].

Bounds on the exponents

Licea et al. [66] showed that for the standard first-passage
percolation on Zd with d � 2, the wandering exponent satis-
fies ξ (d ) � 1/2 and specifically

ξ (2) � 3/5. (9)

In Euclidean FPP, however, these bounds do not hold, and we
have [71,72]

1

d + 1
� ξ � 3/4 (10)

and, for the wandering exponent,

χ � 1 − (d − 1)ξ

2
. (11)

Combining these different results then yields, for d = 2,

1/8 � χ, (12)

1/3 � ξ � 3/4. (13)

Since the KPZ relation of Eq. (6) apparently holds in our
setting, the lower bound for χ implies then a better bound for
ξ , namely

ξ � 3

3 + d
, (14)

which in the two-dimensional case leads to ξ � 3/5, the same
result as in the standard FPP.

Also, the “rotational invariance” of the Poisson point pro-
cess implies that the KPZ relation [Eq. (6)] is satisfied in
each spatial network we study. We numerically corroborate
this in Sec. IV. See, for example, Ref. [21, Section 4.3] for a
discussion of the generality of the relation and the notion of
rotational invariance.

C. EFPP on a spatial network

This is the model that we are considering here. Instead
of taking, as in the usual EFPP, into account all possible
edges with an exponent α > 1 in Eq. (8), we allow only some
edges between the points and take the weight proportional
to their length (i.e., α = 1 here). This leads to a different
model but apparently universal properties of the geodesics.
We therefore move beyond the weighted complete graph of
Howard and Newman and consider a large class of spatial
networks, including the random geometric graph (RGG), the
k-nearest neighbor graph (NNG), the β skeleton (BS), and the
Delaunay triangulation (DT). We introduce them in Sec. III.

III. RANDOM SPATIAL NETWORKS

We consider in this study spatial networks constructed over
a set of random points. We focus on the most straightforward
case and consider a stationary Poisson point process in the d-
dimensional Euclidean space, taking d = 2. This constitutes
a Poisson random number of points, with expectation given
by ρ per unit area, distributed uniformly at random. We do
not discuss here typical generalizations, such as to the Gibbs
process, or Papangelou intensities [30].

First, we will consider the complete graph as in the
usual EFPP, with edges weighted according to the details of
Sec. II C. We will then consider the four distinct excluded re-
gion graphs defined below. Note that some of these networks
actually obey inclusion relations, see, for example, Ref. [15].
We have

RNG ⊂ GG ⊂ DT, (15)
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where RNG stands for the relative neighborhood graph, GG
the Gabriel graph, and DT the Delaunay triangulation. This
nested relation trivially implies the following inequality:

ξRNG � ξGG � ξDT (16)

as adding links can only decrease the wandering exponent. We
are not aware of a similar relation for χ . We will also consider
three distinct proximity graphs such as the hard and soft RGG
and the k-nearest-neighbor graph.

A. Proximity graphs

The main idea for constructing these graphs is that two
nodes have to be sufficiently near in order to be connected.

1. Random geometric graph

The usual random geometric graph is defined in Ref. [29]
and was introduced by Gilbert [73] who assumes that points
are randomly located in the plane and have each a communi-
cation range r. Two nodes are connected by an edge if they
are separated by a distance less than r.

We also have the following variant: the soft random geo-
metric graph [10,74,75]. This is a graph formed on X ⊂ Rd

by adding an edge between distinct pairs of X with probability
H (|x − y|), where H : R+ → [0, 1] is called the connection
function, and |x − y| is Euclidean distance.

We focus on the case of Rayleigh fading, where, with
γ > 0 a parameter and η > 0 the path loss exponent, the
connection function, with |x − y| > 0, is given by

H (|x − y|) = exp(−γ |x − y|η ) (17)

and is otherwise zero. This choice is discussed in Ref. [32,
Section 2.3].

This graph is connected with high probability when the
mean degree is proportional to the logarithm of the number of
nodes in the graph. For the hard RGG, this is given by ρπr2,
and otherwise the integral of the connectivity function over
the region visible to a node in the domain, scaled by ρ [75].
As such, the graph must have a very large typical degree to
connect.

