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Abstract The Lorentz gas, a point particle making mirror-like reflections from an extended collection of scatterers,

has been a useful model of deterministic diffusion and related statistical properties for over a century. This survey

summarises recent results, including periodic and aperiodic models, finite and infinite horizon, external fields, smooth

or polygonal obstacles, and in the Boltzmann–Grad limit. New results are given for several moving particles and for

obstacles with flat points. Finally, a variety of applications are presented.
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1 Introduction

The Lorentz gas was proposed by H.A. Lorentz in

1905[1] to model thermal and electrical conductivity of

metals. The interactions between electrons were ne-

glected, and the ions considered fixed, so the model con-

sists of a single moving particle in an extended array of

fixed scatterers. A Boltzmann-like approximation of un-

correlated collisions was made, so the implicit assumption

was that the scatterers were of low density. Physically

this makes sense (though ignoring electron-electron inter-

actions and quantum effects) if the scatterers are reinter-

preted as lattice defects rather than ions.

The subsequent century, especially the last decade, has

seen a wealth of results on related models, with periodic,

quasiperiodic and aperiodic scatterer arrangements, two,

three and more dimensions, internal and external forces,

and many other generalisations. Lorentz models have il-

luminated relevant fields, both mathematical (probabil-

ity and dynamical systems) and in the physical sciences

(foundations of statistical mechanics, molecular simula-

tion, scattering and transport in periodic and random en-

vironments).

This review gives an overview of the latest develop-

ments, in particular since a previous survey by the same

author;[2] see also Refs. [3–5]. There are also new calcula-

tions in Sec. 6 and (mostly old) open problems highlighted

throughout. The order is logical rather than historical,

starting with the widely investigated and relatively well

understood periodic models and moving towards previ-

ously studied random models. The final section draws to-

gether some relevant applications. Corresponding quan-

tum/wave systems are a huge and omitted field; see for

example Refs. [6–8].

2 Preliminaries

2.1 Microscopic Dynamics

A point particle with location x(t) ∈ R
d as a function

of time t, moves freely except for reflections from an in-

finite collection of scatterers Di ⊂ R
d; See Fig. 1. Free

motion is at constant velocity of unit magnitude (without

loss of generality), so

dx

dt
= v , |v| = 1 . (1)

Fig. 1 A triangular periodic Lorentz gas. This has
finite horizon (see Subsec. 2.4), as there are no collision-
free trajectories. Infinite horizon may be obtained with
smaller scatterers or a square lattice.

This equation is solved together with that for the bound-
ary to determine the time of next collision, a quadratic
equation for the most common case of scatterers which
are balls. After reaching a scatterer, a reflection takes
place according to the usual rule that angle of reflection
equal angle of incidence

v+ = v− − 2
v− · n
n · n n , (2)
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where a centred dot denotes the usual scalar product and

n is a vector normal to the boundary. This formula does

not require that n be a unit vector, hence avoiding calcu-

lation of a square root.

Apart from the unbounded domain, the dynamics is

exactly that of a mathematical billiard.[9−11] Basic prop-

erties of billiards which are useful in the Lorentz gas con-

text are the existence of a uniform equilibrium measure,

proportional to Lebesgue measure in position (Rd) and

velocity (Sd−1) spaces, and invariant under the dynamics

in the continuous time dynamics (billiard flow). For the

billiard map (dynamics from one collision to the next) the

corresponding measure is uniform on the boundary of the

scatterer(s) and on the projection of velocity parallel to

the boundary. With respect to this equilibrium measure

there is an exact formula for the mean flight time between

collisions

〈τ〉 =
|Q|Sd−1

|∂Q|Vd−1
=

|Q|
|∂Q|

2
√
πΓ((d+ 1)/2)

Γ(d/2)
, (3)

where |Q| and |∂Q| are the volume and surface of the bil-

liard respectively, while Vd and Sd−1 are the volume and

surface of the d-dimensional unit ball respectively. Angle

brackets denote expectation. For d = 2 we find π|Q|/|∂Q|
and for d = 3 we find 4|Q|/|∂Q|.

Another property derived from billiards is the sym-

plectic structure of the dynamics, leading to a symmetric

Lyapunov spectrum in the usual Hamiltonian fields (no

field, electric and/or magnetic fields) and with Gaussian

or Nosé–Hoover thermostats.[12−13] Also, the dynamics is

time-reversible,[14] in that in all these cases except the

magnetic field there is an involution ι reversing the dy-

namics: ι ◦ Φt ◦ ι = Φ−t. For the flow ι is defined by

reversal of velocity, ι(x,v) = (x,−v), and for the map by

the reflection law, ι(x,v−) = (x,v+) from Eq. (2). Here,

Φt denotes the evolution forward by time t ∈ R for the

flow or collisions t ∈ Z for the map.

Dynamical properties of billiards depend on the geom-

etry of the boundary. We will assume the following unless

stated explicitly:

Definition 1 Dispersing billiard: All scatterers are

disjoint, convex with strictly positive curvature and C3

smooth.

These requirements ensure that a parallel beam of ini-

tial conditions spreads out at each collision, leading to

strongly chaotic properties (Subsec. 3.1). Various gener-

alisations of the dynamics and dispersing condition are

considered in later sections.

2.2 Diffusion

The main macroscopic property considered has been

diffusion. For heat conduction see Ref. [15] and refer-

ences therein, but note that the Lorentz gas collisions

do not transfer energy, and so local thermal equilib-

rium is not generally satisfied.[16] Viscosity has also been

considered.[17]

The displacement ∆(t) = x(t) − x(0) is a determinis-

tic function of the initial position and velocity. Consider-
ing a probability measure on the set of initial conditions
and/or scatterer configurations, we can study the distri-
bution of ∆(t) including its moments as a function of t.
Using i, j ∈ {1, . . . , d} as spatial indices, we can seek the

following limiting properties, in roughly increasing order
of strength:
Current

J = lim
t→∞

1

t
〈∆〉 . (4)

If there is no external field, then the current is clearly zero
due to time reversibility. If there is an external field, the
following properties should be defined in terms of ∆−Jt.
Mean Square Displacement

Dij = lim
t→∞

1

2t
〈∆i∆j〉 , (5)

where Dij is the diffusion matrix/tensor.
Central Limit Theorem

∆(t)√
t

⇒ N (0, 2Dij) , (6)

where N is the multivariate normal distribution.
Brownian Motion

∆(st)√
t

⇒W (s) , (7)

for s ∈ [0, 1], where W is the standard d-dimensional
Wiener process with covariance matrix 2Dij .
Local Limit Theorem Given an unbounded sequence
of times tn and scatterers with displacements ∆n/tn → x

and Voronoi cells (excluding the scatterers themselves) of

volume Vn, the probability Pn of reaching the cell at time
tn has the expected limit:

t
d/2
n Pn

Vn
→ φ(x) , (8)

where φ is the density function of N (0, 2Dij).
Here, ⇒ denotes convergence in distribution as t→ ∞.

The factors of two are required so that Dij is the coeffi-

cient in the corresponding hydrodynamic equation
∂

∂t
ρ = Dij

∂

∂xi

∂

∂xj
ρ , (9)

where ρ(x, t) is the density of particles. In cases with
sufficient symmetry (e.g. triangular periodic or isotropic
random Lorentz gases), the diffusion matrix is Dij = Dδij
withD the diffusion coefficient. For more details see Sec. 2
of Ref. [18]. Note that anomalous versions of the above
results hold in some situations; see Subsec. 4.2 for details.

2.3 Burnett Coefficients

It is sometimes useful to consider higher order diffu-

sion processes. Generalising Ref. [19] slightly to allow for
the non-isotropic case, we Fourier transform the density
and expand in a formal power series, using subscripts for
spatial indices. The derivation is given in two dimensions
for clarity, but easily generalises to arbitrary dimension.

F (k1, k2, t) =

∫∫

d∆1d∆2 e−ik1∆1−ik2∆2ρ(∆1,∆2, t)
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=
∞
∑

n1=0

∞
∑

n2=0

(−i)n1+n2

n1!n2!
kn1

1 kn2

2 〈∆n1

1 ∆n2

2 〉

= exp
∞
∑

n1=0

∞
∑

n2=0

(−i)n1+n2

n1!n2!
kn1

1 kn2

2 〈∆n1

1 ∆n2

2 〉c , (10)

by expanding the exponential in the first equation. The

final equality defines the cumulants 〈〉c, which have the

important property that they are additive for indepen-

dent random variables. We will use the notation Mab =

〈∆a
1∆b

2〉 for the moments and Qab = 〈∆a
1∆b

2〉c for the cu-

mulants. For example if odd moments are zero due to

symmetry we have

Q00 = 0 , Q20 = M20 , Q40 = M40 − 3M2
20 ,

Q22 = M22 −M20M02 . (11)

Differentiating Eq. (10), we find

Ft = F

∞
∑

n1=0

∞
∑

n2=0

(−i)n1+n2

n1!n2!
kn1

1 kn2

2 ∂tQn1n2
, (12)

where the late time limit (if it exists) of the derivative is

given by

lim
t→∞

∂tQn1n2
= lim

t→∞

1

t
Qn1n2

. (13)

Thus we have

lim
t→∞

Ft

F
= −

∑

mn

Dmnkmkn

+
∑

mnpq

Bmnpqkmknkpkq + · · · , (14)

with B the tensor form of the Burnett coefficient, as in

Refs. [20–21]. Thus the Burnett coefficient can be inter-

preted as a fourth derivative term in Eq. (9).

