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This Lecture: Tools for System-Level Modeling & Analysis

0 What is stochastic geometry ?

 What are point processes ?

O Why are they useful in communications ?
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Basic definitions

Poisson point processes

How to compute sums over point processes

How to compute products over point processes

Transformations of point processes (displacement, marking, thinning)
Palm theory, Palm distribution, conditioning

Packages for analyzing spatial point processes (spatstat in R)

Some books

Part II: Motivating, validating and applying all this to cellular networks
2



What is Stochastic Geometry ?

d Stochastic geometry is the area of mathematical
research that is aimed to provide suitable mathematical
models and appropriate statistical methods to study and
analyze random spatial patterns.

d Random point patterns or point processes are the most
basic and important of such objects, hence point
process theory is often considered to be the main sub-
field of stochastic geometry.

d Random spatial patterns are more general than random
point patterns. For example, one can model shapes in

multiple dimensions (random shape theory). :



What is a Random Point Process 7

d A random (spatial) point process is a set of locations,
distributed within a designated region and presumed to
have been generated by some form of stochastic
mechanism.

A realization of a spatial point process is termed spatial
point pattern, which is a countable collection of points
or dataset giving the observed locations of things or
events (in a given dimensional space, e.g., in 2-D).

d The easiest way to visualize a 2-D point pattern is a
map of the locations, which is simply a scatterplot but

with the provision that the axes are equally scaled.
4



Examples...
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Figure 1.1. Point pattern datasets with spatially varving density of points. Left: enterochromaffin-
like cells in histological section of gastric mucosa (T. Bendtsen; see [484, pp. 2, 169]), interior of

stomach towards top of picture. Right: sky positions of 4215 galaxies in the Shapley Supercluster
(M. Drinkwater); survey region about 25 degrees across.



Examples...
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Figure 1.3. Japanese black pine seedlings and
saplings in a 10 metre square sampling region.
Data recorded by M. Numata [503], and kindly

supplied by Y. Ogata and M. Tanemura.

Figure 1.3 depicts the locations of 204
Japanese black pine (Pinus Thunbergii) seedlings
and saplings recorded in a 10 x 10 metre sampling
region within a natural forest stand [503]. In map-
ping a snapshot of the forest, we hope to under-
stand ecological processes, such as competition
for resources (soil nutrients, light, water, growing
space), and spatial variation in the landscape, such
as variation in soil type or soil fertility.

A detailed analysis of these data [513, 516, 55]
concluded that both these phenomena are present:
there is spatial variation in the density of the for-
est, and also a tendency for trees to avoid growing
close together, suggesting competition between
neighbouring plants.



Examples...

Figure 1.6. Locations of influenza virus proteins
M2 and HA, mapped by immunogold labelling, on
the surface of an infected cell. Field width is 3331
nanometres. Data kindly supplied by G.P. Leser
and R.A. Lamb.

Figure 1.6 shows the locations of influenza
virus proteins on the surface of an infected
cell [146]. The protein locations were mapped
by immunogold labelling, that is, by growing
antibodies to the specific proteins, attaching
a gold particle to each antibody, and subse-
quently imaging the gold particles in electron
microscopy. The research problem is to decide
whether there is spatial association between the
two proteins: this is important for the study of
viral replication. While these data are superfi-
cially similar in structure to the amacrine cells
data, the required analysis is completely differ-
ent. Whereas the amacrine cells belong to two
highly organised layers, it is appropriate to treat
the individual influenza proteins (the individual
circles and crosses in Figure 1.6) as individual,
mobile, biochemical entities, each responding
to its local environment.



Examples...
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Locations of 493 cellular base stations (5 km square area in central London)
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Examples... Beyond “Points”

02 + Vodafone 02 Vodafone
Number of BSs 319 183 136
Number of rooftop BSs 95 62 33
Number of outdoor BSs 224 121 103
Average cell radius (m) 63.1771 83.4122 96.7577




Examples...Beyond “Points” (zoom in)
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What Stochastic Geometry is Useful For ?

[ Stochastic geometry is a rich branch of applied probability with
several applications: material science, image analysis, stereology,
astronomy, biology, forestry, geology, communications, etc.

1 Stochastic geometry provides answers to questions such as:

»How can one describe a (random) collection of points in one,
two, or higher dimensions ?

»How can one derive statistical properties of such a collection
of points ?

