RANDOM GRAPHS AND WIRELESS COMMUNICATION NETWORKS

Part 2: Random Graph Properties

1 hour

September 5, 2016

Orestis Georgiou

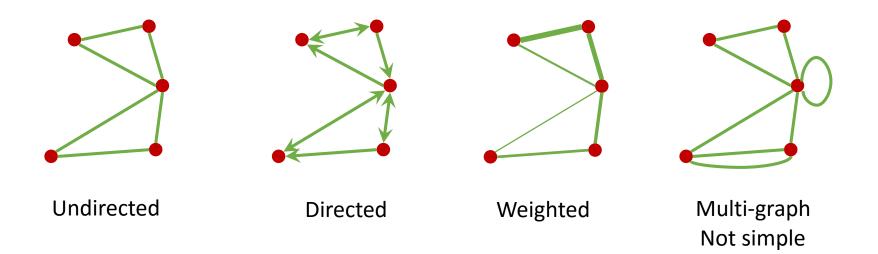
with Justin Coon, Marco Di Renzo, and Carl P. Dettmann

Outline

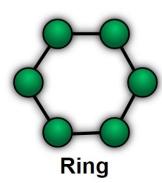
- Some Graph examples
- Adjacency and other Matrices
- Basic Graph Properties
- Intermediate Graph Properties
- Advanced Graph Properties
 - Advanced Graph Concepts
- Statistical Graph Properties
- Basic Percolation Theory

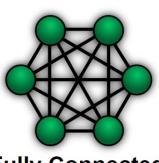
Some Graph examples

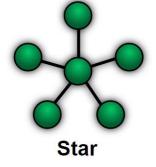
- Mathematical structures used to model pairwise relations between objects
 - Vertices (Nodes) *V* is the number of nodes
 - Edges (Links) *E* is the number of edges
 - G(V,E) graph or network



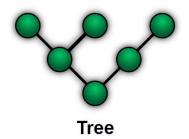
Some Graph examples







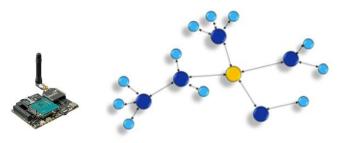
(Complete)

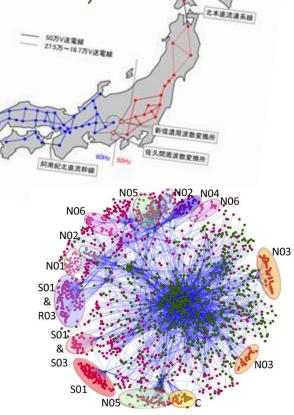




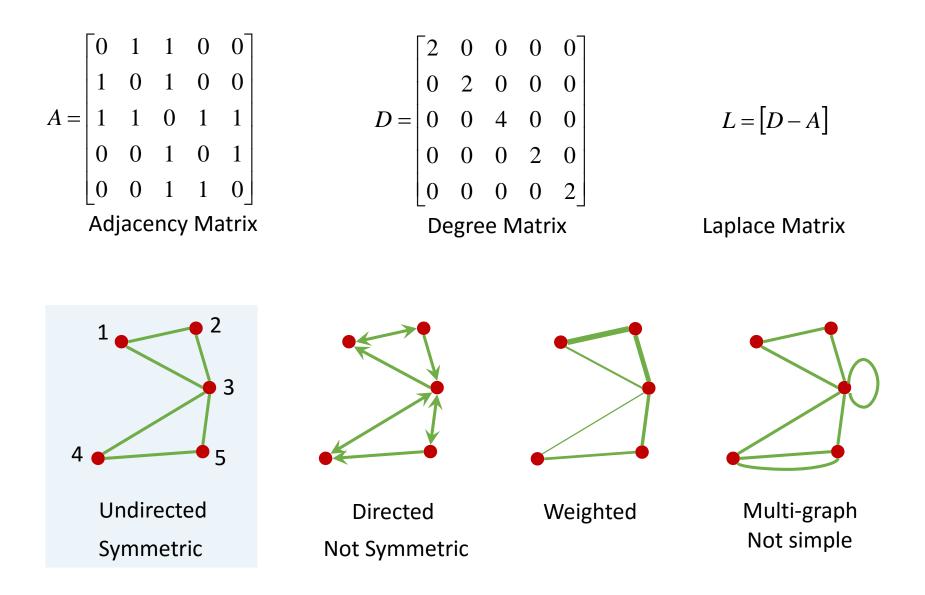
Some Graph examples

Actor movies, Co-authors, Citation, Animal interactions, Social media networks, Internet, Infrastructure, Power grids, Roads, Rail, Cellular, WSNs, Biological, Protein-Protein-Interaction, ...