Note that there are exactly the same number of inde-

pendent B and Q coefficients for any dimension and level

of symmetry; the even coefficients are related by

D11 = lim
t→∞

1

2t
Q20 , B1111 = lim

t→∞

1

24t
Q40 ,

B1122 = lim
t→∞

1

24t
Q22 . (15)

This is a generalisation of Eq. (5); for the limit to exist,

the term 3M2
20 in Eq. (11) of order t2 needs to cancel an

equivalent contribution from M40 to give a result of order

t. Thus Burnett coefficients can be anomalous even when

diffusion is normal.

The cumulants beyond second order are exactly zero

for a normal distribution, and so quantify approach to it.

The Burnett coefficients appear explicitly in corrections

of local limit theorems in the case of independent random

variables.[22]

2.4 Periodicity and Horizons

Periodic scatterer configurations are natural from both

mathematical and physical perspectives. Mathematically,

a periodic Lorentz gas is a Z
d cover over a billiard in a

torus, from which many useful properties may be derived;

in particular the equilibrium measure on the torus exclud-

ing the scatterer(s) is finite.

Physically, the Lorentz gas with circular/spherical

scatterers of radius R is obtained by considering molec-

ular dynamics of two particles of radius R/2 with peri-

odic boundary conditions in relative coordinates (that is,

removing the uniform centre of mass motion).[2]

There is, however, an important issue to consider with

periodic models. For the simplest case of a square lattice

with non-overlapping circular scatterers, the particle can

move freely parallel to a unit lattice vector without ever

colliding with a scatterer; this property is called infinite

horizon. For a triangular lattice with sufficiently large

scatterers (as in Fig. 1) there is no such trajectory and

the time between collisions is bounded; this is finite hori-

zon. In aperiodic models (Sec. 7 below) a third possibility

exists, where there is neither an infinite trajectory nor a

bound on the collision time; this is locally finite horizon.

In three dimensions there may be cylinders and/or

slabs of trajectories with no collisions, corresponding to

“cylindrical” or “planar” infinite horizons; see Refs. [18,

23–24]. In general d ≥ 2 we consider the lattice L of trans-

lations of the Lorentz gas. Following Refs. [18, 23] a free

subspace is an inextensible linear subspace V ⊂ R
d such

that for a point x ∈ R
d the set x+V does not intersect any

scatterer (but may be tangent); V is a lattice subspace.

The corresponding horizon is constructed by obtaining the

maximal connected set BH ⊂ x + V ⊥ containing x that

has V as a free subspace, where V ⊥ is the linear space

perpendicular to V . The horizon itself is the set

H = {(x,v) : x ∈ BH + V,v ∈ V ∩ S
d−1} , (16)

where the sphere S
d−1 imposes the restriction to unit

speed. The dimension of the horizon dH is the dimension

of V , and satisfies 1 ≤ dH ≤ d − 1. A maximal hori-

zon is a horizon of maximal dimension for a given Lorentz

gas, a principal horizon is of dimension d − 1, and an

incipient horizon is one in which BH is zero d−dH dimen-

sional measure, for example a plane tangent to scatterers

on both sides.

Let the free flight function F (t) be the probability

(given initial conditions chosen according to the equilib-

rium measure) of not colliding before time t. Also, let

FH(t) be the probability of remaining in the spatial pro-

jection of the horizon BH + V for time t. Then[18]

FH(t) =
SdH−1

∫

BH

∫

BH
∆vis(x,y)dxdy

Sd−1V⊥
H(1 − P)td−dH

, (17)

where ∆vis counts the number of ways x and y can be con-

nected by a straight line entirely in BH . V⊥
H is the volume

of V ⊥/L⊥
V where L⊥

V is lattice obtained by the projection

of L on V ⊥. Finally P is probability that an arbitrary

point lies inside a scatterer.

Conjectured in Ref. [18] and proven in the preprint:[23]

F (t) ∼
∑

H∈H

FH(t) , t→ ∞ , (18)
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where H is the set of maximal horizons if at least one is

non-incipient. In the limit r → 0 the number of horizons

diverges; a non-rigorous calculation using Mellin trans-

forms yields for a d-dimensional cubic lattice[18]

lim
t→∞

tF (t) =
π(d−1)/2

2ddΓ((d + 3)/2)ζ(d)rd−1
+O(r1/2−δ), (19)

for δ > 0 subject to the Riemann Hypothesis, the major

unsolved problem in number theory that asserts that the

Riemann zeta function ζ(s) has no zeros with real part

greater than 1/2.[25]

Also conjectured in Ref. [18] (except for the explicit

exponent in the third case) and proven in Ref. [23]:

F (t) ≍







t−2 , 3 ≤ d ≤ 5 ,

t−2 ln t , d = 6 ,

t(2+d)/(2−d) , d > 6 ,

(20)

if there is at least one incipient (but no actual) principal

horizon. The explicit exponent matches the numerical fits

in Ref. [18] for d ≤ 8 beyond which the latter are not re-

liable. Note that the numerical simulations were carried

out for cubic Lorentz gases with scatterers just touching,

thus violating the dispersing condition.

Open Problem 1 What is the form of F (t) if the maxi-

mal horizon is incipient but not principal?

In three or more dimensions, no periodic arrangement

of spheres with a single sphere per unit cell has finite hori-

zon. It is possible to create finite horizon configurations by

having non-spherical scatterers, for example by consider-

ing a generic lattice and shrinking the Voronoi tessellation

slightly to create strictly convex scatterers, or by a suffi-

ciently large number of randomly placed spheres per unit

cell.

Open Problem 2 Find an explicit periodic arrangement

of equal sized non-overlapping spheres with finite horizon

in dimension d ≥ 3.

3 Periodic with Finite Horizon

3.1 Dynamical Properties

Dynamical properties of motion in a two-dimensional

torus with strictly convex obstacles have been known since

Sinai’s 1970 paper[26] which showed that such systems ex-

hibit the Kolmogorov property, which implies both ergodic

properties (for example ergodicity and mixing) and hyper-

bolic properties (for example positive Lyapunov exponents

for almost every initial condition). A modern detailed

treatment of these questions for more general billiards may

be found in Ref. [9].

Hyperbolicity holds for higher dimensional dispersing

billiards (hence Lorentz gases), though in this case the

structure of the singularities (due to tangential orbits) is

much more involved.[27−28] These results extend automat-

ically to the extended (Lorentz gas) case.

Ergodicity has been shown where the scatterers are

algebraic varieties (such as spheres),[29] or when the

growth of singularities is less than exponential (and hence

dominated by the exponential stretching associated with

hyperbolicity)[30−31] however this condition known not to

be always satisfied.[28] These difficulties were not appre-

ciated before the turn of the millennium and so earlier

results on higher dimensional Lorentz gases need to be

treated with caution. The following assertion is however

very likely true:

Open Problem 3 Are all dispersing billiards on T
d with

d ≥ 3 and finite horizon ergodic?

References [30–31] prove a stronger ergodic property,

that of exponential mixing of the billiard map, under this

condition (sub-exponential complexity). This had been

shown earlier for two-dimensional billiards by Young.[32]

The rate of mixing for the flow is more difficult; the best

results are stretched exponential in two dimensions,[33]

with exponential only for billiards with a non-eclipsing

condition (hence a finite number of scatterers in R
2);[34]

progress has been made on non-billiard models that are

hyperbolic with singularities.[35]

A stronger result in another direction is the Bernoulli

property for the map and flow, shown for all billiards in ar-

bitrary dimension with non-zero Lyapunov exponents for

both map and flow, and that satisfy the K-property.[36]

3.2 Transport

Now we consider the dynamics in the extended space.

In d ≤ 2, the random walk is well known to be recur-

rent, with trajectories returning infinitely often arbitrarily

close to their starting point. This holds also for the two-

dimensional Lorentz gas, with the stronger property of er-

godicity in the full space shown in Refs. [37–38]. Clearly

this is not expected in higher dimensions.

The two-dimensional Lorentz gas has been shown to

satisfy all the diffusive properties given in Subsec. 2.2:

Bunimovich and Sinai showed convergence to Brownian

motion in 1981,[39] the local limit theorem was proved

by Szász and Varju in 2004[40] and the vector-valued al-

most sure invariance principle by Melbourne and Nicol in

2009.[41] In higher dimensions, the central limit theorem

was shown in Ref. [30] under the condition of subexpo-

nential complexity.

Open Problem 4 Are convergence to a Wiener process

and local limit theorems satisfied for d ≥ 3?

Noting

∆i =

∫ t

0

vi(s)ds

we arrive at the expression[42]

1

2
〈∆i∆j〉 = t

∫ t

0

〈vi(0)vj(s)〉ds−
∫ t

0

s〈vi(0)vj(s)〉ds , (21)

which after division by t and taking the limit gives the

continuous time version of the Green–Kubo formula for

the diffusion coefficient D; similar expressions apply to

other transport coefficients such as viscosity and heat
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conductivity.[43] The equivalent expression for the fourth

order Burnett coefficients involves four-time correlation

functions.[20]

Convergence of the integral follows from sufficiently

rapid decay of the velocity autocorrelation function; this

was shown to be (at least) a stretched exponential in

Ref. [39]; similar multiple correlations were used in

Refs. [21, 44] to show that Burnett coefficients of all orders

also exist in the two-dimensional case.

There is no known closed form expression for the dif-

fusion coefficient D, so there have been several analyti-

cal and numerical studies to approximate it. In the limit

of small gaps between scatterers the time between mov-

ing from one gap to another is typically long and hence

uncorrelated.[45] More sophisticated models extend this to

take into account some correlations, for example Markov

chains with finite memory.[46−48] There is also a study

of three-dimensional Lorentz gases using this approach[49]

including both finite and infinite horizon regimes (Sec. 4

below).

