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We present a comprehensive study of the magnetohydrodynamic (MHD) modes and correspond-

ing state eigenvectors in the early Universe.

The fluid equations are formulated using the 3-+1

formalism of Thorne and MacDonald, as utilized by us in our previous work. The equations are
then solved in various regimes. The first of these is the ultrarelativistic limit, where we study the
electron-positron plasma at high temperatures. Here, we find the conformal invariance property of
the metric ensures results very similar to those of flat spacetime. We also investigate an electron-
proton fluid before and after recombination, where a nonrelativistic limit suffices. Here the various
frequencies redshift at different rates with respect to one another, which complicates the solutions
considerably. A thorough discussion, both quantitative and qualitative, is given for all solutions

obtained.

PACS number(s): 04.40.Nt, 95.30.Qd, 98.62.En

L INTRODUCTION

The formulation of magnetohydrodynamics (MHD) in
curved spacetime is a relatively new development in as-
trophysics. Along with other branches of plasma physics,
although the flat spacetime results are very well under-
stood, a blending of the theory with general relativity
is really only just beginning to be applied in detail to
specific systems, in particular to early Universe plasmas.

The development of relativistic MHD began in the
1950s with the work of such people as Harris, Zumino,
and Khalatnikov [1-3]. Here the basic equations and dis-
persion relationships were derived, along with some the-
ory of weak shocks. The work we undertake in this pa-
per on an ultrarelativistic (UR) electron-positron plasma
will be seen to closely correspond to these resulis. This
type of plasma is thought to have existed from around
t =103 to t = 1 s in the early Universe.

Of course our formalism will include a non-Minkowski
background spacetime metric. There have been various
attempts to formulate a fully general relativistic version
of MHD in covariant form, and this area of research is al-
ready quite well established (e.g., Lichnerowicz [4]). We
have adopted the 341 approach to this problem, which
has received much less at{ention in the past. The 341
formalism of general relativity was largely developed by
Thorne and MacDonald [5]. It has the advantage of ex-
pressing theory in a form more suited to intuitive think-
ing, and is particularly useful in the application of numer-
ical relativity. The application of the 3+1 approach to
general relativistic perfect MHD was first carried out by
Sloan and Smarr [6], though our approach closely mirrors
the more intuitively useful form of Zhang [7]. In this for-
malism, there exists a set of preferred fiducial observers
(FIDO’s), with respect to which fluid quantities such as
mass density and velocity as well as electromagnetic fields
are measured. The work of Zhang [7,8] as well as others
(e.g., Thorne et al. [9]) has concentrated on the role of
MHD in black hole magnetospheres.
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The work we pursue involves plasmas in the expanding
universe. In particular, we will be dealing with a spa-
tially flat Friedmann-Robertson-Walker (FRW) space-
time, which is the simplest background, yet still illus-
trates how the curvature of spacetime can affect sim-
ple MHD results. Apparently the first to tackle plasma
physics in this context were Holcomb and Tajima [10].
They investigated both the high frequency modes of an
electron-positron plasma and the Alfvén waves. We ex-
tend the work done in the low frequency Alfvén region to
include the displacement current, which is necessary in
UR work, to solve the equations for any direction of prop-
agation vector k, and to include the equation of state for
electron-positron pair creation, which becomes important
at these temperatures.

We will also be interested in the behavior of MHD plas-
mas around the time of recombination, i.e., at ¢ ~ 1013
s. Around this epoch we may treat the fluid as non-
relativistic (NR), which enables us to neglect such ef-
fects as displacement current. Even so, we find the solu-
tion of the problem becomes considerably more difficult
mathematically, due to how the various quantities scale
differently with respect to the factor R, which appears
in the FRW metric. We consider both the radiation-
dominated era (also known as the pre-recombination era)
and the matter-dominated era (also known as the post-
recombination era), within each of which R has a different
dependence on cosmic time, thus causing the MHD equa-
tions to differ fundamentally. To the best of our knowl-
edge, MHD has not been previously studied in the pre-
recombination era, while the only previous work in the
post-recombination era is that of Holcomb [11]. Holcomb
obtains the relevant equations, but only solves them in
the Bg — 0 and T' — 0 limits, where By is the back-
ground magnetic field and T is the temperature. A much
more satisfactory result would be to obtain the full Alfvén
and magnetosound modes, which we attempt in this pa-
per. The complicated coupled nature of the equations
does not allow us to solve for arbitrary wave vector k,
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but we do obtain full solutions for specific directions of
k. We find that our solutions reduce to that of Holcomb
in the appropriate limits. We also derive the full MHD
state eigenvector in all cases, something that has received
little attention in the past.

The formalism we adopt, as stated earlier, closely par-
allels that of Zhang, and in particular follows directly
from that developed in our earlier work on high frequency
plasma modes in the expanding Universe, both with and
without the presence of an external magnetic field [12,13].
As in this work, we find that the various modes all red-
shift at the same rate in the UR limit, but at different
rates around recombination, due to the way the different
quantities scale with respect to R.

Note that in this paper we assume the background
metric to be fixed, and we assume the matter density
perturbations are small enough to have negligible effect
on the metric. Thus the self-gravity of the matter is
neglected, which precludes the formation of such phe-
nomena as gravity waves. This seems like a reasonable
first approximation, and judging by the complexity of
the solutions, it seems unlikely that a more complicated
model would be analytically solvable. An investigation of
cosmological plasma modes in the high frequency limit,
including gravitational interactions, has been attempted
by Zimdahl [14]. Here a four-component fluid is inves-
tigated, two of which are charged, and one of which is
assumed to play the role of dark matter. This approach
is specifically designed to compare the effects of plasma
oscillations on the well-established scalar perturbation
theory of gravitational instabilities, leading to structure
formation in the Universe. This is well beyond the scope
of our current work, which deals specifically with pure
MHD. Once the behavior of pure MHD fluids is well un-
derstood, it may be possible to extend our current work
to see what role it plays in such important areas of study
as galaxy formation. We also assume a small enough
background magnetic field, so that the FRW metric is not
perturbed, which would make the Universe anisotropic
or alternatively, we could just counsider regions of space
smaller than the horizon, and assume magnetic fields are
only coherent over these scales. ‘

We proceed to tackle our problem as follows: In Sec. II
we introduce the main equations of 341 plasma physics
again, with particular reference to a FRW metric. The
full theory of this has been developed in [5,7] and [10-13],
and so we will mainly restrict ourselves to results, and not
detailed derivations.

In Sec. III we place our equations in an UR setting,
invoke an electron-positron equation of state, and solve
the MHD equations in the most general case, comparing
our results to the special relativistic results of [1]. We also
obtain the MHD state vectors, which to our knowledge
has only previously been done for the NR flat spacetime
case, as found in most textbooks on MHD.

In Sec. IV we find the NR limit of our equations, as-
suming an electron-hydrogen ion plasma. This section
just presents the formalism. In Sec. V we proceed to
solve these equations in the pre-recombinationera, some-
thing not attempted in previous studies on early Universe
plasmas.
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Finally in Sec. VI we investigate the NR equations
in the post-recombination era, which proves to be by far
the most mathematically challenging case. We are able
to solve the equations for specific directions of the wave
vector k, and also recover the special cases considered in
{11]. Here the true nature of the phase velocities is only
elucidated with some fairly lengthy asymptotic analysis.