2. k-Nearest-neighbor graph

For this graph, we connect points to their k ∈ N nearest
neighbors. When k = 1, we obtain the nearest-neighbor graph
(1-NNG), see, e.g., Ref. [76, Section 3]. The model is notably
different from the RGG because local fluctuations in the
density of nodes do not lead to local fluctuations in the
degrees. The typical degree is much lower than the RGG
when connected [76] though still remains disconnected on a
random, countably infinite subset of the d-dimensional Eu-
clidean space, since isolated subgraph exist. For large-enough
k, the graph contains the RGG as a subgraph. See Sec. V B for
further discussion.

B. Excluded region graphs

The main idea here for constructing these graphs is that
two nodes will be connected if some region between them is
empty of points. See Fig. 4 for a depiction of the geometry of
the lens regions for β skeletons.

FIG. 4. The geometry of the lune-based β skeleton for (a) β =
1/2, (b) β = 1, and (c) β = 2. For β < 1, nodes within the inter-
section of two disks each of radius |x − y|/2β preclude the edges
between the disk centers, whereas for β > 1, we use instead radii of
β|x − y|/2. Thus, whenever two nodes are nearer each other than any
other surrounding points, they connect and otherwise do not.

1. Delaunay triangulation

The Delaunay triangulation of a set of points is the dual
graph of their Voronoi tessellation. One builds the graph by
trying to match disks to pairs of points, sitting just on the
perimeter, without capturing other points of the process within
their bulk. If and only if this can be done, those points are
joined by an edge. The triangular distance Delaunay graph can
be similarly constructed with a triangle, rather than a disk, but
we expect universal exponents.

For each simplex within the convex hull of the triangula-
tion, the minimum angle is maximized, leading in general to
more realistic graphs. It is also a t spanner [47], such that with
d = 2 we have the geodesic between two points of the plane
along edges of the triangulation to be no more than t < 1.998
times the Euclidean separation [49]. The DT is necessarily
connected.

2. β skeleton

The lune-based β skeleton is a way of naturally capturing
the shape of points [33, Chapter 9]. See Fig. 4.

A lune is the intersection of two disks of equal radius
and has a midline joining the centres of the disks and two
corners on its perpendicular bisector. For β � 1, we define
the excluded region of each pair of points (x, y) to be the lune
of radius |x − y|/2β with corners at x and y. For β � 1 we
use instead the lune of radius β|x − y|/2, with x and y on the
midline. For each value of β we construct an edge between
each pair of points if and only if its excluded region is empty.
For β = 1, the excluded region is a disk and the beta skeleton
is called the Gabriel graph (GG), while for β = 2 we have the
relative neighborhood graph (RNG).

For β � 2, the graph is necessarily connected. Otherwise,
it is typically disconnected.

IV. NUMERICAL RESULTS

A. Numerical setup

Given the models in the previous section, we numerically
evaluate the scaling exponents χ and ξ , as well as the dis-
tribution of the travel-time fluctuations. We now describe the
numerical setup. With density of points ρ > 0, and a small
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FIG. 5. The three statistics we observe, expected travel time (a) and (d), expected wandering (b) and (e), and standard deviation of the
travel time (c) and (f). The power-law exponents are indicated in the legend. Error bars of one standard deviation are shown for each point.
The top plots show the results from the models in first universality class, while the lower plots show the second class. The RGG and NNG are
distinguished with different colours (green and blue), as are EFPP on the complete graph, the DT, and the two β skeletons (Gabriel graph and
relative neighborhood graph). The point process density ρ points per unit area is given for each model.

tolerance ε, we consider the rectangle domain

V = [−w/2 − ε/2,w/2 + ε/2] × [−h/2, h/2], (18)

and place a

n ∼ Pois[h(w + ε)ρ] (19)

points uniformly at random in V . Then, on these random
points, we build a spatial network by connecting pairs of
points according to the rules of the NNG, RGG, β skeleton for
β = 1, 2, the DT, or the weighted complete graph of EFPP.