> How can one calculate statistical averages over all the possible
realizations of such a random collection ?

» How can one condition on having a point at a fixed location ?

> Given an empirical set of points, which statistical model is
likely to produce this point set ?

1



... In Communications...?

1 Point processes are used to model the (spatial) locations
of nodes (users, wireless terminals, base stations,
access points, etc.) in (wireless) networks.

1 Point process models permit statements about entire
classes of (wireless) networks, instead of just about one
specific configuration of the network.

O In some cases, distributions of relevant performance
metrics over the point process can be calculated, in
others, spatial averaging is performed, which yields
expected values of certain performance metrics (e.g.,

the likelihood of transmission success).
12



On (Complete) Spatial Randomness...

Uniform Random Clustered
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What is a Point Process ? — Mathematical Definition

A point process 1s a countable random collection of points that reside

. . d
in some measure space, usually the Euclidean space R®.

For simplicity, we often consider d = 2.

Notation
1. A point process 1s denoted by @

2. An 1nstance (realization) of the point process is denoted by ¢

3. The number of points of a point process in the set 4 = R” is
denoted by ®(A4)

14



What is a Point Process ? — Mathematical Definition

Let N be the set of all sequences ¢ — R” satisfying

1. (Finite) Any bounded set 4 = R contains a finite number of points

2. (Sumple) x, # x; it i# j

Definition

A point process in R” is a random variable taking values in the space N

15



What is a Point Process ? — Mathematical Definition

A point process can be described by using two formalisms:
1. Random set formalism

2. Random measure formalism

Random set formalism

The point process is ragarded as a countable random set @ ={x,,x,,...; ¢ R

. . . 2 .
consisting of random variables x; € R” as its elements.

Random measure formalism

The point process 1s characterized by counting the number of points falling

in sets 4 < R?, i.e., ®(4). Hence ®(A4) is a random variable that assumes

non-negative interger values. @ () is called (random) counting measure.
16



Starting Point: Point Process with a Single Point

Single - Point Point Processes 0

1. Contains only one random point

2. The random point x 1s uniformly | - .
distributed in a bounded set 4 " .

Thus, let B — 4, one has | '
il e P omemesirrasvsammmnrmpeme b s e 4
) _

P B)=— -6
(x<8) 4 T
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Binomzial Point Process (BPP)

A BPP on a bounded set 4 (‘A‘<+oo) 1: am
1s the superposition of N independent T —
and uniformly distributed points on e e
the set A. ol N O o DO corggr B
ol - | 1
2}
Let B — A, then: IED(CD(B):k) N |
k N—k ] S . )
:(N] 18 (,_12] B e s sl
k)\ |4 4] P ; :



Equivalent Point Processes: Void Probability

Given two point processes, 1s there any simple approach to prove

whether they are equivalent ?

Void Probability

Let a point process @. Its void probabilities over all bounded
sets A are defined as P(@(A) = 0) for 4 c R”.

Equivalent point processes
1. A simple point process 1s determined by its void probabilities.
2. Two simple point processes are equivalent 1f they have the

same void probability distributions for all bounded sets. .



Stationarity, Isotropy, Motion-Invariance

Stationarity

Let a point process ®= {xn } ® 1s said to be stationary if the translated

point process @ ={x, +x} has the same distribution as ® for every x € R".

Isotropy
Let a point process ®= {xn } ® 1is said to be isotropic if the rotated point

process rd={rx, | has the same distribution as @ for every rotation r

about the origin.

Motion - Invariant

A point process 1s motion-invariant if it is stationary and 1sotropic.

20



Stationarity and Intensity Measure

Density (Intensity ) Measure

Let a stationary point process ®. Its density is defined as follows:

EiD( A4
A= { ( )} for every A — R”
4
Remarks:

1. The density does not depend on the particular choice of the set 4

2. Stationarity implies that the density is constant

3. The converse 1s, in general, not true: a constant density does not
imply stationarity

21



Stationary (Homogeneous) Poisson Point Process (PPP)

1 The most widely used model for the spatial locations of nodes
» Most amicable for mathematical analysis

» Considered the “Gaussian of point processes”
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Homogeneous PPP: Formal Definition

A stationary point process @ of density A 1s PPP if:

1. The number of points in any bounded set

A R? has a Poisson distribution with

L

2. The number of points in disjoint sets are
independent, i.e., for every A — R* and
BcR* withANnB=0, ®(A4) and
@ (B) are independent

A homogeneous PPP is completely charaterized by a single number A 23



Is the Density of a Homogeneous PPP Equal to A ?