I1. FORMALISM AND EQUATIONS

Although the formalism adopted here follows closely
from that of [12,13], we emphasize that-the presentation
given in this section has been specifically fashioned for
the study of MHD. Furthermore, several of the equations
presented in this section are new. The sections that fol-
low rely completely on the formalism developed herein.
To be specific, we note that in our previous work we
were considering high frequency oscillations, and conse-
quently we adopted a two-fluid model of the plasma. The
ions or positrons and electrons each had their own set of
equations, and were linked via the charge and current
densities

2.1)
(2.2)

pe =e(ny —n_),
j=e(nyvy—n_v_),

where n.. is the number density of each species, and vy
is the velocity of the bulk motion of each component of
the plasma.

We now adopt the MHD one-fluid approach, where we
assume the plasma approximation n = n, = n_ on scales
larger than the Debye radius. Thus we are investigating
low frequency waves, where the ions or positrons and
electrons move as a single fluid without charge separa-
tion, and we may consequently define an overall mass
density and average fluid velocity

(2.3)
(2.4)

Pm = Pm+ + Pm—,
U= PmtVe + Pm-_V_ )
Pm+ + Pm—

Throughout this paper we will use unrationalized
units, with ¢ = G = kg = 1, where kp is Boltzmann’s
copstant.

If we begin with a covariant point of view, our one-fluid
description is contained in the equations for the stress-
energy tensor, along with the Maxwell equations. In par-
ticular, the perfect fluid component of the stress-energy
tensor will contain just the averaged fluid velocity, rather
than components for each species:

Tg? = (p+ p)UU® + pg?, (2-5)
where U< is the four-velocity of the fluid, p is the total
(rest plus internal) energy density, and p is the pressure.
Including the electric field component

1
Tof = - (F“FP, — ;°°F,,F*), (2.6)

we have the usual stress-energy conservation law
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T 5 = (TgP + T38),a = 0, (2.7)
and using

TSP = —F°PJp,

em;3

(2.8)

we may derive the energy and momentum conservation

laws for the perfect fluid interacting with the electromag- -

netic field, as in [12].

Thus we perform the 341 split of spacetime [5], which
involves choosing a set of FIDO’s, whose time is mea-
sured by a global parameter, and whose world lines form
a congruence. This global parameter increases smoothly
as one moves forward in time, and labels spatial hy-
persurfaces, which are orthogonal to the FIDO world
lines. These spatial hypersurfaces consequently foliate
the spacetime. Together with the FIDO world lines come
a collection of kinematic variables, which describe the ac-
celeration, expansion, and twisting of the world lines as
time progresses. These are discussed fully in [5], and ap-
pear in the general 341 equations. We will not repeat
these equations here, but apply them to our particular
spacetime of the expanding Universe.

The metric of our spacetime is the spatially flat FRW
metrie, usually written as

ds? = —dt® + R*(t)(dz? + dz3 + dz2), (2.9)

with £ being cosmological time. Our equations take their
simplest form if we make the coordinate transformation
to the new global time parameter

1
= [ =dt
n /Rd,

ds® = R*(n)(—dn® + dz? 4 dx? + da3).

(2.10)
(2.11)

Using this metric, our energy-momentum equations be-
come

1, 3R 1. s, R, & 4
&€ + Nk + _ﬁa S+ RZT"'(W) =j-E, (2.12)
1y 4R g 1. & o
-R-S +§2~S+§a W =p.E+3xB,
(2.13)
where
e =7*(p+pU?), (2.14)
S=+*(p+p)U, (2.15)
< 5 N N -
W=7*(p+p)U®U+p 1, (2.16)
= (1-0?%"12 (2.17)

The quantities denoted by carets refer to their values as
measured by a FIDO observer in an orthonormal frame,
and the derivatives are explicitly with respect to the co-
ordinates (7,x), denoted by (', 8).

There are also several other useful MHD equations we
did not require in our previous work, and so we derive
them here.

It is convenient in MHD to include an equation of mass

conservation, and the mass density p,, will be taken to be
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one of our fundamental MHD state variables. Taking the
FIDO four-velocity to be u*, and introducing a spatial
fluid velocity vector v, defined as

v* F1BO (0,4U), (2.18)

our fluid four-velocity can be written as
U = ~yu™ + v, (2.19)

The covariant form of mass conservation
(PmU*);a=0 (2.20)

can then be written in 341 form as

D pm+8pm +v*pm|[U - (D, U) + U - (U - V)U]
+a7 IV - (ap,, U) =0, (2.21)

where the FIDO kinematic properties 6§ and «, and
derivative D, are discussed in [5]. These quantities are
calculated in [12] for the FRW metric, so that (2.21) be-
comes

P+ 8- (P U) + 75U - [0 + (T - 8)U] = 0. (2.22)
Here we have introduced the “conformalized” variable

Bm = B3ppm. (2.23)

Introducing similar quantities for the electromagnetic

field,

E=RE, B=R?B, j=R3) (2.24)

we may write down the Maxwell equations in a simple
form [12]:

B =-8xE,
E =8 xB —4nj.

(2.25)
(2.26)

Finally we derive the law of entropy conservation for
a perfect fluid. A straightforward textbook calculation
shows that

ds
UaTg? 5 = —nT -, (2.27)
where T is the temperature and s is the entropy per
baryon. The derivative is with respect to 7, the proper
time of a fluid element. It can also be shown from {2.8)

that

(2.285

UaTol 5=~ pc0) - (B + U x B),
so that (2.7) implies
ds Y . o L s
7 —~-e7-l—T(3 - pU) - (E + U x B). (2.29)

If we examine the covariant form of Ohm’s law [7]
JE+UPUYJ, = oF*0,, (2.30)

where o is the conductivity, we deduce in the orthonor-
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mal frame

3+72(0-3)0 - 42,0

Ideal MHD makes the assumption of infinite conductiv-
ity, so that

=oyB+UxB). (2.31)

E+UxB=0, (2.32)
and entropy is consequently conserved:
ds
=0 (2.33)

We now assume U <« 1, and consider small perturba-

Prn+ 8- (ﬁmﬁ) =0,

3R
o+ - (p+p)+(p+p)8

. .. 4R’ . .
(p+p)U+(p+p)U' + —=(p+p)U+8p=RjxB,
R

Here we have not yet explicitly made the perturbed sub-
stitutions, as we may find it more convenient to express
the equations in terms of temperature and number den-
sity, depending on whether we are considering the UR. or
NR limits. Notice also that the energy and momentum
equations (2.43), (2.44) are not yet expressed in terms of
conformalized variables. This is due to the fact that p and
p scale differently with respect to R in the UR and NR
limits; hence, we will make the explicit substitutions at
appropriate times. The conformalized background quan-
tities po and By and yet to be defined To and fig are
completely independent of time.

The above set has more variables than equations, and
so it is not complete. To close the system we need to
introduce an equation of state, relating the variables p,,,
p, p, and possibly s. We do not specify this equation yet,
as we require different equations of state for the UR and
NR limits.