Two extra points are fixed near the boundary arcs at
(−w/2, 0) and (w/2, 0), and the Euclidean geodesic is then
identified using a variant of Djikstra’s algorithm, implemented
in Mathematica 11. The tolerance ε is important for the soft
RGG, since this graph can display geodesics which reach
backward from their starting point, or beyond their destina-
tion, before hopping back. We set ε = w/10. This process is
repeated for N = 2000 graphs, each time taking only a single
sample of the geodesic length over the span w between the
fixed points on the boundary. This act of taking only a single
path is done to avoid any small correlations between their
statistics, since the exponents are vulnerable to tiny errors
given we need multiple significant figures of precision to draw
fair conclusions. It also allows us to use smaller domains.
The relatively small value for N is sufficient to determine
the exponents at the appropriate computational speed for the
larger graphs.

The approach in Ref. [35] involves rotating the point
process before each sample is taken, which is valid alternative
method, but we, instead, aim for maximium accuracy given
the exponents are not previously conjectured and therefore
need to be determined with exceptional sensitivity rather than
at speed. Note that the fits that we are doing here are over the
same typical range as in this work [35].

We then increase w, in steps of three units of distance,
and repeat until we have statistics of all w to the limit of
computational feasibility. This varies slightly among models.
The RGGs are more difficult to simulate due to their known
connectivity constraint where vertex degrees must approach
infinity, see, e.g., Ref. [29, Chapter 1]. Thus we cannot simu-
late connected graphs to the same limits of Euclidean span as
with the other models.

We are then able to relate the mean and standard deviation
of the passage time, as well as the mean wandering, to w, at
various ρ, and for each model. For example, the left hand plots
in Fig. 5 show that the typical passage time ET (x, y) ∼ w,
i.e., grows linearly with w, for all networks [10,14,15]. The
standard error is shown but is here not clearly distinguishable
from the symbols.

We ensure h is large enough to stop the geodesics hitting
the boundary, so we use a domain of height equal to the mean
deviation ED(w), plus six standard deviations.

The key computational difficulty here is the memory re-
quirement for large graphs, of which all N are stored simul-
taneously, and mapped in parallel on a Linux cluster over a
function which measures the path statistic. This parallel pro-
cessing is used to speed up the computation of the geodesics
lengths and wandering.

B. Scaling exponents

The results are shown in Fig. 5. These plots, shown in
loglog, reveal a power-law behavior of T and D, and the
linear growth of typical travel time with Euclidean span. We
then compute the exponents to two significant figures using
a nonlinear model fit, based on the model a|x − y|b, and then
determine the parameters a, b using the quasi-Newton method
in Mathematica 11.

Our numerical results suggest that we can distinguish two
classes of spatial network models by the scaling exponents
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TABLE I. Exponents ξ and χ and passage-time distribution for the various networks considered.

Network ξ χ Distribution of T

Proximity graphs
Hard RGG 3/5 1/5 Normal (Conj.)
Soft RGG with Rayleigh fading 3/5 1/5 Normal (Conj.)
k-NNG 3/5 1/5 Normal

Excluded region graphs
DT 7/10 2/5 Normal
GG 7/10 2/5 Normal
β skeletons 7/10 2/5 Normal
RNG 7/10 2/5 Normal

Euclidean FPP
With α = 3/2 7/10 2/5 Normal
With α = 5/2 7/10 2/5 Normal

of their Euclidean geodesics. The proximity graphs (hard and
soft RGG and k-NNG) are in one class, with exponents

χRGG,NNG = 0.20 ± 0.01, (20)

ξRGG,NNG = 0.60 ± 0.01, (21)

whereas the excluded region graphs (the β skeletons and
Delaunay triangulation), and Howard’s EFPP model with
α > 1, are in another class with

χDT,β-skel,EFPP = 0.40 ± 0.01, (22)

ξDT,β-skel,EFPP = 0.70 ± 0.01. (23)

Clearly, the KPZ relation of Eq. (6) is satisfied up to the
numerical accuracy which we are able to achieve. We cor-
roborate that this is independent of the density of points and
connection range scaling, given the graphs are connected. The
exponents hold asymptotically, i.e., large interpoint distances.
Thus we conjecture

Var[T (x, y)] ∼ |x − y|4/5, (24)