Proof :
Let @ be a homogeneous PPP and 4 — R”. Then:

400

A LS p(o()=0)= Sk o)

4 A=
g it
exp(uf'AD( 4 l)i”“"d')) eXp<|;f'A')(z|A|)2<ﬂ|’;fl)”
P <|;T|A|) (2] A])exp(4]]) = 7

Note: The result does not depend on the set A, as expected. 24



BPP vs. Homogeneous PPP

Let ® be a homogeneous PPP and 4 — R*. Conditioned on @ (A) , 1.e., the number
of points in 4, the points themselves are independently and uniformly distributed in

A. In other words, conditioned on ® (A) , the points constitute a BPP in 4.

Proof: Consider the void probability of K = 4 = R”. Let K=A4\K.
P(®(K)=0nd(4)=k)

P(D(K)=0/D(4)=k)= B (@ ()= 4] A, CD(A)=k
P(0(K)=0n®(K)=k| P(®(K)=0)P(®(K)=F]

T P(o(4)=k) P(®(4)=k)

- “'ﬁ')k exp (2] [ew(—M)]F“) exp(M)}

25



BPP vs. Homogeneous PPP: How to Simulate a PPP

How to simulate a homogeneous PPP of density A on 4 = [—L,L]2 ?

1. The number of points in the set 4 is a Poisson random variable with mean A |A|

2. Conditioned on the number of points, the points are distributed as a BPP.

How to simulated it in Matlab ?
N = poissrnd(/'t |A|)
Points = unifmd(—L, L,N, 2)

26



Inhomogeneous PPP — Just a Glimpse...

In homogeneous PPPs, the mean number of points per unit area does not

vary over space, 1.e., they have a constant density measure A.

In several applications of interest, 1t may make sense to consider point processes

with a location-dependent intensity function: A (x) Its interpretation is as follows:
A (x) dx 1s the infinitesimal probability that there is a point of ® 1n a region of

infinitesimal area dx located at x € R?.

The intensity measure of inhomogeneous PPPs 1s defined as follows:

A(A)= jl(x) dx for any bounded set 4
A

27



Inhomogeneous PPP — Just a Glimpse...

An inhomogeneous point process @ of intensity function A (x) is PPP if:

1. The number of points in any bounded set

A — R? has a Poisson distribution with e

mean A (4) = j A(x)dx, ie. °

A

P(CD(A):k):(A(/j)) exp(—A(A)) : T 0 et

2. The number of points in disjoint sets are %

independent, i.e., for every 4 — R and .

Bc R’ withANB =, ®(A4) and A(z)
®(B) are independent




Inhomogeneous PPP — Just a Glimpse...

How to simulate an inhomogeneous PPP of intensity function A (x) onA= [—L,L]2 ?

1. Assume that the intensity function is bounded by A°, i.e., A(x)< A"

2. Generate a homogeneous PPP of density 4" on 4.

3. Sample the obtained random point pattern by deleting each point independently
of the others with probability equal to 1- 4 (x) / A

Note: The sampling can be performed with the aid of an independent sequence

(u,,u,,...) of random numbers uniformly distributed over [0,1]. More

precisely the point x, is deleted if u, > A(x,)/A".

29



Voronoi Cell and Voronor Tessellation: Definitions

Voronoi Cell
The Voronoi cell 7 (x) of a point x of a general

point process @ consists of the locations whose
distance to x 1s not greater than their distance

from any other point of @ :

V(x):{yeRz: x—| < Z—yH ‘v’ze@\{x}}

={ye]R2: x—y|< y—CDH}

Voronoi Tessellation

The Voronoti tessellation or Voronoi diagram
of @ is the decomposition of the space into
the Voronoi cells of @.




Void Probability of PPP — First Contact Distribution

Distribution of the distance of the nearest point to the origin
Let ® be a homogeneous PPP of density A. The Complementary
Cumulative Distribution Function (CCDF) of the distance D of

the nearest point of @ to the origin 1s:

CCDF, (r)=P(D2r)= exp(—/lmfz)

The Probability Density Function (PDF) of D 1is: e
PDF,, (r)=2Azrexp (—xlmfz)

Proof :
Let B (0, r) be the ball of center the origin "o" and radius "r". Then:

CCDEF, (r) = ]P’(D > r) = P(B(o,r) 1S empty) = IP((D(B(O,I/')) =0 )
= exp(—l‘B(o,r)‘) = exp(—/lmf2)



Sums over PPPs: The Campbell Theorem

Campbell Theorem
Let @ be a PPP of density A and /' (x):R* — R". Then:

E{Zf(x)} :lezf(x)dx

xed

Proof :

The proof is made of two parts:

1. First, we compute the expectation by conditioning on an area of radius R
and on the number of points that fall in this finite area.

