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The dependence of the Lyapunov spectrum on the strength of the external field is studied for small non-
equilibrium systems. For the periodic Lorentz gas in two and three dimensions the coefficient of the square of
the field is largest in magnitude for the largest exponent, and decreases with each successively smaller expo-
nent. The lowest level periodic orbit expansion approximation for the two-dimensional Lorentz gas, which can
be calculated analytically, has the same qualitative behavior as a function of external field. Using periodic
orbits of length 2 the dynamical origin of the observed field dependence is investigated.
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I. INTRODUCTION

There have been a number of calculations of the
Lyapunov spectra of thermostatted nonequilibrium steady
states in which an external field gives rise to a nonzero mass
or momentum flux@1–3#. These molecular dynamics results
have almost all involved a small number of atoms, typically
from 2 to 32. Although these calculations have been moti-
vated by a need to characterize the fractal structure of the
nonequilibrium phase space distribution, many other interest-
ing properties have emerged, including the divergence rate of
initially close trajectories. One of the most interesting prop-
erties that is sometimes observed is that if one orders the
Lyapunov exponents from largest to smallest, and pairs to-
gether largest and smallest, next largest and next smallest,
etc., then the sum of each pair of exponents is an invariant
@3#. This has been termed the conjugate pairing rule and has
been proved to hold for a restricted class of thermostatted
systems@4,5#.

In almost all of the Lyapunov spectra calculated for many
particle systems it has been observed that the change in the
Lyapunov exponents, with increasing field, has found the
largest Lyapunov exponent to be the least sensitive, and the
smallest exponent to be the most sensitive, to the strength of
the field@6#. It has been argued@3# that the largest exponent
is associated with the most unstable direction in phase space,
and that the source of this instability is primarily due to the
defocusing effect of collisions. In contrast, the effect of the
external field is to change the particle’s trajectory between
collisions, leading to more focusing, and hence more con-
traction. These considerations are consistent with the calcu-
lated Lyapunov spectra. Indeed, for a two-dimensional WCA
fluid of eight particles, at a reduced density of 0.4 and re-
duced temperature of 1.0, there has been a careful study of a
range of nonequilibrium algorithms@6# to explore the neces-
sary conditions for the conjugate pairing rule to hold. Also
reported here are the shifts in the exponents due to field, as a
function of exponent number~or index!. In all cases the larg-
est exponent was found to have the smallest field dependent
shift, and for the SLLOD algorithm it was found that the

shift was approximately linear in the exponent index.
However, very recently van Beijeren and Dorfman@7#

have proposed the calculation of the Lyapunov spectra for
the Lorentz gas from a Lorentz-Boltzmann type equation.
Extensions of this work@8# have suggested that for this sys-
tem, which has only two nonzero Lyapunov exponents, the
largest exponent varies more strongly with field than the
smallest exponent. With the presently available data from the
simulation studies of the two- and three-dimensional Lorentz
gas@9#, we undertake a more detailed study of the field de-
pendence of the Lyapunov exponents. An approach to the
study of classical chaotic systems using periodic orbits@10#
is used to probe the dynamical events which give rise to
different behavior for these two particle systems.

II. THE PERIODIC LORENTZ GAS

Consider a version of the Lorentz gas@11# which consists
of an infinite array of hard scatterers with a single point
particlewanderingthrough the lattice experiencing hard core
collisions with the scatterers. The wandering particle is acted
upon by the combined effects of an external field and a ther-
mostat. The thermostat ensures that the kinetic energy of the
particle ~or speed! is a constant of motion. The thermody-
namic state point of the Lorentz gas can be characterized in
terms of the disk spacingw, so if d is the distance between
the centers of the scatterers, thenw5d22s, where the ra-
dius s51. For large scatterer spacing~or low density!, the
two-dimensional Lorentz gas has an infinite horizon~that is,
for some initial conditions it is possible to pass through the
whole lattice without a collision! ~see Fig. 1!. To avoid dif-
ficulties in two dimensions the spacing can be chosen suffi-
ciently small so that the horizon is finite, that is,w<4/)
22. In particular, we consider the spacingw50.236 068 5,
which has been studied previously@12,13#. In three dimen-
sions there is always an infinite horizon but trivial trajecto-
ries can be avoided by ensuring that the field direction is
sufficiently different to the lattice directions in which
collision-free trajectories occur@9,14#.

