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Stochastic dynamics of relativistic turbulence
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We apply generalized Kolmogorov scaling to continuous time random walks, coupled in space and time, to
obtain anomalous diffusion laws for relativistic turbulent media. Richardson’s law for the mean square sepa-
ration of two particles that are initially close toget{&?)~12 is recovered in the nonrelativistic limit, while
the ultrarelativistic limit is characterized by a different power KRf)~t2. Intermediate velocities are treated
numerically, showing a smooth transition from one regime to the other.

PACS numbds): 47.27.Jv, 47.27.Qb, 05.40j, 98.62.Nx

No complete theory of turbulence exists, despite the apparticularly in the study of the accretion disks and jets of
parent simplicity of the Navier-Stokes equations and the imactive galactic nuclef6], and slightly relativistic turbulent
portant fact that almost all problems involving fluids havevelocities also occur in cosmolody]. In this Brief Report
some physically relevant set of parameters in which the mowe discuss the full relativistic turbulent diffusion problem,
tion is turbulent. Nevertheless, there are general principlessing a generalization of the iz walk. In the limit of small
that apply to most turbulent flows to some degree and patvelocities we recover Richardson’s law, but for velocities
ticular flows to a good approximation. An example is theapproaching the velocity of light we obtain a different diffu-
observation by Kolmogoroy1] and others that for large sion lawy=2.

Reynolds number there is a range of scales between the larg- In order to understand the intricacies of the relativistic
est motions that are driven by external forces and boundargroblem, we must first understand the physical arguments
conditions and the smallest eddies at which viscous dissipaand mathematical details that are used in RE?s:4] to

tion becomes important, called the inertial subrange, irtackle nonrelativistic turbulent diffusion. The \gwalk is a
which the fluid motions are to some degree homogeneousandom walk where each step consists of a pause of time
isotropic, and scale invariant in a statistical sense. This is &llowed by a jump of distancR. These are not independent
better approximation for flow through a grid than shearrandom variables; a step that moves a large distance takes a
flows. Kolmogorov’s theory predicts that the rate of energylong time. The physically relevant parameter that determines
dissipated per unit volume over a scalgis independent of the exact relation between these variables is the velocity as-
R. This leads to velocities that scale @éR)~R® and an  sociated with the scalR, that is,

energy spectrum that scales Bk)~k >3 These scaling

laws are found to be valid for a large number of different R=0v(R)t. )
types of flow, as long as the Reynolds number is sufficiently

large. Jhis type of walk is called a continuous time random walk

One remarkable feature of turbulent flows is enhanced. L )
g . ; . since the emphasis is on the time rather than the number of
diffusion, in which the mean square separation of two par-

ticles placed initially close together is proportional to azgﬁz'i:c;g r?tbiibt”rlg Iciirlr?itt“g: r;néor each step of lerigiis
power of the time 9%,

(R2)~17. (1) p(R)=R"*7%. ®3)

The valuey=1 corresponds to ordinary molecular diffusion For <2 this distribution has an infinite second moment and
governed by Brownian motion, while turbulent flows are bet-does not satisfy the conditions of the central limit theorem; a
ter described by Richardson’s lay=3. The motion of the large number of steps governed by such a prqbability distri-
particles cannot now be described by a random walk that hagution does not tend to a Gaussian, but rather & lstable

a probability distribution with finite moments, because thelaw [10]. This means that the ordinary diffusion lay=1
central limit theorem applies, leading tp=1. Shlesinger need not hold. It is necessary to couple the time and space
et al.[2—4] have modeled the diffusion of the particles using probability distributions(for example, as aboyeo ensure
Lévy walks [5], which have infinite moments. Their ap- that the moment¢R?) are not infinite at finite times. The
proach fits well with the Kolmogorov theory, since the powercalculations leading from the Kolmogorov scaling law for
laws that characterize the g walks are statistically homo- v(R) to the Richardson lawy=3 may be obtained from
geneous, isotropic, and scale invariant and Richardson’s lay2,3]. The result is

is recovered.

