Fractals, Vol. 3, No. 1 (1995) 161-181
© World Scientific Publishing Company

CHAOS AND FRACTALS AROUND
‘ BLACK HOLES

C. P. DETTMANN and N. E. FRANKEL
School of Physzcs, University of Melbourne, Parkville Victoria 3052, Australia

N. J. CORNISH
Department of Physics, University of Toronto, Toronto,
Ontario M5S1A7, Canada

Received January 17, 1995; Accepted January 20, 1995

Abstract

Fractal basin boundaries provide an important means of characterizing chaotic systems. We
apply these ideas to general relativity, where other properties such as Lyapunov exponents
are difficult to define in an observer independent manner. Here we discuss the difficulties in
describing chaotic systems in general relativity and investigate the motion of particles in two

and three black hole spacetimes.

We show that the dynamics is chaotic by exhibiting the

basins of attraction of the black holes which have fractal boundaries. Overcoming problems
of principle as well as numerical difficulties, we evaluate Lyapunov exponents numerically and
find that some trajectories have a positive exponent.

1. INTRODUCTION

As we look out into the universe with ever more
powerful telescopes, we begin to see that the struc-
tures formed through gravitational organization of-
ten have complicated, and sometimes fractal, geom-
etry. The Voyager misson revealed Saturn’s rings
to have an intricate distribution of rings and voids,
providing a fractal image of the underlying chaotic
gravitational dynamics. A similarly produced series
of gaps can be seen in the asteroid belt which lies
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between Mars and Jupiter.!? Looking beyond our
solar system, the large scale structure of the uni-
verse appears to be fractal over a range of scales,?
and is commonly thought to be the result of chaotic
evolution from smooth initial conditions. Further-
more, when describing the universe using Einstein’s
theory of gravity, space and time become dynam-
ical and the evolution of spacetime itself can be
chaotic due to the nonlinear nature of Einstein’s
equations.
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In this paper we study test particle trajectories

in multi-black hole spacetimes. We shall see that

the phase space is divided into basins of attraction
which are separated by a fractal boundary. The
presence of fractal boundaries is due to the chaotic
nature of the dynamics. It is no surprise that par-
ticle trajectories can be chaotic in general relativ-
ity since many-body Newtonian systems are known
to be chaotic and Einstein’s theory recovers New-
tonian gravity for weak fields and small velocities.
What is more surprising is the occurrence of chaotic
attractors in a Hamiltonian system, a feature that
is foreign to nonrelativistic celestial dynamics. At-
tractors can arise in relativistic systems since there
is a finite maximum velocity, the speed of light, and
even light can be captured by a strong gravitational
field. In the multi-black-hole spacetime we shall
study, the black holes act as attractors in phase
space. In fact, the whole concept of what we mean
by a phase space is fundamentally changed once we
consider general relativity. In the Newtonian view
of the universe space and time exist as a rigid un-
derlying structure, providing a fixed reference frame
with which positions and velocities can be unam-
biguously defined. In contrast, space and time are
dynamical concepts in general relativity and the co-
ordinate system we use to describe notions of time
and place lose any fundamental significance. Thus
it is important to describe the chaotic dynamics in
terms which do not depend on the chosen coordi-
nate system.

The outline of this paper is as follows. In Sec. 2
we discuss the subtle issues that must be confronted
when attempting to quantify chaos and fractals in
general relativity. In the following sections, we in-
vestigate the motion of neutral and charged test
particles in the combined gravitational and electric
fields of two or three black holes, following on from
Refs. 4-7. Each black hole has charge equal to its
mass, so that the total force between them is zero,
and only the motion of the particle need be con-
sidered. This paper is the first major study of the
fractal boundary basin and Lyapunov exponents of
this system. In Sec. 3 we write down the metric
corresponding to this situation, noting in passing
that it is possible to write down exact solutions
of the Einstein-Maxwell equations containing frac-
tal singularities. The Hamilton-Jacobi method is
used to show that the two-black-hole problem is in-
tegrable in the weak field limit. In Sec. 4 we look at
qualitative features of this system which are char-
acteristic of chaotic dynamics, such as sensitive de-

pendence on initial conditions, complicated basin
boundaries, and universality. The effect of chang-
ing the charge/mass ratio of the test particle and
the mass of the black holes is considered, and the
three-black-hole problem is also treated. Section 5
investigates quantitative indicators of chaos, that
is, fractal dimensions and Lyapunov exponents.