2. Then, we remove the conditioning with respect to the number of points

and let the area go to infinity.

Rationale: Given a finite area, by conditioning on the number of points falling
into it, the points are independent and uniformly distributed in that
area, 1.€., they constitute a BPP by definition of PPP. 32



Sums over PPPs: The Campbell Theorem

Detailed Proof :
Let B(o0,R) be the ball of radius R centered at the origin and n = @ (B (o, R)) be the number

of points in B(o,R). Then:
n= CD(B(O,R))}H

ofgo)-m {@;O,mfw%}=£an;{En{Ew{@;o,R)f<x>

=1|B(o,R f d
B(o )‘B(Oj’) B(o,R)| y
=4 | f(x)dx
B(o,R)

E{Z f (x)} = lim {E {,@Z f(x)}} = lim {13( | f(x)dx} =4[ f(x)dx )



Products over PPPs: Probability Generating Functional

Probability Generating Functional (PGFL)
Let @ be a PPP of density A and f(x):R* —[0,1] be a real value function. Then:

E{H f(x)} = exp[—/l Rj (1- f(x))dx]

xed

Proof :

The proof i1s made of two parts:

1. First, we compute the expectation by conditioning on an area of radius R
and on the number of points that fall in this finite area.

2. Then, we remove the conditioning with respect to the number of points

and let the area go to infinity.

Rationale: Given a finite area, by conditioning on the number of points falling
into it, the points are independent and uniformly distributed in that

area, 1.€., they constitute a BPP by definition of PPP. 34



Products over PPPs: Probability Generating Functional

Detailed Proof :
Let B (o,R) be the ball of radius R centered at the origin and n = ® (B (0, R)) be the number
of points in B (0, R). Then:

il b

ot | s a7

.E"{L(;’. f(x)mde }g[ (;" f( mdx] P(@(B(O,R))zn)

zi{B(iR)f( )‘B(ol,R)‘ de (/1‘3 : R) ‘) exp( Z‘B o,R ‘)
:exp(—/i B(O,R))exp ﬂ,|B oR j f(x ﬁdx}

= exp(—/l B(o,R) )exp A J. f(x)dx} :exp[—/i J. (l—f(x))dxj
B(o,R) B(o,R)

E{gf(x)}z}g{]a{@];[w)f( )H }elirolo{exp[ zj (1-£( ))dx]}zexp[—ﬂ Rj (1- f(x))dx) .



Sums and Products over Inhomogeneous PPPs

Campbell Theorem
Let @ be a PPP of intensity function A(x), i.e., A(dx)=A(x)dx and /' (x):R* > R". Then:

E{Zf(x)}z _[f(x)A(dx)z _[f(x)/l(x)dx

xed

Proof : The same as for the homogeneous case.

Probability Generating Functional (PGFL)
Let @ be a PPP of intensity funtion A(x), i.e., A(dx)=A(x)dx and f' (x):R* —[0,1] be a real
value function. Then:

E{Hf(x)} = exp[—j (l—f(x))A(dx)] = exp(—j (l—f(x))/l(x)de

xe® R? R?

Proof : The same as for the homogeneous case.

36



Displacement Theorem of (Inhomogeneous) PPP

Definition : A probability measure is a real-valued function defined on a set of

events in a probability space that satisfies measure properties, 1.e., it returns

values in [O,l] and satisfies the countable additivity property.

Random Transformations of Point Processes

Let a point process @ on R. Let 4 , be a bounded set in R Let p (x, Ap) be a

probability kernel from R? to R for every x € RY of @, i.e., a probability

measure on R, @ , on R* is called the transformed point process of @ by the
probability kernelp(x, A, ) = IP’(xp € AP‘CI)), where x, € R isa point of @ ,
1.e., the transformed version of x according to the probability kernel.

