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We propose an approach to tuning systems in which octave doubling ratio is replaced by a suitable alge-
braic unit τ , and note frequencies are proportional to a subset of the ring Z[τ ]. Then it is possible for many
difference tones between notes in the tuning to also appear in the tuning. After outlining more general prin-
ciples, we consider in detail some natural examples based on the golden ratio φ = (1 + √

5)/2, limited
by norm or by the number of digits in the greedy β-expansion. We discuss additive and multiplicative
properties, implementation and composition using these tunings. The Online Supplement contains MIDI
and websynths files to implement the tuning S5

β(φ) (based on β-expansions to φ−5) on websynths.com
and a composition Three Places.
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1. Introduction

Conventional modern Western music is based on a 12 tone equal temperament (12TET) tuning
in which consecutive pitches differ by a ratio 21/12 ≈ 1.059, so that 12 of these smallest intervals
(semitones) give a ratio of 2 (conventional octave). This choice allows music to be transposed
exactly into any key. Rational frequency ratios other than powers of 2 are also available, albeit
only approximately, for example 7 semitones gives 27/12 ≈ 1.498 ≈ 3

2 . For music using only a
few keys, including much composed prior to 1700, tuning in other temperaments may be pre-
ferred, in which these intervals are exact or closer to rational approximations; see Lindley (2001).
This is particularly an issue for keyboard music; performers of many other instruments (including
voice) are able to a greater or lesser extent adjust the pitch during performance.

One motivation for temperaments using exactly rational frequency ratios is that of difference
tones (Greated 2001). Due to nonlinearities in the ear, these tones may be perceived when inter-
vals or chords are played. Their frequency is the difference, or another simple linear combination,
of the original frequencies, the latter termed “combination tones.” If the frequencies in the scale
are exact rational ratios, difference tones will then often correspond to other frequencies in the
scale. A recent discussion of difference tones and their use in electronic music composition may
be found in Chechile (2020).

There are also many tuning systems quite different from 12-TET, either from many non-
Western musical traditions though it should be noted that 12TET originated in China (Cho
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2010) or of more recent origin, in theory, instruments and composition. These are often termed
“microtonal” though the intervals may not be smaller than in 12TET. Intervals are still typically
measured in cents. As standard in music, the interval corresponding to frequency ratio f2/f1 is
defined to be

1200 log2

(
f2
f1

)
cents (1)

so that a 100 cent interval is a 12TET semitone.
Perception of octave equivalence for a frequency ratio of 2 is not universal, for example the

Tsimané people of Bolivia do not appear to have this (or any other) octave equivalence (Jacoby
et al. 2019). This suggests that the human ear may become accustomed to other interval
equivalence.

The ninth century treatises Musica enchiriadis and Scolica enchiriadis (Erickson 2001) use
“dasian” notation which has equivalence at a perfect fifth (frequency ratio 3/2), and a 3-limit
tuning system, that is, frequency ratios that are multiples of powers of 2 and 3. This fits naturally
with monophonic chant, and with parallel organum using an interval of a perfect fifth, but not
with parallel organum with a fourth (ratio 4/3) or with one or more parts doubled at an octave
(ratio 2), also common in this period as described in these treatises.

A notable recent example of a tuning system with a different octave is the Bohlen-Pierce (BP)
scale (Mathews et al. 1988), where consecutive pitches differ by a ratio 31/13. This is periodic
with a frequency ratio of 3 (“tritave”) and has intervals approximating ratios involving 3, 5 and
7. This makes it well suited for instruments with strong odd harmonics, such as the clarinet, and
BP-tuned instruments are available commercially. Interestingly, one motivation for this scale was
that of difference tones (Mathews et al. 1988).

The aim of this work is to use the above ideas for generating tuning systems, namely difference
tones and non-standard octaves, in the context of algebraic number theory. Namely, we observe
that if the octave periodicity is an algebraic unit τ , and frequencies are proportional to elements
of the corresponding ring Z[τ ], then difference tones also lie in the ring. The simplest case
is the golden ratio τ = φ = (1 + √

5)/2 ≈ 1.618. The frequencies involve two integers, being
proportional to aφ + b where a, b ∈ Z, and in this sense have the same complexity as the rational
numbers. This will be our main example, but we also motivate and develop this approach in more
generality.

