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ABSTRACT

Circular microresonators (microdisks) are natural can-
didates for the realization of low-threshold miniature
laser sources since some of their modes have extremely
high Q-factors (low thresholds). In those modes,
which are called whispering gallery modes, light cir-
culates around the circumference of the disk trapped
by total internal reflection. Although the microdisk
cavities can provide ultra-low threshold lasing, their
applicability faces the problem of isotropic light emis-
sion which is due to the rotational symmetry of the
system. Contrary to usual procedure, where a geo-
metric deformation of the microdisk boundary is used
to break the symmetry and, as a result, to achieve the
output directionality, we propose a scenario inducing
rotational symmetry breaking by placing a small but
finite size circular scatterer inside the microdisk itself.
We calculate positions of the new resonant modes and
show that some of them possess clear emission direc-
tionality while preserving high Q-factors.

1. INTRODUCTION

The technological progress of recent years has made
possible the construction of microresonators in the
µm-domain. These resonators have great potential for
a wide range of applications and studies, like the re-
alization of low-threshold miniature laser sources, the
creation of dynamical filters for optical communica-
tions and even the development of sensitive optical
biosensors [1, 2].

In contrast to ideal (closed) cavities which possess
discrete eigenmodes at real frequencies, resonators are
open systems coupled to the external world. As a re-
sult, their eigenmodes (resonances) are characterized
by complex frequencies ω − i∆ω/2 where ∆ω is the
linewidth or inverse lifetime, related to the so-called
Q-factor as Q = ω/∆ω.

Circular microresonators (microdisks) are natural
candidates for lasing since some of their modes have
extremely high Q-factor (low thresholds) [3, 4]. In
those modes, which are called whispering gallery
modes, light circulates around the circumference of the
disk trapped by total internal reflection. Although the
microdisk cavities can provide ultra-low threshold las-

ing, their applicability faces the problem of isotropic
light emission which is due to rotational symmetry of
the system.

In order to obtain a directional output one has to
break the rotational symmetry, for example, by de-
forming the boundary of the cavity [5, 6]. This signif-
icantly improves the emission directionality but typi-
cally spoils the Q-factors. Another approach to break-
ing the symmetry is to insert an obstacle like a linear
defect [7] or a hole [8] into the microdisk. This indeed
allows one to obtain resonances with large Q-factors
and relatively high directionality.

Following the second approach, we have recently
suggested to place a point scatterer inside the mi-
crodisk, at some distance away from the centre [9]. We
have demonstrated that the presence of the scatterer
leads to significant enhancement in the directionality
of the outgoing light in comparison with whispering
gallery modes of a circular resonator without scat-
terer, while preserving their high Q-factors. However,
an experimental realization of that model requires the
detailed interpretation of the coupling strength of the
point scatterer.

In this paper we suppose to use a small but finite
size circular scatterer instead of a point scatterer to
facilitate a practical realization of our model. Using a
Green function method, we calculate positions of the
new resonant modes and show that some of them pos-
sess clear emission directionality while still preserving
high Q-factors.

2. THEORY OF 2D MICRODISK

CAVITIES

The time-harmonic modes of frequency ω = ck, where
k is the wave number and c is the light velocity, of
any passive microcavity filled with nonmagnetic di-
electric material of refractive index n(r) are described
by 3D Maxwell’s equations. For a microcavity, with
the thickness of only a fraction of the mode wave-
length, modes themselves can be studied in the 2D
approximation with the aid of the effective refractive
index neff(r) which takes into account the material as
well as the thickness of the cavity. In that approxi-
mation we omit the coordinate dependence of the EM
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field in the z direction and, as a result, separate the
field into TM (Hz = 0) and TE modes (Ez = 0). For
brevity we consider only TM modes in this paper. In
polar coordinates we have

∂2Ez
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+
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+
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∂2Ez
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+ k2n2
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with
Hr = − i

kr

∂Ez

∂ϕ
, Hϕ =

i

k

∂Ez
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.

For a homogeneous microdisk of radius R in a
medium of effective refractive index equal to 1 we have

neff (r, ϕ) =
{

n, r < R ,
1, r > R .

(2)

Separation of variables and physical conditions in the
middle of the disk and at infinity lead to the field Ez

in the form of whispering gallery modes

E m
z =

{
NmJm (knr) eimϕ, r < R,

Hm (kr) eimϕ, r > R,
(3)

where Jm and Hm are Bessel and Hankel functions of
the first kind respectively, m is the azimuthal modal
index. Then, the boundary conditions (continuity of
the EM fields) at the point r = R lead to a set of in-
dependent transcendental equations for the microdisk
resonances

Jm(knR)H ′
m(kR) − nJ ′

m(knR)Hm(kR) = 0, (4)

and constants Nm = Hm(kR)/Jm(knR). We use the
radial modal index q to label different resonances with
the same azimuthal modal index m.

