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Circular microresonators are micron-sized dielectric disks embedded in material of lower refractive index.
They possess modes of extremely high Q-factors �low-lasing thresholds�, which makes them ideal candidates
for the realization of miniature laser sources. They have, however, the disadvantage of isotropic light emission
caused by the rotational symmetry of the system. In order to obtain high directivity of the emission while
retaining high Q-factors, we consider a microdisk with a pointlike scatterer placed off-center inside of the disk.
We calculate the resulting resonant modes and show that some of them possess both of the desired character-
istics. The emission is predominantly in the direction opposite to the scatterer. We show that classical ray optics
is a useful guide to optimizing the design parameters of this system. We further find that exceptional points in
the resonance spectrum influence how complex resonance wave numbers change if system parameters are
varied.
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I. INTRODUCTION

Thin dielectric microcavities of different shapes are
widely used as microresonators in laser physics and inte-
grated optics �see �1,2�, and references therein�. The new
directions in microcavity laser research have been recently
reviewed in �3�. Microresonators are open systems coupled
to the external world, and therefore do not have bound states.
Instead, their eigenmodes �resonances� are characterized by
complex wave numbers k=kr+ iki=� /c− i / �c��. Here, � is
the lifetime of the resonance and c denotes the speed of light.
The so-called resonance quality factor �Q factor for short� is
then defined as Q=kr /2�ki�, and is a measure of the suitability
of a mode for lasing.

The resonances of any passive �no active lasing particles�
microcavity filled with nonmagnetic �B=H� dielectric mate-
rial are the solutions of the time-Fourier transformed Max-
well equations

� � E = ikH, � � H = − ik��r�E , �1�

when appropriate boundary conditions on the fields H and E
are imposed. When the fields are independent of z, which is
strictly speaking only the case for a cylindrical microcavity
of infinite length �see below�, the above equations in cylin-
drical coordinates �r ,� ,z� reduce to
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The solutions can be separated into TM modes �“transverse
magnetic,” i.e., Hz=0� and TE modes �“transverse electric,”
i.e., Ez=0�. Introducing the position-dependent refractive in-
dex n�r ,���	��r ,��, we get for TM modes a scalar wave
equation for Ez,
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The magnetic field H is then recovered from

Hr = −
i
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, H� =
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. �5�

For TE modes, it is advantageous to introduce the new field
hz�r ,���Hz�r ,�� /n�r ,��. This field satisfies again a scalar
wave equation,
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and the electric field E can be recovered in this case from
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The applicability of these equations can be extended from
infinitely long-cylindrical microcavities to flat microcavities,
for which the cavity thickness is only a fraction of the mode
wavelength. The refractive index has then to be replaced by
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an effective refractive index neff�r ,��, which takes into ac-
count the material as well as the thickness of the cavity. We
note that it is in general a difficult problem to explicitly
compute neff�r ,�� for a given material and thickness �see,
e.g., �4��, and one, therefore, typically resorts to using an
experimentally determined effective refractive index instead.

The simplest microcavity shape is a thin circular micro-
disk. The technological progress in recent years has made
possible the construction of microdisks in the �m-domain.
They are natural candidates for the construction of lasers
since some of their modes have extremely high Q-factor �low
thresholds� �5,6�. In those modes, which are called “whisper-
ing gallery modes,” light is trapped by total internal reflec-
tion and circulates along the circumference of the disk. As a
consequence of the rotational symmetry the light emission of
microdisks is isotropic. For many applications, however, a
directional light emission is required. To obtain a directional
emission we recently proposed to break the symmetry of a
microdisk by placing a point scatterer inside but not at the
center of the microdisk �see �7��. We have demonstrated that
such a geometry leads to a significant enhancement of the
directivity of some TM modes in outgoing light while pre-
serving their high Q-factors. Other attempts to breaking the
symmetry include the introduction of some other defects in-
side the microdisk like a linear defect �8,9� or a hole �10�.
Another approach is to deform the boundary of the cavity
�11–14�, or to couple light into and out of a microdisk with
the aid of an optical fiber taper waveguide �15�. However,
the advantage of our method is the analytic tractability which
allows for a systematic optimization of the design parameters
�location and strength of the scatterer� with only modest nu-
merical efforts.

The purpose of this paper is to extend the theory in �7� to
TE modes, and give a systematic study of the appearance of
both highly directional TM and TE modes and its depen-
dence on the distance of a point scatterer from the disk cen-
ter. In particular, we provide arguments based on geometric
optics to explain this dependence. This paper is organized as
follows. In the following section, Sec. II, we use a Green’s
function method to calculate the positions of the resonant
modes of a microdisk with a point scatterer in the complex
wave number plane. In Sec. III, we discuss in some detail the
physical interpretation of the parameter that describes the
strength of the point scatterer. In Sec. IV, we investigate in
detail the directivity of the resonance modes for the micro-
disk with point scatterer, and in Sec. V, we show that classi-
cal ray optics is a useful guide to optimizing the design pa-
rameters of the system. In Sec. VI, we investigate the role of
exceptional points in our system, and we finish with some
concluding remarks in Sec. VII.