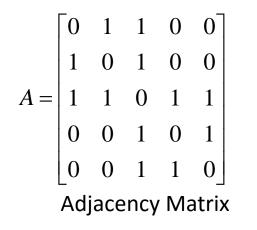




Adjacency and other Matrices



Basic Graph Properties



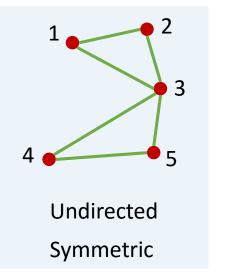
$$D = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

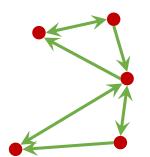
Degree Matrix

Node Degree

Minimum degree $\delta(G)=2$ Maximum degree $\Delta(G)=4$ Mean degree $\mu(G)=(2+2+4+2+2)/5=2.4$

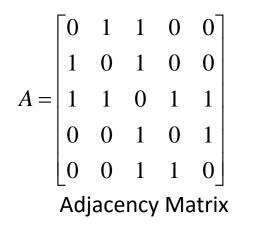
Directed degree: In / Out degrees





Directed Not Symmetric

Basic Graph Properties

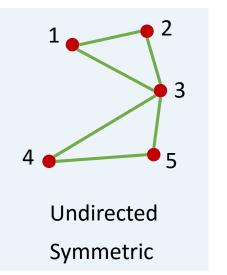


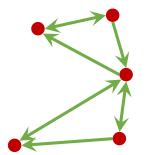
$$D = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

Degree Matrix

Connectivity

minimum number of elements (nodes or edges) that need to be removed to disconnect the graph.

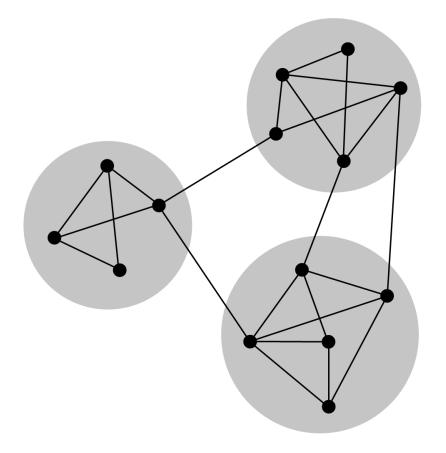




Directed Not Symmetric

Edge connectivity K=2Vertex connectivity e=1

Basic Graph Properties



Adjacency Matrix Degree Matrix Laplacian Matrix

Minimum degree $\delta(G)=2$ Maximum degree $\Delta(G)=4$ Mean degree $\mu(G)=?$ Edge connectivity $\kappa=2$ Vertex connectivity e=1

Diameter: maximum shortest distance between any 2 nodes d=5

Distance matrix: NxN matrix with entries node distances (shortest paths)

Intermediate Graph Properties

Reachability (also called Accessibility): ability to get from node *i* to *j* Available through the **Distance matrix**

Number of walks of length k

$$(A^k)_{i,j} = \sum_{i_1, i_2, \dots, i_{k-1}} A_{i,i_1} A_{i_1, i_2} \cdots A_{i_{k-2}, i_{k-1}} A_{i_{k-1}, j}$$

will be 1 if and only if vertex *i* is adjacent to i_1 which is adjacent to i_2 and so on until we get to *j*

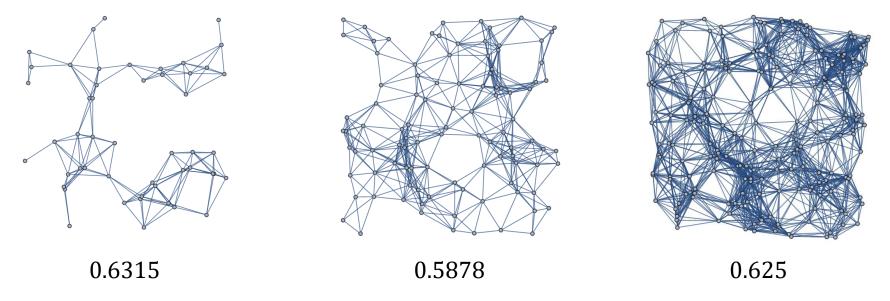
Trace of **A**³ gives the number of *closed* paths of length 3. Note that each "triangles" is counted 6 times (3 vertices and 2 directions).