Alternative expressions for D exist in terms of periodic

orbits of the torus dynamics (which are either periodic or

translating in the full space). Considering only orbits up

to a maximum length yields an approximation to the dif-

fusion coefficient; see Refs. [50–52]. A rigorous basis of

periodic orbit expansions is provided in Ref. [53].

There are simpler models of deterministic diffusion,

for example one dimensional piecewise linear maps. Some

models have a dense set of parameter values at which

there is a finite Markov partition and hence the diffu-

sion coefficient may be determined exactly using Markov

chains or periodic orbits.[54−57] The diffusion coefficient is

a fractal function of parameters (denoted λ), for which the

non-smoothness has been fairly well quantified,[58] being

slightly less smooth than Lipshitz. An upper bound of the

variation is

|D(λ) −D(λ′)| < K|λ− λ′|(1 + ln |λ− λ′|)2 , (22)

while a lower bound includes a single power of the loga-

rithm. The density dependence of the diffusion coefficient

in the Lorentz gas is expected to be smoother (since the

flow is continuous if the pre- and post- collisional states

are considered connected); discussion and numerical re-

sults were presented in Ref. [46] and for a “flower” Lorentz

gas in Ref. [59].

Open Problem 5 How smooth is the diffusion coefficient

of the Lorentz gas as a function of density?

3.3 External Fields

(i) Weak Field and Thermostat

The diffusion can also be calculated as the zero field

limit of the non-equilibrium conductivity[60] (Eq. (27) be-

low), a standard approach for transport coefficients in

molecular simulation.[43] In this case an electric field is

imposed, that provides a constant force on the particle

(assumed charged, though still not interacting with other

moving particles). In order to prevent an unbounded
growth of the particle’s energy, a thermostat force is also

applied, as commonly used in molecular simulation.[12,43]

The most commonly used thermostat in this context is the

Gaussian isokinetic thermostat, for which the equation of
motion is

dv

dt
= E − E · v

v · v , (23)

where E is the constant electric field; the mass and charge

are assumed equal to unity. This equation has the follow-
ing properties:[12]

• The kinetic energy v · v/2 is conserved (hence the

designation “isokinetic”) and so it is usually as-
sumed that the velocity has unit magnitude.

• The involution ι(x,v) = (x,−v) reverses the motion

(see Subsec. 2.1).

• The dynamics is conformally symplectic.[13,61] This

means that in two dimensions there is a conformal
transformation to a field-free billiard[13] and that

in higher dimensions there is a symmetry of the
Lyapunov spectrum, sometimes called the conjugate

pairing rule.[13,62] Before the latter was shown, the
three-dimensional Lorentz gas was used as a conve-

nient system for numerical tests.[63]

If the electric field is to the right (E = Eex) and the
direction of motion v = (cos θ, sin θ) in the (x, y) plane

(without loss of generality), the equation of motion re-
duces to dθ/dt = −F sin θ with solution

tan
θ

2
= tan

θ0
2

exp
[

− t− t0
E

]

, (24)

x = x0 −
1

E
ln

sin θ

sin θ0
, (25)

y = y0 −
θ − θ0
E

. (26)

Note that the motion in y (i.e. transverse to the field) is

bounded by π/E. The equation determining the collision
with a spherical scatterer is transcendental, however the

shortest distance to a scatterer is a rigorous lower bound
on the time, and leads to a quadratically convergent nu-

merical algorithm.[63]

The two-dimensional finite horizon non-equilibrium

Lorentz gas was considered in Ref. [64], where it was
shown that for sufficiently small field the system remains

ergodic, with a measure that is supported on the full phase
space but singular (multifractal) with respect to the equi-

librium measure. They give rigorous proofs of relations
long stated in non-equilibrium physics, for example the

existence of a well-defined current J(E) (the average ve-
locity) related in the limit of small field to the diffusion

coefficient (or in low symmetry cases, tensor) by the Ein-
stein relation

J = DE + o(E) . (27)
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Also, the diffusion tensor is continuous at zero field, the

sum of the Lyapunov exponents comes to

λ+ + λ− = −J · E , (28)

and the information dimension of the flow (Hausdorff di-

mension of the measure) is given by the application of the

Kaplan–Yorke–Young formula,[65]

D1 = 2 +
λ+

|λ−|
= 3 − J · E

λ0
+ o(E2) , (29)

where λ0 is the magnitude of either of the Lyapunov ex-

ponents at zero field. Recently, Ref. [66] shows that the

spatial projection of the ergodic measure is absolutely con-

tinuous. These authors also used a Gaussian thermostat

as a coupling mechanism in a multiparticle driven Lorentz

gas.[67]

(ii) Other Weak Fields and Thermostats

Reference [64] incorporates a more general case of a

weak magnetic field; since the magnetic force is perpen-

dicular to the velocity it does not affect the strength of

the thermostat and hence the sum of the Lyapunov ex-

ponents. It does however break the time reversibility (see

Sec. 2.1). These results have been generalised in a number

of papers: Ref. [68] considers more general small forces,

Refs. [69–70] consider perturbed reflection functions, and

Ref. [71] considers more general models with small forces

and collision perturbations satisfying a conserved energy

with compact phase space (cf the Galton board below)

and time reversibility. Reference [71] extends the per-

turbations to include shifted, rotated or deformed scat-

terers and/or shifts at collision. The results are similar,

including generalisations of the Einstein formulas. There

are also studies of electric and magnetic fields in random

Lorentz gases, discussed below in Subsec. 7.4.

From the point of view of molecular dynamics, there

are a number of other thermostats in use.[12,72] The Nosé–

Hoover thermostat retains reversibility and symplectic

properties, while adding a degree of freedom. Its ap-

plication to the Lorentz gas was considered numerically

in Ref. [73], leading again to multifractal attractors but

somewhat different bifurcation structure at strong field.

It was used as an example of fluctuation theorems in

Refs. [74–75].

Other deterministic thermostatting approaches have

been less common, lacking time-reversibility and Hamil-

tonian structure. The constant friction thermostat was

considered in Ref. [76] as an example of a non-reversible

model, again studying the multifractal attractors. Note

that there are some subtleties to the definition of re-

versibility; it turns out that if the attracting fixed point is

excluded, the constant friction harmonic oscillator dynam-

ics (ẋ, v̇) = (v,−x−αv) may be reversed by the involution

ι(x, v) =
(x,−v − αx)

x2 + (v + αx/2)2/(1 − α2/4)
. (30)

A reversible thermostat-like model was considered nu-

merically in Ref. [77]. There, the motion was as in a

billiard except that when the particle leaves via a bound-

ary, returning on the opposite side, a dilation was applied,

giving an effective field. A steady current was observed,

linear in the field strength for weak field. Fluctuation re-

lations studied. Infinite horizon and polygonal variants

were also considered (see later sections).

(iii) Strong Field and Thermostat

Some statements can be made about the Gaussian

thermostat for strong fields. In the two-dimensional case,

the conformal transformation to a field-free billiard[13]

guarantees ergodicity as long as the appropriate condi-

tions are satisfied: |E| < κmin where κmin is the mini-

mum curvature of the scatterers ensures that the dispers-

ing condition is met; the finite horizon condition on the

transformed billiard also needs to be checked. Smoothness

of the current as a function of field is also of long interest:

Open Problem 6 How smooth is the current as a func-

tion of field?

A plot of this function is given in Ref. [2]. For larger

fields, ergodicity appears to be broken by one of two mech-

anisms, elliptic stability of a periodic orbit (breaking of the

above condition) or crisis where an attractor and its time

reverse at high fields merge as the field is reduced.[78−79]

At high fields the attractor(s) may be fractal or stable

periodic orbits.

(iv) The Galton Board

The Galton board or quincunx, predates the Lorentz

gas,[80] consisting of a periodic Lorentz gas with a con-

stant field but no thermostat. It was proposed and is still

used as a mechanical demonstration of the binomial dis-

tribution, in which the particle falls under the action of

a gravitational field through a triangular lattice of obsta-

cles, moving left or right with approximately equal and

independent probabilities (due to the rapid decay of cor-

relations). The mechanical models have various sources

of friction, but it is clear that the idealised model has

unbounded kinetic energy as the particle continues to fall.

This model was studied rigorously in Ref. [81] with

some unexpected results: The position of the particle

grows on average as t2/3, so there is no linear drift. From

conservation of energy this means the speed grows as

t1/3 (these had been obtained previously in the physics

literature[82−83]). However the motion is also recurrent:

The particle returns infinitely many times to the vicinity

of its starting point. Note that the region containing the

slowest motion is not a small perturbation of the field-free

Lorentz gas, and so needs to be excluded (for example

it is possible to have an elliptic periodic orbit bouncing

between two scatterers).

4 Periodic with Infinite Horizon

4.1 Dynamical Properties

The local dynamics of Lorentz gases with infinite hori-

zon, such as a cubic lattice of spheres for d ≥ 2 is some-
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what more involved due to orbits which are tangent to in-

finitely many scatterers. In the vicinity of such orbits are

an infinite number of singularities corresponding to orbits

tangent to more and more remote scatterers. However, the

billiard map in two dimensions still satisfies exponential

decay of correlations.[84]

For the flow, results are given in Ref. [85]: The decay of

correlations is known to be O(1/t1−ǫ) for general infinite

horizon Lorentz gases and explicitly C/t for the standard

example of a square lattice of disks. The space of functions

considered does not include position or velocity, however.

