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We apply generalized Kolmogorov scaling to continuous time random walks, coupled in space and time, to
obtain anomalous diffusion laws for relativistic turbulent media. Richardson’s law for the mean square sepa-
ration of two particles that are initially close together^R2&;t3 is recovered in the nonrelativistic limit, while
the ultrarelativistic limit is characterized by a different power law^R2&;t2. Intermediate velocities are treated
numerically, showing a smooth transition from one regime to the other.

PACS number~s!: 47.27.Jv, 47.27.Qb, 05.40.1j, 98.62.Nx

No complete theory of turbulence exists, despite the ap-
parent simplicity of the Navier-Stokes equations and the im-
portant fact that almost all problems involving fluids have
some physically relevant set of parameters in which the mo-
tion is turbulent. Nevertheless, there are general principles
that apply to most turbulent flows to some degree and par-
ticular flows to a good approximation. An example is the
observation by Kolmogorov@1# and others that for large
Reynolds number there is a range of scales between the larg-
est motions that are driven by external forces and boundary
conditions and the smallest eddies at which viscous dissipa-
tion becomes important, called the inertial subrange, in
which the fluid motions are to some degree homogeneous,
isotropic, and scale invariant in a statistical sense. This is a
better approximation for flow through a grid than shear
flows. Kolmogorov’s theory predicts that the rate of energy
dissipated per unit volume over a scaleeR is independent of
R. This leads to velocities that scale asv(R);R1/3 and an
energy spectrum that scales asE(k);k25/3. These scaling
laws are found to be valid for a large number of different
types of flow, as long as the Reynolds number is sufficiently
large.

One remarkable feature of turbulent flows is enhanced
diffusion, in which the mean square separation of two par-
ticles placed initially close together is proportional to a
power of the time

^R2&;tg. ~1!

The valueg51 corresponds to ordinary molecular diffusion
governed by Brownian motion, while turbulent flows are bet-
ter described by Richardson’s lawg53. The motion of the
particles cannot now be described by a random walk that has
a probability distribution with finite moments, because the
central limit theorem applies, leading tog51. Shlesinger
et al. @2–4# have modeled the diffusion of the particles using
Lévy walks @5#, which have infinite moments. Their ap-
proach fits well with the Kolmogorov theory, since the power
laws that characterize the Le´vy walks are statistically homo-
geneous, isotropic, and scale invariant and Richardson’s law
is recovered.

This analysis is, however, restricted to nonrelativistic ve-
locities and fails when the scales become so large that the
characteristic velocities approach the velocity of light. Rela-
tivistic turbulence phenomena are important in astrophysics,

particularly in the study of the accretion disks and jets of
active galactic nuclei@6#, and slightly relativistic turbulent
velocities also occur in cosmology@7#. In this Brief Report
we discuss the full relativistic turbulent diffusion problem,
using a generalization of the Le´vy walk. In the limit of small
velocities we recover Richardson’s law, but for velocities
approaching the velocity of light we obtain a different diffu-
sion lawg52.

In order to understand the intricacies of the relativistic
problem, we must first understand the physical arguments
and mathematical details that are used in Refs.@2–4# to
tackle nonrelativistic turbulent diffusion. The Le´vy walk is a
random walk where each step consists of a pause of timet,
followed by a jump of distanceR. These are not independent
random variables; a step that moves a large distance takes a
long time. The physically relevant parameter that determines
the exact relation between these variables is the velocity as-
sociated with the scaleR, that is,

R5v~R!t. ~2!

This type of walk is called a continuous time random walk
since the emphasis is on the time rather than the number of
steps. The probability distribution for each step of lengthR is
scale invariant in the limit of largeR,

p~R!5R212b. ~3!

Forb,2 this distribution has an infinite second moment and
does not satisfy the conditions of the central limit theorem; a
large number of steps governed by such a probability distri-
bution does not tend to a Gaussian, but rather a Le´vy stable
law @10#. This means that the ordinary diffusion lawg51
need not hold. It is necessary to couple the time and space
probability distributions~for example, as above! to ensure
that the momentŝR2& are not infinite at finite times. The
calculations leading from the Kolmogorov scaling law for
v(R) to the Richardson lawg53 may be obtained from
@2,3#. The result is

g5H 3, b,1/3

~723b!/2, 1/3,b,5/3

1, b.5/3.

~4!
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Note that Richardson’s law applies only to the smallest val-
ues ofb, while the largest values give the same result as
Brownian motion.