Note that we could also have derived this set of equa-
tions by initially assuming a two-fluid model, writing
down the energy and momentum equations along with
the mass conservation equation for each species, and then
linearizing the equations and adding them together in an
appropriate fashion. This type of derivation of the one-
fluid MHD equations from two-fluid plasma equations has
been done for simple NR flat spacetime MHD, as can be
seen in many textbooks on the subject, a particularly
good example of which is [15].
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tions around background quantities:

Pm = Pmo + Pmai, (2-34)
B =B, + By, (2.35)
P = po+ p1, (2.36)
P =po + p1, (2.37)
T="To+T, (2.38)
n=rng+ng. (2.39)

Here E and 7 are already first-order quantities. Let us
also substitute (2.32) into the Maxwell equations (2.25),
(2.26). Then we have the following set of equations,
which form the basis of our work:

(2.40)

B' =8 x (UxB), (2.41)
3= [0 xB+ (@ xBY], (2.42)
.U =0, (2.43)
(2.44)

8&=0 (2.45)

III. ULTRARELATIVISTIC LIMIT

The UR limit places the plasma in the context of the
very early Universe, where temperatures were of the or-
der of T 2 10'° K. Consequently particle pair creation
and/or annihilation effects come into consideration, and
so we model an equation of state around these ideas.
As discussed at some length in [12] and [13], 2 quantum
field theoretic description would be precise, but the task
would be onerous and unnecessary for examining the ba-
sic MHD properties of the fluid. Leading order results
may be successfully derived with a semiclassical treat-
ment, and this approach may be compared to some of
the previous work attempted in this area [10-13].

The energy density for an UR charged quantum pair
plasma has been calculated from statistical mechanics ar-
guments in [16-19]. We take only the leading order term
from these lengthy expansions, neglecting the chemical
potential, which makes the assumption of equal densities
of particles and antiparticles. This is in keeping with the
plasma approximation ny = n_. It is found that

o= ZS+1I‘(4){ E4g }T4EGT4,

_1
p=3p

(3.1)
(3.2)

Note that we have an extra factor of 2 in our definition
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of p compared to that found in [12] and [13]. This is
due to the fact that we are considering the plasma as a
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of our state variables, but we can still relate this to par-
ticle number density via the mass conservation equation

single fluid, rather than in the previous papers where we
wrote down equations for each particle species individu-
ally. The above expression is quite general, including de-
scriptions of both fermions (information contained in the
7 function) and bosons (contained in the ¢ function), as
well as the spin S of the particles. Thus our formalism is , T 1,
applicable to different regimes in the early Universe, con- T = 37
taining many different species of charged particle pairs. ¢ 0

In the radiation-dominated era, where T o« R~ as in
[12], we may define

(2.40). We achieve a particle conservation equation
7y + 708 - U =0, (3.6)

and a combination of (3.5) and (3.6) gives us an adiabatic
relation

(3.7)

The momentum equation (2.44) becomes, in the UR
limit,

T = RT. (3.3) ﬁ,
In contrast with the NR results, the particle number den-

sity n is not proportional to p, but obeys the law n oc T3;
hence, we define

_ . _ _ Ty

= m(a x B; + U’ % Bo) X Bo — ?0‘*. (3.8)

These equations, coupled with the Maxwell equations,
constitute the UR MHD set. Notice that time is nowhere
explicit in these equations, which facilitates a straightfor-
ward method of solution. Consequently, simple disper-
sion relations for the plasma modes are found, where all
characteristic velocities scale in the same manner with re-
spect to R. This is equivalent to saying that they redshift
at the same rate.

We now choose the background magnetic field By to
lie in the X3 direction. Our equations take the form

7i = Rn. (3.49)

We now apply the linearization procedure to our set
of MHD equations, substituting for p and p. The energy
equation (2.43) yields the result

- 1 - L

In the UR limit, we find it convenient to include 7" as one

.
L @9)
Bies _ g, (%‘i— N %‘mf-) , (3.10)
(1+ Trms) 5+ Ty e = ey (o~ ) =02 @)
87::;3— + Tiog-f—: =0, (3.12)
T in (g—g—) —o, (313)
%—j’l =0. (3.14)
Here, as everywhere throughout the paper, summation o'ver the index j is implied.
We also have the Maxwell equation [12]
8-B; =0, (3.15)

which may be used as a boundary condition for B;. This condition will become useful when we calculate the
eigenvectors of the MHD states.

In the above form, it is not very clear what the characteristic phase velocities of the MHD modes are. We may
combine the above equations into three velocity equations reminiscent to that of Harris [1}: namely,

82U, , 820, 8 (80U, o0, . 9%U;
an? Y [TSE * oa; <5E tom )| T Vi 8a3dz;” | b2 (3.16)
32U 82U;

3 _y2 9T; (3.17)

o ° Oz30x;
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We have introduced the characteristic phase velocities

: BZ/4n .
2 0
_ ———— . = " 3-1
Y7 4aT§/3 + B2 /an’ (3.18)
4aTE/9
il 1 AN 3.19
? 7 4aT%/3+ BZ/4n’ (8.19)
V2 = % (3.20)

V1 is a relativistic Alfvén velocity, normally written as

Bo (3.2-1)

V= -
' /amh(1 + BZ/4nh)’
with h the enthalpy. Obviously in our case
4 4
h = ZaTy. (3.22)

V2 is a combination of both magnetic and pressure effects,
which in ordinary relativistic calculations may reduce to
the speed of sound in the limit ¢ — oo [1]. Clearly in an
UR calculation we cannot take this limit to recover the
NR speed of sound. Finally, V3 = 1/3 is the usual UR
speed of sound. The general formula from [1] for V3 is

_FPo
V3— A ]

with I being defined as the gas constant. This is clearly
equivalent to our result when it may be noted that in the
high temperature limit I" — 4/3.

We also note the following relation that arises between
the phase velocities when calculating the dispersion rela-
tion:

(3.23)

V2 - VR = VIV (3.24)
This formula will become useful in manipulating the dis-
persion relation and calculating the eigenvectors of the
MHD states.

Having now identified the relevant MHD parameters,
we may solve our system of equations to find dispersion
relations and eigenstates for the various MHD modes.

[0 0 o e
0
0 0 0 0
0 0 0 0
A=|—Boes 0 0 0
_0 '—._B()C;; 0 0
B001 BoCz 0 1]
Toey Toca DTy g
3 3 3
0 0 0 o
and r is defined so that
0, = reillx-am), (3.33)

The solution of this eigenvalue problem yields the follow-
ing results.
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Let us first define some more useful conformalized vari-
ables:

@ = Rw, k = Rk. (3.25)
Since time is not explicit, we may follow the usual Fourier
transform procedure. Thus we assume harmonic space
and time dependence e!®*—®n) for the linearized quan-
tities. The dispersion relation may be obtained from
(3.16), (3.17), but we use our original set (3.9)-(3.14),
so that we may simultaneously find the eigenstates.
Let us define the state vector

= [ﬁls [}Zv f]31 Ba:ly sz7 st’ Tv 3] ’ (326)
which has been perturbed:
¥ =%, + ¥,, (3.27)
with
‘I’o = [0, 0, 0, 0, O, Bo, To, 80] . (328)
The direction cosines
cy = COSBl = E]_/IEI,
€z = cos, = ky/|k|, (3.29)
c3 = cosbs = ks/[k|,
and phase velocity
v= % (3.30)

may be defined and substituted into the system of equa-
tions. We obtain a corresponding system, written in ma-
trix form as the eigenvalue equation