II. THEORY OF MICRODISK CAVITIES WITH A POINT
SCATTERER

Let � stand for Ez in the case of TM polarization and for
hz in the case of TE polarization. For a homogeneous dielec-
tric microdisk of radius R and effective refractive index n in
a medium of refractive index 1, Eqs. �4� and �6� take the
form
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��2 + k2n2��r,�� = 0, �8�

inside the microdisk �r	R� and the same form with n re-
placed by 1 outside the microdisk �r
R�. The resonances
are obtained by imposing outgoing boundary conditions at
infinity, i.e., we require that ��r��eikr /	r, r→�. Moreover,
for physical reasons the value of the EM field at the disk
center must be finite. At the boundary of the microdisk, r
=R, the electric field component Ez and its derivative has to
be continuous for TM modes. Similarly, for TE modes, the
field hz multiplied by the refractive index and its derivative
divided by the refractive index has to be continuous at r=R.
These boundary conditions lead to the “whispering gallery”
�WG� modes

�m = �NmJm�knr�
cos m�

sin m�
� , r 	 R ,

Hm�kr�
cos m�

sin m�
� , r 
 R ,� �9�

where for TM modes, the complex wave numbers k are so-
lutions of

Am
TM � Jm�knR�Hm� �kR� − nJm� �knR�Hm�kR� = 0, �10�

and for TE modes, the complex wave numbers k are solu-
tions of

Am
TE � nJm�knR�Hm� �kR� − Jm� �knR�Hm�kR� = 0. �11�

Here, Jm and Hm are Bessel and Hankel functions of the first
kind respectively, m=0,1 ,2 , . . . is the azimuthal modal in-
dex. The constants Nm are given by

Nm = 
Hm�kR�/Jm�knR� for TM modes

Hm�kR�/�nJm�nkR�� for TE modes.
� �12�

Physically, the azimuthal modal index m=0,1 ,2 , . . . charac-
terizes the field variation along the disk circumference, with
the number of intensity hotspots being equal to 2m. The
wave numbers, k, are twofold degenerate for m
0, and non-
degenerate for m=0. The radial modal index q=1,2 , . . . will
be used to label different resonances with the same azimuthal
modal index m. The index q increases with increasing real
part of the wave number. For resonances, which are rela-
tively close to the real axis of the complex wave number
plane �so called “internal” or “Feshbach” resonances�, the
index q gives in general the number of intensity spots in the
radial direction. As discussed in detail in �16� there are ex-
ceptions to this rule for some TE internal resonances.

We note that for each fixed m, there exist further solutions
of Eqs. �10� and �11� �so-called “external” or “shape” reso-
nances�, which are typically located deeper in the lower half
of the complex wave number plane compared to internal
resonances �see �17,18��. The external resonances are very
leaky �low Q-factors� and, as a result, cannot be directly
used for lasing. However, they are of theoretical interest in
their own right. To properly distinguish between external and
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internal resonances one needs to trace the resonances as a
function of the refractive index n to the values they obtain in
the limit n→�. As discussed in detail in �16� this limiting
value is real for internal resonances, and complex �not real�
for external resonances. The procedure of tracing the reso-
nances in the complex wave number plane is especially im-
portant for TE modes, for which some of the external reso-
nances lie in the same domain of the complex wave number

plane as the internal resonances. For an example of this phe-
nomenon, we refer to Sec. IV.

In �7�, we derived the Green’s function for the TM modes
of a microdisk. Following �19�, it is given by a sum over all
angular harmonics eim��−�0� multiplied by the corresponding
radial parts. Using the same method it is not difficult to de-
rive the Green’s function also for TE waves. In fact, both
functions can be written as

GTE�r,r0,k� =�
−

i

4
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i
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� �13�

and equivalently for GTM, where r	 �r
� is the smaller
�larger� of r and r0. The coefficients are 
m=2 if m�0, 
m
=1 if m=0, and

Bm
TM = Jm�knR�Jm� �kR� − nJm� �knR�Jm�kR� ,

Cm
TM = Hm�knR�Hm� �kR� − nHm� �knR�Hm�kR� ,

Bm
TE = nJm�knR�Jm� �kR� − Jm� �knR�Jm�kR� ,

Cm
TE = nHm�knR�Hm� �kR� − Hm� �knR�Hm�kR� .