Clustering Coefficient (also called transitivity ratio)

$$C = rac{3 imes ext{number of triangles}}{ ext{number of connected triplets of vertices}}$$

Intermediate Graph Properties

Examples of Random Geometric Graphs (spatially embedded networks)



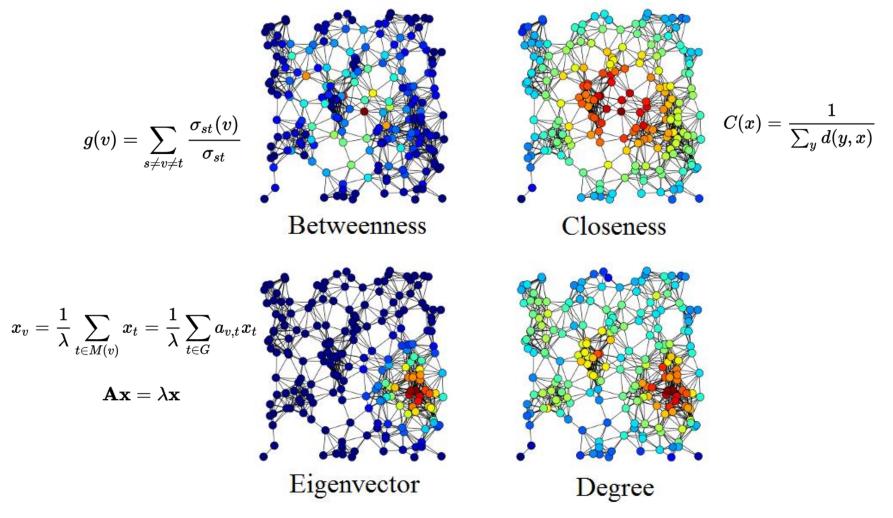
Not a function of density for RGGs

Clustering Coefficient (also called transitivity ratio)

 $C = rac{3 imes ext{number of triangles}}{ ext{number of connected triplets of vertices}}$

Advanced Graph Properties

Centrality measures: identify the most important vertices within a graph



Advanced Graph Properties

Number of walks of length k

$$(A^k)_{i,j} = \sum_{i_1, i_2, \dots, i_{k-1}} A_{i,i_1} A_{i_1, i_2} \cdots A_{i_{k-2}, i_{k-1}} A_{i_{k-1}, j}$$

Recall the matrix identities:

$$\det(\exp(A)) = \exp(\operatorname{tr}(A))$$

$$e^X = \sum_{k=0}^\infty rac{1}{k!} X^k$$

$$\operatorname{tr}(A) = \sum_{i=1}^n A_{ii} = \sum_{i=1}^n \lambda_i = \lambda_1 + \lambda_2 + \dots + \lambda_n$$

$$\det(A) = \prod_{i=1}^n \lambda_i = \lambda_1 \lambda_2 \cdots \lambda_n$$

Advanced Graph Properties

$$L = \begin{bmatrix} D - A \end{bmatrix}$$

Laplace Matrix spectrum: $0 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_N$

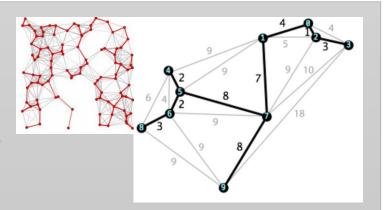
- Contains information about the graph structure
- Number of 0 eigenvalues is the number of connected components
- Second smallest eigenvalue is the *algebraic connectivity*
 - The larger λ_2 is, the better connected the network
- The ratio λ_N / λ_2 is the *network synchronizability*
 - The larger the ratio is, the better the synchronizability