¥ L nd
(A-vT)r=0, (3.31)
where
Vi, (1-V3)e, T
0 —g—‘ 0
—Vfc, V”?:, (1—V°’ ez
2] 0 0 0
0 0 o 0
o
0 0 0 ol , (3.32)
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0]

A. Dispersion relation

The characteristic equation of (3.31) gives the disper-
sion relation



1 1
v? (vz - Vlzcg) ['04 - (V12 +VZ+ :—S-Vfcg) v? 4+ §V12c§]

=0. (3.34)

This corresponds to the dispersion relation found by Har-
ris with VZ = }. The v = 0 term corresponds to the
entropy wave, the first set of parentheses corresponds to
the Alfvén mode, and the second set of parentheses corre-
sponds to the fast and slow magnetosound modes. If we
were to take the limit ¢ — co and identify V5, = V3 = ¢,,
the speed of sound, we would recover the usual NR re-

sults.

B. Entropy wave v = 0

This wave is very simple, with no phase velocity. Hence
it appears “frozen” in space. The eigenvector is
r’=(0,0,0,0,0,0,0, 1], (3.35)

and so only the entropy is perturbed.
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C. Alfvén wave v = €, V;|cs]

Here we have defined €4 = 1 to indicate the direc-
tion of propagation of the wave. The eigenvector of the
perturbed amplitudes turns out to be

r# = [eaVica, ~€aVic1, 0, —ecBocz, ecBoc, 0, 0, 0].
(3.36)

Here e = 1. denotes the sign of c3, ie., €¢¢ =
cos 3 /| cosf3]. We see that as usual the Alfvén mode is
purely transverse, with no perturbations along the direc-
tion of propagation; that is, there are no pressure effects
involved.

D. Magnetosound waves

These waves are a mixture of longitudinal and trans-
verse components. We have two types, the fast mag-
netosound wave with phase velocity exVr and the slow
magnetosound wave with phase velocity egVs. Here, as
usual, e = €5 = F1 denotes the direction of propaga-
tion, and Vy and Vg are given by

2 1/24 \ 1/2
1 i 1 4
Ve = (E{V:lz + ‘/22 + §V12c§ + [(Viz + ‘/22 -+ §V12c§) — g 1203] }) y (3.37)
1 1 1 ? 4 A
VS = (E{Vlz + ‘/'22 + ngzcg — [(Vlz +- V22 + —3-V126§) -— §‘V1263j| }) . (338)
If we denote
v o= {‘IZ‘,’ € = {Z:,’ (3.39)
we may write down the eigenvector of the perturbed amplitudes for both modes as
V-1 VZ-1 ec _ V-1
F,S _ 3 1
T = [e’u VI; —C1, evvi; — vzcz, , —Bog V12 5 C1C3
R VS | _ 1 -
—BOV];——ECZCS, By o2 (1 Cg), To, 0] (3.40)

We see in conclusion that the UR waves resemble their
NR counterparts in structure, though of course the inclu-
sion of relativistic effects has complicated the relations
somewhat. The important result is that all phase veloc-
ities scale in the same way and are in fact independent
of R. Thus the various modes do not redshift differently
with respect to one another.

IV. NONRELATIVISTIC LIMIT

We now consider an electron-proton~helium nuclei
plasma, as may have existed around the period of re-

r .
combination. The age of the Universe at this epoch of
time was approximately 10° yr, and the temperatures
were around 3000 K. Consequently m > T, and we
may treat the plasma nonrelativistically. Around this
time the mass-energy density of matter came to exceed
that of radiation, and so we enter what is known as the
matter-dominated era. We consider both the pre- and
post-recombination periods. In the first case, thermal
photons dominated the temperature and, hence, geome-
try,

(4.1)
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while in the latter, the photons had decoupled from mat-

ter so that
2/3 2
t
r=(7) -5

Here we have introduced a fiducial time constant i,
which is arbitrary. For simplicity we assume it to be
of the same order as t, so that R is of order unity. This
will facilitate analyzing the asymptotics of our solutions,
and comparing the “conformalized” variables to the phys-
ically measured ones.

Qur equation of state now models that of a standard
NR ideal gas. Thus

T~ R72, (4.2)

p=n(m+ %T):
p=nT,

(4.3)
(4.4)

where we have of course assumed 7', =T_. = T, and as
always, the plasma approximation ny =n_.

After substitution of (4.3) and (4.4), the energy equa-
tion (2.43) reduces to

R?T = x(R3n)?/3, (4.5)
which gives
iy 37
= D 4.6
fio 2T (4.6)

after linearization. This is our adiabatic relation.

We perform the same substitutions into the momentum
equation (2.44), also using (4.6) to eliminate T). In the
NR case, we find the conformalized variable

U=RU (4.7)
the most convenient to work with. The resulting momen-
tum equation takes the form

_ gy, D _ B
PmoU’ + §RT08n1 =7 x Bo. (48)
We may introduce the NR speed of sound, cg, into this

equation by noting |
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-(4.9)

We now take p,, to be one of the fundamental quanti-
ties in our MHD state vector rather than T, which was
used in the UR limit. This approach more closely par-
allels the usual textbook flat spacetime methods. Let us
also neglect the displacement current term (U x Bo)' in
the Maxwell equations, which is a valid approximation
in the NR limit, if phase velocities are far less than the
speed of light. We then have the resulting NR MHD set
of equations:

Py + f’-l"é—t’a .U =0, (4.10)
o U’ + Rc28p,1 = —1—(.9 x B1) x By, (4.11)
B = RB x (O x By), (4.12)

s =0. (4.13)

We now turn our attention to pre- and post-
recombination each separately.

V. PRE-RECOMBINATION

As mentioned above, in pre-recombination T ~ R™3;
hence, we may define the time-independent quantity
&% = Rc?. (5.1)

It then follows that the sound velocity and NR Alfvén
velocity

2 2 Btzl ( )
&4 = Re% = — 5.2
4 4 47rpm0

scale in the same manner, which makes pre-

recombination considerably mere easy to solve mathe-
matically than post-recombination. Both cases, however,
still have explicit time dependences in the equations, and
so solutions cannot follow the simple exponential form of
the UR case.

If we choose By Boxa,
recombination set of equations

we have the pre-

Opm1 | 2t; _ ou;\
o Pmo (8:1:,- =0, (5.3)
Bﬁlm au; .
Bt = 17 Bo&ng’ i=1,2, (5.4)
OB1ey _ I U : (5.5)
T 8z, | Ozy
8(7 2 (9,0,,,,1 _ BQ BBM'. _ 33133 .
me a + ES ax‘ - 47|' ( 83:3 83:,’ ’ 1= 17 2, (5‘6)
617 .2 3pm1
Pmo—— 8 +¢€ Cs 324'3 = 07 (5'7)
Os
o =0 (5.8)

To solve this set of equations, we may proceed in a similar manner to the UR limit, and eliminate all the variables
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except velocity, to obtain the coupled set of velocity equations

9%U; 2t; o 617,, a 8171 61:72 2t; o 82 ffj .

a2 = Clg - ta\ls o taEs — =1, 2 5.9
an? ] ca [3:1:3 Oz; (8:1:1 6:1:2)] + 7 s dz30z;’ ¢ ’ (5.9)
277 i 277 .