In their discussion, Shlesingeret al. included the effects
of intermittency, the effect that the turbulent dissipation is
not observed to be homogeneously distributed. Mandelbrot
@8# has argued that the dissipation is concentrated on a fractal
set of dimensiondf . This has the effect of changing the
scaling law forv(R), and henceg, although these effects are
very small in practice@2#. The presence of a fractal structure
is in accord with the scale invariance proposed by Kolmog-
orov, since fractals are scale invariant. While it is not dis-
puted that turbulent dissipation is inhomogeneous at small
scales, recent experimental evidence@9# finds no indication
that, for sufficiently large Reynolds numbers there is any
deviation from Kolmogorov scaling in the inertial subrange.
For this reason we have not attempted to include the extra
complication of intermittency.

Now we see how these results can be generalized to in-
clude the full relativistic dynamics. The Kolmogorov theory
is nonrelativistic and includes among its assumptions the
Galilean expression for relative velocities and the incom-
pressibility of the fluid. Neither of these properties holds for
the relativistic regime, in which it is necessary to use a com-
pressible fluid with a given equation of state in order to
preserve causality. However, we expect the main features of
the energy cascade to remain unchanged: assuming that, as in
the nonrelativistic regime, the dynamics is that of a highly
damped system, the rate of energy dissipation~per unit mass!
over a scaleR is given by the kinetic energy density
G(R)21 divided by the characteristic timeR/v(R). Here
G(R) is the usual relativistic factor@12v(R)2#21/2, with
c51. Noting that, at least by energy conservation, the energy
lost by the largest scales is equal to that dissipated at the
smallest, it is reasonable to assume that, as in the nonrelativ-
istic regime, the rate of dissipation

e;@G~R!21#
v~R!

R
~5!

is a constant over all scales. This leads to an equation for
v(R),

v412rv31r 2v222rv2r 250 , ~6!

wherer is proportional toeR and is thus a scaled distance.
This equation has a complicated solution in general, but in

the nonrelativistic and ultrarelativistic limits~respectively!
we obtain

v5H ~2r !1/3, r!1

12r22/2, r@1.
~7!

Note that the Kolmogorov scaling lawv(r );r 1/3 is recov-
ered in the nonrelativistic limit. In the intermediate region
we may evaluatev(r ) numerically using Newton’s method.

Before proceeding further, let us consider some of the
physics of Eq.~5!, in particular how the Kolmogorov theory
can be generalized to a relativistic framework. We have as-
sumed that the turbulent medium is homogeneous and iso-
tropic in a statistical sense, although the scale invariance of
the nonrelativistic theory no longer holds. The physical pic-

ture of the Kolmogorov approach is of eddies within eddies,
but this may not be appropriate for the relativistic regime, as
the largest velocities approach the velocity of light, making it
difficult for such causally coherent structures to form. In ad-
dition, the Lorentz contraction in moving from one reference
frame to another may at first sight appear to destroy the
isotropy that we require. Thus we need an intuitive model of
isotropic turbulence. It is clear that the Friedmann-
Robertson-Walker universe is both relativistic and isotropic
as seen from any point in space. A cosmology that has, in
addition, random fluctuations in density and velocity would
thus be a clear example of homogeneous and isotropic rela-
tivistic turbulence. Coherent structures such as eddies could
form up to horizon scales, or greater, if a mechanism such as
inflation has caused correlations on superhorizon scales. An
example of isotropic turbulence in a bounded domain would
be a region of fluid buffeted by a large number of randomly
oriented relativistic jets. Thus isotropic and homogeneous
turbulence is certainly possible in the relativistic domain.

Another important difference that affects relativistic de-
scriptions of a system is the lack of a universal definition of
simultaneity. It is no longer possible to simply state that
^r 2(t)& is the scaled mean square displacement between two
particles as a function of time, unless there is an agreed
frame of reference in which to make measurements of dis-
tance and time. To be specific, we choose the momentarily
comoving rest frame of the particles when they are initially
close together. This calculation depends only on the distribu-
tion of relative velocities and not on the distances between
the particles. In addition, it is approximate, in that dimen-
sionless factors of order unity are ignored, while the impor-
tant results are the power law exponents. Thus it does not
matter from the point of view of this calculation whether we
are estimating the relative separation of two particles or one
particle and a point fixed in the fluid. Because the results are
approximate in that small dimensionless factors have been
neglected, the issue of which frame of reference is used is
not crucial.