The equations of motion for the Lorentz gas subject to an
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applied external fieldf e pointing in the negativex direction,
with an isokinetic~Gaussian! thermostat@15#, are given by

ẋ5px /m, ṗx5Fx2 f e2apx ,
~1!

ẏ5py /m, ṗy5Fy2apy ,

where (Fx ,Fy) is the impulse force due to a collision with a
scatterer, and the constraint of constant kinetic energy is im-
posed by choosing

a5
~Fxpx1Fypy!2 f epx

p2
.

If we take the fixed magnitude of the momentump of the
wandering particle, and its massm, to be unity, then the
~kinetic! temperature is given bykT51. The two-
dimensional Lorentz gas has only one momentum degree of
freedom, so we can write the momentum vector as
(px ,py)5p~cosu,sinu! whereu is the angle between thex
axis andp. It is more convenient to represent the position of
the moving particle in polar coordinates so we write (x,y)
5r ~cosf,sinf!. Thus r , f, andu are the three degrees of
freedom for the model. In polar coordinates, the momentum
equations of motion give

u̇5« sinu, ~2!

where«5 f e/p. Equation~2! can be integrated over a given
time interval,Dt5t12t0 , to yield

tan~u1/2!5tan~u0/2!e«Dt. ~3!

Integrating the coordinate equations of motion between col-
lisions we find that the changes inx andy are parametrized
by the momentum angleu, so

x12x05
1

«
lnS sinu1sinu0

D and y12y05
u12u0

«
. ~4!

It is straightforward to generalize the equations of motion,
and the trajectory between collisions, to three dimensions.

III. NUMERICAL RESULTS

In this section we present some results for the Lyapunov
exponents for the two-dimensional Lorentz gas, and analyze
some recently reported results for the three-dimensional Lor-
entz gas@9#. The important point to note about these simu-
lation results~for a two particle system! is that they are

qualitatively different to those obtained for eight particle sys-
tems @6#. The method used to determine the full Lyapunov
spectrum is described briefly, as it is an obvious extension of
previous methods.

Precise numerical integration of systems with hard disk
interactions is difficult, because the equations determining
the time of collision~or whether a collision takes place! are
transcendental. Standard integration techniques developed
for continuous interaction potentials do not readily adapt to
this case, so a lower bound of the time before the next col-
lision is calculated, approximating the trajectory by a circle.
After a few successively smaller steps, if the distance to the
surface of the disk is less than 10214, a collision is defined to
have occurred. Lyapunov exponents are estimated numeri-
cally by considering neighboring trajectories’ separated dis-
tances of order 1027, and renormalizing to this distance using
a Gram-Schmidt scheme at every collision. This procedure is
similar to the standard algorithms, except that the perturba-
tions are finite rather than infinitesimal. Our results for the
two-dimensional Lorentz gas are shown in Figs. 2 and 3,
along with the coefficients for a polynomial fit in Table I.
The coefficients of the even polynomial fit, presented in
Table I, show that the quadratic field dependence of the larg-
est exponentl1 is stronger than, and of opposite sign, to that
for the smaller exponentl2. The coefficients of«2 are quite
accurate, as can be judged from the goodness of the fits in
Figs. 2 and 3, but the coefficients of«4 are less reliable.

For the three-dimensional Lorentz gas the spacing be-
tween the scatterers isw50.3. The other variable parameters
are two angles determining the relative orientations of the

FIG. 1. The geometry of the two-dimensional Lorentz gas. For
the wandering particle at collision, the polar anglef gives the po-
sition, while u gives the angle between the momentum vector and
the x axis. The system~or scatterer! density is parametrized by the
ratio w/s, wherew is the spacing between scatterers.

FIG. 2. The even polynomial fit to the largest Lyapunov expo-
nent for the two-dimensional Lorentz gas.