T = gt (5.10)

= —ge—=—.
on? n ° Oz30z;
If we assume an e'& dependence for the spatial variables, these equations have the characteristic form
) ?

d?y ;2
— kd y‘

dn? n

(5.11)

It turns out that a solution to this equation is

y =124 (Mst,-wzn) . ‘ ©(5.12)

where Z is any Bessel function. We choose Hankel functions, as these most resemble an exponential solution. The

functions H{l)’(z) and H (_11) (@) only differ by a constant phase factor, and so let us choose H. §1)’(2) as our solution. We
may then postulate a solution to (5.9), (5.10) of the form

0= Ot (Vo) s, 19

where H; denotes H. :El) and H. iz) , and substitute this in to derive a dispersion relation for &. Instead, we will substitute
back into our original set (5.3)—(5.8), so that we may simultaneously find the eigenstates.
First, we may use the property

dHo(An'/2)

1, _1/2 1/2
= — /\7] H A'l} 5.14
l 2 1( )’ ( )

to assume our MHD variables have the following form of solution:

By; = Bi;, Hy (\/ 815:'@217) eflex, (5.15)
Pt = Pt Ho (\/Stiwzn) etfx, T (5.16)

where Hy denotes H((,l) and Héz). A substitution of (5.13), (5.15), and (5.16) into (5.3)—(5.8) leads to the matrix
equation

=2

b

i(2t;)Y%v 0 0 o 20 —ig—j—‘ _j—:s;f 0

0 i(2t;)Y/%v 0 0 g S 5%

0 0 i(2t:)Y20 0 0 0 3=
—(28:)*/2Byca 0 0 v 0 0 0 0 |r=0, (5.17)

0 ~(2t;)Y/2Bgcs 0 0 v 0 0 o

(2ti)1/2.§001 (21:.,;)1/23062 0 0 0 v 0 0

(2ti)1/2ﬁm061 (Zti)l/zﬁmocz (Zt,;)l/zﬁmoc;; 0 0 0 v 0

I 0 0 0 o 0 0 0 v
|
where conformalized quantities:

r=|Uy, U,, Uz, B Biays Bieg, P §|. (5.18
[ b T T Bher Fer frs ] (819) v? (v? — &4¢3) [v* — v (&4 + &%) + &4ckc3] =0, (5.19)
From this equation we obtain the following MHD modes.
A. Dispersion relation
where all variables have the same definition as in the
We achieve the standard NR flat spacetime dispersion =~ UR case. Thus a FIDO observer would measure phase
relation, with the exception that the phase velocities are  velocities redshifted by the factor R.
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B. Entropy wave v = 0

As usual, we have the eigenvector

$=l0,0,0,0,0,0,0,1]. (5.20)

C. Alfvén wave v = €,&,4]cs|

This mode is very similar to the UR results (and of
course flat spacetime results), with the relativistic Alfvén
velocity being replaced by its NR counterpart. Defining

¥, = [171, 62: ﬁS, Blzu Blwza Bla:;, Pmi, 3] ’ (521)

we write down the eigenstate as

i (—gﬁfﬁicznl/zHl (VSt,—u’JZ 17)
—(—;ﬁﬁ;clnl/zﬂl (\/St@i 17)
0

wp=| —iccBocaHo (V)
ifc.BoC]_Ho (\/ 8t.-cDAz 77)
0

0
0

(5.22)

where @3 = &% k2c2. In the above, €4 = +1 corresponds
to the H(!) mode, and €4 = —1 corresponds to the H(?)
mode, analogously to the flat spacetime £e**? results;
i.e., the velocity of the medium is reversed for waves prop-
agating in the opposite direction.

D. Magnetosound waves v = ¢xVp, €sVy

Once again we have fast and slow magnetosound
modes, with

1/2
o= {3 A+t + (@GP -scad) ]}

(5.23)
i
8ﬁm1 Qt? _ 8[7_1 .
677 + 7]2 Pmo (ij - 03
_____8B iz __ gt_z: B
on n?
8B4, 9t? -
on 2"
- 817 gt ) aﬁml BO
Pmo 5y +—— S 8z  4am (
_ 003 5Pm1
Pmo—f37 8 + _77_' S 61‘3 = Oa
% _o.
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1 § y ~ _ 1/2
Ve = {5 [cf,_ +8% — (( +%)? — 484 E%c2) 1/2]}
(5.24)

The eigenstate is a mixture of transverse and longitudinal
components, and is given by

g/ H (VERa) |
W—é’ﬁrnuzﬂl V/Btia?n
e /I (V/BRET)
‘I,f,s= —2;5j§;0103ﬂo \/8_&77177; ikox
-—i?—"aéczcsﬂo \/ 8t;w2n
2% (1 - ) Ho (v/8Ew™)
tPmoHo (W)

0

(5.25)
where

V 2’;2 €p
=2 P ) —_ ?
@? = {Vé"k”, € {65‘ (5.26)

The same relation as above also exists between ep, €5
and HV, H®),

VI. POST-RECOMBINATION

In the post-recombination case, T ~ R~2, and so the
time-independent sound velocity must be defined as

& = Rl (6.1)
Now cs scales differently to c4; hence, the equations take
a more complicated form. Thus, choosing By = BgXs
again, we may write down the post-recombination set of
equations from (4.10)—(4.13) as follows:

(6.2)
BZ, t=1, 2, (6.3)
au, 80,

B, (5;; -+ E:B—z) ) (6.4)
8By,, 8B, .

52:  om, ) b (6.5)

(6.6)

6.7)
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It is impossible to obtain a set of second-order velocity equations from the above. The equations must be differen-
tiated several times to eliminate B; and j,,1. The simplest set obtainable is

I3l Se2ee)2 (22— 2 — (224222, =1, 2, 6.8
a5 (’7 P ) O42s)°\ 337 ~ 77 ) Baeam; T %6%45," | Ga3 ¥ 8oy \ay T e )| " (6-8)
0%U; 20Us (9ties)? 8%U;
on? + n n Oz30zx; (6.9)

We now have an eighth-order differential equation, and
so would expect some spurious solutions resulting from
differentiating to eliminate variables. There is no clear or
systematic approach to solve this system; hence, we will
tackle the problem first by taking some limiting cases,
and then by examining specific directions of k.