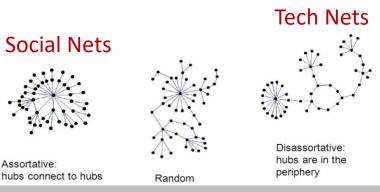
Advanced Graph Concepts

- Minimum Spanning tree
 - Shortest Paths
 - Network Flow (Random Walks on graphs)

Community Detection

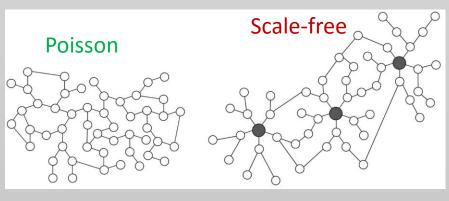
- Coverage
- Centrality
- Modularity
- Assortativity
 - preference of nodes to attach to connect with similar (in degree) nodes.
- Interdependence (Networks of Networks)

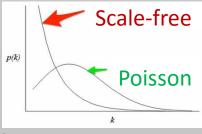




Statistical Graph Properties

- Degree Distribution
 - Poisson for RGGs
 - Power law for scale-free
- (Pair) Distance Distribution
 - Diameter, the mean path length
- Clustering coefficient distribution
 - some very clustered parts, and some less clustered parts
- Eigenvalue Distributions
 - Spectral density
 - Nearest Neighbours spacings (Random Matrix Theory)



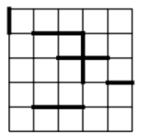


(spatially embedded networks)

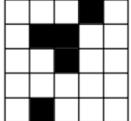
Basic Percolation Theory

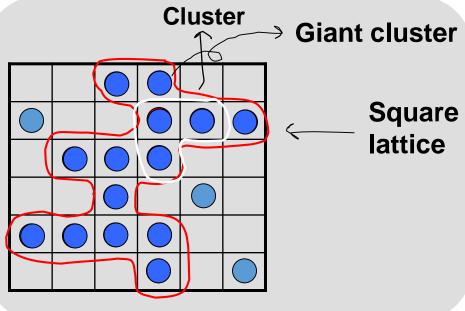
Percolation is a phase-transition phenomenon whereby at some critical density ρ_c the largest connected component (cluster) of the system jumps abruptly from being independent of system size (microscopic) to being proportional to it (macroscopic).

- Nucleation and condensation of gases into liquids (1930s)
- Physical processes such as fluid flow through disordered porous media (1957)
- Mathematical approach Random Graphs (1959)



bond percolation





site percolation

Important Quantities

C(x) = set of all vertices/sites reachable from x

|C(x)| = size of the component

Percolation probability

$$\mathcal{G}(\rho) = P[|C(x)| = \infty] = 1 = \sum_{k=1}^{\infty} P[|C(x)| = k]$$

Mean cluster size

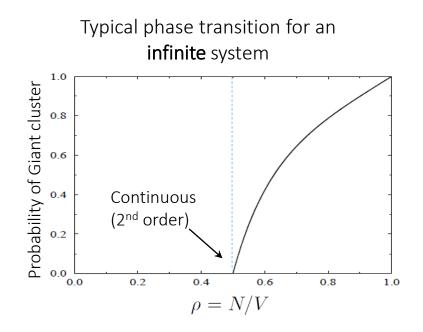
 $\chi_x(\rho) = \mathrm{E}[|C(x)|]$

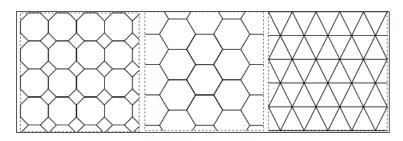
Percolation Transition

No giant cluster --> Giant cluster exists

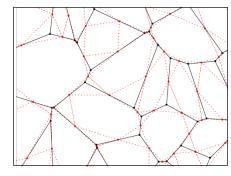
$$\mathcal{P}(\rho) = \begin{cases} 0 & \text{for } \rho < \rho_c \\ > 0 & \text{for } \rho \ge \rho_c \end{cases}$$

$$\chi_{x}(\rho) = \begin{cases} <\infty & \text{for } \rho < \rho_{c} \\ \infty & \text{for } \rho \ge \rho_{c} \end{cases}$$