Extension to the C/t result for arbitrary two-dimensional

Lorentz gases is claimed in a later preprint.[86]

The situation for decay of correlations for infinite hori-

zon Lorentz gases in higher dimensions, even under rea-

sonable assumptions, appears to be open; see for example

Ref. [31]. For the map it is likely exponential, while for

the flow it likely has the same asymptotic form as F (t),

see Ref. [18].

4.2 Transport

The two-dimensional case is now relatively well

understood, following a number of approximate/nu-

merical[42,87−88] and rigorous[42,89−90] studies. Recurrence

and ergodicity in the full space continue to hold, despite

anomalous scaling. Detailed estimates for the recurrence

properties (for example first return time distribution) for

a related random walk model may be found in Ref. [91].

The current is typically well defined if an external field is

not parallel to a horizon.[90] The long flights lead to the

other equations of Subsec. 2.2 modified as follows:

Mean Square Displacement

Dij = lim
t→∞

1

2t ln t
〈∆i∆j〉 , (31)

where now Dij is a superdiffusion matrix/tensor.

Central Limit Theorem

∆(t)√
t ln t

⇒ N (0,Dij) , (32)

where N is the multivariate normal distribution.

Brownian Motion

∆(st)√
t ln t

⇒W (s) , (33)

for s ∈ [0, 1], where W is the standard d-dimensional

Wiener process with covariance matrix Dij .

Local Limit Theorem

Given an unbounded sequence of times tn and scat-

terers with displacements ∆n/tn → x and Voronoi cells

(excluding the scatterers themselves) of volume Vn, the

probability Pn of reaching the cell at time tn has the ex-

pected limit:

(tn ln tn)d/2Pn

Vn
→ φ(x) , (34)

where φ is the density function of N (0,Dij).

The inconsistency with regard to factors of two com-

pared with the normal diffusion case was not noted un-

til 2011; see Refs. [18, 92], where a history and heuristic

argument may be found. Briefly, convergence in distribu-

tion does not imply convergence of the moments, and in

this case as t → ∞ the tails of the distribution decay in

time while increasing in extent so that contribution to the

mean square displacement from the tails does not decay,

and in fact remains roughly equal to that from the lim-

iting normal distribution. Recent results on convergence

of moments in fairly general dynamical systems (not in-

cluding the infinite horizon Lorentz gas) may be found in

Ref. [93].

Reference [92] specifically considers anomalous conver-

gence of moments, but in the context of billiards with

cusps, that is, with the time to collision arbitrarily small.

In this case the decay of correlations are algebraic for the

map, but rapid for the flow.[94] As with the infinite horizon

Lorentz gas (and also the stadium billiard[95] a nonstan-

dard (logarithmic) central limit theorem applies.[96]

In contrast to the normal diffusion case (for example

finite horizon), the superdiffusion coefficient D can be ex-

pressed exactly in terms of the geometry of the horizons

(ie set of infinite orbits). Expressions are given for two

dimensions in Refs. [40, 42, 90]. In general we have (cf

Subsec. 2.4):

Dij =
1

1 − P
Vd−1

Sd−1

∑

H∈H

w2
H(δij − ni(H)nj(H))

V⊥
H

, (35)

if there is at least one non-incipient principal horizon, and

for d ≥ 3 subject to a conjecture that correlations de-

cay more rapidly than C/t restricted to trajectories with

at least one collision.[18] Here, Vd−1 is the volume of a

(d − 1)-dimensional ball, wH is the width of the horizon

(that is, one dimensional volume of BH) and n(H) is a

unit vector parallel to BH .

If the maximal horizon is not principal, we expect that

correlations decay as 1/td−dH , and thus from Eq. (21) that

the normal diffusion coefficient exists (at least in terms

of mean square displacement). As with finite horizon

this is not accessible in closed form, but may be approxi-

mated using correlated random walks.[49] As discussed in

Ref. [90], if the horizon directions do not span the full

space, diffusion is anomalous in directions spanned by the

horizons but normal in other directions.

4.3 External Fields

Reference [90] also considers superdiffusion with a

Gaussian thermostat, finding

J =
1

2
DE ln |E| +O(E) , (36)

as long as the field is not parallel to a corridor (and the

constant in the error term may depend on the direction

of E). The special case with corridors in only a single
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direction is also covered. When the field is parallel to a

corridor, motion in this direction is an absorbing state, so

all but a set of zero measure of initial conditions achieve

this.

For the Galton board with infinite horizon the scaling

v ∼ (t ln t)1/3 was conjectured in Ref. [83].

The thermostat-type model of Ref. [77] (see Sub-

sec. 3.3(ii)) was also considered in an infinite horizon

regime. As above, the conductivity (current divided by

field) was numerically observed to be logarithmic in the

field.

5 Alternative Limits

Two limits that are required for a study of diffusion are

t → ∞ and L → ∞ where L is a length scale. We have

seen that for normal diffusion (for example finite horizon

Lorentz gases) these may be taken together, with L = c
√
t

to give an appropriate limit law. Similarly L = c
√
t ln t

for the kind of superdiffusion found with principal infinite

horizons. Other limits are also useful to consider, also

involving the scatterer radius r.

5.1 Escape from Finite Domains

The “escape rate formalism” originated with Gaspard

and Nicolis;[97] see also Refs. [20, 98]. Here we consider a

finite horizon Lorentz gas on a finite domain, say a square

of side length L (infinite domains such as a strip have

also been considered). Scatterers from a periodic lattice

are present inside the square, but the region outside is

empty (or else the particle is absorbed when it reaches

the boundary). Uniformly distributed initial conditions

leak out, with a survival probability P (t) decaying expo-

nentially in time t due to the strongly chaotic dynamics.

The escape rate is

γ = − lim
t→∞

1

t
lnP (t) . (37)

Results relating escape rates with Lyapunov exponents

and entropy in a general setting and for the two-

dimensional finite horizon Lorentz gas are proven in

Ref. [99]. This includes the “escape rate formula”, long

known in simpler contexts:[100−101]

γ = λ− hKS , (38)

where the Lyapunov exponent and entropy refer to the

natural invariant measure on the non-escaping set. Again,

there is a Young formula for dimension[20,65] correspond-

ing to Eq. (29), although this does not appear to have

been discussed for the Lorentz gas in the recent rigorous

literature

DI = 1 +
2h KS

λ
= 3 − 2γ

λ
. (39)

We have taken the t → ∞ limit at fixed L. Now,

for large L we can compare with the hydrodynamic limit,

Eq. (9) with the appropriate absorbing (i.e. Dirichlet)

boundary conditions. For example, in the case of the

square [0, L]2 and isotropic diffusion matrix Dij = Dδij ,

the density

ρ = e−γt sin
πx

L
sin

πy

L
(40)

is the lowest mode of Eq. (9) if

γ =
2Dπ2

L2
. (41)

Thus we can express the diffusion coefficient in terms of

the escape rate and take the limit L → ∞. Similar ap-

proaches can be made for other transport coefficients such

as viscosity.[102] While not a practical method of comput-

ing transport coefficients, it does not modify the equa-

tions of motion (unlike the Gaussian thermostat in Sub-

sec. 3.3(i) above), and so is easier to justify from a physical

point of view.

In the infinite horizon case, little is known, though

there is recent work where the lattice is infinite and holes

are located in the reduced space.[103]

Open Problem 7 Quantify the time-dependence of the

survival probability and size-dependence of the escape rate

for an open infinite horizon Lorentz gas.

A boundary between two finite Lorentz gases with dif-

ferent parameters was recently considered in Ref. [104].

This work demonstrated the need for a careful treatment

of boundary conditions when considering hydrodynamic

limits, namely that the diffusion equation is not a com-

plete description of the macroscopic system.

5.2 The Boltzmann–Grad Limit

Here, the scatterer radius is taken to zero, but the

spacing is also reduced so that the mean free path re-

mains fixed, as is useful in kinetic theory of low density

gases, for example the Boltzmann equation. The distri-

bution of path lengths has explicit formulae available in

two dimensions.[105−106] It turns out that the linear Boltz-

mann equation used by Lorentz for the random model

(Subsec. 7.4 below) needs to be generalised, since for peri-

odic models the limiting process has a kernel that depends

not only on the initial and final velocities at a single col-

lision, but also the flight time and velocity following a

subsequent collision.[107−109] The resulting linear opera-

tor does not satisfy the semigroup property, despite being

the zero radius limit of operators that do.

Marklof and Strömberggson extended this to arbitrary

dimension; technical proofs are found in Refs. [110–112].

The tail of the (closely related) free flight function in all

dimensions agrees with the leading term of Eq. (19) de-

spite the differing manner in which the limit is taken.[18]

Marklof and Tóth have recently proved a central limit

theorem, also in arbitary dimension.[113] Their approach,

which uses dynamics in the space of lattices, has also led
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to interesting results in other fields, such as the distribu-

tion of Frobenius numbers.[114] Readable reviews of the

work in this section are given in Refs. [115–116].

6 Semi- and Non- Dispersing Models

6.1 Molecular Dynamics

(i) General Discussion

Much of the physical motivation for the periodic

Lorentz gas is for understanding molecular dynamics,

models of many atoms moving under Newton’s laws, of-

ten using periodic boundary conditions.[2,43] These models

shed light on theoretical issues, such as the foundations of

statistical mechanics, and the numerical simulations al-

low computation of how the bulk properties of materi-

als depend on the microscopic force laws and parameters

such as energy and volume per particle. The use of peri-

odic boundary conditions avoids boundary effects, so bulk

properties can be estimated with fewer particles.