First, we discuss some relevant approaches in the existing literature. O’Connell (1993) noted
that 225 = 33554432 is close to φ36 ≈ 33385282, so that dividing each semitone in thirds (that
is, 36TET) yields an interval (25/3 semitones, or close to 833 cents) very close to the golden
ratio, motivated as below by sum and difference tones. A very similar scale is obtained by split-
ting a golden octave (frequency ratio of φ) into 25 equally spaced intervals. He then described
compositions based on pentachords noting the factorization of 25. Frequency ratios of 2,

√
5 and

3 were highlighted. In the present work the main ratio is φ, although the above ratios also appear.
Some related history and scales can be found in Smethurst (2016). Of note is the Bohlen 833

scale, which does not appear otherwise published except on websites such as Bohlen (2012).
This scale consists of a fundamental and its 2, 3 and 4 harmonics and subharmonics, repeated
every golden octave. Unlike the equally tempered approach of O’Connell, this scale now has
closest intervals of three different sizes. It also has several difference tones in the scale, though
the distinct sums and differences are not much less than the generic value of n(n + 1)/2 for n
notes; see Figure 2 below.

In this paper we continue further in this direction, constructing scales with many difference
tones equal to each other and/or contained in the scale. This has the effect that almost all intervals
(ie multiplicative ratios) are different.
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Figure 1. Arithmetic sequences in the golden scales, with notes at x = aφ + b for integers (a, b). The sequences are
straight line segments in the (a, b) plane, but curved in these coordinates. See section 5.

In section 2, we begin by generalizing the difference tone rationale, and discuss the algebraic
number systems and choice of the octave periodicity ratio τ . Section 3 contains relevant prop-
erties of φ and similar algebraic numbers. Section 4 defines the scales we propose, based on
φ. Section 5 considers their additive properties (ie difference tones) and section 6 their multi-
plicative properties (ie intervals). Section 7 gives a relation to an interesting open mathematical
problem, the sum-product conjecture. Section 8 gives considerations in implementing and exper-
imenting with these scales, and section 9 some ideas for composition, and discussion of a first
composition, Three Places.

2. Octave equivalence using algebraic units

Define a scale Ŝ ⊂ R>0 as a nonempty set of positive real numbers representing frequencies,
measured in Hz. One element f ∈ Ŝ denotes the “fundamental” frequency. We consider S =
{x : fx ∈ Ŝ} for now; this is equivalent to setting f = 1. In section 4, we will choose another
convenient value. We also assume that S is locally finite away from zero.

We require that S be log-periodic, that is, the set of logarithms of elements of S has period
ln τ for some real number τ > 1. In other words, ∀ x ∈ S, τx ∈ S and τ−1x ∈ S; the pitch class
of x is the set τ nx for n ∈ Z. In most traditional scales, τ = 2, corresponding to the octave, but
here it will differ. We choose τ to be the smallest such value, since S is also invariant under
multiplication and division by integer powers of τ . Though S is locally finite away from zero by
assumption, the log-periodicity implies that S accumulates at zero.

We now introduce some standard definitions in algebraic number theory. We denote Z[τ , τ−1]
to be the minimal set containing {1, τ , τ−1} and closed under addition, subtraction and multipli-
cation. This consists of any integer linear combination of arbitrary positive and negative powers
of τ , and so is in general not a finitely generated space over Z. However, if τ is an algebraic
integer of degree d i.e. has minimal polynomial of degree d with integer coefficients and leading
coefficient 1, then all powers ≥ d in the sum can be written in terms of powers 0 . . . d − 1. If in
addition, τ is an algebraic unit, i.e. its minimal polynomial also has constant term ±1, then all
negative powers in the sum can be written in terms of the powers 0 . . . d − 1. In this case τ−1 is
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Figure 2. Sum-product phenomenon for the SN scale (upper), Sβ scale (middle) and Bohlen 833 scale (lower). The
number of distinct sums, positive differences, and products are shown in blue, orange and green, respectively, plotted
against the number of notes used. See section 7.

in Z[τ ] and we can use the latter notation rather than Z[τ , τ−1]. The space now has dimension d
over Z and a good candidate to construct scales with (in some reasonable sense) many difference
tones in the scale.

One more standard definition needed here is that of the (field) norm of an element of
Z[τ ]. Multiplication by an element x ∈ Z[τ ] corresponds to a d-dimensional linear operator
over Z. The norm N(x) is the determinant of this operator, and hence is multiplicative, ie
N(xy) = N(x)N(y). Strictly speaking, the norm is defined relative to the original ring Z and
extension Z[τ ] but these are clear in the context and omitted from the notation.
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Later we will need the norm in Z[φ], where φ = (1 + √
5)/2 is the golden ratio. The minimal

polynomial x2 − x − 1 has highest and lowest terms with coefficient ±1, so φ is an algebraic
unit. If we write x ∈ Z[φ] as x = aφ + b, then φ2 = φ + 1 implies that xφ = (a + b)φ + a and
the determinant of the multiplication operator is