2. CHAOS AND FRACTALS IN
GENERAL RELATIVITY

Studies of chaos in general relativity fall broadly
into two categories. Those in the first group look
for chaos in the Einstein field equations. After a
coordinate system has been chosen there are six
nonlinear second order coupled partial differential
equations, so drastic simplications are used to make
analytic or numerical calculations tractable. The
system receiving the most attention from the point
of view of chaos has been the Mixmaster Universe.3?
This is a general cosmological model which is homo-
geneous but not isotropic. Einstein’s equations in
vacuum reduce to three second order ordinary dif-
ferential equations with one constraint, thus
reducing the dimension of the phase space from
infinity to five. Even with this comparative sim-
plicity, there has been much debate as to the ex-
istence and nature of chaos in this model. Most
authors have concentrated on obtaining Lyapunov
exponents (see Eq. (26) and surrounding discus-
sion) of either the full equations!®12 or discrete
approximates.!®1* The main difficulty is that time
is a parameter in general relativity, with the same
status as spatial coordinates, so there is no natural
variable “t” to use in Eq. (26). Thus Lyapunov ex-
ponents which are nonzero with respect to the dis-
crete time are zero with respect to the time variable
in which the equations take their simplest form.!%
This difficulty is directly related to what is known
as “the problem of time” in quantum cosmology.'®
Like chaos, quantum mechanics relies on a fixed no-
tion of time to define evolution.

One approach to circumvent this difficulty has
been to represent the dynamics as geodesic mo-
tion in a curved space. If the curvature is negative
there is sensitive dependence on initial condi-
tions and the dynamics may be chaotic.1%-18 Sen-
sitivity to initial conditions is necessary for chaos,
but not sufficient. Other conditions, such as a com-
pact phase space and mixing of trajectories are re-
quired to prove that a system exhibits chaos.1® This

I



method has the advantage that it is based on cur-
vature scalars which do not depend on a choice of
coordinate system; however, its applicability to the
Mixmaster system has been questioned.?’ There has
also been a study of the homoclinic loops of a Mix-
master Universe containing matter, albeit with an
unrealistic equation of state.?! To summarize, the
study of chaos in the Mixmaster Universe has been
hampered by a lack of suitable coordinate invariant
quantities to characterize the dynamics. In con-
trast, a Robertson-Walker model (which is isotropic)
containing a scalar field has been shown to exhibit
chaotic behavior by other methods such as the use
of Poincare sections, which contain coordinate in-
dependent information.??

The other class of general relativistic chaotic sys-
tem, the one which will concern us, is the dynamics
of particles interacting with a given gravitational
and electromagnetic field configuration. Examples
include particles in the gravitational and electro-
static fields of two or more black holes,*”" charged
particles in a constant magnetic field interacting
with gravitational waves,?® particles near a black
hole interacting with gravitational waves?* and par-
ticles near a black hole immersed in a constant mag-
netic field.25 The chaos in these systems has been
investigated using methods borrowed from nonrel-
ativistic systems: analysis of the periodic orbits,*
Poincare sections,>?%25 Lyapunov exponents,”25
fractal dimensions,” the Chirikov criterion,?® and
the Melnikov method.2* These methods were gen-
eralized to relativistic systems in a fairly straight-
forward manner (with the possible exception of Lya-
punov exponents) because all of the above grav-
itational systems are either static or static with
a small periodic perturbation, so there is a well-
defined global time parameter, and the phase space
is in some sense static. Lyapunov exponents are dis-
cussed in more detail below. For recent reviews of
chaos in general relativity, for both the field equa-
tions and the motion of particles, we refer the reader
to Ref. 26.

It would appear that fractals do not fit well with
general relativity, as the former are essentially non-
differentiable, but general relativity is based on
smooth manifolds as models for spacetime. Never-
theless there have been attempts to use a nondiffer-
entiable manifold as a model for spacetime, either as
resulting from quantum gravity, or in an attempt to
explain the wavelike properties of elementary par-
ticles. This type of approach is difficult mathemat-
ically, and is far from providing a complete theory
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at present, although there are some encouraging re-
sults. A number of recent articles on this subject
may be found in Ref. 27. In contrast, we show here
that fractal basin boundaries provide a particularly
reliable quantification of chaos in general relativity.

3. PARTICLES IN MULTI-BLACK-
HOLE SPACETIMES

3.1 Formalism

In nonrelativistic classical mechanics gravity and
electrostatics both have an inverse square force law,
so that in any static distribution with equal mass
and charge distributions (in appropriate units:
4meg = G = ¢ = 1) the gravitational and electro-
static forces cancel, and the distribution remains
static.