E[D(x, y)] ∼ |x − y|7/10, (25)

for the proximity graphs (the DT and the β skeletons for all
β), and, for the RGGs and the k-NNG,

Var[T (x, y)] ∼ |x − y|2/5, (26)

E[D(x, y)] ∼ |x − y|3/5. (27)

We summarize these new results in Table I. It is surpris-
ing that these exponents are apparently rational numbers. In
Bernoulli continuum percolation, for example, the threshold
connection range for percolation is not known but not thought
to be rational, as it is with bond percolation on the integer
lattice [29, Chapter 10]. Exact exponents are not necessarily
expected in the continuum setting of this problem, which
suggests there is more to be said about the classification of
first-passage process via this method.

C. Travel-time fluctuations

We see numerically that the travel-time distribution is a
normal for most cases (see Fig. 6). We summarize these results
in Table I and in Fig. 7 we show the skewness and kurtosis
for the travel-time fluctuations, computed for the different
networks. For a Gaussian distribution, the skewness is 0 and
the kurtosis equal to 3, while the Tracy-Widom distribution
displays other values.

We provide some detail of the distribution of T for each
model from the proximity class in Fig. 6. This is com-
pared against four test distributions, the Gaussian orthogonal,
unitary, and symplectic Tracy Widom distributions, and the
standard normal distribution.

This makes the case of EFPP on spatial networks one
of only a few special cases where Gaussian fluctuations in
fact occur. Auffinger and Damron go into detail concerning
each of the remaining cases in Ref. [21, Section 3.7]. One
example, reviewed extensively by Chaterjee and Dey [36], is
when geodesics are constrained to lie within thin cylinders,
i.e., ignore paths which traverse too far, and thus select the
minima from a subdomain. This result could shed some light
on their questions, though in what way it is not clear.

We also highlight that Tracy-Widom is thought to occur
in problems where matrices represent collections of totally
uncorrelated random variables [77]. In the case of EFPP, we
have the interpoint distances of a point process, which lead to
spatially correlated interpoint distances, so the adjacency ma-
trix does not contain independent and identically distributed
values. This potentially leads to the loss of Tracy-Widom.
However, we also see some cases of N × N large complex
correlated Wishart matrices leading to TW for at least one of
their eigenvalues and with convergence at the scale N2/3 [78].

D. Transversal fluctuations

The transversal deviation distribution results appear beside
our evaluation of the scaling exponents, in Fig. 8. All the mod-
els produce geodesics with the same transversal fluctuation
distribution, despite distinct values of ξ . The fluctuations are
also distinct from the Brownian bridge (a geometric Brownian
motion constrained to start and finish at two fixed position
vectors in the plane), running between the midpoints of the
boundary arcs [19]. It is a key open question to provide some
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FIG. 6. Travel-time distributions for the DT [(a)–(c)], RNG [(d)–(f)], and Gabriel [(g)–(i)] graphs, compared with the GUE and GSE
Tracy-Widom ensembles, and the Gaussian distribution. The point process density ρ points per unit area is given for each model. The slight
skew of the TW distribution is not present in the data.

information about this distribution, as it is rarely studied in
any FPP model, as far as we are aware of the literature. A
key work is Kurt Johannson’s, where the wandering exponent
is derived analytically in a variant of oriented first-passage
percolation. One might ask whether a similar variant of EFPP
might be possible [52].

V. DISCUSSION

The main results of our investigation are the new rational
exponents χ and ξ for the various spatial models, and the
discovery of the unusual Gaussian fluctuations of the travel
time. We found that for the different spatial networks the KPZ

FIG. 7. Skewness (a) and kurtosis (b), for the travel-time fluctuations, computed for each network model. For a Gaussian distribution, the
skewness is 0 and the kurtosis equal to 3, values that we indicate by dashed black lines. The point process density ρ points per unit area is
given for each model. The Tracy-Widom distribution has only marginally different moments to the normal, also shown by dashed black lines,
with labels added to distinguish each specific distribution (GOE, GUE, or GSE), as well as the Gaussian.
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FIG. 8. Transversal fluctuations of the geodesics in all models
(colored points) and compared with the fluctuations of a continuous
Brownian bridge process between the same end points (red dashed
curve). The point process density ρ points per unit area is given for
each model.

relation holds and known bounds are satisfied. Also, due to
known relations and the the KPZ law, we have

3

3 + d
� ξ � 3

4
. (28)

It is surprising to find a large class of networks, in particular
the Delaunay triangulation, that displays an exponent ξ =
7/10 and points to the question of the existence of another
class of graphs which display the theoretically maximal ξ =
3/4.