N(aφ + b) =
∣∣∣∣ a + b a

a b

∣∣∣∣ = b2 + ab − a2 (2)

In conventional just intonation scales, the octave equivalence is τ = 2 (not an algebraic unit).
Frequencies are of the form pk1

1 pk2
2 . . . /2q where the numerator is typically given as a product

of small non-negative powers of primes (for example 2, 3, 5 for 5-limit tuning). Combining the
numerator into a single integer p, we can reduce the number of required integer parameters to
two, that is, frequencies are dyadic rational numbers of the form p/2q ∈ Z[1/2]. The dasian scale
discussed in the introduction has τ = 3/2 (not an algebraic integer). Frequencies are of the 3-
limit form 2k1 3k2 = p/6q ∈ Z[1/6], where now k1 and k2 are integers satisfying 5 ≤ k1 + k2 ≤ 8.
Representing either in terms of p and q or k1 and k2 there are two integer parameters.

The same number of parameters is required for τ a degree 2 (i.e. quadratic) algebraic unit.
These are solutions to x2 − ax ± 1 = 0 for integer a, thus those greater than unity are of the form
(a + √

a2 ∓ 4)/2, and easily enumerated. Those less than 3 are the golden ratio φ ≈ 1.618, the
silver ratio s = 1 + √

2 ≈ 2.414, and also φ2 ≈ 2.618. The degree 3 (i.e. cubic) units in contrast
are dense unless there is an additional condition such as the Pisot property discussed in the next
section.

3. The golden ratio, properties and generalizations

In this paper we will focus on the golden ratio φ as the ratio for octave equivalence. This section
describes some other properties of φ, that are relevant in selecting algebraic units on which to
base alternative scales, and in selecting elements of Z[τ ] to include in the scale.

Algebraic numbers give the asymptotic growth of solutions of linear recurrences with coef-
ficients from their minimal polynomial. For φ, this is the Fibonacci sequence defined by
F1 = F2 = 1, Fn = Fn−1 + Fn−2. It is easy to show (for example by induction) that

φn − (−φ)−n = Fn

√
5 (3)

φn + (−φ)−n = Fn+1 + Fn−1 (4)

Equation (3) may be used to calculate Fn. Equation (4) shows that for large n, φn is close to an
integer; this is due to the following property.

A Pisot number (Bertin et al. 2012) is a real algebraic integer greater than 1 with all Galois
conjugates (i.e. roots of the minimal polynomial) of complex magnitude less than 1. The distance
between the nth power of a Pisot number and the nearest integer converges to zero as n → ∞.
A positive power of a Pisot number is Pisot. The golden ratio is Pisot; this can be confirmed
from the roots of the minimal polynomial. In general there are criteria using inequalities for
the coefficients of the minimal polynomial; see Theorem 2.2 of Akiyama and Gjini (2005). The
quadratic and cubic Pisot units less than 3 are tabulated in Table 1. This table also includes
information about the β-expansion (see below) and common names for the golden ratio and
some of the others.
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Table 1. Pisot units of degree 2 and 3, of magnitude less than 3, and not powers of
smaller Pisot units.

Value Minimal polynomial dβ(1) Name (Symbol)

1.32472 x3 − x − 1 0.10001 Plastic(p)
1.46557 x3 − x2 − 1 0.101 Supergolden
1.61803 x2 − x − 1 0.11 Golden(φ)
1.83929 x3 − x2 − x − 1 0.111 Tribonacci
2.20557 x3 − 2x2 − 1 0.201
2.24698 x3 − 2x2 − x + 1 0.201 Cyclotomic-7
2.41421 x2 − 2x − 1 0.21 Silver(s)
2.54682 x3 − 2x2 − x − 1 0.211
2.76929 x3 − 3x2 + x − 1 0.2201
2.83118 x3 − 2x2 − 2x − 1 0.221
2.87939 x3 − 3x2 + 1 0.221 Cyclotomic-9

Note: The β-expansion of one (defined below) is dβ (1) where the over bar denotes a periodic
sequence of symbols. “Symbol” gives the notation in this paper; notation varies in the literature.
Cyclotomic Pisot numbers (which also include φ and s) are discussed in Dettmann and Frankel
(1993) and Bell and Hare (2005).