FIG. 3. The even polynomial fit to the smallest Lyapunov ex-
ponent for the two-dimensional Lorentz gas. Note that Figs. 2 and 3
have the same vertical scale increments.
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hexagonal close packed lattice and the field. Our data corre-
spond to an orientation in which the lattice vectors are
d(0,1,0), (d/2)(0,),1), (d/6)(2A6,3,A3), where the exter-
nal field is in thex direction, as for the two-dimensional
case. The results presented in Table II are the coefficients of
an even polynomial fit to the numerical results presented in
@9#. Note that all the coefficients of«2 are negative, and that
their magnitude decreases monotonically from the first to the
last exponent. It is worth noting that the three-dimensional
Lorentz gas is the smallest system for which a numerical
check of the conjugate pairing rule is possible as there are
only two pairs of exponents. The accuracy to which the con-
jugate pairing is obeyed for all values of the external field@9#
is impressive, regardless of whether the system is chaotic or
in a stable window.

IV. PERIODIC ORBIT EXPANSIONS

Several different, but closely related approaches have
been used to calculate the averages of observables in classi-
cal and quantum systems using a sequence of approxima-
tions to the stationary measure supported on the set of un-
stable periodic orbits~UPOs!. There is the periodic orbit
expansion~POE! method @16,17# and the cycle expansion
method of Artuso, Aurell, and Cvitanovic@10,12#. These two
methods are based upon the thermodynamic formalism of
Ruelle and are equivalent in the limit of long periods, in that
they converge to the same limiting measure. For classical
dynamical systems, their convergence properties are in gen-
eral different and depend upon the pruning of the symbolic
dynamics for the particular model. If the symbolic dynamics
is complete then the cycle expansions usually converge
quickly, but for strong pruning the standard POE methods
often work better. In either of these approaches the average
of a system propertyB is written in terms of weighted con-
tributions from UPOs. For the POE method we can write

^B&5 lim
n→`

^B&n5 lim
n→`

(
iPPn

L i
21E

0

t i
B~s!ds

(
iPPn

t iL i
21

, ~5!

where Pn is set of UPOs of lengthn, L i is the largest
Lyapunov number~if there is only one expanding direction!,
andt i is the period of thei th UPO. It has been shown that
the average of the largest Lyapunov exponent for the two-
dimensional Lorentz gas can be calculated accurately using
either the POE method@17# or the cycle expansion@12# ~see
Table III!. Using periodic orbits up to and including length
10, the accuracy of the two methods is essentially the same
@17#.

The Lorentz gas can be considered as a mapping rather
than a continuous time evolution, by choosing a Poincare´
surface of section at the surface of the scatterers@12,17#.
Since the scatterers are circular, and the momentum of the
moving particles is fixed, a point on the Poincare´ surface is
uniquely defined by specifying the two angles~u,f! ~whereu
and f are the angles immediately after collision with the
scatterer!. The dynamics then reduces to determining the
mapping from collision to collision which we represent as
(un11,fn11)5M (un ,fn). M is implicitly defined by the
integrated equations of motion and contains all the informa-
tion required to compute the dynamic and thermodynamic
properties of the system. In particular, the magnitudes of the
eigenvalues of the related tangent map~which we call the
stability or monodromy matrix! are the Lyapunov numbers.

The stability matrix forM can be calculated@18# by di-
viding the mapping into two parts. The first is associated
with the free flight from collision 0 to collision 1 that takes
the angles~u0,f0! to (u08 ,f1), whereu0 is the momentum
angle immediately after collision 0, andu08 is the momentum
angle immediately before collision 1~see Fig. 4!. This is
followed by collision 1, which transforms (u08 ,f1) into
~u1,f1!. Thus the stability matrixJM is composed of the
product of the stability matrix for the free flight,JF , and the
stability matrix for the collision,JC . The stability matrix for
a periodic orbit ofn collisions can then be constructed from
the product of pairs of such matrices,

Jorbit5)
i51

n

JM~ i !5)
i51

n

JC~ i !JF~ i !, ~6!