The Lorentz gas as we have discussed so far is equiv-

alent to a two particle system after transformation into

(trivial) centre of mass motion and the relative motion of

the particles. With three or more particles, there is still

equivalence with a high dimensional periodic billiard, how-

ever the dispersing condition needs to be relaxed. There

are various definitions of “semidispersing” billiards in the

literature; here we want to allow cylindrical curvature,

that is, positive curvature at all points, but not in all direc-

tions. Physically, when two particles collide, the outcome

is indifferent to the location and motion of the remaining

particle(s).

The system of many hard particles has been a ma-

jor motivation and stimulus for the development of er-

godic theory.[117] Hyperbolicity is now known for all hard

ball systems.[118] Ergodicity is known when N = 2 (as

above),[119] N = 3,[120] N = 4 for d ≥ 3[121] and general

N ≤ d;[122−123] see also Ref. [29]. More recently ergodicity

has been shown for almost all parameters (masses and a

single radius),[124] and conditional on the Chernov–Sinai

ansatz, the statement that almost every singular orbit is

hyperbolic.[125] Finally, there is a complete proof in full

generality.[126]

While an impressive result, this does not spell the end

of the subject:[127]

Open Problem 8 Is the system of hard balls in a hard

box ergodic?

(ii) Infinite Horizon Effects

The periodic boundary conditions usually lead to infi-

nite horizon effects, that is, there are trajectories in which

one or more (usually all) of the particles never collide.

The following is a previously unpublished study, mostly

restricted to N = 3 on a unit 2-torus and with all masses

and radii equal and zero total momentum.

First note that if there are no collisions, the relative

displacements of pairs of particles are tracing out a lower

dimensional affine space (including possibly a single point)

that does not intersect the origin. When d = 2 this means

that each relative velocity lies in a rational direction. If

all relative velocities are parallel, they may be perturbed

parallel to this direction while remaining in the horizon,

thus there is an (N−1)-dimensional horizon (there are two

constraints due to energy and parallel momentum conser-

vation, and one extra dimension from the flow direction).

The billiard itself is of dimension 2N − 2 (two compo-

nents of momentum conservation), thus we expect a free

flight function decaying as t−(N−1), which is quite observ-

able in N = 3, leading to normal diffusion but anomalous

Burnett coefficients. If relative velocities are not parallel,

there is a lower dimensional space of perturbations and

hence a lower dimensional horizon. Note that on T
d, it

is also easy to see that for particles restricted to parallel

hyperplanes, the same decay of t−(N−1) ensues.

Parallel velocity directions are possible only if the par-

ticles are sufficiently small, that is, 2Nr < 1. For a given

radius we enumerate non-zero lattice vectors of length

L > (2Nr)−1 which correspond to horizons (modulo re-

flection through the origin). The space perpendicular to

the horizon has coordinates xi, 1 ≤ i ≤ N considered

modulo L−1. However there is also a constraint from the

momentum conservation, which fixes the centre of mass:
∑

xi = 0. We define xi so that this constraint remains

valid in a horizon, i.e. the xi do not translate when reach-

ing the boundaries of a fixed L−1 interval; periodicity is

taken account of by imposing that the maximum xi − xj

is less than L−1.

Specialising now to N = 3 we construct orthonormal

coordinates on the perpendicular space:




x1

x2

x3



 =
1

6





2
√

6 0

−
√

6 3
√

2

−
√

6 −3
√

2





(

ξ1

ξ2

)

.

A fixed ordering of the particles x1 > x2 > x3 > x1 −L−1

then corresponds to the equilateral triangle ξ2 > 0,√
3ξ1− ξ2 > 0,

√
3ξ1 + ξ2 < 2/(L

√
3) and similarly for the

other orderings. The effect of finite radius is to tighten the

inequalities further, x1 > x2 +2r etc., and reduce the size

of the triangle. Thus in contrast to the lower dimensional

horizons associated with incipient horizons discussed in

Ref. [18], this non-principal horizon has a convex perpen-

dicular space, for which the visibility function is trivial.

For higher N , the corresponding perpendicular space is

likewise an (N − 1)-dimensional simplex, though not reg-

ular; for N = 4 it is an isosceles tetrahedron.

We can now construct the various quantities appear-

ing in Eq. (17). The latter formula assumed a lattice of

unit covolume; the covolume of the ξ-lattice is
√

3, and

there is a similar factor from the y-coordinates. We need

to divide the formula in Eq. (17) by the covolume raised

to the power 1−DH/d, i.e.
√

3. The double integral comes

to (L−1 − 6r)4/12, taking into account the finite radius of
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the balls. We have S1 = 2π and S3 = 2π2. Thus we find

for a single horizon

FH(t) =
L2(2π)(L−1 − 6r)4/12

t2(2π2)
√

3(1 − P)
. (42)

The excluded volume is a slightly messy integral, giving

(in the relevant region, 0 ≤ r ≤ 1/6)

P = 4πr2(3 − r2(8π + 3
√

3)) . (43)

For each primitive lattice vector there are six horizons,

corresponding to the permutations of the particles, how-

ever we divide by two, since opposite lattice vectors cor-

respond to the same horizon. This leads to

F (t) ∼
∑′

l∈Z2

L2(L−1 − 6r)4

t24π
√

3(1 − P)
, (44)

where the sum is over primitive lattice vectors l of length

L, for which L−1 − 6r is positive.

Figure 2 shows numerical simulations of F (t) for vari-

ous r, together with predictions from Eq. (44). Note that

for r = 0.16 which is very close to 1/6, the coefficient is

very small and would require greater times and sample

sizes to observe. Also, for r > 1/6 there appear to be t−3

asymptotics, due to one-dimensional horizons, for exam-

ple if r < 1/4 it is possible to have two particles following

the same track with equal velocities and another particle

in a parallel track moving in the opposite direction. There

may be other contributions, however.

Fig. 2 Free flight function for three hard disks (thick
curves) together with predictions of Eq. (44) for r < 1/6
(thin lines).

For r → 0 we can extract the limiting behaviour using

Mellin transforms as in Ref. [18]. The result is

lim
t→∞

t2F (t) =

√
3

π2

(

− ln r + γ + ln
π3/2

3Γ(1/4)2

− ζ′(2)

ζ(2)
− 25

12

)

+ O(r3/2−δ) , (45)

where γ is the Euler constant and the correction term as-

sumes the Riemann Hypothesis.

We can conclude the infinite horizon effects are defi-

nitely observable in the free flight function, decaying as

t−(N−1) for a configuration in which each particle moves

parallel to a single lattice vector. The coefficient decreases

with radius, and can be calculated explicitly for N = 3.

These effects are not strong enough to lead to an anoma-

lous diffusion coefficient, but however lead to anomalous

Burnett coefficients. The main message, however is that

simulations involving a few small particles have spurious

long time correlations due to periodic boundary condi-

tions.

6.2 Moving Scatterers

Intermediate between the Lorentz gas and many-

particle systems lie models with additional degrees of free-

dom. We have already considered a few such models,

the Nosé–Hoover thermostat in Subsec. 3.3(ii) and few-

particle systems in Subsec. 6.1. A further class of models

retains scatterers with fixed average positions, normally

on a periodic lattice, but which are moving in some man-

ner.

Vibrating The most obvious effect of a moving boundary

is in changing the speed of the particle; the collision law,

Eq. (2) generalises to Ref. [128]

v+ = v− − 2n

n · n (n · v− − n · u) , (46)

where u is the velocity of the boundary. This can lead to

unbounded average particle speeds, often termed “Fermi

acceleration”.[129] References [130–131] discuss this in the

context of both stochastic and periodically moving scat-

terers for the finite horizon Lorentz gas. In particular, the

authors of Ref. [130] proposed (the “LRA Conjecture”)

that chaotic motion in the corresponding static billiard

was sufficient for Fermi acceleration. More recently accel-

eration has been observed numerically for the ellipse.[132]

It is also known for a rectangle with a moving barrier[133]

for which the velocity growth is exponential. Other exam-

ples and rigorous results for Fermi acceleration in billiards

are reviewed in Ref. [134].

In chaotic billiards the growth of velocity is typically

proportional to the square root of the number of col-

lisions, hence linear in time, though slower rates have

been observed for “breathing” billiards that retain the

same shape.[128,135] Boltzmann equations and generalisa-

tions have been used to study the distribution of veloci-

ties, which typically has an exponential rather than nor-

mal tail.[136] Recent work in this direction has included

periodically oscillating billiards,[137] a Lorentz gas with

stochastically moving scatterers,[138−139] and more gen-

eral stochastic processes.[140]

Infinite horizon effects have recently been considered

for vibrating[141] and pulsating[142] Lorentz models. In

this case there is a scenario of “dynamically infinite hori-

zon” in which the billiard has infinite horizon only for part
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of the time. Reference [141] showed that horizon effects

led to power law correlations between non-interacting par-

ticles in a Lorentz channel, while Ref. [142] showed that

these effects led to logarithmically enhanced (v ∼ t ln t)

Fermi acceleration. In view of Subsec. 6.4 below

Open Problem 9 What rates of acceleration and diffu-

sion are possible for time-dependent polygonal (Ehrenfest)

models?

Rotating A further generalisation is for each scatterer

to have its own degree(s) of freedom. A rotation-inspired

model with arbitrarily many degrees of freedom was stud-

ied in Ref. [143]. A model with explicit rotating scatterers

was proposed and used to study a number of transport

phenomena in Refs. [144–145], and a mix of rotating and

static scatterers was considered in Ref. [146]. Thermal

efficiency properties were studied using many internal de-

grees of freedom in Ref. [147]. In each of these models,

the transfer of energy now permits normal heat conduc-

tion, with the dispersing geometry as before used as a

source of dynamical randomness.