A β-expansion (Charlier, Cisternino, and Dajani 2021) is an expression for a real number in
powers of an arbitrary real β > 1,

x =
jmax∑

j=−∞
cjβ

j (5)

where cj ∈ Z ∩ [0, β). In general this is non-unique: there are many possible {cj} that satisfy
equation (5). The greedy β-expansion is obtained by starting from the largest possible jmax and
choosing the largest possible cj for each j decreasing towards −∞. The β-expansion of 1, denoted
dβ(1) is the greedy β-expansion starting from j = − 1. For Pisot β it is known to be finite
or repeating; see Table 1. The greedy condition can be written that no consecutive set of cj is
lexicographically greater or equal than dβ(1). For τ = φ we have dβ(1) = 0.11 and leads to the
simple condition cjcj+1 = 0, that is, that the finite sequences of cj in the greedy β-expansion
are exactly those without consecutive 1s (also, similar to the infinite trailing sequence of 9s that
does not occur in decimal expansions, the β-expansion excludes an infinite trailing sequence of
01). Here, we use β-expansions as an approach to deciding what elements of Z[β] to include in
the scale.

Finally, we mention the Diophantine properties of the golden ratio and related algebraic units
(see for example Rockett and Szusz 1992), in other words, how close are intervals to rational fre-
quency ratios appearing in conventional (just intonation) music? It turns out that the golden ratio
is, in a precise sense, maximally irrational, that is, badly approximable by rationals. Hurwitz’s
theorem states that for any irrational τ , the equation∣∣∣∣τ − p

q

∣∣∣∣ <
K

q2
(6)

has infinitely many integer solutions for (p, q) if K ≥ 1√
5
. If τ = a+bφ

c+dφ
for integers a, b, c, d with

|ad − bc| = 1 then this bound is sharp. If τ = a+bs
c+ds with |ad − bc| = 1 with s = 1 + √

2 (the
silver ratio) then the bound K ≥ 1√

8
is sharp. All other irrationals are better approximated by

rationals, in that the bound may be replaced by K ≥ 5√
221

= 1√
8.84

. Each quadratic irrational has
its own bound; these are exactly the numbers with eventually periodic continued fraction expan-
sions. There is a quadratic irrational ratio in 12TET, namely six semitones gives a frequency ratio
26/12 = √

2.
However, for algebraic numbers of higher degree, the continued fraction expansions appear to

have similar properties to generic real numbers but less is known; it is conjectured that K may
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be made arbitrarily small in equation (6) and it is known that replacing q2 by q2+ε leads to only
finitely many solutions (Roth 1955). In summary, cubic units have more irregular approximation
properties than quadratic units. For musical purposes, the ear can distinguish only the first few
approximations, for example the plastic number p is 11 cents from 4/3. The next approximant
has an error of less than 1 cent, but at 49/37 is not a simple ratio. Other cubic units have approxi-
mations with larger denominators, for example the supergolden number is 1 cent from 22/15 and
the tribonacci number 6 cents from 11/6. For comparison, the cubic irrationals in 12TET are four
and eight semitones, with frequency ratios 21/3 and 22/3; these are about 14 cents from 5/4 and
8/5 respectively, and less than 1 cent from 63/50 and 100/63 respectively.

4. Defining scales

Since scales consist of isolated frequencies, we must keep only a finite number of values per
τ -octave. There are at least two natural choices based on the definitions we have considered so
far. We can use the norm as a bound, that is, define

SB
N (τ ) = {x > 0 | |N(x)| ≤ B}

where the unit τ appears implicitly in the norm N, and the fact it is a unit implies the log-
periodicity of the set. Another approach is to note that the set of x > 0 with N(x) > 0 forms
a cone, and if convex (and it is for φ) is closed under both addition and multiplication and
hence suitable for defining a scale SB+

N (τ ), replacing the inequality in the equation above by
0 < N(x) ≤ B; we will not consider this further here, except to note that S36+

N (φ) has the same
number of notes as S5

β(φ) and so fits on a MIDI keyboard (see equations (7), (8) below).
Alternatively, we can use the greedy β-expansion and define

SB
β (τ ) =

⎧⎨
⎩x > 0 | ∃ cj greedy, so that x =

jmax∑
jmax−B

cjτ
j

⎫⎬
⎭ (7)

which is again log-periodic by definition. It is possible (but perhaps less natural) to remove the
greedy condition, and impose only cj < τ . We will not consider this further here, except to note
that S5

β(φ)greedy = S4
β(φ)non-greedy.

We now focus on the golden ratio, and consider two scales in Z[φ] satisfying the previously
defined properties. The scale S5

β(φ) consists of notes with greedy β-expansion of ≤ 6 digits,
leading to 8 notes per φ-octave, and will be denoted Sβ for brevity. The scale S20

N (φ) contains
notes with norms of magnitude ≤ 20, leading to 10 notes per golden octave, which turns out to
be those of Sβ together with two others (of 7 digit beta representation). This will be denoted SN

for brevity.
As noted in the previous section, the greedy β-expansion base φ is characterized by sequences

with no consecutive 1s. The norm is given in equation (2) above. We have N(φ) = −1, so that
multiplying or dividing by φ, corresponding to going up or down by a golden octave, leads to
a change of sign in the norm. Using these definitions, the notes of the scales SN and Sβ defined
above are those presented in Table 2.