Remarkably, the same situation holds in general
relativity. Majumdar?® and Papapetrou?® indepen-
dently showed that for the static metric:

ds? = —U~2dt% + U(da? + dy* + d2%), (1)

where U is a function of the spatial coordinates,
together with the electrostatic potential

A =U"1 2)

the Einstein-Maxwell equations reduce to Laplace’s
equation:

V?U(J” Y,2)=Uze +Ugy + Uz =0. (3)

Thus, as in nonrelativistic mechanics, there is a
static solution of the field equations for every so-
lution of Laplace’s equation. Hartle and Hawking®®
gave physical interpretation to these solutions,
showing that if U is of the form:

N M
U=1+ : ,
; Ve =27+ —v:)" + (2 - 2)°

(4)

the Majumdar-Papapetrou (MP) metric corre-
sponds to a system of black holes with equal charge
and mass M; > 0 and horizons at (x;, yi, z;). Note
that these points are coordinate singularities, that
is, a single point in the MP coordinate system cor-
responds to a black hole horizon of finite proper
area. Hartle and Hawking extended the coordinate
system to include the region inside the black holes.
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They also showed that for any other form of the

solution containing points at which U is infinite or -

zero, the singularity is real, and not a result of the
coordinate system chosen. It is straightforward to
use the MP metric to write down spacetime solu-
tions corresponding to charged cosmic strings (of
finite extent) or even fractal distributions of mass
and charge.’! A knowledge of these solutions en-
riches our understanding of the singularity structure
of more generic solutions of the Einstein-Maxwell
equations, although the status of naked singularities
as realistic models of physical objects is doubtful at
present.32

Recently the MP spacetimes have been general-
ized to include a positive cosmological constant.33:34
These solutions describe coalescing extremal black
holes in a de Sitter type universe. A possible gen-
eralization of this paper would be to investigate the
motion of particles in these spacetimes. The main
differences would be that the Ricci curvature is neg-
ative (leading to instability) and the spacetime is no
longer static.

The general relativistic equation of motion for a
particle of charge e and mass m in combined elec-
tromagnetic and gravitational fields is most simply
derived from the super-Hamiltonian3®:

1
= -Z-g“”(wu —eAy)(m, —eAy), (5)
where Hamilton’s equations:
O _ da* O _ _dm 6)
om,  d)’ ok~ dx’

are written in terms of an affine parameter ) related
to the particle proper time by 7 = mA. The mass
shell constraint is:

2

m

H= -5 7

The first Hamilton equation relates the canonical
momenta 7, to the four-velocities:

g (my — eAy) = ¢"'py = mu”. (8)

The second equation gives a generalized Lorentz

force equation. In the MP metric the equations for

the spatial components of the momentum reduce to:

5“&_92( 2 -3 2)
D B Upg+epo+U ;pj. 9)

>

The equations may be simplified slightly by using
the four-velocity in an orthonormal (as opposed to
a coordinate) basis:

0 po % i
o _Um i P
L7 , W= (10)

which has a straightforward physical interpretation:
the components are simply (v, yv) as measured by
an observer stationary with respect to the space-
time. Writing the components u* in vector notation
as simply u and u® as +, and using a dot for deriva-
tives with respect to proper time 7, the equations
become:

u=U"?[(V?+u’—ey/m)VU—-uu- VU], (i1)
X = U‘lu, (12)
y=11+u2. (14)

These equations are used in the numerical integra-
tion, described below. Because the equations are
time-independent, there is a conserved energy, given
by:

E=-mp=U"Ymy—-e). " (15)

The energy of the particle at infinity is given by
E +e, rather than simply E, in order to account for
the non-zero electromagnetic potential energy at in-
finity. Constancy of the energy is a useful check of
the numerical results, since it is not enforced di-
rectly when evolving a trajectory.

3.2 Hamilton-Jacobi Method

Consider the two black hole system, described by
the above equations of motion with the appropri-
ate expression for U from Eq. (4). Without loss of
generality masses M; and M, are placed at (0,0,1)
and (0,0, —1) respectively. We want to elucidate
the structure of the dynamics and classify the prob-
lem as integrable or chaotic, and if it is chaotic, to
understand the role of relativity in quantifying the
chaos..

The Newtonian version of the two-black-hole sys-
tem, that is, a particle moving in the field of two
fixed masses, is integrable, and was first solved by
Euler. It is instructive to see the effect of relativis-
tic terms in this solution. The technique we will
use is the Hamilton-Jacobi method (chapter 10 of
Ref. 36), used by Carter to solve the equations for a



particle moving in the field of a single rotating black
hole.37 If the Hamilton-Jacobi equation for a partic-
ular problem is separable, the system is integrable
(non-chaotic), and all of the constants of motion
are obtained. Note that our previous short paper’
uses different conventions for E, A, H and the form
of the Hamilton-Jacobi equation than those given
below. Here, the conventions conform to the most
common usage in the literature.

We begin by writing the Hamiltonian using the
most natural coordinates for the system, which in
this case are prolate spheroidal coordinates, used in
previous studies*7:38;

z = ginh ¢ sin 6 cos ¢,

y = sinh 9 sin 6 sin ¢, (16)
z=cosh 9 cos §.
The metric (1) becomes
ds? = —U%d¢?
+ U*(Qdy? + Qd6® + sinh® ¢ sin’ 8d¢?), (17)
where
U=1+W/Q, Q=sinh? P+sin? 0, 18)

W =(My+My) cosh ¥+ (My—Mj) cos 6.