6.3 Flat Points

Another manner in which a Lorentz gas may become

non-dispersing is the presence of points of zero curvature.

Such a model was considered in the finite horizon case in

Ref. [148] where it was shown that two points with local

graph y = |x|β (for β > 2) forming a period two orbit

leads to decay of correlations in discrete time of roughly

n−(β+2)/(β−2) rather than exponential. Later[149] an in-

finite horizon model was considered, containing an infi-

nite trajectory tangent to a periodic sequence of such flat

points, leading to bounds on the free flight function and

proofs of nonuniform hyperbolicity.

The following is study of a Lorentz gas with quartic

flat points (β = 4) that has not been previously pub-

lished. It is similar to Ref. [148] in that the horizon is

finite, however the flat points lead to translating periodic

orbits, which enhance the rate of diffusion. We will see

that the quartic flat point is just sufficient to make the

fourth order Burnett coefficient diverge logarithmically,

leading to anomalous convergence effects.

The scatterers are ovals defined in local polar coordi-

nates (r, φ) by

r =
5 − (−1)I+J cos(2φ)

12
, (47)

thus having semimajor axis 1/2 and semiminor axis 1/3.

The centres of the scatterers are located at points of the

integer lattice, (I, J) ∈ Z
2. The effect of the sign is to ro-

tate scatterers at odd points by π/2, a configuration with

finite horizon and no scatterers touching, see Fig. 3.

The symmetries are those of a square, reflection in

both axes and in y = x, the latter with a spatial transla-

tion. Thus the nonzero cumulants up to order four are

Q20 = Q02 = M20, Q40 = Q04 = M40 − 3M2
20, and

Q22 = M22 −M2
20.

Each scatterer has an area 1 − |S| = 17π/96 ≈
0.556 324, so that the area available to the billiard par-

ticle in each unit cell is |S|. The perimeter is given by the

elliptic integral

|∂S| =

√
5

3

∫ ∞

−∞

√
2t4 + 2t2 + 1

(t2 + 1)2
dt ≈ 2.72244 . (48)

Now consider the central scatterer (I = J = 0). Near

the point φ = 0 we find

x = x0 − κy4 + · · · , (49)

where x0 = 1/3 and κ = 81/8. Thus the curvature at this

point is zero, and it has a quartic shape, which is generic

for analytic zero curvature (“flat”) points. Each flat point

can reach exactly two other flat points by a free flight

and belongs to exactly one marginally unstable translat-

ing orbit (modulo time reversal). These orbits translate

either in the horizontal or vertical directions, for example

the orbit from (1/3, 0) reaches the flat point (2/3, 1) and

then reflects to reach (1/3, 2). Between each pair of flat

points it translates one unit in its overall direction of mo-

tion (here the y direction), taking a time τ =
√

10/3. The

angle of incidence is θ0 = arctan 3 ≈ 72◦. A horizontal

version of this orbit can be seen for several collisions in

Fig. 3.

Fig. 3 A trajectory in the oval Lorentz gas.

Now we perturb the translating orbit. The displace-

ment from the flat point is y (taken mod 1), while the

direction relative to the x-axis is θ0 +θ so that both y and

θ are small. The approximate collision map is

yn+1 = yn + ηθn, θn+1 = θn + ψy3
n+1 . (50)

For initial conditions θ ≈ y2 which we will discover are

typical, the relative increments of each variable are small,

so we can use a continuum approximation

dy

dn
= ηθ ,

dθ

dn
= ψy3 . (51)
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Here, η = δxsec2θ0 = 10/3, where δx = 1/3 is the x

displacement of a single flight, and ψy3 = −2dx/dy =

8κy3 = 81y3. Thus we have

d2y

dn2
= ηψy3 ⇒

( dy

dn

)2

=
ηψy4

2
+A , (52)

where A is a constant of integration, determined from the

initial conditions. To reach the translating orbit itself we

need A = 0, which gives separatrix solutions

y = ±
√

2

ηψ
n−1 , θ = ∓

√

2

η3ψ
n−2 (53)

showing that the scaling θ ≈ y2 is generally valid ap-

proaching the marginal orbit. A second constant is omit-

ted here as it just translates the collision time n.

For general A we can combine the first part of Eq. (51)

with the second part of Eq. (52) to give an equation for

the orbits

η2θ2 =
ηψ

2
y4 +A , (54)

which is plotted in Fig. 4. The flow direction is in from

the top left and bottom right, and out to the top right

and bottom left.

Fig. 4 Orbits of the flow approximation, moving right
at the top and left at the bottom.

Trajectories which remain near the marginal point for

a long time have A close to zero. Let us fix the vicinity of

the marginal point as the interval y ∈ [−Y, Y ] for some ar-

bitrary small constant Y . The traversal time N(A) is then

the number of iterations needed to move from y = −Y to

y = Y above the separatrix for A > 0, or back to y = −Y
to the left of the separatrix for A < 0. For A > 0 we have

N(A) =

∫ Y

−Y

dn

dy
dy =

√

2

ηψ

∫ Y

−Y

dy
√

y4 + 2A/(ηψ)

=
Γ(1/4)2

(8π2ηψA)1/4
+O(Y −1) . (55)

For A < 0 we have

N(A) =

∫ θ(Y )

−θ(Y )

dn

dθ
dθ=(8η3ψ)−1/4

∫ θ(Y )

−θ(Y )

dθ

(θ2−A/η2)3/4

=
Γ(1/4)2

(32π2ηψ|A|)1/4
+O(Y −1) , (56)

where θ(Y ) =
√

(ψY 4)/(2η) +A and both integrals were

done with Mathematica. Note that the order of the rel-

evant limits is A → 0 at fixed Y giving the long flight

behaviour, followed by Y → 0. Thus we can use Y = ∞
in the above integrals. Physically, for very long flights, al-

most all the collisions are very close to the marginal point,

so the size of the considered region becomes irrelevant.
We can now calculate the asymptotic coefficient of the

probability of a long flight. We cut a long billiard trajec-

tory into M segments with displacement xi, i = 1, . . . ,M

and continuous time ti. Each segment is either a single

collision, or a flight following the marginal orbit for some

time, so that correlations are expected to decay exponen-

tially in the number of segments. The continuous time is

ti = |xi| for single collisions and ti ≈ τ |xi| for very long

segments; recall that τ =
√

10/3 in the present example.

The total displacement and time are thus

∆ =
∑

i

xi , T =
∑

i

ti ∼ t̄M , (57)

with an unknown (but ultimately irrelevant) constant

t̄ ≈ 1.

The anomalous behaviour arises from the long tail in

the distribution of xi. Its density function p(x) is concen-

trated mostly around the origin, but has tails along the

x and y axes due to the marginal orbits in these direc-

tions. Each long trajectory of at least N collisions near

the marginal orbit enters the region of the marginal orbit

|y| = Y (or corresponding expression involving x) exactly

once if N is sufficiently large. From the above calculation,

the first collision lies in the region

− C

N4
< A <

4C

N4
, (58)

where C = Γ(1/4)8/(32π2ηψ) = Γ(1/4)8/(8640π2) ≈
0.350 135. This region corresponds to intervals

δθ =
5C

√

2η3ψ

1

Y 2N4
, δy =

√

ηψ

2
Y 2 , (59)

where the first expression is found by combining Eqs. (54)

and (58) for small A, and the second is just an approxi-

mation for the change in y due to a collision at |y| = Y ,

following from a combination of Eqs. (50) and (54), again

for small A.

The measure of one of the above regions with respect

to the equilibrium measure of the billiard map in the torus

is
cos θ0δθδy

2|∂S| =

√
10C

8η|∂S|N4
. (60)

Thus, the expected number of excursions of more than N

collisions in a trajectory of total length T is given by√
10CT

ητ̄ |∂S|N4
=

√
10Γ(1/4)8T

300π3(96 − 17π)N4
, (61)

where the factor of 8 takes account of the four orbit di-

rections (up, down, left, right) and the two entry points
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y = ±Y (or the same with x) of the marginal orbit. The

mean free path between collisions is τ̄ = π|S|/|∂S| as for

any 2D billiard table. Strictly speaking this is for the entry

to the marginal point; if N > T/τ (very unlikely), clearly

the collisions cannot all take place in the interval. A typ-

ical interval will have many excursions, with the largest

almost always O(T 1/4) according to the above formula.

This gives the tail of the density function p(x) as
∫ ∞

Y

dy

∫ ∞

−∞

dxp(x, y) ∼ Dt̄

Y 4
Y → ∞ , (62)

where

D =

√
10Γ(1/4)8

1200π3(96 − 17π)
≈ 0.059 577 2 , (63)

is an explicit constant. The factor of 4 appears since this is

one of four tails, T = t̄M as above, and the displacement

at each collision δy = 1 so Y = N .

The above asymptotic implies that fourth moments of

p(x) diverge. A finite sample will have

1

M

∑

i

y4
i ≈ 2

∫ E2M1/4

E1

y4 4Dt̄

y5
dy ∼ 2Dt̄ lnM , (64)

where E1 and E2 are constants of order unity, and the

M1/4 gives the scale of the largest excursion. The fac-

tor of 2 gives the two tails in the y direction contributing

to this moment. The sum of x4
i is equivalent, while the

mixed even fourth moment x2y2 and second order even

moments x2 and y2 are small in all tails and yield finite

constants. The odd moments cancel by symmetry, and

are of size M−1/2, at least up to fourth order.