TABLE I. The coefficients of the even polynomial fit to the
Lyapunov exponents of the two-dimensional Lorentz gas in the
range20.5,«,0.5. The number in parentheses is an estimate of
the error in the last digit of the result.

Exponent «0 «2 «4

l1 1.9625 20.23~2! 20.1~1!

l2 21.9626 0.05~3! 0.1~1!

TABLE II. The coefficients of the even polynomial fit to the
Lyapunov exponents of the three-dimensional Lorentz gas in the
range20.5,«,0.5.

Exponent «0 «2 «4

1 1.0988 20.66~5! 0.9~1!

2 0.9836 20.58~5! 0.8~1!

3 20.9841 20.32~2! 0.0~1!

4 21.0994 20.23~2! 20.1~1!

TABLE III. The coefficients of the even polynomial fit to the
periodic orbit expansion results for the Lyapunov exponents of the
two-dimensional Lorentz gas in the range20.5,«,0.5.

«0 «2 «4

^l1&2 1.4052 20.38~3! 20.5~1!

^l2&2 21.4052 0.00~3! 0.5~1!

FIG. 4. The geometry of an arbitrary free flight between two
collisions.
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where i labels the free flight, and the order of terms in the
product is such that the latest collision is to the left. For an
orbit that is not periodic@19#, the Lyapunov exponents can
be calculated from the eigenvalues of

L5 lim
t→`

@J~ t !J~ t !* #1/2t, ~7!

where* denotes the adjoint, andJ(t) is the product of free
flight and collision matrices for the trajectory. For a periodic
orbit the eigenvalues of the matrix (JorbitJorbit* )1/2 are the
Lyapunov numbersL i for that orbit. Thus for the two-
dimensional Lorentz gas, the largest and smallest Lyapunov
numbers for an UPO can be calculated using Eq.~7! and the
Lyapunov exponentsl i are then given byL i5exp(l it i)
wheret i is the period of the orbit.

For the purpose of this paper we are interested in con-
structing a simple semianalytic approximation to the field
dependence of the Lyapunov exponents so we consider the
contribution to the average Lyapunov exponent from all pe-
riodic orbits of length 2, that is,̂l&2. From the previous POE
results for the Lyapunov exponent@12,17# it can be seen that
the length 2 approximation̂l&2 differs significantly~;30%!
from the length 10 approximation̂l&10 and the various esti-
mates of the infinite length limit̂l&` . However, the approxi-
mation ^l&2 can be constructed analytically and may display
the same external field dependence~at least qualitatively! as
the Lyapunov exponents themselves. It is important to note
that both the POE and cycle expansion results obtained pre-
viously for ^l&` are accurate to within about 2%.

TheS, L, T, andV orbits introduced in@17# are needed to
construct the approximation̂l&2. The S and L orbits are
bounces between nearest neighbor and second nearest neigh-
bor scatterers, respectively. Here the wandering particle re-
turns to its initial condition after one period, thus these orbits
are closed. TheT andV orbits are open orbits and are shown
in Fig. 5. From Eq.~5!,

^l&n5
(
iPPn

l it iL i
21

(
iPPn

t iL i21

~8!

so all orbits must be included in the total contribution to the
average Lyapunov exponent^l&2. In the actual calculation of

^l&2 it is found that at sufficiently large fields orbit pruning
occurs. That is, certain orbits are no longer physically pos-
sible as a particular free flight intersects a scatterer. In this
circumstance the pruned orbit must be excluded from POE
calculation. In this work we are interested in the quadratic
dependence of̂l&2 on the field, so we have ignored the ef-
fects of pruning in the results presented in Figs. 6 and 7. We
do not expect this to seriously change the quadratic depen-
dence of̂ l&2 on the field strength, in the zero field limit. The
consequence of orbit pruning as a function of field strength
in the periodic orbit expansion@Eq. ~8!# is to introduce dis-
continuities in the calculated averages. The contribution
from each orbit is smooth and analytic over a finite range, so
the sum of these contributions is piecewise continuous. In
the limit asn→` the average becomes everywhere discon-
tinuous. As a result a power series fit is only an approxima-
tion to a function that is no longer analytic in this limit. One
should keep these qualifications in mind when interpreting
fitted power series coefficients.