The Hamilton-Jacobi equation is the partial dif-
ferential equation for S(z#, A) obtained by taking
the equation H = —8S5/8X\ and replacing the mo-
menta m, in H by 88/8z* = S, that is,

e\? 1 2 . ¢
_S,,\ = -T(S’t - E) + m(s’d) + S’g)

SZ
+ 19
2U2 sinh? ¢ sin? @ (19)
The equation is solved by separation of variables,
starting from an ansatz of the form:
S=AQ)+T@)+T(¥)+0O(0) +2(¢). (20)
Because ), t, and ¢ are cyclic coordinates which do
not appear in M, there are three obvious constants
of the motion, which give:
m2\

A=22 T=_Ft,

> &=L,

(21)

Here, L, is the 2z component of angular momentum.
For the full two-black-hole geometry, the remaining
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equation does not separate, so no further constants
of the motion may be found. However, in the weak
field approximation, that is, to first order in W/Q,
we substitute:

QU™ ~ Q +nW, (22)

* in the Hamilton-Jacobi equation, and it separates

to obtain:
v = f {[4E? + 6¢E + 2€% — 2m?|(Ma + My) cosh ¢

+[(E + ¢)? — m?] sinh® ¢

— L2/sinh? ¢ + o} 2dy, (23)

6= f{[4E2 +6eE + 2¢% — 2m?|(M1 + M3) cos 6

+[(E + ¢)* — m?] sin? @

—~ L2/sin?@ - a}2dg. (24)
This shows that the weak field approximation is in-
tegrable, with the final constant of the motion being
the .cparation constant «. There is a clear physi-
cal interpretation of this result: The non-relativistic
problem is separable in prolate spheroidal coordi-
nates because the ellipses and hyperbolae which
constitute the lines of constant ¢ and 6 are par-
ticle trajectories. But when the potential becomes
of order unity, relativistic effects become important,
including the well-known result that elliptic orbits
precess. Note that we have not made any approx-
imation about the velocity of the particle. A rela-
tivistic particle moving in a weak potential is only
slightly deflected, and still does not exhibit chaos.
The above result says very little about the fully
relativistic two-center problem, except that prolate
spheroidal coordinates are not uniquely suited to
studying this system, except from the point of view
of the nonrelativistic limit. To determine whether
the MP problem is chaotic, we must define param-
eters to quantify the chaos which arise naturally in
the formalism of general relativity. The parameters
we will use are fractal dimensions and Lyapunov
exponents, evaluated numerically by integrating the
equations of motion. It may be possible to prove the
existence of chaos analytically; however, there is no
general method for doing this in a given dynam-
ical system.3? A recent preprint!® uses coordinate
invariant criteria to study the motion of photons
in MP spacetimes, and concludes that all periodic
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orbits are unstable, but needs numerical results such
as those given here to back up an argument that this
system is chaotic.

Assuming that this system is chaotic, for which
we give very strong numerical evidence below, the
transition to chaos from the integrable Newtonian
two center problem could then be investigated by
writing the Hamiltonian as an integrable, weak field
term and a small relativistic perturbation. As the
strength of the perturbation is increased, the KAM
tori of the integrable system are destroyed by phase
space resonances?**0 leading to stochastic layers,
cantori, and so on. We use a more direct numerical
approach here, and leave such an investigation to a
future paper.

For three or more masses, the Newtonian system
is chaotic, except in the trivial case of test particles
with e = m, which experience no force at all. Rel-
ativistically, these particles do experience a force
if they are moving, which is proportional to v? if
v < ¢, so the dynamics is not trivial.

4. QUALITATIVE FEATURES

The equations of motion may be integrated using a
4th order Runge-Kutta routine with adaptive step
size, similar to the one given in Ref. 41. The accu-
racy of the integration may be checked by a number
of methods, including varying the step size control-

- ling parameter, checking that energy is conserved,

and making sure that the trajectories are physically
reasonable.

The results in this and the following section are
almost entirely for the two-black-hole problem, with
masses of 1/3, placed at z = 2z = 0, y = %1, and
a test particle of zero charge. A typical trajectory
for this system is shown in Fig. 1. Note that, in
contrast to the equivalent Newtonian system, there
is a finite cross section for capture by one of the
black holes. The numerical integration tests for this
by stopping whenever the step size becomes smaller
than a predefined limit.