Referring back to Subsec. 2.3 we have the Burnett co-

efficient

24B1111 = lim
T→∞

Q40

T
. (65)

Here, 〈〉 is an ensemble at fixed T , so that the fourth mo-

ment is finite (unlike for fixed M). A typical trajectory

has M ≈ T/t̄. Expanding the ∆ terms, assuming the xi

are independent and have zero odd moments gives

24B1111(T, 1) =
1

T

∑

i

[〈x4
i 〉 − 3〈x2

i 〉2]

= 2D lnT +O(1) . (66)

This is the typical Burnett coefficient found for a single

trajectory of length T . The arguments are the time and

the sample size over which it is averaged. This is not how-

ever its expected value, which includes the distribution of

p(x, y) up to the maximum length T . Truncating at the

maximum T rather than the typical T 1/4 gives a further

factor of 4 for the Burnett coefficient as usually defined,

that is, averaged over an arbitrarily large sized sample

24B1111(T,∞) =
〈∆4

x〉 − 3〈∆2
x〉2

T
∼ 8D lnT . (67)

The constant 8D comes to about 0.476 618, so agreeing

with the numerically fitted 0.485 in Fig. 5, and exhibiting

an anomaly similar to the anomalous convergence of the

second moment observed in the diffusion case 4.2: The

logarithmic Burnett coefficient is a factor of four greater

than its typical value estimated from a single trajectory of

the same length. In other words, while a typical trajectory

of fixed continuous time T has a maximum excursion of

order T 1/4 in the limit T → ∞, the fourth moment picks

up the full support up to T . The fixed M moment is like-

wise infinite, as it picks up contributions from arbitrarily

long excursions.

Fig. 5 Logarithmic divergence of Burnett coefficients,
using a trajectory of length 7.41 × 1010 time units split
into segments of length t, and relevant fits.

For a sample size Tα, there are M = Tα+1 excursions,

so that the largest is likely to be of order (T )(α+1)/4 lead-

ing to an estimate 2D(α + 1) lnT where this is less than

8D lnT . Some decrease is indeed observed to the right of

Fig. 5, but also random fluctuations. More properly, with

high probability we expect for a sequence of trajectories

of increasing length

lim
T→∞

24B1111(T, T
α)

lnT
= 2Dmax(α+ 1, 4) . (68)

Of course, this would require careful arguments and es-

timates to justify use of the various assumptions, and it

may require unreasonably long times in practice before

the lnT damps the nonleading contributions.

The long flights are only in the coordinate directions,

and do not lead to diverging second moments. Thus

24B1122 = lim
T→∞

Q22

T
(69)

approaches a finite limit as in the figure. It would be in-

teresting to see if the logarithmic Burnett coefficients and

anomalous convergence lead to corresponding effects in

application areas, from local limit theorems to molecular

dynamics.

6.4 Polygonal Scatterers

The β → ∞ limit of the infinite horizon model with flat

points considered in Ref. [149] is that of a square. If there

are no points with non-zero curvature, the Lyapunov ex-

ponents and entropy are zero, and dynamics is dominated
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by the remaining singularities, the corner points. Polyg-

onal billiards thus have properties very different to the

dispersing case, and have been under very active investi-

gation recently.

For billiards inside polygons, angles of the form π/n

are removable singularities. Thus the polygons with angles

(π/2, π/2, π/2, π/2), (π/2, π/4, π/4), (π/2, π/3, π/6), and

(π/3, π/3, π/3) are completely regular, as are polyhedra

associated with Coxeter groups.[150] Other polygons with

angles a rational multiple of π can be mapped to transla-

tion surfaces of finite genus, and any trajectory can have

only a finite number of velocity directions. These have

been widely studied for the last decade, with many re-

sults surveyed in Ref. [11]. The flow is uniquely ergodic

in almost all directions,[151] weak mixing in almost all di-

rections for most regular polygons,[152−153] and rational

polygonal billiards are never strong mixing.[154] Irrational

angles are much more difficult to study. In some cases

there is numerical evidence of strong mixing,[155] which

is widely disbelieved but not disproved, while in others,

non-ergodicity.[156] A well known problem is Ref. [157].

Open Problem 10 Do all triangular billiards have at

least one periodic orbit?

An extended billiard with square scatterers is called

the Ehrenfest wind-tree model, proposed in 1912 by

and Ehrenfest.[158] The original model, like the original

Lorentz model, had dilute randomly placed scatterers

(“trees”), which were parallel, for example with their diag-

onals along the axes. The particle (“wind”) in the original

model had an angle of incidence of π/4 at each collision,

moving always parallel to the x or y axis. The corre-

sponding three-dimensional model (with parallel rhombic

dodecahedra) seems never to have been studied, however

the other conditions have been relaxed, allowing other par-

ticle directions, non-parallel orientations, and other polyg-

onal scatterers. As with the Lorentz gas, we first consider

periodic configurations.

The first rigorous study of the periodic wind-tree was

Ref. [159], describing orbits with angle of incidence π/4

as above, for which the dynamics reduces to that of a ro-

tation. For rectangular scatterers of size ((1 + α)/4, (1 −
α)/4), rational α leads to orbits periodic in then reduced

space (hence periodic or translating in the full space). For

irrational α information about the orbit can be obtained

using the arithmetic properties (specifically the continued

fraction expansion) of α to obtain a logarithmically diverg-

ing sequence of points on the trajectory, hence showing

that it is unbounded.[159]

More general directions and models require the study

of more general interval exchange transformations than

rotations, so that the next major result did not come un-

til Ref. [160]. Here it was shown that for rectangles with

rational lengths that (in lowest form) have odd numera-

tor and even denominator, there is a dense set of rational

directions for which the dynamics is periodic, and that

for almost all directions the dynamics is recurrent. Also,

for rectangles with even numerator and odd denomina-

tor, there is a dense set of rational directions for which

no trajectory is periodic and almost all directions have

a logarithmically diverging sequence of points. Thus for

generic parameter values (in a topological sense), the dy-

namics is recurrent, has a dense set of periodic points, and

(at least) logarithmically divergent trajectories for almost

all directions.

Despite the recurrence results, almost all wind-

tree and similar models are non-ergodic in almost all

directions[161] (in contrast to the finite and infinite horizon

Lorentz gases above). Finally, Ref. [162] gives a detailed

calculation using theory for translation surfaces developed

in recent years showing that almost all wind-trees and di-

rections have lim sup ln |∆|/ ln t = 2/3; presumably this is

true for typical displacements as well, though it is almost

certainly too much to expect a limiting distribution.

Diffusion in a polygonal honeycomb lattice was con-

sidered in Ref. [163]. The numerical simulations show

〈∆2〉 ∼ t1.72 with an anisotropic distribution, due to long

flights in six equally spaced directions.[163]

A number of authors have performed numerical simu-

lations for polygonal channels, that is, a two-dimensional

geometry confined between parallel walls and periodic

in the direction parallel to the walls. Variables include

whether the horizon is finite, whether scatterers are par-

allel, whether angles are rational or irrational multiples of

π. See for example Refs. [164–166]. The observed diffusion

included normal and anomalous with various exponents,

but a general theory appears to be absent.

Open Problem 11 Classify diffusive regimes for polyg-

onal channels.

A deceptively simple example of a Lorentz channel,

a “barrier billiard” consists of two parallel walls with

periodic infinitely thin spikes protruding perpendicular

to one or both walls; models of this type were consid-

ered in Refs. [167–168]. For small spikes in one of the

walls, this is a retro-reflector, reversing almost all incom-

ing trajectories;[169] it is also one of the models shown to

be non-ergodic in almost all directions in Ref. [161].

An external field and Gaussian thermostat have also

been considered. This leads to transient behaviour fol-

lowed by stable periodic orbits, for a rhombus wind-

tree[170−171] and polygonal channels.[166] This work in-

cluding a generalisation to finite particle size, pro-

vides insight into anomalous diffusion phenomena in

nanopores.[172−173] For the polygonal version of the

thermostat-type model of Ref. [77] (see Susec. 3.3(ii)

above) collapse onto a periodic orbit was observed, but

with zero current.

In summary, there are a number of important results

for some classes of polygonal scatterers where all bound-
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aries are in rational directions, however the case of irra-

tional directions eludes understanding. There are very

many difficult remaining open problems.

7 Aperiodic Models

7.1 Quasiperiodic Models

We now consider aperiodic models, again assuming the

dispersing property except where indicated. A quasiperi-
odic scatterer arrangement is a non-periodic model where
the scatterer positions are obtained by the cut-and-project
method, that is, taking the intersection of a periodic lat-

tice with an infinite slab (more generally R
d ×S with S a

compact set) at some irrational orientation, and project-
ing transverse to the infinite direction(s) of the slab to ob-

tain a non-periodic set in a lower dimensional space. Note
that other and more general definitions are possible, for
example using substitutions, tilings or separated nets.[174]

The transport properties of quasiperiodic Lorentz gases

were posed as an open problem in Ref. [127], although
quasiperiodic soft potentials had been investigated for
some time.[175−176]

Using the cut-and-project method, it is possible to re-
duce the problem to that of a periodic billiard in a higher
dimension.[177] This permits a natural probability measure

for initial conditions, and furthermore allows identifica-
tion of infinite horizon channels (for relatively small scat-
terers), which could be analysed as in the periodic case.

According to the numerical simulations, diffusion is nor-
mal for finite horizon, slightly superdiffusive when there
is an infinite horizon, and slightly subdiffusive where the
scatterers can overlap.