The main purpose of introducing the periodic orbit ap-
proximant with length 2 orbits is an attempt at understanding
the physical mechanism underlying the behavior observed in
Figs. 2 and 3. Comparing the results in Figs. 6 and 7 with
those in Figs. 2 and 3 suggests that the qualitative effects can
be understood in terms of the behavior of length 2 periodic
orbits. To do this we consider terms in the average Lyapunov
exponent̂l6&2 as given by Eq.~8!. The setP2 consists of 24
distinct orbits, which are best labeled using the standard
symbolic dynamics@12,17#. There are threeS orbits, threeL

FIG. 5. Examples of theT orbit and theV orbit for the two-
dimensional Lorentz gas. If the wandering particle is moving from
left to right then theT orbit is ~4 11!, otherwise it is~5 10!. If the
wandering particle is moving upwards then theV orbit is ~1 5!, if it
is moving downwards it is~7 11!.

FIG. 6. The even polynomial fit to the length 2 UPO average of
the largest Lyapunov exponent for the two-dimensional Lorentz
gas.

FIG. 7. The even polynomial fit to the length 2 UPO average of
the smallest Lyapunov exponent for the two-dimensional Lorentz
gas.
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orbits, 12T orbits, and sixV orbits. As theS andL orbits are
closed~returning to the same phase point! the magnitudes of
their positive and negative exponents are equal. One would
therefore expect a disproportionate change in positive and
negative exponents to be due to theT andV orbits which are
not closed~that is, they are only periodic up to a lattice
vector!. However, the explanation is not as simple as this,
and the field dependences of the numerator and denominator
of Eq. ~8! need investigation.

The numerator and denominator in Eq.~8! are each sums
of 24 different terms. The period of each orbit in the absence
of a field corresponds to a local minimum, so that when the
field is introduced the period of each orbit increases@except
for the S orbit ~0 6! which remains constant#. This has the
effect of making the denominator a monotonically increasing
function of field strength. The variation of the numerators for
both the positive and negative Lyapunov exponents is com-
plicated further by the fact that the Lyapunov exponents for
individual periodic orbits can be either increasing or decreas-
ing functions of field depending on the detailed geometry of
the orbit. Defining thex component of the displacement of a
periodic orbit to beDxi , those orbits with large negativeDxi
become more probable, while those with positiveDxi be-
come less probable for increasing fields. Looking in detail at
theV orbits we find three significant yet different contribu-
tions. The orbits~1 5! and ~7 11! have Dxi50, so their
positive and negative exponents have equal magnitude. The
orbits ~3 7! and ~5 9! with Dxi,0 become more probable,
while the orbits~1 9! and ~3 11! with Dxi.0 become less
probable. We might naively expect that the more probable
~3 7! and~5 9! orbits may produce the major change in the
field dependence of the averages, but the Lyapunov expo-
nents for these orbits would predict almost the same decrease
with field for both the negative and positive exponents~see
Table IV! and this is not observed in the simulations.

Of theT orbits,~2 7! and~5 10! have the largest negative
displacements and will therefore be the most probableT or-

bits. But again, the Lyapunov exponents for these orbits
would predict almost the same decrease with field for both
the negative and positive exponents~see Table V!. Including
the next most probableT orbits, we find some where the
largest exponent decreases most and others where the small-
est exponent decreases most.

The field dependence of^l&2 is found to be a collective
property of all the periodic orbits rather than a property as-
sociated with the behavior of any individual periodic orbit.
Plotting the numerator of Eq.~8! for the positive and nega-
tive Lyapunov exponents in Fig. 8 we can make the follow-
ing observations. The numerator for the positive exponent
N1 is very weakly dependent upon the field, so the field
dependence of the average positive exponent is dominated
by the field dependence of the denominatorD, and is hence
a decreasing function of field. In contrast, the numerator for
the negative exponentN2 is quite different. It increases in
magnitude at approximately the same rate as the denomina-
tor, and hence the ratio~which is the average negative expo-
nent! becomes essentially independent of field. Thus at this
level of interpretation the effect is driven equally by the
changes in both the numerator and denominator~see Fig. 9!.