The resonances of the microdisk are then determined by the
poles of the Green’s function i.e., by Am

TM=0 �Am
TE=0�. This

agrees with resonance conditions Eqs. �10� and �11�. We note
that the resonance wave functions are exponentially increas-
ing as r→�, and hence cannot be normalized. However, any
constant multiplying the resonance wave functions can be
fixed by comparing the wave functions to the residues of the
Green’s function.

Using methods of self-adjoint extension theory �20,21�,
we showed in �7� that the presence of a point scatterer, which
is located at a point d on the x-axis ��=0�, leaves the reso-
nances of the unperturbed disk �WG modes� with the angular
part sin�m�� unchanged, while the complex wave numbers
kres of the resonances with the angular part cos�m�� become
solutions of the transcendental equation

1 − �Greg�d,d,k� = 0. �14�

This condition can be easily understood in one dimension
where the point scatterer can be treated by a delta-function
potential and the regularization of the Green function is not
needed �see, e.g., �22��. In two dimensions, the diagonal el-
ements of the Green function are divergent, and the theory of
self-adjoint extension effectively leads to a regularization of

the Green function Greg, which is obtained by subtracting the
logarithmically divergent term ln�k0�r−r0�� /2� from the
Green’s function in Eq. �13� in the limit r ,r0→d. The two
parameters � and k0 can be absorbed in a single new param-
eter a defined by 2��−� ln k0a. Then the condition for
resonances in Eq. �14� becomes

0 = −
i

4
+

1

2�

ln

kresna

2
+ �� +

i

4 �
m=0

�
Cm�kres�
Am�kres�


mJm
2 �kresnd� ,

�15�

where ��0.5772 is the Euler-Mascheroni constant. The pa-
rameter a then determines the “strength” of the point scat-
terer located at the distance d= �d�	R from the center.

The corresponding resonance wave function is given by

��r� = NG�r,d,kres� , �16�

where G is the Green’s function in Eq. �13�, and N is a
normalization factor. Outside of the microdisk, i.e., in the
region r
R, the field takes the form

� =
N

2�kresR
�
m=0

�

m cos�m��Jm�kresnd�

Am
Hm�kresr� . �17�

In principle, the normalization factor can be obtained again
from the residue of the Green’s function of the perturbed
system �see Eq. �19� in the next section�.

From Eq. �15� we see that in the limit a=0 and a→� we
recover the resonances of the unperturbed microdisk �with-
out a point scatterer�. For a close to 0 or infinity, the approxi-
mate solutions of Eq. �15� can be found perturbatively. In
leading order one finds
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kres � k − i�
Cm�k�
Dm�k�


mJm
2 �knd�

2R ln a
, �18�

where Dm= �dAm /dk� /R is given by

Dm
TM = Jm�knR�Hm� �kR� − n2Jm� �knR�Hm�kR� ,

Dm
TE = n�Jm�knR�Hm� �kR� − Jm� �knR�Hm�kR��

+ �n2 − 1�Jm� �knR�Hm� �kR� ,

and k is a resonance wave number of the unperturbed disk,
with azimuthal modal index m.

III. RELATION TO A FINITE SIZE SCATTERER

Before we investigate the solutions of Eq. �15� and the
corresponding resonance wave functions numerically, let us
discuss the physical interpretation of the parameter a. This
parameter can be related to that of a small but finite size
scatterer as long as this scatterer can be treated in the s-wave
approximation. The Green’s function of the system with a
point scatterer follows from self-adjoint extension theory
�20,21�, and is given by

Ga�r,r0,k� = G�r,r0,k� +
G�r,d,k�DG�d,r0,k�

1 − DGsc�d,d,k�
. �19�

Here Gsc�d ,d ,k� is the Green’s function in Eq. �13� for both
arguments less than R and without the term −iH0�nk�r
−r0�� /4 �i.e., without the free Green’s function�. The quantity
D is the so-called diffraction coefficient

D =
2�

i�/2 − � − ln�nka/2�
. �20�

One can easily check that the resonance wave numbers in
Eq. �15� coincide with the poles of the Green’s function in
Eq. �19�.

The form of the Green’s function in Eq. �19� is identical
to that of a system perturbed by a small s-wave scatterer
within the geometrical theory of diffraction �23,24�. The op-
tical theorem imposes a restriction on the diffraction coeffi-
cient given by �D�2=−4 Im D if k�R. It is a consequence of
the conservation of energy. The condition for D is equivalent
to Im D−1=1 /4. In order to find a physical interpretation for
the parameter a one has to compare the diffraction coeffi-
cient in Eq. �20� with that of a small but finite size scatterer
in the s-wave approximation. In fact, our parameter a was
chosen in such a way that the coefficient in Eq. �20� agrees
with that of a small s-wave scatterer of radius a with Dirich-
let boundary conditions �=0 along its circumference �see
�25��.