A trajectory with similar initial conditions to the
above trajectory is shown in Fig. 2. The outcome

-2

T

Fig.1 A trajecfory with initial conditions (z = 3, y = 0.249, u, =0, u, = 0).
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3 2 K]

0 1 2 3 4
x

Fig. 2 A trajectory with initial conditions (z = 3, y = 0.25, uz =0, uy = 0).

is quite different: the particle ends up in the other
black hole. These trajectories are not particularly
special, but the outcome depends sensitively on the
initial conditions. This characteristic of the dynam-
ics is one of the effects of chaos.

Not all trajectories end up in one of the black
holes. Even for trajectories with negative energy,
which cannot escape to infinity, the particle may
orbit indefinitely. An example of this is shown in
Fig. 3. The phase space may thus be divided into
three sets, the basin of attraction of the black hole
at y = 1, which is marked in black in the follow-
ing fighres; the basin of attraction of the black hole
at y = —1, which is marked in white; and those
trajectories which continue to infinite proper time,
which are marked in grey. Numerically, it is only
possible to integrate to a finite proper time; how-
ever, it is found that trajectories which fall into one
of the black holes do so within a few orbits. That
is, varying the maximum time cutoff has virtually

no effect on the results, after about 1000 (proper)
time units.

Some u = 0 slices of phase space are shown in
Figs. 4-8. It is seen that the basins of attraction
are quite complicated, and their mutual boundary
appears to be a fractal. This is another indication
that this system is chaotic. We will quantify the
fractal nature of this section of the basin boundary
in the next section by obtaining a numerical esti-
mate of its dimension.

Figure 8 contains a grey region. As noted above
it is not possible to prove that the trajectories in
this region survive for infinite time; however, the
picture does not change much if the maximum time
is increased, so this looks to be a real effect. A
typical trajectory in this region is shown in Fig. 9.
The particle starts at rest at one end of the trajec-
tory, moves to the other end, and then retraces its
steps. This orbit is stable, otherwise numerical er-
rors would cause it to deviate after a few iterations.
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Fig. 3 A trajectory with initial conditions (z =3,y =0, us =0, uy = 0.538).

-4 2 0 2 4

T

Fig. 4 A u =0 section of phase space.
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—

26 238 3 3.2 34

z

Fig. 5 A subset of Fig. 4.

28 2.82 284 . 286 2.88 29 292 294

xz

Fig. 6 A subset of Fig. 5.
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0.27

0.265

Yy 026
0.255
0.25 ..
2.84 2.845 2.85 2.855 2.86
z
Fig. 7 A subset of Fig. 6.
0.264
0.2635
y 0263
0.2625
0.262 - -
2.845 2.8455 2.846 2.8465 2.847
z

Fig. 8 A subset of Fig. 7.
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-1}

-2

Fig. 9 A trajectory with initial conditions (z = 2.8458, y = 0.263, u, =0, u, = 0).

It does not seem to have been noted in an earlier
study of the periodic orbits of this system.

There are a number of parameters which can be
modified in the above system. If the charge/mass
ratio (e/m) is equal to one, there is still a force on
a moving test particle, but not on a stationary test
particle. Thus the u = 0 section of phase space is
all “grey”, as none of the particles ever fall into one
of the black holes. If it is slightly less than one,
however, the result is remarkably similar to that of
zero charge, as is evidenced in Fig. 10. With the
exception of a slight change of scale and location in
phase space, this picture is almost indistinguishable
from the equivalent zero charge picture, Fig. 6. This
is an example of a form of universality in chaos,
where the structure depends only on the topology
of orbits in phase space, and not on the detailed
form of the equations.

This also means that there are sharp transitions
as parameters are varied. For example, if, for e = 0,
the mass of the black holes is reduced, thus moving

towards the nonrelativistic limit, the fractal basins
gradually take up more and more of phase space, as
the “capture” cross section decreases, until about
M = 0.00602. At that point, grey regions begin to
appear, which eventually take up the whole of phase
space, and become the stable orbits which charac-
terize all but a set of zero measure of Newtonian
phase space. The phase space for M = 0.006 and
a typical “Newtonian-like” stable orbit are shown
in Figs. 11 and 12. The line for this trajectory is
thick because the particle does not follow exactly
the same path for each orbit. The is also true of
the trajectory shown in Fig. 9, but to a smaller
degree.

Also, we may vary the'initial velocity. Figures 13-
15 show a plot of the M = 1/3, e = 0 phase space
with an initial velocity which is constant over the
plot. Note that the boundaries of the grey regions
appear to be smooth curves. This is partly ex-
plained by the fact that the region in which the
total energy is positive is roughly hour-glass shaped.
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2.4 242 244 246 248 25 2,52 254

Fig. 11 A u =0 section of phase space with M = 0.006.
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Fig. 18 A section of phase space with uz = 0, uy = 0.4.
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Fig. 14 A section of phase space with uz =0, u, = 0.7.

Fig. 15 A section of phase space with u, =0, u, = 1.5.
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Fig. 16 A section of three-black-hole phase space with u = 0.