The corresponding Green function for the microdisk
is given by the following expressions where r< (r>) is
the smaller (larger) of r and r0 [9]

G(r, r0, k) = − i

4
H0 (kn |r − r0|)

+
i

4

∞∑
m=0

Cm

Am
εm cos [m (ϕ − ϕ0)]Jm (knr<)Jm (knr>),

(5)

if both r< and r> lie inside the disk of radius R,

G(r, r0, k) =

1
2πkR

∞∑
m=0

1
Am

εm cos [m (ϕ − ϕ0)]Jm(knr<)Hm(kr>),

(6)

if r< < R and r> > R, and, finally,

G(r, r0, k) = − i

4
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+
i

4

∞∑
m=0

Bm

Am
εm cos [m (ϕ − ϕ0)]Hm(kr<)Hm(kr>),

(7)

if both r< and r> lie outside the disk of radius R. The
coefficients are εm = 2 if m �= 0, εm = 1 if m = 0, and

Am = ñJm (knR)H ′
m (ñkR) − nJ ′

m (knR)Hm (ñkR) ,

Bm = ñJm (knR)J ′
m (ñkR) − nJ ′

m (knR)Jm (ñkR) ,

Cm = ñHm (knR)H ′
m (ñkR) − nH ′

m (knR)Hm (ñkR) .

with ñ = 1. The resonances k res of the microdisk are
determined by the poles of the Green function which
are given by Am = 0, which agrees with (4).

Now we place a small circular scatterer of radius
a and refractive index na at a point d inside the
microdisk. This geometry is similar to the one in
Ref. [8]. In contrast to Ref. [8] we are interested in
much smaller scatterers, of arbitrary refractive index,
that are treatable analytically by a Green function ap-
proach. The Green function of the perturbed disk is
found by treating the scatterer in the s-wave approx-
imation. This results in

Ga(r, r0, k) ≈ G(r, r0, k) +
G(r,d, k)DG(d, r0, k)

1 −DGsc(d,d, k)
,

(8)
where Gsc is the Green function in (5) without the
H0 Hankel function. The diffraction coefficient has
the form D = −4iB0/A0, where here and in the fol-
lowing Am and Bm are given by Am and Bm with n
replaced by na, ñ by n, and R by a. The resonances
of the perturbed system are determined by the poles
of the Green function and hence are defined by the
transcendental equation

0 = −A0

B0
+

∞∑
m=0

Cm

Am
εmJ2

m (knd) . (9)

The corresponding field Ez follows from the residua of
(8) as Ez(r) = NG(r,d, k) where N is a normaliza-
tion factor and k is the wavenumber of the resonance.
Outside of the microdisk, i.e. in the region r > R, the
field is then of the form

Ez =
N

2πkR

∞∑
m=0

εm cos (mϕ)Jm (knd)
Am

Hm (kr) ,

(10)
if the scatterer is located on the positive x-axis. The
s-wave approximation is valid if |nk(R − d)| � 1 and

A0

B0
� A1

B1
. (11)

3. FAR-FIELD DIRECTIVITY

In order to quantify the far-field directionality of the
electric field we consider its asymptotic behaviour for
r → ∞ which has the form

Ez (r, k) = Ez (r, ϕ, k) ∝ exp(ikr)√
r

f (ϕ) .
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To characterize the directionality we compute the di-
rectivity of the far-field intensity

D =
2π |fmax(ϕmax)|2

2π∫
0

|f(ϕ)|2 dϕ

.

From this definition it follows that D = 1 and D = 2
for unperturbed resonances (no small scatterer in the
disk) which have m = 0 and m �= 0, respectively.

To illustrate the gain in the emission direction-
ality we consider a microdisk of effective refractive
index n = 3 and radius R = 1 µm with a small
scatterer of radius a = 0.01 µm and refractive in-
dex na = 1.00 (a small hole) placed at the distance
d = 0.5 µm. The complex wave numbers of its reso-
nant modes in the s-wave approximation can be found
from Eq. (9). We are interested in modes that have
both high directionality and low threshold character-
istics (high Q-factors). In a spectral range of green
light, the resonant mode kR = 12.52676 − 0.00026 i
has both high directivity D = 6.58 and a very high
factor Q = 24382. In Fig. 1 we compare the func-
tion |f(ϕ)|2 for this mode with the resonant mode
kR = 12.52385 − 0.00015 i (m = 18, q = 5), which
is the closest one of the microdisk without scatterer.
We should note that the condition (11) is perfectly
fulfiled for such parameters of the microdisk and the
small scatterer.

Fig. 1. Polar plot of the far-field intensity |f(ϕ)|2 for
the TM mode kR = 12.52385−0.00015 i (m = 18, q =
5), of the microdisk without scatterer (upper panel)
and for the perturbed TM mode kR = 12.52676 −
0.00026 i of the disk with the small scatterer (lower
panel).

4. CONCLUSIONS

In summary, we demonstrated the existence of direc-
tional TM-modes in the emission spectrum of a two-
dimensional passive microdisk cavity with a small but
finite size scatterer. The directional modes, in fact,
can be observed in various frequency regions depend-
ing on the position and refractive index of the finite
size scatterer. It would be interesting and potentially
very useful to get a more detailed explanation of these
results by relating the resonant modes to the ray dy-
namics in the semiclassical limit.
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Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and
A. Y. Cho. High-power directional emission from
microlasers with chaotic resonators. Science,
280:1556–1564, 1998.

[7] V. M. Apalkov and M. E. Raikh. Directional emis-
sion from a microdisk resonator with a linear de-
fect. Phys. Rev. B, 70:195317, 2004.

[8] J. Wiersig and M. Hentschel. Unidirectional light
emission from high-q modes in optical microcavi-
ties. Phys. Rev. A, 73:031802(R), 2006.

[9] C. P. Dettmann, G. V. Morozov, M. Sieber, and
H. Waalkens. Directional emission from an optical
microdisk resonator with a point scatterer. Euro-

physics Letters, 82:34002, 2008.

RVK08/MMWP08, June 9-13, 2008, Växjö University

289