Let us now perturb the microdisk by a small hole of ra-
dius b placed at a distance d from the center, and filled with
a material of refractive index nb. The diffraction coefficient
depends only on local properties near the perturbation and
can be obtained from the Green’s function for a small circu-
lar disk of radius b with refractive index nb embedded within
material of refractive index n �i.e., one can neglect the out-
side region with refractive index 1�. But this Green’s func-

tion can be obtained in exactly the same manner as the
Green’s function in Eq. �13�. The only differences are the
corresponding radius and the refractive indices. In particular,
the new coefficients are

Am
TM = nJm�knbR�Hm� �knR� − nbJm� �knbR�Hm�nkR� ,

Am
TE = nbJm�knbR�Hm� �knR� − nJm� �knbR�Hm�nkR� ,

Bm
TM = nJm�knbR�Jm� �knR� − nbJm� �knbR�Jm�nkR� ,

Bm
TE = nbJm�knbR�Jm� �knR� − nJm� �knbR�Jm�nkR� .

We are interested in the Green’s function outside the small
disk. If that disk is small enough to be treated in the s-wave
approximation we need to keep only the term m=0 in the
sum over modal indices

Gb�r,r0,k� = −
i

4
H0�kn�r − r0�� +

i

4

B0

A0
H0�kn�r��H0�kn�r0�� .

�21�

This function has the form of Eq. �19� with G�r ,r0 ,k�
=−iH0�kn�r−r0�� /4, Gsc�r ,r0 ,k�=0, and we can read off the
diffraction coefficient as D=−4iB0 /A0. One can check that
the optical theorem is satisfied. Using the asymptotic forms
of Bessel and Hankel functions for small arguments, we ob-
tain that D−1� i /4− ��b2k2�nb

2−n2��−1. The comparison with
the diffraction coefficient for a point scatterer in Eq. �20�
gives the condition on the parameter a of the point scatterer
for modeling the finite size scatterer

ln
nka

2
+ � �

2

b2k2�nb
2 − n2�

. �22�

In this equation k is real, i.e., its imaginary part which is
small for resonances with high Q factor is neglected. Finally,
we should note that the s-wave approximation itself is valid
if the small but finite size scatterer is located not too close to
the circumference of the disk, i.e., for �nk�R−d���1, and if

A0

B0
�

A1

B1
. �23�

Possible further applications of a small scatterer in a disk
include detectors for nanoparticles in disks made of porous
silicon and semiconductor cavities with embedded quantum
dots �26�.

IV. FAR-FIELD DIRECTIVITY

In order to quantify the far-field behavior of the field �
we consider its asymptotics for r→�, which has the form

��r,kres� = ��r,�,kres� �
exp�ikresr�

	r
f��� . �24�

Then, the directionality of the emission can be characterized
with the directivity D which is defined as the ratio of the
power emitted into the main beam direction �max to the total
power averaged over all possible directions,
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D =
2��fmax��max��2

�
0

2�

�f����2d�

. �25�

Note that the resonances of the disk without a scatterer have
D=1 for m=0 and D=2 for m�0.

For the disk with a point scatterer, we investigate the level
dynamics of the resonances as a function of the parameter a
by numerically solving Eq. �15� for TM and TE modes, re-
spectively. As mentioned in Sec. II and discussed in more
detail in �7�, the perturbed resonances reduce to the unper-
turbed resonances �microdisk without scatterer� in the limits
a→0 and a→�. The wave numbers of the perturbed disk
thus evolve along line segments in the complex wave num-
ber plane, which start and end at unperturbed resonances
when a is varied from 0 to infinity. In our numerical proce-
dure which consists of a Newton method to solve Eq. �15�
we vary a from 10−30 to 1030 and use Eq. �18� to obtain
starting points for the numerics in these limits. For each reso-
nance wave number found this way, the corresponding wave
function is obtained from Eq. �16�. In particular, in the out-
side region the wave function takes the form of Eq. �17�
from which we can compute the directivity D.

In fact, because of the relation between wave function and
the Green’s function in Eq. �16� we can formally associate a
directivity D to any point in the complex kR plane �for a
fixed choice of d�. This directivity has only a direct physical
interpretation if the kR value corresponds to a resonance of
the disk with a point scatterer. For general k, D�k� is rather a
characterization of the Green’s function in Eq. �13�. It is
helpful to consider also this formal directivity because it en-
ables one to clearly identify the regions in the kR plane
where a perturbation of the circular disk by a scatterer �at
position d� should lead to highly directional modes.