Fig. 17 A subset of Fig. 16.
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Fig. 18 A subset of Fig. 17.

The boundary between the basins of attraction still
appears to be a fractal.

Finally, we may consider three black holes, as
shown in Figs. 16-18. Here, black, white and grey
correspond to the basins of attraction of the three
holes, which are placed at the vertices of an equilat-
eral triangle of side length /3. Each hole has mass
1/3. This section of phase space has the curious
feature that between each black and white region
there is a grey region, and so on. Or, to put it an-
other way, there is only one basin boundary, and
that boundary is the boundary of all three regions.
This property is similar to the Julia sets generated
by applying Newton’s method to cubic equations,2
and is only possible if the boundary is a fractal.
A proof of this property involves an investigation
of orbits which just escape falling into a particular
black hole. These circle the black hole an infinite
number of times, and are arbitrarily close to orbits
which circle a large number of times but then es-
cape and head towards either of the other holes.
Thus the boundary is arbitrarily close to all three
basins of attraction. The Newtonian limit of this
system is chaotic, but does not have attractors. A

similar nonrelativistic system with attractors and
boundary basins is the magnetic pendulum.*3

5. MEASURES OF CHAOS

5.1 Fractal Dimensions

There are a number of different fractal dimensions
used in the literature.4244 The essiest to estimate
numerically is the box dimension, which is a non-
negative real number assigned to a subset F of
E-dimensional Euclidean space R¥. There are sev-
eral equivalent definitions. The definition used here
to estimate the dimension of the basin boundary
numerically is as follows: Fill a section of RZ with
a grid of E-dimensional cubes of side length 6. Let
Ns(F) be the number of grid cubes containing F.
Then the box dimension is:
. In N§(F)

dp(F) =~ lim =%
Other equivalent definitions include covering the
set F' with a minimum number of spheres or other
shapes or finding the maximum number of disjoint

(25)



spheres with centers in F. The box dimension in-
volves a limit, so there is no guarantee that it is
actually defined for a given set F.

If the space is non-Euclidean, for example the
curved pseudo-Riemannian spacetime of general rel-
ativity, then the concept of a “cube of size 6” in the
definition of dimension becomes ill-defined. How-
ever it is not necessary to cover the actual fractal
object with cubes: Choose a coordinate system, and
calculate the box dimension of the object in coordi-
nate space. An important result is that any diffeo-
morphism, that is, differentiable coordinate trans-
formation, leaves the box dimension invariant, so
the original choice of coordinate system was irrel-
evant, and the box dimension of the object is well
defined. Thus we can ignore the curvature of the
MP spacetime, and simply calculate the dimension
of the basin boundary as if it were embedded in a
flat Euclidean space.

The value of dp was evaluated using the above
equation for a region in phase space near that shown
in Fig. 6. The region, containing 25202 points, was
covered by a grid. Each square of size § (a factor
of 2520) was counted if it contained points of dif-
ferent color, that is, trajectories with different final
outcomes. Figure 19 shows a plot of In N vs. In e.
The straight line is a least squares fit to all but
the three smallest and ten largest values of 6, and
gives a dimension of 1.43. The uncertainty is about
0.03, which is typical for such investigations.*> This
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uncertainty arises from the sampling of regions in

phase space and ambiguity in how to actually per-

form the fit. The curvature of the graph in Fig. 19

towards small § is well explained by the fact that

for small box sizes, it is possible to miss a box which -
actually contains part of the boundary, and hence

underestimate Nj.

The presence of fractal boundary basins indicates
that there are non-differentiable (non-smooth)
structures in phase space, which implies the system
is chaotic. In contrast, an integrable Hamiltonian .
system has enough constants of motion to deter-
mine the motion completely, and these constants
must be smooth functions of the phase space coor-
dinates. The usual provisos apply: The numerical
methods give estimates of the fractal dimension over
a range of scales, but can never take exact § — 0
limits. Nevertheless the statement that the bound-
ary is a fractal is quite convincing.

We have performed the same analysis to Fig. 18
for the three-black-hole problem. In this case there
are 12602 points, and the resulting graph, leading
to a dimension of 1.47, is shown in Fig. 20.

5.2 Lyapunov Exponents

Another indicator of chaos for nonrelativistic sys-
tems is the presence of positive Lyapunov exponents
(defined below) for a non-isolated set of trajectories.

10
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Fig. 19 The dimension of a section of two-black-hole phase space is 1.43.
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Fig. 20 The dimension of a section of three-black-hole phase space is 1.47.

The latter condition is necessary because unstable
fixed points generally have positive Lyapunov ex-
ponents, and occur in integrable as well as chaotic
systems. The difference is that the unstable tra-
jectories are isolated in integrable systems, whereas
chaotic systems may be composed entirely of unsta-
ble trajectories. Typically chaotic systems contain
both stable and unstable regions in phase space,
with a fractal boundary between the two.