Both immediately present a number of open questions and
topics of further research which may shed light on the first-
passage process on spatial networks. We list below a number
of questions that we think are important.

A. Gaussian travel-time fluctuations

We are not able to conclude that all the models in the
proximity graph class χ = 3/5, ξ = 1/5, have Gaussian fluc-
tuations in the travel time. This is for a technical reason. All
the models we study are either connected with probability 1,
such as the DT or β skeleton with β � 2, or have a connection
probability which goes to1 in some limit. We require con-
nected graphs, or paths do not span the boundary arcs, and
the exponents are not well defined.

Thus, the difficult models to simulate are the HRGG,
SRGG, and k-NNG, since these are in fact disconnected with
probability 1 without infinite expected degrees, i.e., the dense
limit of Penrose, see Ref. [29, Chapter 1], or with the fixed
degree of the k-NNG k = 
(log n) and n → ∞ in a domain
with fixed density and infinite volume. Otherwise, we have
isolated vertices, or isolated subgraphs, respectively.

However, the k-NNG has typically shorter connection
range, i.e., in terms of the longest edge, and shortest nonedge,
where the “length of a nonedge” is the corresponding inter-
point distance between the disconnected vertices [76, Section
3]. So the computations used to produce these graphs and
then evaluate their statistical properties are significantly less
demanding. Thus, the HRGG is computationally intractable

in the necessary dense limit, so we are unable to verify the
fluctuations of either T or D. However, we can see a skewness
and kurtosis for T (|x − y|) which are monotonically decreas-
ing with |x − y| toward the hypothesized limiting Gaussian
statistics, at least for the limited Euclidean span we can
achieve.

Given that k-NNG is in the same class, we are left to
conjecture whether Gaussian fluctuations hold throughout all
the spatial models described in Sec. III. It remains an open
question to identify any exceptional models where this does
not hold.

B. Percolation and connectivity

If we choose two points at a fixed Euclidean distance,
then simulate a Poisson point process in the rest of the d-
dimensional plane, construct the relevant graph, and consider
the probability that both points are in the giant component;
this is effectively a positive constant for reasonable distances,
assuming that we are above the percolation transition. At
small distances, the two events are positively correlated. Thus,
one can condition on this event and therefore, when simulat-
ing, discount results where the Euclidean geodesic does not
exist. This defines FPP on the giant component of a random
graph.

It is not clear from our experiments whether the rare
isolated nodes, or occasionally larger isolated clusters, either
in the RGGs or k-NNG, affect the exponents. One similar
model system would be the Lorentz gas: Put disks of constant
radius in the plane, perhaps at very low density, and seek the
shortest path between two points that does not intersect the
disks. The exponents χ and ξ for this setting are not known
[19,79].

An alternative to giant component FPP would be to con-
dition on the two points being connected to each other. This
would be almost identical for the almost connected regime
but weird below the percolation transition. In that case the
event we condition on would have a probability decaying
exponentially with distance, and the point process would end
up being extremely special for the path to even exist. For
example, an extremely low-density RGG would be almost
empty apart from a path of points connecting the end points,
with a minimum number of hops.

C. Betweenness centrality

The extent to which nodes take part in shortest paths
throughout a network is known as betweenness centrality
[1,4]. We ask to what extent knowledge of wandering can
lead to understanding the centrality of nodes. The variant node
shortest path betweenness centrality is highest for nodes in
bottlenecks. Can this centrality index be analytically under-
stood in terms of the power-law scaling of D? Is the exponent
directly relevant to its large-scale behavior?