A. ¢4 — 0 limit

Rather than using (6.8), (6.9) and carrying around spu-
rious solutions, we return to the original equations (6.2)-
(6.6), set B = 0, and obtain the simple system

82U; gBU (Qt2 )2 02U; _ i=1 9 3.
o " n oy  nt Ox0z; T
(6.10)
If we assume solutions of the form
U; = G;eillx—98a/n) (6.11)

this system reduces to a simple algebraic matrix form

v¥—&kc? —&&ee; —Eeies U,

—&%cicy v —E4cZ —Eeaes Uy | =0. (6.12)
= =2 2~ 2.2 ~

—t4cics  —Eheacs v? — 4l U,

By taking the determinant, it is simple to deduce the
dispersion relationship
vt (v2 — %) =0. (6.13)
Thus we simply obtain pure sound waves v = *&Es, as
one would expect. The solutions v = 0 of multiplicity 4
merely correspond to the fact that the Alfvén and slow
magnetosound velocities vanish in this limit. This result
corresponds to that found by Holcomb [11], if we examine
the argument of the exponential

ot2kes _ 3t/ °kes
n T T 1/3

- (6.14)

This is the argument of the Holcomb solution.
We find the locally measured FIDO frequency wz by
differentiating the argument with respect to t. Then

—4/3
¢ —

R™?(Rk)(Rcg). (6.15)

Thus the locally measured frequency is just the redshifted
product of k and a phase velocity, as we have been finding
throughout our work.

B. & — 0 limit

Although unrealistic for an early Universe plasma, we
momentarily consider a pressureless gas, in order to com-
pare our results to that of Holcomb. We derive the set
of equations

o2 [7,; 9t2 52A 82U; ts) o, @8 [72
— 7 it -z ;=1 .
n? n? [ 8z + dz; (6:1:1 + 31:2)] » » 2

‘With no pressure, we only expect longitudinal modes, as
is confirmed by the fact that the equation for U3 becomes
trivial.
‘Making the usual spatial dependence assumption of
e** we find (6.16) resembles the Euler equation

dzy 9t2 —2
+
dn? 72

y=0. (6.17)

By solving this equation, we may assume solutions for U;
of the form

T_Ji — ifinl/2:i:\f5/26iﬁ-x, (6.18)

where D = 1—36t2@2. Substituting this back into (6.16),
we obtain the dispersion relation

4

vt — (1 + A + 4k = 0. (6.19)

Thus the slow magnetosound mode vanishes, the fast be-
comes just v? = &%, and the usual Alfvén mode v? = &% ¢c3
is retained. A substitution of ¢ for n will show that our
solutions agree with that of Holcomb. Note that I can
take on a range of values of differing sign. Thus we have

three separate cases to consider.
(i) D < 0. Here the general solution may be written
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U; ~ nt/? [&‘1 exp (i%\/%t?@z - llnn) + ciz exp (——i%1/36t?@2 - llnn)] ,

where

B2
2 _ A &)
W = { kzéicg, (6.21)
and ¢;; and c;2 are arbitrary constants of integration. We
have an oscillatory solution, with an unusual logarithmic
time dependence. The FIDO measured frequency turns

out to be
_ \/36t?¢Dz -1

wr = 6t

We may assume.for the present that @?t2 > 1. (We will
present numerical estimates to justify this assumption
later.) Then we may write

—1
t

=w|—- 1
wr=e (ti) (
Thus the usual flat spacetime frequencies

kcA
w= { kcacs

have been shifted by a time dependent correction factor,
as was found in many cases in [12,13]. This same effect
would have been observed in the pre-recombination so-
lutions had we examined the asymptotics of the Bessel
functions, though this was rather unnecessary, consider-
ing we had derived the full solution and dispersion rela-
tions, and the frequencies were obtained by inspection in
an obvious manner.

(if) D = 0. In this case the solution takes the special
form

(6.2

(6.23)

(6.24)

U; ~ 7% (i1 + ciz In ). (6.25)

(iii) D > 0. Here we getnonoscillatory solutions

U; ~ /2 (Cn'f?‘/ﬁ/z + Cizn_‘/b—/z) . {(6.26)
The last two cases show that for a certain frequency
range, the modes are evanescent; i.e., there are no propa-
gating waves. They simply decay in time, which becomes
clear if we take note of the fact that the physically mea-
sured quantity is U ~ 57 2U.

The question still remains at what point the modes
become evanescent rather than oscillatory. If we take the
usual value of p,, around recombination, namely, p,, ~
10° particles per cubic meter, we find ¢4 ~ 1028, where
B is the magnetic field measured in gauss. It then follows
that

Bz

17
D~1-10"%,

(6.27)

where [ the wavelength is measured in meters, and we

_(/u)? M —wf1- L 2
36422 - 36212 ’
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(6.20)

have taken t; ~ 102 s. This relation shows that for all
physically reasonable type of MHD modes, D is far less
than zero, and so we generally expect only oscillatory
modes to exist in the post-recombination era. These nu-
merics also justify our assumption made when calculating
the FIDO frequency.

In summary, though, the unusual logarithmic behavior
of the modes with time, as well as the possibility of the
existence of evanescent modes, show us that the expand-
ing Universe significantly alters the properties of a MHD
fuid.

Now that we have examined the limiting cases, we will
let k take specific directions to enable the equations to
take a more tractable form. We will always assume the
spatial dependence of the solutions follows an e*** form.

C. k parallel to B
1. Longitudinal mode

Here only Uj is involved. The equation takes the sim-
ple form

8%U, 42 U,
on? " n On
Solutions to this are identical to that discussed in the
€4 — 0 limit, hence we need no further discussion. We

have simple sound waves propagating along the direction
of the magnetic field.

9t?kcs)?
4 ‘nfs) U3 = 0.

(6.28)

2. Transverse mode

Here we must examine the U, and U, components. The
equations reduce to

d, (dzc"r,-

" 92k2c%
dn

L MR 17,.) —0, i=1,2 (6.29)

Thus the differential equations may be written as inho-
mogeneous second-order types. The homogeneous solu-
tions recover the results of &g — 0 (though of course only
the v2 = &% solution). This is logical, since the transverse
modes contain no sound component.

The third inhomogeneous solution has the form U; =
1~ !. This may be rejected when we substitute back into
our original equations, and find it is not a compatible
solution. Here we have a spurious solution alluded to
earlier, caused by differentiating the original equations a
number of times.

D. k perpendicular to B

We are finally left with the most difficult but impor-
tant case. The solution to this mode, which as far as we
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know has not been achieved before, is the most interest-
ing, as it shows how ¢4 and €s combine in a dispersion
relation, when they scale differently. This does lead to
some intricate forms of solution though.

Since we only require k to be perpendicular to B, we

342U

&0 | 340
n dn?

(gtszs)z
dn3

1 27,222
+ T]—z‘ [gtz'k CA + nz

where now we may take U = Uy.

To manipulate this equation into a more recognizable
form, we transform it to normal form, where the second
highest derivative is removed [20]. Thus we let

U(n) = u(n)v(n),

and try to eliminate d?u/dn?® by choosing v in an appro-
priate fashion. It turns out v(n) is given by

(6-31)
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have some freedom in our choice of specific direction. To
facilitate a solution, we need to reduce the coupled equa-
tions into a single ordinary differential equation (ODE),
and so let us take k = kX;, when U, will vanish. We
obtain the ODE

- t2kes)?] -
% [9t,?k2a§1 - 3@&] T=0 (6.30)

nZ

{
We finally have transformed our equation into a recog-
nizable form, if one considers the following.