The naming of the pitch classes uses {α, β, γ , δ, ε} for numbers represented by at most 5 digits
in the β-expansion. A 	 or 
 corresponds to taking or adding φ−6 to these, respectively. For more
general SB

β (τ ) or SB
N (τ ), it is natural to give notes in scales with smaller B separate letters, and

accidentals for the rest, but it seems difficult to make from this a precise and workable standard
nomenclature.
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Table 2. Notes of the golden scale SN .

Name Frequency ratio β-expansion Lattice Exact Norm

α 1.00000 1 (0,1) 1 1
α
 1.05573 1.000001 ( − 8, 14) 2

√
5/φ3 20

β	 1.09017 1.00001 (5, − 7) − 11
β 1.14590 1.0001 ( − 3, 6) 3/φ2 9
γ 1.23607 1.001 (2, − 2) 2/φ − 4
γ 
 1.29180 1.001001 ( − 6, 11) 19
δ	 1.32624 1.00101 (7, − 10) − 19
δ 1.38197 1.01 ( − 1, 3)

√
5/φ 5

ε	 1.47214 1.01001 (4, − 5) − 11
ε 1.52786 1.0101 ( − 4, 8) 4/φ2 16

Note: The scale Sβ consists of these apart from α
 and γ 
. The β-expansion and norm are to base φ. The
lattice column gives (a, b) for the expression aφ + b. Transposing by a golden octave (factor of φ) flips the
sign of the norms.

The Sβ scale of eight pitch classes can be deployed by retuning a MIDI keyboard, since three
golden octaves (24 notes) are close to the same number of semitones, more precisely

1200
log φ3

log 2
≈ 2499.27 (8)

cents, that is, just under 25 semitones. The SN scale has too many pitch classes for a MIDI
keyboard but the advantage that it contains more arithmetic progressions, chords of fixed
difference tone frequency.

For a suitable choice of fundamental frequency f, there are sequences of the form f φn which
for large n are all close to integers following from the Pisot property of φ above. We choose
f to be f = φ10/

√
5 ≈ 55.0036 Hz, which due to equation (3) is close to a Fibonacci number.

The Fibonacci frequency 55 Hz is A1 on the usual 12TET scale, being three octaves below
concert pitch (440 Hz = 55 × 23 Hz). Here we use Greek letters for notes on the golden scale,
and denote the fundamental frequency α1. The frequencies for both scales are given in Table 3
and a mapping (of Sβ) to a MIDI keyboard is given in Table 4; see also the Online Supplement
files described at the end of this paper. Note that we have shifted this correspondence by two
semitones, so α1 corresponds to B1, in order to reduce the amount of tuning required in higher
octaves, and also to balance the most extreme accidentals (C	 and E
).

5. Additive properties – arithmetic sequences

Arithmetic sequences are one of the main motivations for considering scales based on number
fields, since they have common difference tones, which may also be in the scale. Looking at the
lattice representations of the notes in Table 2 it is clear that there are some arithmetic sequences,
for example {α, γ , ε	}. However, it is not obvious how to identify all such sequences, given the
repetition of the scale in different octaves. If all can be identified for a given fixed scale, it is
still not clear how to choose a finite set of pitch classes to maximise (in some precise sense) the
number of such sequences.

Whilst we cannot give a definitive answer to these questions here, we can point to a useful
approach for identifying arithmetic sequences. In Figure 1 we plot the notes of the scale with log
magnitude ln(aφ + b) on the x-axis and norm b2 + ab − a2 on the y-axis. The plot is invariant
under transposition by a φ-octave, which corresponds to translation by ln φ ≈ 0.4812 to the right
and reflection across the horizontal axis.
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Table 3. Frequencies in the golden scales.

α α
 β	 β γ γ 
 δ	 δ ε	 ε

− 4 6.854 7.301 7.578
− 3 8.025 8.472 8.748 9.196 9.919 10.37 10.64 11.09 11.81 12.26
− 2 12.98 13.71 14.16 14.88 16.05 16.78 17.22 17.94 19.12 19.84
− 1 21.01 22.18 22.90 24.07 25.97 27.14 27.86 29.03 30.93 32.10
0 33.99 35.89 37.06 38.95 42.02 43.91 45.08 46.98 50.04 51.94
1 55.00 58.07 59.96 63.03 67.99 71.05 72.95 76.01 80.97 84.04
2 89.00 93.96 97.02 102 110 115 118 123 131 136
3 144 152 157 165 178 186 191 199 212 220
4 233 246 254 267 288 301 309 322 343 356
5 377 398 411 432 466 487 500 521 555 576
6 610 644 665 699 754 788 809 843 898 932
7 987 1042 1076 1131 1220 1275 1309 1364 1453 1508
8 1597 1686 1741 1830 1974 2063 2118 2207 2351 2440
9 2584 2728 2817 2961 3194 3338 3427 3571 3804 3948
10 4181 4414 4558 4791 5168 5401 5545 5778 6155 6388
11 6765 7142 7375 7752 8362 8739 8972 9349 9959 10336
12 10946 11556 11933 12543 13530 14140 14517