In order to illustrate more precisely this question, let G
be the graph formed on a point process X by joining pairs
of points with probability H (|x − y|). Consider σxy to be the
number of shortest paths in G which join vertices x and y in
G and σxy(z) to be the number of shortest paths which join x
to y in G, but also run through z; then, with �= indicating a

032315-10



SHAPE OF SHORTEST PATHS IN RANDOM SPATIAL NETWORKS PHYSICAL REVIEW E 100, 032315 (2019)

sum over unordered pairs of vertices not including z, define
the betweenness centrality g(z) of some vertex z in G to be

g(z) =
∑

i �= j �=k

σi j (z)

σi j
. (29)

In the continuous limit for dense networks we can discuss
the betweenness centrality and we recall some of the results
in Ref. [11]. More precisely, we define χxy(z) as the indicator
which gives unity whenever z intersects the shortest path
connecting the d-dimensional positions x, y ∈ V . Then the
normalized betweenness g(z) is given by

g(z) = 1∫
V2 χxy(0)dxdy

∫
V2

χxy(z)dxdy. (30)

Based on the assumption that there exists a single topological
geodesic as ρ → ∞, and that this limit also results in an
infinitesimal wandering of the path from a straight line seg-
ment, an infinite number of points of the process lying on this
line segment intersect the topological geodesic as ρ → ∞,
assuming the graph remains connected, and so χxy(z) can then
written as a δ function of the transverse distance from z to
the straight line from x to y. The betweenness can then be
computed and we obtain [11] [normalized by its maximum
value at g(0)]

g(ε) = 2

π
(1 − ε2)E (ε), (31)

where E (k) = ∫ π/2
0 dθ [1 − k2 sin2 (θ )]

1/2
is the complete el-

liptic integral of the second kind. We have also rescaled such
that ε is in units of R.

Take D(x, y) to be the maximum deviation from the hor-
izontal of the Euclidean geodesic. Numerical simulations
suggest that

ED(x, y) = C|x − y|ξ , (32)

where the expectation is taken over all point sets X . The “thin
cylinders” are given by a Heaviside 
 function, so assume that
the characteristic function is no longer a δ spike but a wider
cylinder,

χxy(z) = θ [D(x, y) − z⊥], (33)

where z⊥ is the magnitude of the perpendicular deviation of
the position z from hull(x, y). We then have that

g(z) = 1∫
V2 θ (D − 0⊥)dxdy

∫
V2

θ (D − z⊥)dV (34)

(where 0 is the transverse vector computed for the origin).
This quantity is certainly difficult to estimate but provides a
starting point for computing finite-density corrections to the
result of Ref. [11].

The boundary of the domain is crucial in varying the
centrality, which is something we ignore here. Without an
enclosing boundary, such as with networks embedded into
spheres or tori, the typical centrality at a position in the
domain is uniform, since no point is clearly distinguishible
from any other. This is discussed in detail in Ref. [11]. In
fact, a significant amount of recent work on random geometric
networks has highlighted the importance of the enclosing
boundary [32,74].

VI. CONCLUSIONS

We have shown numerically that there are two distinct
universality classes in Euclidean first-passage percolation on a
large class of spatial networks. These two classes correspond
to the following two broad classes of networks: first, based
on joining vertices according to critical proximity, such as
in the RGG and the NNG, and, second, based on graphs
which connect vertices based on excluded regions, as in the
lune-based β skeletons or the DT. Heuristically, the most
efficient way to connect two points is via the nearest neighbor,
which suggests that ξ for proximity graphs should on the
whole be smaller than for exclusion-based graphs, which is
in agreement with our numerical observations.

The passage times show Gaussian fluctuations in all mod-
els, which we are able to numerically verify. This is a clear
distinction between EFPP and FPP. After similar results of
Chaterjee and Dey [36], it remains an open question why this
happens and also of course how to rigorously prove it.

We also briefly discussed notions of the universality of be-
tweenness centrality in spatial networks, which is influenced
by the wandering of shortest paths. A number of open ques-
tions remain about the range of possible universal exponents
which could exist on spatial networks, whose characterization
would shed light on the interplay between the statistical
physics of random networks, and their spatial counterparts, in
way which could reveal deep insights about universality and
geometry more generally.

All underlying data are reproduced in full within the paper.
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