As a first example, we study the level dynamics of TM
resonances in the range 12	Re�kR�	13 for a disk of effec-
tive refractive index n=3.0 and radius R=1 �m �these pa-
rameters are close to the ones in �27�� with a point scatterer
placed at two different distances �d=0.9 �m and d
=0.5 �m� from the center of the disk. The results are shown
in Fig. 1. The background color �grayscale� in Fig. 1 indi-
cates the directivity D for any point of the kR plane com-
puted as mentioned above. Superimposing the curves of the
wave number level dynamics we can immediately see in
which region of the kR plane the highly directional modes
are located.

Figure 2 shows the corresponding plot for TE modes in
the same parameter range as in Fig. 1. Like in the case of TM
polarization there are highly directional TE modes for a wide
range of Q-factors. From the figures one sees that for both
TM and TE resonant modes, placing the point scatterer at a
distance d=0.5 �m from the center yields a better directiv-
ity than for d=0.9 �m. We will explain this observation in
Sec. V. The directivity reaches values as high as D�15 for
some specific TM modes and D�13 for some specific TE
modes.

In Fig. 3, we show the field intensity at the distance r
=500 �m �far-field region� for a highly directional TM reso-

nance mode, which is obtained by a small perturbation of the
unperturbed TM resonance mode with modal indices �21,4�.
It has directivity �D�13� and complex wave number kR
=12.54929− i0.000045, and is compared to the unperturbed
mode with directivity D=2 and complex wave number kR
=12.54876− i0.000001. The highly directional mode is ob-
tained from the unperturbed mode if a very weak point scat-
terer of strength a�10−6 is placed at a distance d=0.5 �m
from the center of the disk. Indeed, we expect this from Fig.
1, because the unperturbed mode lies in a highly red �dark
gray� region in the kR plane where a small perturbation
should lead to a highly directional mode. According to Eq.
�22� the perturbation is comparable to that of a finite size
scatterer of radius b�0.01 �m and refractive index nb=1.

In Fig. 4 we show the far field intensity of the analogous
TE mode. It is again obtained by a perturbation of the mode
�21,4� of the circular disk by placing a point scatterer of
strength a�10−6 at distance d=0.5 �m from the center of
the disk. For this polarization the unperturbed mode �21,4� is
located at kR=12.90089− i0.000001 in the complex wave
number plane while the perturbed mode is located at kR
=12.90187− i0.000087. Their directivities are D=2 and D
�11, respectively. Both of the above highly directional
modes are good candidates for lasing since their Q-factors

FIG. 1. �Color online� Level dynamics �black curves� of the TM
resonances in the complex wave number plane for a dielectric disk
with n=3.0 and R=1.0 �m and a point scatterer of varying cou-
pling parameter a. The solid circles mark the unperturbed reso-
nances with azimuthal and radial modal indices �m ,q�. For the up-
per panel the scatterer is placed at distance d=0.9 �m from the
center, for the lower panel d=0.5 �m. The color code �grayscale�
in the kR plane indicates the directivity D of the emission. The
directivity increases from blue �lower dark gray regions� through
green and yellow �light gray� to red �upper dark regions�.
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are large. In fact, Q�1.4�105 for the highly directional TM
resonance and Q�7.4�104 for the highly directional TE
resonance. Moreover, they have unidirectional emission at an
angular direction of 180 degrees. One small difference is that
the TM resonance in Fig. 3 has a small additional peak at
angular direction of about 30 degrees. This can be under-
stood with geometric optics and will be discussed in Sec. V.

As a second example, we study the level dynamics of TM
and TE resonances in the range 37	Re�kR�	38 for a disk
of effective refractive index n=1.4 and radius R

=10.51 mm �these parameters are close to the ones of the
experimental setup of Schwefel and Preu �28��, with a point
scatterer placed at two close distances d=9.585 mm and d
=9.385 mm from the center of the disk, see Figs. 5 and 6.
From these two figures one can see that even a relativelyFIG. 2. �Color online� Analog of Fig. 1 for TE resonances. The

parameters are the same as in Fig. 1.

FIG. 3. The far-field intensities of the unperturbed TM reso-
nance with modal indices �21,4� �thin curve�, and of the highly
directional TM resonance �thick curve� that is obtained from the
unperturbed mode by perturbing a dielectric disk with n=3.0 and
R=1.0 �m with a point scatterer of strength a=10−6 placed at dis-
tance d=0.5 �m from the disk center.

FIG. 4. The field intensity in the far-field of the unperturbed TE
resonance with modal indices �21,4� �thin curve�, and of the highly
directional TE resonance �thick curve� that is obtained from the
unperturbed mode by perturbing a dielectric disk with n=3.0 and
R=1.0 �m with a point scatterer of strength a=10−6 placed at dis-
tance d=0.5 �m from the disk center.

