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Hamiltonian for a restricted isoenergetic thermostat

C. P. Dettmann
Rockefeller University, 1230 York Avenue, New York, New York 10021

~Received 7 July 1999!

Nonequilibrium molecular dynamics simulations often use mechanisms called thermostats to regulate the
temperature. A Hamiltonian is presented for the case of the isoenergetic~constant internal energy! thermostat
corresponding to a tunable isokinetic~constant kinetic energy! thermostat, for which a Hamiltonian has re-
cently been given.@S1063-651X~99!01612-8#

PACS number~s!: 05.45.2a, 05.70.Ln
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Thermostats are modifications to the equations of mo
of a classical system to simulate thermal interaction o
system with the environment. The Nose´-Hoover thermostat
is used to simulate fluctuations in energy of an equilibriu
system corresponding to the canonical ensemble of statis
mechanics, and the Nose´-Hoover and Gaussian thermosta
among others, are used to remove heat from a system dr
by external forces into a nonequilibrium stationary state@1#.
There has been recent interest in thermostatted equatio
motion, focused on the symplectic structure of the equati
of motion, and the related pairing of the Lyapunov exp
nents. Both a Hamiltonian and pairing of Lyapunov exp
nents are known for Nose´-Hoover and Gaussian isokinet
~GIK: constant kinetic energy! thermostats@1–3#. Numerical
evidence against pairing~and hence the existence of
Hamiltonian! are discussed in@4# for the GIK thermostat
applied to shearing systems and in@5# for the Gaussian
isoenergetic~GIE: constant internal energy! thermostat. The
latter paper does, however show that in a special case o
GIE thermostat, involving one rather than two arbitrary p
tentials, the Lyapunov exponents are paired. The purpos
this Brief Report is to present a Hamiltonian for this case

The GIE thermostat has equations of motion of the fo
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whereF (ext) is the external driving potential,F (int) the inter-
particle potentials, anda is the thermostat term which en
sures that the equations conserve internal energyE
5( ipi

2/(2mi)1F (int). The equations reduce to no therm
stat whenF (ext)50 and to GIK whenF (int)50. A more
general example of a limit involving only one arbitrary p
tential is the caseF (ext)5gF, F (int)5(12g)F, leading to
the equations
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which conserve energyE5( ipi
2/(2mi)1(12g)F. Here,g

effectively controls the strength of the thermostat from
thermostat (g50), to the GIK thermostat (g51). For anyg
the Lyapunov exponents are paired@5#, suggesting the exis
tence of a Hamiltonian.

Following the GIK case@3#, the conservation law is en
forced by setting the numerical value of the Hamiltoni
equal to the conserved energy, assigned the value zero
shift in the potential energy. This allows the kinetic ener
term in the denominator of Eq.~1! to be replaced by minus
the potential energy~noteF,0)
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Another aspect of a Hamiltonian description of therm
statted systems is that in the physical variables (x,p) there is
a phase space volume contraction rate proportional toa,
while in the canonical variables (x,p) phase space volume i
conserved. This means thatp must be greater thanp by a
factor equal to exp(*adt)5uFug/[2(12g)]. Multiplying the zero
energy by an arbitrary power ofuFu we have

Hb~x,p,l!5uFu2g/(12g)1b(
i

pi
2

2mi
1~12g!FuFub,

~4!

which, combined with the constraintHb50 and the identi-
ficationsdt5uFu2g/[2(12g)] 1bdl and pi5uFu2g/[2(12g)]pi
leads to the equations of motion~2!. Interesting cases areb
5g/@2(12g)# for which there is no time scaling,b50 has
a certain simplicity,b52g/(12g) yields the familiar form
of kinetic plus potential energy, andb521 for which the
Hamiltonian is that of a geodesic in a conformally flat spa
see Ref.@3#.

The author is grateful for discussions with W. G. Hoove
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