37



Displacement Theorem of (Inhomogeneous) PPP

In other words, @ 1s obtained by randomly and independently displacing each

point of @ on R’ to some new locations on R according to the kernel p (x, A, ) ,

which denotes the probability that the displaced version of x (1.e., x,) lies in 4.

Displacement Theorem — Independent displacements preserve the Poissonness
If @ is a PPP of intensity measure A (dx)=A(x)dx, then ®  is a PPP of

intensity measure A (dx) equal to:

A, (Ap): jp(x,Ap)A(dx)z IIP(xp eAp‘(D)A(dx)

R R

= P(xp = p(x)eAp)ﬂ,(x)dx= J 1, (lp (x))/l(x)dx

R R4

Note: 1, (lp (x)) =11t/ (x)e A,and1, (lp (x)) = 0 otherwise

38



Displacement Theorem of (Inhomogeneous) PPP

X, =lp(x), lp(-):]R2 —> R

-___-__—_—--~~
-

A, ([0.9))= [ 1, (2, (x)) A(x)dx = ! ! 1, (2, (r.0))A(r.0)rdrdo

+00 yl/ @

(=1,(r,0)=r"and A(r,0)=4) = 2;;1] 1, (r)rdr =222 I rdr = Ay
0

A homogeneous PPP 1n 2-D is transformed into an inhomogeneous PPP in 1-D
39



Displacement Theorem of (Inhomogeneous) PPP

.
——'—__ -
- —~
-

+00 211

A, ([0,3))= [ 1, (2, (x)) A(x)dx = ! ! 1, (2, (r.0))A(r,0)rdrdo

(=1,(r,0)=r"/T and A(r,0)= 2 and P(T <t)=CDF, (¢))

+00 a ((yT)l/a
=27, { I L {% T} ra’r} =27 I rdr
0 0

—

= AL, {(yT)z/a} = Ay R, {Tz/“} 40



Displacement Theorem of (Inhomogeneous) PPP

Proof :
Consider the summation S = Zx o, ( p) for any measurable function f'(-).

Consider the (rather general) displacement x, =/ (x,T,), where x € ® and

T’ are independent distributed random variables (that, however, may depend
on x) whose distribution is P(7, <7) = CDE, (7).

[f ®  was a PPP, from the PGFL theorem, we would have:

seot-s)-5{on{- 3 15)| 5| [ owlrt0)
|

pL (1-exp( s p)))Ap(dxp)]

41



Displacement Theorem of (Inhomogeneous) PPP

Let us compute E {exp (—S)} without assuming that @  is a PPP:

2

-5 [ewp(~/ (1, (7)) | =5 {HE ool G2}

Let define /'(x) = E, {exp(—f(l )} we have:

E {exp(-S)|

= exp| — j (I—ETX fexp(- f(zp(x,z;)))})A(dx)j
—exp| — j j (1-exp(=/ (4, (x1))))CDF, (dt)A(dx)]
(l—exp(—f(xp )))Ap (dxp )j

the last identity holds if A , (dx, ) = CDF, (dt)A(dx)= p(x,dx, ) A(dx).

—exp)| - |

42



Marked Point Processes

A point process is made into a marked point process by attaching a characteristic
(a mark) to each point of the process. Thus a marked point process on R” is a

random sequence y, ={x,,m, | for n=1,2,..., where the points x, constitute the

point process @, i.e., x, € ® = R* (unmarked or ground process) and m_ are the
marks corrresponsing to the respective points x,. The marks belong to a given

space and have some given distribution.

Examples:

- x 1s the center of an atom and m 1s the type of atom

- x 1s the location of a tree and m 1s the type of tree

- x 1s the location of a transmitter and m 1s the transmit power
- x 1s the location of a transmitter and m 1s the channel gain

43



Marking Theorem for Inhomogeneous PPP

Independent Marks

A marked point process 1s said to be independently marked 1f, given the locations

of the points of the ground point process ®@ = {xl.} — R?, the marks are mutually
independent random vectors on R’ and if the conditional distribution of the mark
m of a point x € ® depends only on the point x it is attached to, i.e., IP’(m = ‘ (I)) =
P(me|x)=F,(dm), where F,(dm) onR' is the probability kernel (distribution)

of the marks.

Marking Theorem of PPPs
Let a ground PPP @ with intensity measure A (a’x) on R? and marks with
distributions £’ (dm) on R'. The independently marked point process @, is

a PPP on R xR’ with intensity measure equal to:
A, (d(x,m)) =F, (dm)A(dx)

Proof : 1t is the same as for the displacement theorem. 44



Bottom Line...