The Lyapunov exponents ) in flat spacetime are
defined by choosing a point z in phase space, at the
center of a ball of radius ¢ < 1. After a time ¢ the
ball’ evolves into an ellipsoid with semi-axes ex(t),
where k ranges from one to the dimension of the
phase space. The Lyapunov exponents are:

ex(t)

A |
Aule) = Jim, limg 510 =2,

(26)

assuming the limits exist. The )y, are constant along

a trajectory, and are often constant over larger
regions of phase space, such as the basin of an
attractor.

There are a number of subtleties associated with
the definition of Lyapunov exponents in curved
spaces, and in particular the MP spacetimes. What
time parameter should be used for t? This ques-
tion has particularly plagued the Mixmaster prob-
lem, as discussed in Sec. 2. In a general spacetime
the only time parameter of any special significance
for a trajectory is the proper time 7. If this is

used in Eq. (26) the result is a measure of the local
instability of phase space trajectories, but does not
give information about the global properties of the
system. The MP spacetime is static, so that there
are a set of distinguished observers “at rest” with
respect to the black holes. The time as measured by
these observers depends on their position due to the
gravitational redshift, but at infinity approaches a
constant rate, given by ¢, which appears in the met-
ric, Eq. (1). We will use this parameter, following
Ref. 25. .

The other difficulty is that it is not obvious how
to calculate distances in phase space, given that
the ‘original spacetime is curved.  Here, as with
the fractal dimension, any metric gives the same
answers, provided that the trajectory returns arbi-
trarily close to the starting point, as this causes the
metric terms to cancel in the expression ex(t)/e.
The ‘above condition is not very restrictive, as it
applies to any trajectories remaining in a compact
region of the phase space, including periodic orbits.
In our case, this means that Lyapunov exponents
are well defined for trajectories which do not fall
into a black hole or escape to infinity. In the former
case, the limit ¢ — oo is also not sensible, while in
the latter, the exponents are zero for any metric in
phase space which reduces to the special relativistic
one in the flat spacetime limit.

The numerical method by which Lyapunov expo-
nents are calculated is described in Ref, 46. For a



general set of coupled ODE’s:

&' = f{(x), @7
the equation for a perturbation 8z is:
5 = b9 2 fix) (28)
8z ’

which is a linear equation containing a known func-
tion of x, which is unknown. An orthonormal basis
of perturbations is integrated at the same time as
the equations of motion, and a Gram-Schmidt or-
thonormalization is carried out periodically to en-
sure that one vector is lined up in the fastest grow-
ing direction, one in the second, and so on; this
also ensures that the exponentially growing solu-
tions do not generate overflow or roundoff errors.
The Lyapunov exponents are obtained simply by
adding the logarithm of the scaling factors in the
Gram-Schmidt algorithm, and dividing by the total
time. We call this the “straight” algorithm.

In our problem we have the additional difficulty
that, in certain regions of phase space, such as those
shown in the figures in the previous section, almost
all of the trajectories fall into one of the black holes,
yet those that do not still have meaningful Lya-
punov exponents which we wish to estimate. In an
attempt to get around this problem we have used
an algorithm which periodically checks whether the
trajectory survives a specified time. If it does not,
the position in phase space is shifted randomly by a
small amount. We have checked that this does not
cause the energy to drift perceptibly. The shift-
ing algorithm is difficult to use in that there are
a number of parameters to choose, and the shifting
routine may fail to find any suitable trajectories. In
fact the trajectory given in the table below is the
only one we have tried for which it has succeeded
for a long integration time. Of course, it gives the
same result as the straight algorithm if shifting is
not necessary.

It is sometimes possible to calculate Lyapunov
exponents analytically. The equations of motion are
known, so if an analytic solution for a trajectory
can be found, the linear Eq. (28) can be solved,
giving a matrix whose eigenvalues are the Lyapunov
exponents. One such trajectory is the unstable fixed
point midway between the black holes.