This analysis is, however, restricted to nonrelativistic ve- 3, B<1/3
locities and fails when the scales become so large that the
characteristic velocities approach the velocity of light. Rela- y=4{ (1=3p)2,  13<p<5/3 )
tivistic turbulence phenomena are important in astrophysics, 1, pB>5/3.
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Note that Richardson’s law applies only to the smallest valture of the Kolmogorov approach is of eddies within eddies,
ues of B8, while the largest values give the same result adut this may not be appropriate for the relativistic regime, as
Brownian motion. the largest velocities approach the velocity of light, making it
In their discussion, Shlesinget al. included the effects difficult for such causally coherent structures to form. In ad-
of intermittency, the effect that the turbulent dissipation isdition, the Lorentz contraction in moving from one reference
not observed to be homogeneously distributed. Mandelbrdrame to another may at first sight appear to destroy the
[8] has argued that the dissipation is concentrated on a fractaotropy that we require. Thus we need an intuitive model of
set of dimensiond;. This has the effect of changing the isotropic turbulence. It is clear that the Friedmann-
scaling law forv (R), and hencey, although these effects are Robertson-Walker universe is both relativistic and isotropic
very small in practic¢2]. The presence of a fractal structure as seen from any point in space. A cosmology that has, in
is in accord with the scale invariance proposed by Kolmog-addition, random fluctuations in density and velocity would
orov, since fractals are scale invariant. While it is not dis-thus be a clear example of homogeneous and isotropic rela-
puted that turbulent dissipation is inhomogeneous at smativistic turbulence. Coherent structures such as eddies could
scales, recent experimental evidei®g¢ finds no indication form up to horizon scales, or greater, if a mechanism such as
that, for sufficiently large Reynolds numbers there is anyinflation has caused correlations on superhorizon scales. An
deviation from Kolmogorov scaling in the inertial subrange.example of isotropic turbulence in a bounded domain would
For this reason we have not attempted to include the extrbe a region of fluid buffeted by a large number of randomly
complication of intermittency. oriented relativistic jets. Thus isotropic and homogeneous
Now we see how these results can be generalized to irturbulence is certainly possible in the relativistic domain.
clude the full relativistic dynamics. The Kolmogorov theory ~ Another important difference that affects relativistic de-
is nonrelativistic and includes among its assumptions thecriptions of a system is the lack of a universal definition of
Galilean expression for relative velocities and the incom-simultaneity. It is no longer possible to simply state that
pressibility of the fluid. Neither of these properties holds for{r(t)) is the scaled mean square displacement between two
the relativistic regime, in which it is necessary to use a comparticles as a function of time, unless there is an agreed
pressible fluid with a given equation of state in order toframe of reference in which to make measurements of dis-
preserve causality. However, we expect the main features dénce and time. To be specific, we choose the momentarily
the energy cascade to remain unchanged: assuming that, ascimmoving rest frame of the particles when they are initially
the nonrelativistic regime, the dynamics is that of a highlyclose together. This calculation depends only on the distribu-
damped system, the rate of energy dissipafer unit masg  tion of relative velocities and not on the distances between
over a scaleR is given by the kinetic energy density the particles. In addition, it is approximate, in that dimen-
I'(R)—1 divided by the characteristic time/v(R). Here sionless factors of order unity are ignored, while the impor-
I'(R) is the usual relativistic factof1—uv(R)?] Y2 with  tant results are the power law exponents. Thus it does not
c=1. Noting that, at least by energy conservation, the energyatter from the point of view of this calculation whether we
lost by the largest scales is equal to that dissipated at thare estimating the relative separation of two particles or one
smallest, it is reasonable to assume that, as in the nonrelatiparticle and a point fixed in the fluid. Because the results are

istic regime, the rate of dissipation approximate in that small dimensionless factors have been
) neglected, the issue of which frame of reference is used is
v(R not crucial.
e~[I'(R)—1] R 5) To summarize what we have so far, the relativistic turbu-

lent diffusion process is modeled by a random walk that
is a constant over all scales. This leads to an equation fagonsists of a pause of timefollowed by a jump of scaled
v(R), distancer. The probability distribution for is given by Eq.
(3) in the larger limit. Its direction is an independent ran-
dom variable with uniform probability distribution. The time
t is given by Egs.(2) and (6). It is difficult to evaluate
rgrz(t)> analytically, along the lines of Eq4), so we will
investigate the ultrarelativistic limit exactly and then treat the
full problem numerically.
In the ultrarelativistic limit ¢>1, v~1) the velocity is
2N r<1 independent of, that is, a power law with zero exponent, so
V=1 -2 (7)  we are back to a lwy walk, which can be analyzed in a
r—</2, r>1. - : .
manner similar to Refl3]. The analytic result is

v+ 2rv+r2w?—2rv—r?=0, (6)

wherer is proportional toeR and is thus a scaled distance.