FIG. 5. �Color online� Level dynamics of the TM resonances in
the complex wave number plane for a dielectric disk with n=1.4
and R=10.51 mm and a point scatterer of varying coupling param-
eter a. The solid circles mark the unperturbed resonances with azi-
muthal and radial modal indices �m ,q�. For the upper panel the
scatterer is placed at distance d=9.585 mm from the center, for the
lower panel d=9.385 mm. As before, the directivity increases from
blue �dark gray� through green and yellow �light gray�.
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small change in the position of a point scatterer can lead to a
significant change in the level dynamics. The directivity of
some perturbed TM modes reaches values as high as D
�10 for a point scatterer located at d=9.385 mm, see the
lower panel of Fig. 5, and the directivity of some TE modes
reaches values as high as D�8 for a point scatterer located
at d=9.585 mm, see the upper panel of Fig. 6. In general,
however, the directivity is lower than for n=3 in Figs. 1 and
2. This will be explained in the next section.

Another interesting feature is the appearance of the unper-
turbed shape �external� TE resonance denoted by �23,s� in
Fig. 6 which is located in the region of the complex wave
number plane where one would expect to have internal reso-
nances only. This is related to a peculiar behavior of some of
the unperturbed external TE resonances that was observed in
�16�. For large refractive indices n, the external resonances
are located much deeper in the complex wave number plane
than the internal resonance. This clear separation by the mag-
nitude of the imaginary part of the wave numbers ceases to
exist for small n in the case of TE modes where some exter-
nal resonances mix with the internal resonances. The wave
functions of such external resonances acquire similar fea-
tures as the wave functions of internal resonances. In particu-
lar they can spoil the interpretation of the radial modal index
q as the number of peaks of the wave function in the radial
direction �see �16�� for internal resonances with the same
azimuthal modal index. Furthermore for the disk with a point
scatterer, the external resonance �23,s� in Fig. 6 illustrates the
fact that unperturbed external resonances also serve as start-
ing and end points of the line segments that result from the
level dynamics of perturbed resonances in the complex wave
number plane upon varying a from 0 to �.

In Fig. 7 we show the field intensities at the distance r
=5000 mm �far-field region� for the unperturbed resonant
TM mode with modal indices �31,5�, complex wave number
kR=37.599462− i0.488553, and directivity D=2 as well as
for the highly directional �D�10� TM resonant mode with
complex wave number kR=37.621007− i0.523645. The un-
perturbed mode �31,5� transforms to the highly directional
mode with the above complex wave number if we place a
point scatterer of strength a�0.07 at distance d
=9.385 mm from the center of the disk. We note that despite
of the high directivity this mode is not suitable for lasing
because it has only a small Q factor of about 36.

In Fig. 8 we show the field intensities at the distance r
=5000 mm �far-field region� for the unperturbed resonant
TE mode with modal indices �46,1�, complex wave number
kR=37.129055− i0.000177, and directivity D=2 as well as
for the directional �D�6� TE resonant mode with complex
wave number kR=37.142373− i0.001832. The unperturbed
mode �46,1� transforms to the directional mode with the
above complex wave number if we place a point scatterer of

FIG. 6. �Color online� Analog of Fig. 5 for TE resonances. The
parameters are the same as in Fig. 5. The label �23,s� indicates a
shape resonance with azimuthal model index m=23.

FIG. 7. The far-field intensities �r=5000 mm� of the unper-
turbed TM resonance with kR=37.599462− i0.488553, m=31, q
=5 �thin curve�, and of the highly directional perturbed TM reso-
nance with kR=37.621007− i0.523645, d=9.385 mm, a�0.07
�thick curve� in a dielectric disk with n=1.4 and R=10.51 mm.

FIG. 8. The far-field intensities �r=5000 mm� of the unper-
turbed TE resonance with kR=37.129055− i0.000177, m=46, q=1
�thin curve�, and of the directional perturbed TE resonance with
kR=37.142373− i0.001832, d=9.585 mm, a�4·10−5 �thick curve�
in a dielectric disk with n=1.4 and R=10.51 mm.
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strength a�4�10−5 at distance d=9.585 mm from the cen-
ter of the disk. This mode has Q�104 and, therefore, is
suitable for lasing. As in Figs. 3 and 4 one can observe that
the directivity of the TM resonance has small additional
peaks at lower angles, but the TE resonance does not. This
will be discussed in the next section.