Note: All frequencies over 100Hz are within 0.05 of integers.

Table 4. Keyboard mapping of Sβ , over the full MIDI range.

α β	 β γ δ	 δ ε	 ε

− 4 C-1 D	-1 D-1
− 3 D
-1 E-1 E
-1 F
-1 G-1 G
-1 A-1 A
-1
− 2 B-1 C0 C
0 D0 E	0 E0 F0 F
0
− 1 G0 A	0 A0 B	0 C	1 C1 D	1 D1
0 D
1 E1 E
1 F
1 G1 G
1 A1 A
1
1 B1 C2 C
2 D2 E	2 E2 F2 F
2
2 G2 A	2 A2 B	2 C	3 C3 D	3 D3
3 D
3 E3 E
3 F
3 G3 G
3 A3 A
3
4 B3 C4 C
4 D4 E	4 E4 F4 F
4
5 G4 A	4 A4 B	4 C	5 C5 D	5 D5
6 D
5 E5 E
5 F
5 G5 G
5 A5 A
5
7 B5 C6 C
6 D6 E	6 E6 F6 F
6
8 G6 A	6 A6 B	6 C	7 C7 D	7 D7
9 D
7 E7 E
7 F
7 G7 G
7 A7 A
7
10 B7 C8 C
8 D8 E	8 E8 F8 F
8
11 G8 A	8 A8 B	8 C	9 C9 D	9 D9
12 D
9 E9 E
9 F
9 G9

Note: The enharmonic equivalents are chosen so that the pitch classes {α, β, γ , δ, ε} correspond to a minor scale on
D
, B or G.

Arithmetic sequences are straight lines in (a, b) space, which become suitably curved in these
coordinates. We included the most relevant curved segments in Figure 1; clearly they are in
fact dense. The additional two notes in SN , α
 and γ 
, are thus helpful in providing the long
arithmetic sequence {ε1, δ	2, α
3, γ 
3, ε3, β	4, γ 4, δ4, ε4} and in extending two of the others.

6. Multiplicative properties – intervals

Given the emphasis on additive properties, that is, many difference tones are equal, it is not
surprising that with regard to multiplicative properties, the reverse is true, that is, almost all ratios
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Table 5. Intervals in the golden scales, in cents.

α α
 β	 β γ γ 
 δ	 δ ε	 ε

α
 94
β	 149 56
β 236 142 86
γ 367 273 217 131
γ 
 443 349 294 207 76
δ	 489 395 339 253 122 46
δ 560 466 411 324 193 117 71
ε	 669 576 520 434 303 226 181 109
ε 734 640 584 498 367 291 245 174 64
α 833 739 684 597 466 390 344 273 164 99
α
 927 833 778 691 560 484 438 367 257 193
β	 983 889 833 747 616 539 494 422 313 249
β 1069 975 919 833 702 626 580 509 399 335
γ 1200 1106 1051 964 833 757 711 640 531 466
γ 
 1276 1182 1127 1041 909 833 788 716 607 543
δ	 1322 1228 1172 1086 955 879 833 762 652 588
δ 1393 1299 1244 1157 1026 950 904 833 724 659
ε	 1503 1409 1353 1267 1136 1059 1014 943 833 769
ε 1567 1473 1417 1331 1200 1124 1078 1007 897 833
α 1666 1572 1517 1430 1299 1223 1177 1106 997 932
α
 1760 1666 1611 1524 1393 1317 1271 1200 1091 1026
β	 1816 1722 1666 1580 1449 1372 1327 1256 1146 1082
β 1902 1808 1752 1666 1535 1459 1413 1342 1232 1168
γ 2033 1939 1884 1797 1666 1590 1544 1473 1364 1299
γ 
 2109 2016 1960 1874 1743 1666 1621 1549 1440 1376
δ	 2155 2061 2006 1919 1788 1712 1666 1595 1485 1421
δ 2226 2132 2077 1990 1859 1783 1737 1666 1557 1492
ε	 2336 2242 2186 2100 1969 1892 1847 1776 1666 1602
ε 2400 2306 2251 2164 2033 1957 1911 1840 1731 1666
α 2499 2405 2350 2263 2132 2056 2010 1939 1830 1765
α
 2499 2444 2357 2226 2150 2104 2033 1924 1859
β	 2499 2413 2282 2205 2160 2089 1979 1915
β 2499 2368 2292 2246 2175 2066 2001
γ 2499 2423 2377 2306 2197 2132
γ 
 2499 2454 2382 2273 2209
δ	 2499 2428 2319 2254
δ 2499 2390 2326
ε	 2499 2435
ε 2499