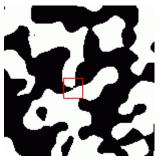




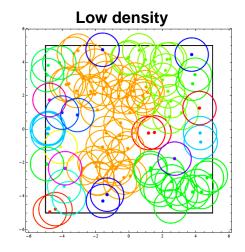
regular lattices



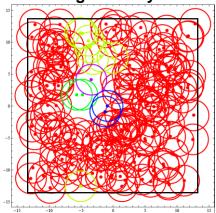
random and quasi-lattices

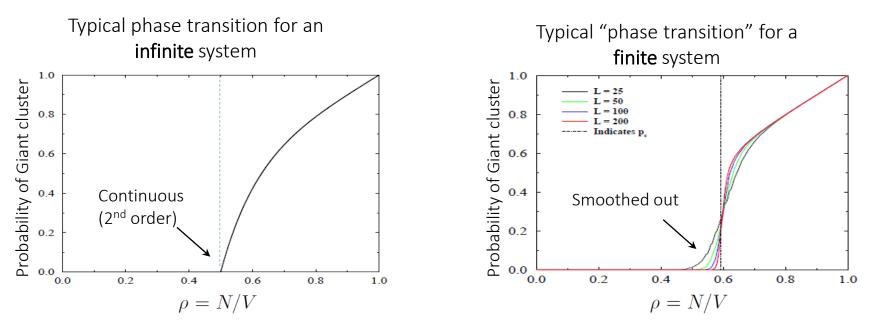


random potential landscape (continuous) **Unit-Disk** model with **periodic BCs** and a step connectivity function (on/off)



High density

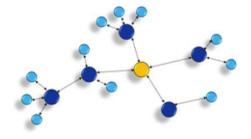


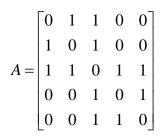


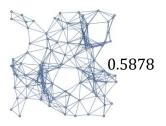
	Lattice	#nn	Site percolation	Bond percolation
Table of critical densities	1d	2	1	1
	2d Honeycomb	3	0.6962	$1 - 2\sin(\pi/18) \approx 0.65271$
	2d Square	4	0.592746	1/2
	2d Triangular	6	1/2	$2\sin(\pi/18) \approx 0.34729$
	3d Diamond	4	0.43	0.388
	3d Simple cubic	6	0.3116	0.2488
	3d BCC	8	0.246	0.1803
	3d FCC	12	0.198	0.119
	4d Hypercubic	8	0.197	0.1601
	5d Hypercubic	10	0.141	0.1182
	6d Hypercubic	12	0.107	0.0942
	7d Hypercubic	14	0.089	0.0787
1	Bethe lattice	\mathbf{Z}	1/(z-1)	1/(z-1)

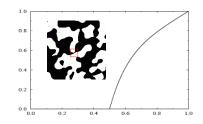
Summary

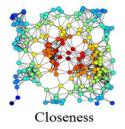
- Some Graph examples
- Adjacency and other Matrices
- Basic Graph Properties
- Intermediate Graph Properties
- Advanced Graph Properties
 - Advanced Graph Concepts
- Statistical Graph Properties
- Basic Percolation Theory











References

- De Abreu, Nair Maria Maia. "Old and new results on algebraic connectivity of graphs." Linear algebra and its applications 423.1 (2007): 53-73.
- Penrose, Mathew. Random geometric graphs. No. 5. Oxford University Press, 2003.
- Dall, Jesper, and Michael Christensen. "Random geometric graphs." *Physical Review E* 66.1 (2002): 016121.
- Haenggi, Martin, et al. "Stochastic geometry and random graphs for the analysis and design of wireless networks." *IEEE Journal on Selected Areas in Communications* 27.7 (2009): 1029-1046.
- Albert, Réka, and Albert-László Barabási. "Statistical mechanics of complex networks." *Reviews of modern physics* 74.1 (2002): 47.
- Stauffer, Dietrich, and Ammon Aharony. Introduction to percolation theory. CRC press, 1994.
- Barthelemy, Marc. "Betweenness centrality in large complex networks." *The European Physical Journal B-Condensed Matter and Complex Systems* 38.2 (2004): 163-168.