V. DIRECTIVITY AND GEOMETRIC OPTICS

To systematically study the appearance of highly direc-
tional modes, we calculate the average directivity for a re-
gion in the complex wave number plane as a function of the
distance, d, of the point scatterer from the center. To this end
we define the average directivity

Dav =
1

�kr�ki
�

kr
−

kr
+

dkr�
ki

−

ki
+

dkiD�k� , �26�

where �kr
− ,kr

+�� �ki
− ,ki

+� is a rectangular region in the com-
plex wave number plane of side lengths �kr=kr

+−kr
− and

�ki=ki
+−ki

−. Note that the integration is over all k in the
rectangular region where D�k� is formally defined using Eqs.
�17�, �24�, and �25�, for general k rather than just for the
resonant kres �see Sec. IV�. In Figs. 9 and 10. We show Dav
computed for the region 12	Re�kR�	13, −0.1	 Im�kR�
	0 as a function of d for four microdisks of radius R
=1 �m and effective refractive indices of n=3.0, n=2.6, n
=2.25, and n=1.4, and for the region 37	Re�kR�	38, −1
	 Im�kR�	0 for four disks of radius R=10.51 mm with the
same effective refractive indices, respectively. Remarkably, a
rough approximation of the values for d which lead to high
Dav can be found from geometric optics. To this end let us
consider parallel rays that come in from infinity and enter a
dielectric disk of radius R and effective refractive index n.
There is one ray which goes through the center of the disk,
the central ray. The rays that are infinitesimally close to this
central ray will cross the central ray at the point with dis-
tance

do =
R

n − 1
, �27�

to the center of the disk located on the opposite side of the
center of the disk. So, conversely, putting a point scatterer at
this focal point leads to a strongly directional light emission
in an angular direction of 180°, which also agrees with the
observation in the previous section.

The value of do is indicated by the vertical lines in Figs. 9
and 10. One can see that in most cases do is close to the
optimal value range for the point scatterer positions in the
figures. Taking into account the finite size of the disk, we
note that Eq. �27� is valid only for refractive indices greater
than 2. For smaller refractive indices the optimal position
should be as close as possible to the boundary of the disk.

Finally we remark on the small additional peaks that
could be observed in the directivity of the highly directional
TM modes in Figs. 3 and 7. These peaks were absent for the
TE modes in Figs. 4 and 8. A similar observation was made
in reference �29�, where it was explained by geometric optics
and the Brewster angle. This explanation works also in the

present case. If one considers rays that start at the scatterer
and are reflected once before they leave the disk, then one
finds that the emission angle is stationary for some starting
angles at the scatterer. This leads to the observed additional
small peaks for the TM modes. However, for TE modes these
peaks are strongly suppressed, because the reflection ampli-
tude for the first reflection is very small due to the fact that
the angle is close to the Brewster angle.

VI. EXCEPTIONAL POINTS

The line segments that connect unperturbed resonances as
the parameter a varies from zero to infinity can change con-
siderably if the distance, d, of the point scatterer to the center

FIG. 9. The average directivity, Dav, of TM �thick curves� and
TE �thin curves� polarized light in the range 12	Re�kR�	13,
−0.1	 Im�kR�	0.0 for each position, d, of a point scatterer in mi-
crodisks of radius R=1 �m and various effective refractive indices
as shown.
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is changed. This can be seen already in Figs. 5 and 6 which
are for two different but close values of d. The connections
between the unperturbed resonances are very different there,
i.e., the line segments connect different unperturbed reso-
nances if d is varied only slightly. In the present section we
want to look at this in more detail.

As a first example we investigate the perturbation of one
particular resonance of the microdisk. We choose the TM
resonance with modal indices �34,4� of the dielectric disk
with n=1.4 and R=10.51. We then place a point scatterer at
distance d from the center of the disk. For different values of
d we vary the strength of the scatterer a from 0 to infinity.
This yields a family of line segments in the complex wave
number plane which all start at the unperturbed resonance
�34,4� but, depending on d, end at different unperturbed reso-

nances. This is shown in Fig. 11. It is remarkable that the
connections between the different unperturbed resonances
depend so sensitively on the value of d. In the small range
from d=9.400 to d=9.411 shown in Fig. 11 the unperturbed
resonance �34,4� is connected to five different unperturbed
resonances.

Next, we investigate how the connections are rearranged.
The connections between the unperturbed resonances can
only change upon variation of d if for one value of d differ-
ent line segments intersect tangentially at a point in the com-
plex kR-plane. This point corresponds to a degenerate reso-
nance. This mechanism is illustrated in Fig. 12. For d
=9.409 the resonance �34,4� is connected to the resonance
�9,13�, while the resonance �19,9� is connected to �38,3�. For
the value d=9.411 the connections have changed. The reso-
nance �34,4� is now connected to �38,3�, while �19,9� is con-
nected to �9,13�. Although not shown in the figure, there is a

FIG. 10. The average directivity, Dav, of TM �thick curves� and
TE �thin curves� polarized light in the range 37	Re�kR�	38, −1
	 Im�kR�	0.0 for each position, d, of a point scatterer in micro-
disks of radius R=10.51 �m and various effective refractive indi-
ces as shown.