(corresponding to musical intervals) are different. The intervals, up to three golden octaves, are
given in Table 5.

Table 2 illustrates this, in that since the norm is multiplicative, the ratios are seen to differ
for almost all combinations. Even where two norms have magnitude 11 or 19, the ratios are not
algebraic integers, since the only units in Z[φ] are powers of φ.

Table 2 also illustrates some special intervals using the “exact” column. There are rational
intervals with ratios 2 (α1-γ 2, γ 1-ε2, δ1-α
3), 3 (α1-β3) and related combinations (4/3, 3/2,
4), as well as maximally irrational intervals φ (all notes up a golden octave) and

√
5 (α1-δ2,

γ 1-α
3). Combining φ with the other intervals also yields combinations that occur more than
once, for example a golden third of ratio 2/φ = √

5 − 1 ≈ 1.236, is found for α1-γ 1, γ 1-ε1
and δ1-α
2. This interval lies between that of minor and major thirds, for example the just minor
third 6/5 = 1.2 and 12TET minor third 21/4 ≈ 1.189 and just major third 5/4 = 1.25 and 12TET
major third 21/3 ≈ 1.260. Similarly for other intervals such as a golden fourth φ2/2 ≈ 1.309
which is a little less than just perfect fourth 4/3 ≈ 1.333 and 12TET perfect fourth 25/12 ≈ 1.335
and corresponds to γ 1-α2, ε1-γ 2 and α
1-δ1. The only geometric sequences are αa-γ b-εc and
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ξa-ξb-ξc where (a, b, c) are integers in arithmetic progression (including all equal) and ξ is any
pitch class.

Equation (3) gives some large “approximately integer” intervals. For δ1-αn we have a fre-
quency ratio φn/

√
5, and for large n the φ−n can be neglected leading to a Fibonacci interval.

For example n = 6:

φ6

√
5

≈ 8.0249 (9)

which is about 4 cents above three conventional octaves.

7. The sum-product conjecture

The observation referred to above, that there are few differences suggests that there are many
intervals, is close to a well known problem in the mathematical literature. The sum-product
phenomenon asserts that for a finite set A in a suitable ambient space (here R), at least one of the
sum set A + A and the product set AA should be large. One form of this is the Erdós-Szemerédi
sum-product conjecture which states that for all large |A| we have

max{|A + A|, |AA|} ≥ |A|2−o(1) (10)

The best rigorous bound has an exponent of 1.335 (Rudnev and Stevens 2022).
Our scales have relatively few sums but many products, whilst the closest relative, the Bohlen

833 scale (see the introduction), has fewer products. This is depicted in Figure 2. Note that our
scales have fewer sums and differences as expected, with a transition to quadratically increasing
behaviour at around five golden octaves, the precision of the β-expansion. For seven octaves of
SN , we have |A| = 70, |A + A| = 516, |AA| = 678, so both |A + A| and |AA| are less than |A|1.54.
This suggests that a growing sequence of sets along these lines (for example, all elements of a
ring with bounds on magnitude and norm) may be a possible example to test the sum-product
conjecture.

8. Implementing the scales

It is possible to synthesize sounds of arbitrary waveform and frequency electronically, though
many software packages assume octave equivalence for powers of 2, even where notes within
each octave may be tuned individually. One option for either computer or MIDI keyboard is
websynths.org; Tables 3, 4 provide the relevant mappings; see the Online Supplement files.

It may also be possible to retune stringed instruments. Guitars with retuned strings and moved
frets are commonly used in microtonal music (Nielsen 2003). Similarly for bowed stringed
instruments or the piano (using the above keyboard mapping), though we have not yet tried
and cannot vouch for the safety. Similarly, it is possible using instruments allowing arbitrary
pitch including trombone and voice.

Musical instruments apart from synthesized sine waves generate harmonics other than the
fundamental frequency. For those with uniform strings or columns of air, these are at close to
integer multiples of the fundamental, which is one of the main explanations for rational frequency
ratios in music. These however do not correspond to notes on the golden ratio scales except where
the fundamental is α or δ.