The generalized hypergeometric functions and equa-
tions are discussed at length in a variety of books, e.g.,
[21,22]. In particular, (6.34) resembles the differential
equation for the function u = 1F3(a; b1, bz; k(), which
has three linearly independent solutions; namely,

1F3(a; by, ba; (),

1 3 1 U= Cl—bl 1F2(1+a—b1; 2—b1, 1+b2"‘b]_, KIC),

v(n) = exp [—5 / Edn] = (6.32) ¢t Fy(1 4 a — by; 1+ by — ba,y 2 — by; 6C).
and u(n) is given by the differential equation (6.35)
7 - Here the b; may not be negative integers or zero, or differ

3 2 2 2 2 )
d’u =+t [9t2k2 oy Lgt—”ch'?)—] du _ 4—(372’—1‘::5—)—11. = (0. from each other by a negative integer or zero. The general
dn n dn K differential equation takes the form
(6.33)
If we malke the variable substitution ¢ = 772, we obtain d®u 1+ by by d?u . (blbz K,) du a0
_ q3 - F 2 T F)dr 2T
d3u+ 9 d%u . 1 (982kcs)? + 12 + 9t2k%¢% ] du &« ¢ a ¢ ¢/d ¢
acd Ta¢d¢z T ac | e ¢ | (6.36)
+ (9t2kEs)? w=0. (6.34) By comparing this to (6.34), we may deduce the following
2¢? set of solutions for U:
|
y1 = n 1P (2; 2+1VD, I -1VD; -“f‘,:) )
=14 gy, = n/2+VD/2 \F, (5 iVD; L - iVD, 1-1iVD; -27), (6.37)
ys = VP15, (34 WD; } 4 1D, 1+ 1D —2).
f
where D — 1 is equivalent to taking b; — a, and hence is a
singular point of the equation. In general terms, taking
D =1- 3662 kch, )= 9 2kes (6.38) this limit is equivalent to considering the equation
tikes. .

First, we will take some limifing cases again, to see
if these rather complicated solutions conform with our
earlier work.

In the €s — 0 limit, equivalent to A — 0, the 1 F5 func-
tions merely reduce to unity; hence, we remain with the
7+/2£VD/2 golutions found earlier, along with the spuri-
ous 7! solution, which we disregard.

The €4 ~ 0 or D — 1 limit turns out to be more
difficult to analyze. If we examine (6.36), it is clear that

._Ca"’l (E@ + b_zg’(f - fﬁ) = 0.
d¢ acz ~ ¢d( ¢

The expression in parentheses is the general equation for
a oFy (ba; (), and has only two linearly independent so-
lutions. It is apparent though that ys will contain a pa-
rameter equal to zero, which is undefined for generalized
hypergeometric functions, and must consequently corre-
spond to the third inhomogeneous solution of (6.39). The
three solutions turn out to be

(6.39)
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[e)
. {2X N cost
y1 — sin (?) : (6.40) ci(z) = /z —dt, (6.43)
t
siz) = — / ——Sm dt. (6.44)
1 + si 2 ci 21 — cos 2 8l g?‘- "
Y2 Tax T n ! 7 n n/’ We may disregard y; upon substitution into our original

equations, which leaves us with the simple sinusoidallike
(6.41) solutions, which agree with (6.11).

It remains to decide which two of our solutions are the
physically correct ones. To facilitate isolating the correct
2 solutions, as well as to later analyzing the asymptotics
Ys — cos (7) ’ (6-42)  of gur solutions, we may reexpress the ; F functions in
terms of more well-known functions. Using various iden-

where ci and si are the sine and cosine integral functions  tities [21,23], we find

}

Y= (2’\) i 2(9 D)(1+ vD)n~*/? [”‘31/2 vD/2 ('2'/1> T 8-1/2,14+vD/2 (%;l)] ’ (6.45)
va = ,\\/b‘/zr' (1 - %\/5) n1/? [nJ VB2 (2’\) 4"\/_ \—vD/3 (2'\)] (6.46)
ys = A"VD/r (1 + -;‘\/1_)) 7 [’7‘7\/—/2 (2/\) - I-_i_i./\\/_‘_D—Jl+\/—D—/2 (%)] ’ (6.47)

where s, ,(z) is the Lommel function, J,(2) is the standard Bessel function of the first kind [24], and T'(z) is the
gamma function.
In determining which solutions solve (6.2)-(6.6), we require the integrals

7 Y
11_/ F( +1 \/“ \fl')_;——g—ﬁ)dn

1
_9-D 1/2 22
= 32)2 [ ( ) 8_3/3,vD/2 (_77_) - 1] ) (6.48)
2
= [ —3/2+vD/2 5_1mp 1 1 _l s X
f=[n s (§-3V0s §—1VD, 1- VD -1 )
2AvD/2 1 . 22
— - = -1/2 .
i (1 2@) J \,—,2( ) (6.49)
Iy= [ q3/2-vD/2 F, Sy ivm ilup e tvp X dn
3 = 142 2 4 B 4 4 ) 2 1 772
S ~/_/2 _ 2\
iy, (1+ J‘) Y2 /52 (-) (6.50)

If we were to assume a general solution of the form
U = a1y1 + o292 + asys, (6.51)

with a3, az, and a3 being arbitrary constants, this solution must satisfy the equations [taken from (6.2)-(6.6)]

By, = —i9t}Bok(arl1 + a2l + a3lz), (6.52)
Prm1 = —i9t] pmok{ar s + 31z + asl3), (6.53)
d - 912
Zﬁ(alyl + azys + asys) = —9t2k? (6?4 + Zz,iag) (a1 + azlz + azl3). (6.54)

Upon examining the derivatives of y,, y2, and 3, it is found that y; and yz exactly solve these equations, but that

dyi _ g2 9t2_2 9-D [1-D [22\*? 2) 9113/’
E{ N -gtik CA + cs W _4—_ 7 8—3/2,\/5/2 _-r’_ -1+ Ei + th /772 ) (6‘55)
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hence, we must conclude that %; is a spurious solution.
It may be noted that, in the limit ¢4 — 0,

)" (2) o (2)
n —3/2vD/2\ 'y n)’

6915

(6.56)

and the constants of integration may conspire, so that due to the singular nature of the differential equation at this
point, ¥; and ys do indeed become the correct solutions, whereas ys is spurious, as was found earlier.

Having determined the correct solutions as well as their integrals, we are now in a position to write down the MHD
state vector for the k | By post-recombination case. To solve our initial equations (6.8), (6.9), we assumed k lay
in the %; direction, and that U; = 0 for simplicity. Now that the solution is known, we may generalize and take
k = k1%, + ka%,, so that U, # 0. We then assume solutions of the form

01 _[U 1 —e/D/2,-1/2 2 4A 22\] i
{[72} {UZ}F(1+6—\/5)A 2=t/ [ \/_/2( s e eRx (6.57)

{ém } { B }2A /D2
Bz, Bies f 1+e/D

(1 + elﬁa) G (2*) eikex,

where ¢ = +1 denotes waves propagating in both directions.

(6.58)

This once again leads to a simple algebraic maitrix,

whose eigenvectors correspond to the appropriate MHD state:

_01(14—6\/1_))77 1

0
0
0

It remains to determine at what phase velocity these
modes propagate. The nature of our solutions does not
make this immediately apparent. Information is con-
tained both in the argument and order of the Bessel func-
tions. To obtain the FIDO measured velocities, we must
examine the asymptotics of our solutions, gaining infor-
mation from the leading order terms.