FIG. 11. �Color online� Level dynamics of the TM resonances in
the complex wave number plane for a dielectric disk with n=1.4
and R=10.51 mm and a point scatterer of varying coupling param-
eter a for several positions d of the scatterer. All start from the
unperturbed resonance �34,4�. The solid circles mark the unper-
turbed resonances with modal indices �m ,q�. The color code �gray-
scale� indicates the directivity D of the emission, where dark blue
�dark gray� marks small values of D and light blue �light gray�
marks high values of D.

FIG. 12. �Color online� Level dynamics of the TM resonances in
the complex wave number plane for a dielectric disk with n=1.4
and R=10.51 mm and a point scatterer of varying coupling param-
eter a for two positions d of the scatterer. The solid circles mark the
unperturbed resonances with azimuthal and radial modal indices
�m ,q�. As the position of the scatterer changes from d=9.409 to
d=9.411 the connections of the unperturbed resonances change.
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value of d for, which two line segments touch each other at a
point at which two perturbed resonances coalesce and be-
come degenerate.

For an open system such as the dielectric disk degenera-
cies are generically of a special type which are called excep-
tional points �30,31�. Exceptional points can be observed if
at least two real-valued parameters of a non-Hermitian op-
erator are varied. In our case the non-Hermitian operator is
the differential operator acting on � in Eq. �8� which is
non-Hermitian due to the outgoing boundary condition. The
two real parameters are the parameters a and d. At an excep-
tional point two �or more� eigenvalues of the non-Hermitian
operator coalesce, and the corresponding eigenstates become
identical. The pair of eigenstates which becomes degenerate
at an exceptional point also show a characteristic behavior if
the two parameters are changed along a closed loop about
the exceptional points. Smoothly following the pair of eigen-
states from a starting point of the loop upon one full traversal
of the loop yields a pair of eigenstates in which the eigen-
states started with are swapped and in which one member of
the pair has a reversed sign. Exceptional points have recently
received a lot of attention. For an example in the field of
microlasers and more references see �32�.

To illustrate the coalescence of resonance states that is
typical for exceptional points we show in Fig. 13 the fields of
the two almost degenerate resonances marked in Fig. 12.
Figure 14 shows the corresponding far-field behavior.

The numerical results in this section indicate that excep-
tional points are quite common for dielectric disks with point
scatterers. They control the connections between the unper-
turbed resonances and can be easily found by noting when
these connections change upon varying the position d of the
scatterer.

VII. CONCLUSION

We have shown that perturbations of a dielectric disk by a
point scatterer can lead to highly directional resonance
modes with large Q-factors. This is demonstrated in particu-
lar by the unidirectional modes in Figs. 3 and 4. To obtain
modes with these properties is one of the main goals in the
design of dielectric microcavities. The results for directivities
and Q-factors for the TE modes in the present paper are
found to be similar to those for the TM modes in �7�, how-

ever the TE modes can be more important for applications
�5�. Due to the Brewster angle, the TE modes are also lack-
ing the small additional peaks that one sees in the directivity
of the TM modes, as explained in Sec. V.

The system studied has the advantage that it is relatively
simple and can be treated to a large extent analytically by a
Green’s function method. This allows for a systematic inves-
tigation of the system over a large parameter range with only
moderate numerical effort. We found that several numerical
results can be understood with the help of a simple geometri-
cal optics model. This model helps to find the optimal posi-
tion of the scatterer, it explains why the directivity is in gen-
eral higher for refractive index n=3 than for n=1.4, and also
why the emission occurs predominantly in a direction oppo-
site of the position of the point scatterer. It also suggests
future investigation of an elliptical microcavity with a scat-
terer at one of the foci and refractive index inverse to the
eccentricity, as in that case focusing in geometric optics is
exact, i.e., the paraxial approximation is not required �33�.

The Green’s function method also allows one to associate
a directivity with different regions of the complex kR plane.
This is very useful because it indicates in which regions of
the kR plane one can expect highly directional modes if one
perturbs the dielectric disk by the scatterer. It would be help-
ful to find a semiclassical explanation for the dependence of
the directivity on the wave number k.

Most interesting for applications we also discussed how
the system studied can be realized physically by a small but
finite sized scatterer. This connection can be made as long as
the scatterer can be treated in the s-wave approximation, and
is found to be valid for examples with high Q-factor and
directivity. An important open question is how the directivity
and Q-factor depend on the size and shape of a larger scat-
terer when corrections to the s-wave approximation are taken
into account.
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FIG. 14. Far field of the two resonance states shown by crosses
in Fig. 12.

FIG. 13. �Color online� Two almost degenerate TM resonance
states for a dielectric disk with n=1.4 and R=10.51 mm. The cor-
responding wave numbers are shown by crosses in Fig. 12.
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