In the Boltzmann–Grad limit, the free path length
is numerically found to be algebraic as in the periodic

case,[178] and indeed recent methods used to study the
periodic Lorentz gas (Subsec. 5.2) can be applied here
also,[179] also for the union of periodic lattices.[180]

7.2 Local Perturbations

A periodic Lorentz gas may be locally perturbed, ei-

ther by changing a finite number of scatterers, imposing
a local external field, or imposing a line that the particle
reflects from resulting in motion in a half-plane. Refer-
ence [181] shows that convergence to Brownian motion

with the same diffusion matrix still holds, with differing
boundary conditions where appropriate. References [91,
182] made the first steps to extending this to the infinite
horizon case by showing analogous behaviour for random

walks with unbounded jumps, including with a
√
t ln t scal-

ing.

7.3 Decimation and Lorentz Tubes

Recurrence is generic (in a topological sense) for
Lorentz and wind-tree (parallel rectangle) models ob-

tained by randomly deleting scatterers subject to a locally
finite horizon condition.[183] In a similar vein, a Lorentz

tube is a one-dimensional lattice of cells, where the con-
tents of each cell is chosen randomly from a set of dispers-
ing scatterer configurations. Note that the problem of
defining the measure for the initial condition of the parti-
cle on an infinite space is circumvented: Place the particle
in the central cell and choose the scatterer configuration
according to the specified distribution. Lorentz tubes in
two[184] and higher[185] dimension with finite horizon are
all hyperbolic and almost all are recurrent, ergodic, and
K-mixing. The same properties hold in two dimensions
when the finite horizon condition is relaxed.[186]

For Lorentz gases where the scatterer is randomly
changed each time the particle enters a cell, stronger prop-
erties (vector almost sure invariance principle) may be
shown.[187]

7.4 Limiting Random Models

Finally, we consider models in which the scatterers are
placed randomly without reference to an underlying lat-
tice. Progress has been made mostly for the low den-
sity (Boltzmann–Grad) limit so that to a first approxi-
mation we may neglect overlapping scatterers and recol-
lisions (i.e. collision with the same scatterer more than
once in a short time), that is, assume that the scatterer
locations are a Poisson process. Lorentz derived a lin-
ear Boltzmann equation (linear since the only one particle
moves), which was subsequently the subject of more rig-
orous studies.[188−189] In particular, the linear Boltzmann
equation holds when the scatterer density converges in
probability to its mean (so, not necessarily a Poisson dis-
tribution) and any soft potential has finite range.[189] The
Boltzmann–Grad and other related limits and many par-
ticle models were reviewed in Ref. [190], where the above
results are restated for d ≥ 2. The Boltzmann equation
for the Poisson-distributed two-dimensional Lorentz gas is
shown for typical configurations in Ref. [191].

As with the Lorentz tubes, the initial position of the
particle may be chosen as the origin, with scatterer po-
sitions chosen randomly. This ensemble may be used to
define averages and correlation functions as usual. The
random Lorentz gas exhibits power law decay of correla-
tions, as t−d/2−1 according to low density kinetic theory.
As with similar behaviour for the multi-particle fluids for
which it is a prototype, this came as a surprise in the
1960s; these “long time tails” which lead to anomalous
and non-analytic behaviour (typically logarithmic terms)
in transport coefficients. So, we expect the diffusion coef-
ficient to exist but each Burnett coefficient only in suffi-
ciently high dimension. A detailed history and discussion
of these results may be found in Ref. [19].

Kinetic theory methods have more recently been
applied to the calculation of other dynamical proper-
ties in dilute random Lorentz gases, including the Lya-
punov exponents at equilibrium,[192−195] with field and
thermostat,[196−197] and with open boundary condit-
ions.[198−199] This approach was also extended to
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many particle systems.[200−201] Again, logarithmic terms

abound.

An applied magnetic field is considered in Refs. [202–

204]. The magnetic field bends the trajectories into a cir-

cle, making recollisions likely, hence requiring a generali-

sation of the Boltzmann equation. Adding an additional

weak electric field naturally causes a drift with a compo-

nent perpendicular to the fields, however a scatterer may

also cause the particle to be trapped.[205] Current and dif-

fusion may be analysed, generalising the case without a

magnetic field.[206]

Weak coupling limit models, in which the particle is de-

flected only slightly when it reaches a scatterer, were also

reviewed in Ref. [190]. There has been recent progress in

showing convergence to the heat equation,[207] also with a

logarithmic correction.

For the random Ehrenfest model (parallel square scat-

terers, particle making collision angle π/4) kinetic theory

and numerical simulation show normal diffusion for non-

overlapping scatterers but sub-diffusion if the scatterers

are allowed to overlap.[208−210] Many of the above theo-

rems for the Lorentz gas require only a smooth differen-

tial cross-section function and hence apply. However, it is

noted in Ref. [211] that an Ehrenfest-like model with par-

allel crosses and incidence angle of π/4 has a finite prob-

ability for the particle to immediately return to the pre-

vious scatterer, and hence exhibits abnormal behaviour.

7.5 Fixed Random Models

The case of randomly placed scatterers of fixed size has

also been widely considered theoretically and numerically.

For overlapping scatterers at high density there is a per-

colation transition, at which the diffusion coefficient goes

to zero with certain critical exponents and beyond which

motion is localised.[212] More recent discussion of these

phenomena and simulations for the overlapping model in

two and three dimensions may be found in Ref. [213].

Random non-overlapping scatterers arise naturally for

a mixture of small light particles and large heavy parti-

cles in the limit of infinite mass and size ratios. However,

this model has resisted rigorous results so far. Even ex-

hibiting the limit of a Poisson distribution of scatterers

conditional on them non-overlapping does not appear to

have been attempted, although it is the hard potential

limit of standard results on the thermodynamic limit of

systems with soft potentials; see for example Ref. [214].

In numerical simulations at high density, it can be dif-

ficult to find a non-overlapping configuration directly; one

approach is to start with a periodic lattice, apply random

velocities to all scatterers (as in a full molecular dynamics

simulation) and await relaxation to equilibrium. Based

on the low density results above, one would again expect

normal diffusion but anomalous Burnett coefficients for

the random non-overlapping model, and this is what is

found. Correlations are found numerically to decay at the

same rate as predicted in the low density limit after a time

which increases with the density.[215]

Making a diffusive scaling L ∼
√
t, numerical simu-

lations of the non-overlapping model exhibit convergence

to Brownian motion, for circular and even randomly ori-

ented square scatterers, for which there is no exponential

separation of initial conditions.[216−218] For the randomly

oriented squares in the open case (sufficiently large fixed

size and time increasing) it is clear that escape is C/t

(from period three orbits in acute triangles), so there is

likely some combination of limits t → ∞, L ∼ tα for

0 ≤ α ≤ 1/2 at which there is a transition from anoma-

lous to normal diffusive behaviour.

Open Problem 12 Does the non-overlapping random

Lorentz gas have convergence to Brownian motion?

8 Applications

In this final section we summarize the impact that the

study of the Lorentz gas has on other fields, past, present

and future, drawing together threads from the previous

sections.

Probability As discussed in Subsec. 4.2, the infinite

horizon Lorentz gas, has been a prime example of non-

standard convergence to the normal distribution, that

is, with logarithmic scaling in time. It is the venue in

which the anomalous convergence of moments was discov-

ered, and is currently under investigation. Models with

weaker correlations, namely flat points, Subsec. 6.3 ex-

hibit anomalous Burnett coefficients, which are relevant

more generally to rate of convergence in local limit theo-

rems.

Dynamical Systems The Boltzmann-Sinai ergodic

hypothesis[117] provided much of the original impetus

for ergodic theory, and has only recently been resolved

in its original form, Subsec. 6.1. Dispersing Lorentz

gases, particularly in higher dimensions, provide a contin-

uing challenge to the study of hyperbolic dynamics with

singularities,[28] while polygonal models have spurred and

made accessible the recently active field of flows on flat

surfaces with singularities, Subec. 6.4. Surfaces of infinite

genus, corresponding to billiards with irrational angles,

remain a major challenge.

Statistical Physics The Lorentz gas has provided a use-

ful model of transport, both diffusion and heat conduc-

tion, in that a single moving particle exhibits many fea-

tures of the full (multi-particle) problem. It was possible

to prove validity of the relevant (linear) Boltzmann equa-

tion, Subsec. 7.4, as well as providing a simpler context

to investigate logarithmic terms in the low density expan-

sion of the diffusion coefficient.[219] More recently it has

elucidated many of the connections between microscopic

dynamics (for example reversibility, Lyapunov exponents,

dimensions) and macroscopic transport (for example irre-

versibility, transport coefficients). See Subsecs 3.3 and 5.1

and also Refs. [2, 20, 216].
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Molecular Simulation The periodic Lorentz gas is
equivalent to two-particle molecular dynamics with pe-
riodic boundary conditions, following centre of mass re-
duction. It has been used as a test-bed for properties
of thermostats, additional terms in the equations of mo-
tion that take account of effects of the environment, Sub-
sec. 3.3(i). The periodic boundary conditions, while help-
ful for studying bulk effects, can lead to substantial mod-
ifications of the dynamical properties, particularly at low
densities, Subsec. 6.1.
Physics of Transport Finally, the Lorentz gas and sim-
ilar models have often been used to model transport on
small scales. In this context, the use of polygonal chan-
nels for studying nanopores was mentioned in Subsec. 6.4.
Lorentz channels have been used to understand thermo-
electric efficiency.[220] Other examples have included con-

fined fluids,[221−222] glasses,[7] nuclear collisions,[223] and

zeolites.[224]
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(2010) 1949.

[111] J. Marklof and A. Strömbergsson, Ann. Math. 174
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