Consider the fluid velocity, which has the most com-
plicated form. Let us take a linear combination of our
two solutions in order to express them in terms of Han-
kel functions, which most resemble simple exponential
solutions. Thus we consider the linear combinations

icsc (l\fﬁw) (e—i‘/ﬁ’r/zys - yz) )
2
icsc (%\/ﬁw) (yz - ei‘/ﬁ’r/z’y3> )

(6.60)
(6.61)

ignore the constant prefactors, and use some Bessel re-
cursion relations to obtain the corresponding equivalent
expression for U:

= 12 [ g@) [2A 4@ (22
U=n I:H\/_/Z( ) —2n dnHJE/z n/i’
i =1,2. (6.62)

The method of examining the asymptotics follows from

? [1ovmn (3) = wivmhivevmr (3))]
2 (1+ VD) 17 [1ymps () = 5275 nrevma (3)]
0

- = ikox
18t3k30ﬂ_1/2J€¢3/2 (%A) e, (6.59)
182K pmon /2 oy5/2 (2)

ltha.'c of previous papers [12,13], whose solutions had the
same type of functional form. A discussion of the values
D could realistically take was made earlier. Assuming a
proton mass in the speed of sound expression, it can be
deduced cg ~ 10* m/s, and hence
9t2kcs  10%°

w1
where [ is the wavelength measured in meters. Hence we
wish to expand Bessel functions of large argument and
order, assuming wavelengths of the oscillations to be far
less than the radius of the Universe around recombina-
tion. Using the asymptotic expansions found in Watson
[24], pp. 262-268, we calculate the first terms for U.
The expansion parameter v tanhy > 1 found in [24] cor-
responds to

(6.63)

- 9t2 ,\*/? 211/2
kt; (631 + 7721?%) =RY?kt; (4 +c3) " >1

(6.64)

Also requiring the individual frequencies of sound and

Alfvén waves to be far greater than the reciprocal age of
the Universe, i.e.,

keat; > 1,

keot; > 1, (6.65)

we may, after a lengthy calculation, write down the
asymptotic expansion for U to first order;
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) A 1 1 A 1 AM+ A% 7 A?
-3 : ~ i ndsianttali iR -3
xexp{:}:z [3M Aa.rcsmh(s) 12l‘[+24Aarcs1nh( )+24A yye 72]‘{3—4—O(M )]}
(6.66)

Here 3

A=TFtiea, S= —gl_ct,-és, M = (A% + §2)1/2 (6.67)

are our three expansion parameters, all of the same order. This accounts for the number of individual terms required

to completely specify U to first order.

The FIDO velocity, obtained by differentiating the argument of the exponential with respect to ¢, can now be
calculated. We display only the leading order term, as the first order term only becomes more unwieldy than that
found above, and contains no new interesting information. Thus

AN AN
wp =k (-t—) Ei + (?) Eg

=k (& +c2)"? 1+ 0w k22,

where v is a generic expression for a combination of ve-
locities ¢4 and cg.

Thus we have demonstrated that a FIDO observer does
measure a redshifted magnetosound phase velocity, where
the time-independent quantities combine in such a way
that the whole expression scales the same way with re-
spect to R. Notice that we also have the characteristic
time-dependent correction terms due to spacetime curva-
ture. The usual flat spacetime results may be recovered
by taking the limit ¢ — co, where we may think of infi-
nite time corresponding to infinite radius of the Universe.
This may be visualized as describing flat spacetime.

E. General solution

Using knowledge gained in the preceding work, we may
deduce the general Alfvén solution for arbitrary direction
of k with respect to Bp. Thus as with the usual Alfvén
mode structure, assume U; = 0, and now take

17- o pt/2EVD/2gikx ;g o (6.69)
with D = 1 — 36t2k2c4c2. A substitution of this into the
general velocity equatmns (6.8), (6.9) shows that they do
indeed prove to be solutions.

To find the corresponding eigenvector, we assume the

: J

el £\ "3 i £\ %3 2 £\ ~2/3 1/2y 11/2
v= (Z) [2(i+(t,> et & c2A+(E> e —4(2;) e4eick .

This whole expression just scales as R™!, as must be
expected. The integral of this expression cannot be ex-
pressed in terms of known functions; hence, we are unable
even to write down the leading order asymptotic form,

1/2
[1+ 0 2k %t7%)]

(6.68)

same form for all quantities, and following the usual pro-
cedure deduce

i ]}5%62631‘]1/2:‘:\/5/2
_;}516163,71/&\/’5/2
0

—iB, (% + _15\/5) con—1/2:VD/2

- e®*. (6.70)
iBo (§ £ §vD) ey 2/3+VD/

o=

(=N i ]

Here we see a similar structure to—previous general
results, with the exception of the presence of D,
which has been seen to complicate all solutions in
the post-recombination era. Making the assumption
36t2k%¢% c2 > 1, we may derive an identical structure to
that found in the pre-recombination era, distinguished
only by the time dependences.

The general magnetosound modes prove to be a lot
more difficult to obtain. To give an idea of the complexity
involved, if we examine the leading order term of the
FIDO frequency found for the k | By case, we may
integrate this with respect to ¢ to recover the leading
asymptotic form of the solution. For the general case,
we postulate the expression for the leading order FIDO
velocity to be

(6.71)

Ilet alone obtain the full solution.

Nevertheless, we have extracted all the major prop-
erties of post-recombination MHD modes. Most impor-
tantly, we have demonstrated how ¢4 and &g combine
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when they scale differently with respect to R. The full
solution would only really be required for aesthetic com-
pleteness. We have to all intents and purposes fully
solved the problem.

In closing this section, we remark that the post-
recombination modes will evolve differently depending on
the scale of the mode compared to the Jeans length, and
if they are sonic or Alfvén. In particular, modes with a
sonic behavior (sonic or magnetosonic modes) on scales
larger than the Jeans length are unstable to gravitational
collapse.

VII. CONCLUSION

We have continued the work of [12] and [13], and for-
mulated the equations for MHD in the early Universe. In
particular, we have managed to solve the equations com-
pletely in the three major eras possible to study, namely,
the very early Universe, where a semiclassical UR treat-
ment was required, and both before and after recombi-
nation, where a NR treatment sufficed. We have found,
as has previous work in this field, that in the UR limit
all modes redshift in the same manner as that of a free
photon. In the NR limit, however, different frequencies
redshift at different rates, leading to complicated solu-
tions, requiring some intricate mathematics. We have
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managed to obtain the MHD eigenstates in all cases, and
clearly elucidated all the various modes possible. The
locally measured frequencies resemble that of flat space-
time, though due to the expansion of the Universe, they
do decay in time. These effects are only apparent at lower
orders in the calculations.

Possible extensions to this work could include formu-
lating the equations for nonperfect MHD, including such
effects as viscosity and finite conductivity. Nonlinear
modes such as shocks could also be investigated. Judging
by the complexity of the solutions obtained in this pa-
per, it seems likely that more complicated models would
not be analytically solvable, and may require extensive
numerical solution. Our simple approach has kept intact
the basic essence of MHD theory, highlighting the similar-
ities and occasional differences with standard flat space-
time MHD, which complicated numerical procedures may
mask. Thus we may conclude that our approach has been
successful in its endeavors.
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