It is possible to design strings to have specified overtones by using variable thickness. Unfor-
tunately it does not seem practical in this way to generate all the powers of φ, which would thus
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lie in the scale for all the notes; see Sethares and Hobby (2018). As a simpler case, we have
considered a string of length L and mass mS = μSL with a small weight at a point xL along it of
mass m2 using the formalism in the above paper; see equations (1)–(4) there. More specifically,
we have a string of three segments with linear mass densities μj and lengths lj where l1 = xL,
l3 = (1 − x)L, μ3 = μ1 = μS and μ2 = m2/l2. Taking the limit l2 → 0 with m2 fixed, the mode
equation with appropriate boundary conditions (equation (4) in the above paper) reduces to

sin ω̃

ω̃
= m2

mS
sin(ω̃x) sin(ω̃(1 − x)) (11)

where ω̃ = ω
√

mS/T is a dimensionless frequency and T is the string tension. Optimising to find
x = 0.116934 and m2/mS = 0.519991, the frequencies of vibration relative to the fundamental
become {1, 1.618, 2.618, 3.812, 5.037, 6.271, . . .}. In other words, it is possible with only a single
additional mass to make the harmonic series of a string start with frequency ratios 1 : φ : φ2.

Alternatively, geometric sequences of vibration modes may be created in fractal structures;
see Strichartz (1999). Note that irrational harmonics lead to aperiodic wave-forms; for har-
monics of sufficiently large amplitude, they may have interesting non-differentiable or fractal
properties, along the lines of Weierstrass’s original construction of a nowhere-differentiable
function (Kaplan, Mallet-Paret, and Yorke 1984).

9. Composition

Some ideas and principles can be found in the previous literature on (especially) tunings with a
golden ratio octave (refer to the introduction). The main characteristics of the tunings considered
here are the arithmetic progressions and many different intervals.

The arithmetic progressions have common difference tones (refer to Figure 1), and can be
used for scales and chords. The long progression containing β	 and ε	 is relatively close to the
harmonic series (the frequencies are in ratios n − φ−4 for integer n).

The large variety of intervals can also be used to great effect. For example, the dissonant
interval ε	1 − β3 of just greater than an octave at 1232 cents can resolve to the perfect octave
α1 − γ 2, where the γ 2 is a perfect fifth below the β3. The golden third and sixth intervals are
paradoxical in that thirds and sixths are normally considered consonant, but these are as irrational
as possible, in the sense given in section 3.

Ideally, composition using the golden tuning should be on its terms, rather than imitating
well known 12TET approaches. The 12TET tuning is homogeneous and cyclic: Each note is
equivalent, and keys are arranged in the well known circle of fifths. In contrast, the golden
tunings are based on a linear backbone of α notes, decorated by the other notes, each with its
own place and character, at increasing distance from the backbone. Distance here can refer to the
number of digits needed in the β-expansion, resulting in the ordering α, δ, γ , {β, ε}, {β	, δ	, ε	},
{α
, β
, γ 
, δ
, ε
}, . . . . Or, it can refer to the norm, which gives the similar ordering α, γ , δ, β,
{β	, ε	}, ε, {γ 
, δ	}, α
, . . . .

The parallel organum common in ninth century chant mentioned in the introduction also works
here, with the perfect fourth or fifth replaced by the golden ratio octave. We could alternatively
(or as well) use two golden ratio octaves, which is 34 cents below a 12TET perfect eleventh.

The composition Three Places (in the Supplemental Online material) is written using the key-
board mapping of Sβ shown in Table 4. The intention was to approach the tuning system entirely
intuitively, allowing the ear to guide the process and pick out interesting chords and pitch com-
binations. Given the lack of octave periodicity, the piece is formed from three localized musical
ideas and their interactions. Each musical idea is described as a ‘place’, and whilst the notes con-
tained in each idea are relatively consonant, the transition from one idea to the next can be abrupt
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and surprising. With music composed using unfamiliar tuning systems, a ‘settling in’ period of
adjustment can be helpful to the listener, provided in Three Places by the oscillating tones at the
opening of the piece.

10. Conclusion

Golden ratio scales have led us to wide vistas of mathematics, including many aspects of alge-
braic number theory, the sum-product conjecture, and non-differentiable curves. There are many
open mathematical questions, for example, if we constrain the number of notes per octave, are
these scales optimal from the point of view of the number of arithmetic sequences or of sum or
difference tones in the scale? From a musical point of view there remains the challenging task
of further developing relevant principles of melody and harmony. The same approach, defining
scales by bounding the β-expansion or norm, can be applied to other algebraic units, such as
those in Table 1.
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