This equation has a complicated solution in general, but i
the nonrelativistic and ultrarelativistic limiteespectively
we obtain

Note that the Kolmogorov scaling law(r)~r? is recov-

ered in the nonrelativistic limit. In the intermediate region 2, B<1
we may evaluate (r) numerically using Newton’s method. '

Before proceeding further, let us consider some of the y=4{3-8, 1<pB<2 (8)
physics of Eq(5), in particular how the Kolmogorov theory 1, p>2.

can be generalized to a relativistic framework. We have as-

sumed that the turbulent medium is homogeneous and iso-

tropic in a statistical sense, although the scale invariance ofhe exponent corresponding to small which is physically
the nonrelativistic theory no longer holds. The physical pic-the most reasonable, ig=2. Note that even if we had in-
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FIG. 1. Two-dimensional projection of =1 random walk.

cluded the effects of intermittency, the velocity law would be FIG. 3. Nonrelativistigsquaré and ultrarelativisti¢circle) scal-
unchanged, so there would be no difference in the results. ing exponents, evaluated by fitting a straight line to the small and

In the int,ermediate regio 1) we use numerical meth- larget sections of Fig. 2. The theoretical exponents are given by the
ods. The exact probability distribution we use, following Eq. S°1d ines.

@), 1s end of the lines shown in Fig. 2 and the results, along with

the theoretical values given in Eqg) and(8), are shown in

B Fig. 3.
1(B+1)" r<l It is interesting to note that, although the nonrelativistic
p(r)= _1-p 9 exponent is less than the ultrarelativistic exponent for
B ([) r>| 1< B<2, the fitted exponents do not show this, except for
I(B+1)\I ' ’ B=2. This and the other deviations from the theoretical val-

ues at smallB can be explained by the finite range

_ 2 . . . B
wherel is the characteristic length of a step, made smaller” ><IN(r)<5 and the finite sample size. In particular, the

than the values of of interest. The results are independentnonrel""t'vIStIC smallg values d|spla}yed in Fig. 3 were
of | under this condition. An example of such a randomStrongly affected by the above choice of range. We have

walk, with 8= 1, is shown in Fig. 1. Each instance of a walk extended the range of the variables for the specific case
is se{mpled at ,specified times amd is averaged over an B=0.1(see Fig. 4, for further clarity. The fitted exponents

ensemble of such walks and plotted as a function of time foftre Now 2.96, and 2.04, very closg .to _the theoretical yglu_es,
different 8. The results are shown in Fig. 2. which are 3 and 2 for the nonrelativistic and ultrarelativistic

. . . . limits, respectively.
The lines given for lowgB are particularly curved, as in- ' .
dicated by the limiting power laws given in Eqd) and (8). We note that, although we have made several approxima-

The amount of computer time needed for each of the CurVeg’ons in obtaining the curves for velocities in the intermediate
region, the general shape of the curves and the point at which

shown in Fig. 2 varied withg (increasing by several orders the effects are felt are quite insensitive to these approxima
i = = 2 3
of magnitude from3=0.1 to f=10), the range ofr*), and tions and, in particular, the exponent of 2 for the ultrarela-

the sample size. Thus, the larger valuesgofook days to .. = = . " o ,
run, even though the sample size was reduced, causing tﬁ|g|st|g limit IS exact w!th|n the qu walk ap.proach. L
This work is a basis for studies of particular relativistic

statistical scatter in these curves. The limiting power law urbulent svstems. It could be extended in a number of wavs
were estimated by making a fit to ten data points at eithe 1t Sy ' yS,
depending on the nature of the problem. We have not in-

cluded effects due to magnetic fields or the fact that relativ-
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FIG. 2. Main numerical results? is averaged over 50—10 000 FIG. 4. Plot for3=0.1 in Fig. 2, extended to a larger range of
walks (depending onB) and plotted as a function of time on a times. The fitted exponents are 2.96 in the nonrelativistic limit and
log-log plot for values ofB in the range 0.1-10. 2.04 in the ultrarelativistic limit, very close to the theoretical values.
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istic jets are quite anisotropic, at least on large scales. Newderstanding of anomalous diffusion in the presence of rela-
ertheless, for large Reynolds number, we expect that theg#@vistic velocities.
homogeneous, isotropic calculations should provide an un-
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