Considering the contributions to the denominator from the
four classes of periodic orbits~S, L, T, andV! in Table VI
we find that more than half of the total contribution comes
from theT orbits, and the field dependent change in theT
orbits matches the overall change from all orbits. Of the
other three~roughly equal! contributions, the denominator
associated with theS orbits is least sensitive to the field
while the denominator associated with theL orbits is most
sensitive. Fortunately, the contribution to the field dependent
change in the denominator has the same sign for all classes
of orbits.

The contributions to the numeratorN1 for the largest ex-
ponent are given in Table VII, and it is immediately obvious
that different classes of orbits have different signs for their
field dependent changes. TheT orbit has the largest contri-

TABLE IV. Reduced Lyapunov exponentslt and field dependentlt shifts for the~3 7! and ~5 9! V
orbits. Only the values for~3 7! are presented as those for~5 9! are identical.

« lt~3 7!
1 lt~3 7!

2 Dlt~3 7!
1 Dlt~3 7!

2

0.0 4.634 604 93 24.634 604 93 0.000 000 00 20.000 000 00
0.1 4.464 150 91 24.799 561 02 20.170 454 03 20.164 956 09
0.2 4.287 394 05 24.958 214 76 20.347 210 88 20.323 609 83
0.3 4.102 099 42 25.108 330 25 20.532 505 51 20.473 725 32
0.4 3.904 232 26 25.245 873 45 20.730 372 67 20.611 268 52
0.5 3.687 574 15 25.364 625 45 20.947 030 78 20.730 020 52

TABLE V. Reduced Lyapunov exponentslt and field dependentlt shifts for the~2 7! and ~5 10! T
orbits. Only the values for~2 7! are presented as those for~5 10! are identical.

« lt~2 7!
1 lt~2 7!

2 Dlt~2 7!
1 Dlt~2 7!

2

0.0 3.103 781 94 23.103 781 94 20.000 000 00 0.000 000 00
0.1 2.992 188 69 23.215 795 52 20.111 593 25 20.112 013 58
0.2 2.880 834 10 23.328 047 75 20.222 947 84 20.224 265 81
0.3 2.769 759 89 23.440 580 37 20.334 022 05 20.336 798 43
0.4 2.658 934 59 23.553 361 89 20.444 847 35 20.449 579 95
0.5 2.548 308 61 23.666 342 74 20.555 473 33 20.562 560 80
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bution and its change with field is negative. However, this
change is largely balanced by the proportionally larger posi-
tive change in theL orbits, leaving only a very small overall
negative change in the numerator. For the numerator for the
smallest exponentN2, from Table VIII, the change is most
significant again for theT orbits. These orbits give approxi-
mately half the total contribution to the numerator, and 74%
of the change in the numerator. Here we can associate the
major contribution with particularT orbits such as~0 5!,
~2 7!, and ~4 9! @and their reflections in thex axis ~0 7!,
~5 10!, and~3 8!# which all show an increase in probability
and a significant decrease in their smallest exponent as the
field strength increases. It is these orbits which produce the
greatest change in the numerator, but in this case that change
is matched by the denominator, and the overall effect is to
make the average of the smallest Lyapunov exponent almost
independent of the field.

V. CONCLUSIONS

Numerical results have been presented for the two- and
three-dimensional Lorentz gases which show that the largest
exponent is more strongly dependent upon the field strength
than the smaller exponents. For the three-dimensional Lor-
entz gas, where there are four exponents, each successively
smaller exponent is more weakly dependent on the field.
This result is in startling contrast to the results for eight
particle WCA systems where the field dependence is pre-
cisely the reverse—the smallest exponents are the most
strongly field dependent and the largest exponent the most

weakly field dependent. As the color conductivity algorithm
~which was one of the nonequilibrium methods used for the
eight particle system! applied to a system of two particles is
simply the Lorentz gas, this implies a change in the qualita-
tive character of the Lyapunov spectrum with system size,
and that this change occurs in simply going between two and
eight particles.