For the general case of a fixed point, U; = 0,
where 4 indicates z or y, and the comma is a par-
tial derivative, as usual. The linearized equations
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become
bz 0 0 Ul o
d|léy| | © 0 0 U!
dr | buy |~ | aUgzz aUgy O 0
Suy aUgzy aU, 0 0
bx
&
x 65 , (29)
X
Suy
with

a=%(1—%), (30)

and have solutions of the form €™ where [ is an
eigenvalue of the above matrix, that is,

1—e/m
=\ g5

x ,/U,,,+U,yyi\/(U,m-U,yy)2+4ugw. (31)

The Lyapunov exponents are closely related to
the values of [, but differ in the following ways: An
imaginary value of I leads to oscillatory solutions
which have Lyapunov exponent zero, and the expo-
nents are calculated using the global time ¢, so that
the remaining exponents are given by A = U1,
using the metric Eq. (1). Thus the Lyapunov ex-
ponents may be calculated for a fixed point, and
depend only on the values of U and its derivatives
at the point, and the value of e/m. The analytic
value for the fixed point in the case of two black
holes of mass 1/3 is given in Table 1, and agrees
with the numerically evaluated result to five signif-
icant figures. '

If e = m, the above expression yields zero for
the Lyapunov exponents, which can be understood
physically because the force on the particle is pro-
portional to v? for small v, so the equations lin-
earized about the stationary solution are trivial.
These analytic values are useful in checking the nu-
merics, but do not yield any information about the
chaos, since they apply to trajectories which are not
in chaotic regions.

The trajectories which have been integrated nu-
merically in Table 1 are the unstable fixed point
at the origin, which compares very closely with the
analytic result; the trajectory plotted in Fig. 3; the
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Table 1 Lyapunov Exponents for the Two-Black-Hole Problem

Initial Conditions Algorithm A1 Az As Ad
(0, 0,0, 0) Analytic % «-551—\8/5-
(0, 0, 0, 0) Straight 0.32199  0.00001  —0.00001  —0.32199
(3,0, 0, 0.538) Straight 0.00007  0.00002  —0.00001  —0.00007
(2.8458, 0.263, 0, 0) Straight 0.00005  0.00000 —0.00001  —0.00003
(3,0,0,0) Straight 0.11222  0.00007  —0.00007  —0.11222
(3.33467, 0.23509, 0, 0) Shifting 0.03609  0.00006  -0.00006  —0.03609

trajectory plotted in Fig. 9; a trajectory which os-
cillates up and down the z-axis; and a trajectory
“on” the boundary which has needed to be shifted.
All of these have been integrated for t = 10 time
units. The “algorithm” is either the analytic cal-
culation given above, the straight algorithm, or the
shifting algorithm.

It is clear that the numerical results reflect the
symmetries of the equations. The sum of the expo-
nents is zero, due to Liouville’s theorem. In addi-
tion, two of the exponents are (approximately) zero
due to the one constant of motion E. As the length
of the integration increases, these decrease, showing
that they are due to the finite averages used, and
not the numerical errors in the equations.

Two of the orbits appear to have all four expo-
nents zero. This is expected, since they are nu-
merically stable in that a small perturbation of the
initial conditions does not cause a qualitative dif-
ference in the trajectory.

The trajectory which oscillates along the z-axis
is in the unusual position of being exactly calcula-
ble (in theory: the result is a complicated integral),
but arbitrarily close to the fractal boundary. See
Fig. 5. It is only a special orbit in that the in-
tegration can be carried on for an indefinite time
due to the symmetry of the equations. Otherwise
it is similar to the other unstable periodic orbits
of this system. It might be possible to analyze the
Lyapunov exponents of this system by noting that
an arbitrary point on the basin boundary is arbi-
trarily close to periodic orbits. The Lyapunov ex-
ponents for the periodic orbits could be evaluated
with some definiteness, because only a finite time
is required.

6. DISCUSSION

We have seen that there are difficulties in apply-
ing the standard tests of chaos to general relativis-
tic systems. Because the spacetime and the phase
space derived from it depend on an arbitrary choice
of coordinate system, quantities which depend on
distances in phase space, such as Lyapunov expo-
nents become poorly defined and unsuitable as a
test for chaos. For the MP problem, the space-
time is static, so a natural global time variable ex-
ists, and these problems become less severe. In any
case, quantities which are topological in nature, or
at least coordinate independent, such as the fractal
nature of structures in phase space, are equally good
for relativistic problems. Poincare sections also fall
into this category.

The motion of particles in systems of two or three
fixed black holes exhibits many of the features com-
mon to non-relativistic chaotic systems, such as
sensitive dependence on initial conditions leading
to nonzero Lyapunov exponents and fractal basin
boundaries. There are islands of stability hidden
in the chaos. The structure of the phase space de-
pends only slightly on the charge of the particle.
What is unusual about this problem is the pres-
ence of attractors in a non-dissipative system. The
fractal boundaries of the basins of these attractors
are particularly useful to quantify the chaos, since
their dimension does not depend on the chosen co-
ordinate system.

Since the two black hole problem has an inte-
grable Newtonian limit, it should be possible to ob-
serve the break up of the KAM tori explicitly as
the mass of the black holes is increased from zero.
What makes this limit most interesting is that the



relativistic effects lead to capture of the particle, a
process that is not present in the non-relativistic
system.

In closing, we remark that fractal geometry is
particularly well suited to studying chaos in the
most geometrical of theories — general relativity.
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