To summarize what we have so far, the relativistic turbu-
lent diffusion process is modeled by a random walk that
consists of a pause of timet followed by a jump of scaled
distancer . The probability distribution forr is given by Eq.
~3! in the larger limit. Its direction is an independent ran-
dom variable with uniform probability distribution. The time
t is given by Eqs.~2! and ~6!. It is difficult to evaluate
^r 2(t)& analytically, along the lines of Eq.~4!, so we will
investigate the ultrarelativistic limit exactly and then treat the
full problem numerically.

In the ultrarelativistic limit (r@1, v'1) the velocity is
independent ofr , that is, a power law with zero exponent, so
we are back to a Le´vy walk, which can be analyzed in a
manner similar to Ref.@3#. The analytic result is

g5H 2, b,1

32b, 1,b,2

1, b.2.

~8!

The exponent corresponding to smallb, which is physically
the most reasonable, isg52. Note that even if we had in-
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cluded the effects of intermittency, the velocity law would be
unchanged, so there would be no difference in the results.

In the intermediate region (r'1) we use numerical meth-
ods. The exact probability distribution we use, following Eq.
~3!, is

p~r !5H b

l ~b11!
, r, l

b

l ~b11! S rl D
212b

, r. l ,

~9!

where l is the characteristic length of a step, made smaller
than the values ofr of interest. The results are independent
of l under this condition. An example of such a random
walk, with b51, is shown in Fig. 1. Each instance of a walk
is sampled at specified times andr 2 is averaged over an
ensemble of such walks and plotted as a function of time for
differentb. The results are shown in Fig. 2.

The lines given for lowb are particularly curved, as in-
dicated by the limiting power laws given in Eqs.~4! and~8!.
The amount of computer time needed for each of the curves
shown in Fig. 2 varied withb ~increasing by several orders
of magnitude fromb50.1 tob510!, the range of̂ r 2&, and
the sample size. Thus, the larger values ofb took days to
run, even though the sample size was reduced, causing the
statistical scatter in these curves. The limiting power laws
were estimated by making a fit to ten data points at either

end of the lines shown in Fig. 2 and the results, along with
the theoretical values given in Eqs.~4! and~8!, are shown in
Fig. 3.

It is interesting to note that, although the nonrelativistic
exponent is less than the ultrarelativistic exponent for
1,b,2, the fitted exponents do not show this, except for
b52. This and the other deviations from the theoretical val-
ues at smallb can be explained by the finite range
25, ln^r2&,5 and the finite sample size. In particular, the
nonrelativistic smallb values displayed in Fig. 3 were
strongly affected by the above choice of range. We have
extended the range of the variables for the specific case
b50.1 ~see Fig. 4!, for further clarity. The fitted exponents
are now 2.96, and 2.04, very close to the theoretical values,
which are 3 and 2 for the nonrelativistic and ultrarelativistic
limits, respectively.

We note that, although we have made several approxima-
tions in obtaining the curves for velocities in the intermediate
region, the general shape of the curves and the point at which
the effects are felt are quite insensitive to these approxima-
tions and, in particular, the exponent of 2 for the ultrarela-
tivistic limit is exact within the Le´vy walk approach.

This work is a basis for studies of particular relativistic
turbulent systems. It could be extended in a number of ways,
depending on the nature of the problem. We have not in-
cluded effects due to magnetic fields or the fact that relativ-

FIG. 1. Two-dimensional projection of ab51 random walk.

FIG. 2. Main numerical results:r 2 is averaged over 50–10 000
walks ~depending onb) and plotted as a function of time on a
log-log plot for values ofb in the range 0.1–10.

FIG. 3. Nonrelativistic~square! and ultrarelativistic~circle! scal-
ing exponents, evaluated by fitting a straight line to the small and
larget sections of Fig. 2. The theoretical exponents are given by the
solid lines.

FIG. 4. Plot forb50.1 in Fig. 2, extended to a larger range of
times. The fitted exponents are 2.96 in the nonrelativistic limit and
2.04 in the ultrarelativistic limit, very close to the theoretical values.
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istic jets are quite anisotropic, at least on large scales. Nev-
ertheless, for large Reynolds number, we expect that these
homogeneous, isotropic calculations should provide an un-

derstanding of anomalous diffusion in the presence of rela-
tivistic velocities.
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