The use of periodic orbit expansions, in particular those
based upon periodic orbits with the smallest length, have
been shown to be powerful tools in analyzing the basic dy-
namics in the Lorentz gas. Here the contributions fromT
orbits largely dominates many~but not all! of the effects that
are observed. Those orbits which have the largestx displace-
ment in the direction of the field become more probable as
the field increases and often account for the largest field de-
pendent change for that group of orbits, and seemingly the
largest field dependent change overall. For the eight particle
system the periodic orbits are difficult to visualize, but it is
certainly true that at equilibrium, the period of each orbit will
be a local minimum, and hence the denominator for any
periodic orbit average will also be a minimum~with respect
to variations in the field!. However, we can make no predic-
tions about the numerators as they depend upon the particu-
lar property that is being averaged.

If we consider the eight particle system in the same way
as the Lorentz gas, we would have seven scatterers and one
wandering particle, but rather than the scatterers being fixed
they can also wander freely and interact with each other un-
der a different rule to that governing wanderer-scatterer in-
teractions. From this viewpoint we might expect that the well
defined ‘‘channels’’ in the usual periodic Lorentz gas would
be absent in the eight particle system, and that this would be
reflected in a change in the probability of some particular
dynamical events~for example, the equivalent of theT or-
bits!. For the smallest exponent we can identify six of theT
orbits with the greatest contribution to the change in the
numerator of the average exponent. However, this change is
approximately matched by the change in the denominator,

FIG. 9. The variation of the denominator in Eq.~8! as a function
of field strength.

TABLE VI. The changes in the denominator of Eq.~8! due to a
change in field strength.

Orbits «50 «50.2 % change

S 0.367 685 0.368 432 0.2
L 0.362 711 0.370 771 2.2
T 1.359 907 1.375 560 1.1
V 0.270 010 0.277 596 0.8
All 2.365 621 2.392 359 1.1

TABLE VII. The changes in the numerator for the largest ex-
ponent of Eq.~8! due to a change in field strength.

Orbits «50 «50.2 % change

S 1.050 367 1.050 510 0.01
L 0.332 465 0.334 614 0.64
T 1.671 541 1.669 710 20.11
V 0.270 010 0.267 763 20.83
All 3.324 383 3.322 597 20.05

FIG. 8. The variation of the numerator in Eq.~8! as a function of
field strength for the average of both the positive and negative
Lyapunov exponents.
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and then the smallest exponent shows very little field depen-
dence. It may be important to distinguish between the types
of ‘‘flights’’ that make up periodic orbits. Here we identify
two kinds; short flights that take place between nearest
neighbors, and long flights that take place between second
nearest neighbors. In our symbolic dynamics, short flights
have even symbols while long flights have odd symbols. The
five and seven long flights@which are parts of the periodic
orbits ~0 5!, ~2 7!, ~0 7!, and ~5 10!# are movements of the
wandering particle along the horizontal channel in the direc-
tion of the field. As a result these become more probable
with increasing field. The influence on the numerator for the
smallest exponent arises because all these orbits have a

smallest Lyapunov exponent that decreases with increasing
field.

If we consider the classes of periodic orbits of length 2,
according to the particular flights that they contain, then the
S orbit has two short flights, theT orbit has a short and a
long flight, while both theL orbit andV orbit have two long
flights. Much of the field dependent behavior has arisen
through theT orbits which contain a long flight. As the num-
ber of particles increases we would expect that the predomi-
nant type of flight would be short flights due to the well
known cage effect by the shell of nearest neighbors. This
suggests that orbits containing largely long flights would be-
come much less significant, and periodic orbits with mostly
short flights would become important. We can only speculate
that this is the origin of the change in field dependence be-
tween two and eight particle systems. To establish this would
require a periodic orbit analysis of a system of more than two
particles, which remains a formidable task.
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