0 Independent displacements of a PPP result in a PPP

0 Independent markings of a PPP result in a PPP

d These transformations occur in several applications...

d To deal with them, apply the constructive proof used to
prove the displacement theorem

d You will be able to compute “sums over PPPs”, “products
over PPPs”, etc. of a large class of “practical

transformations’ of PPPs...
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Example: Independent Thinning

Independent Thinned Point Processes

Let a point process ®@. The point process @, . obtained from ® by randomly

thin
and indepenently removing some fractions of its points with probability 1- p (x)

1s called thinned point process with retention probability p (x)

Thinning Theorem of PPPs
The thinning by retention probability p (x) of an inhomogeneous PPP of

intensity measure A (dx) 1s an inhomogenous PPP of intensity measure:

Ay (dx) = p(x)A(dx)

Proof : It is an application of the displacement theorem. Let's do 1it...
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Example: Independent Thinning

Consider the summation S = erq) . f (x) for any measurable function f () ,

where P(u, =1)=p(x) & P(u, =0)=1-p(x).

Let us compute E {exp (-S )} :

E{exp(-S)} = {exp( Zﬂ f(x j} E{Qexp(—yxf(x))}
-5, {15, {ew(-ss ()} =50 {TTp(W)espl-7 () (1-p ()|

xe®d

Let define f (x) = p(x)exp(—f(x))+(l—p(x)), we have:

E{exp(-S)}=E {Hf }—exp[—j(l—f(x))A(dx)j

RZ

-p| - (1= ls)esn(-7 ()~ () )

RZ

= exp _.' (1—exp(—f(x)))p(x)A(dX)j

RZ

= PGFL of a PPP with intensity measure A, (dx)= p(x)A(dx)
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Independent Thinning: An Illusory Paradox

A Bernoulli trial is an idealized coin flip. The probability of heads 1s p and the

probability of tails is ¢ =1— p. Sequences of Bernoulli trials are independent.

Denote the numbers of heads and tails observed in a sequence of n > 1 independent
Bernoulli trials by n, and n,, respectively. The sequence of Bernoulli trials 1s
performed (conceptually) many times, so the observed numbers n, and n, are
realizations of random variables, denoted by N, and N, respectively. If exactly

n trials are always performed, the random variables N, and N, are not independent

because of the deterministic constraint n, +n, = n.

However, if the sequence length 7 is a realization of a Poisson distributed random
variable, denoted by N, then N, and N, are independent random variables! The
randomized constraint n, +n, = n holds, but it 1s not enough to induce any

dependence whatever between N, and V,.
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Independent Thinning: An Illusory Paradox

N 1s a Poisson random variable with density A and its realization # 1s the length
of the number of Bernoulli trials performed. Then n = n, +n,, where n, and n,

are the observed numbers of heads and tails. The random variables N, and N,

are independent Poisson distributed with mean intensities p4 and (1-p)A.

Let us prove the independence:

P(N =n,N, =n,,N, =nt):IP’(N:n)]P’(Nh =n,,N, :nt|N=n)

& exp(—z)mnjp”h(l—l?)nz:{MW exp(—ﬂ)}{ AN (l—p)nt}

_ (pn’z)'nh exp(i)J(((l_fZ W {Ziig_ijﬂ
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Palm Theory and Conditioning

[ Palm theory formalizes the notion of the conditional distribution
of a general point process given that it has a point at some
location.

0 Palm probability/measure is the probability of an event given
that the point process contains a point at some location.

Qd Palm theory formalizes the notion of the ‘“typical point” of a
point process. Informally, the typical point results from a
selection procedure in which every point has the same chance of
being selected.

[ On the other hand, a point chosen according to some sampling
procedure, such as the point closest to the origin, is not typical,
because it has been selected in a specific mannet.

d Palm distribution is the conditional point process distribution
given that a point exists at a specific location. 50



Palm Distribution: Notation

Consider the event (or property) E of a point process @.

The following notations are equivalent and used interchangeably:
IP((D has property EHx) = IP(d) has property E‘ X € (I))

=P(P € E|x e D)

=P (E)

=P, (E)
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Reduced Palm Distribution: Definition and Notation

Rationale
1. When calculating Palm probabilities it is more natural not to consider the point
of the point process that we condition on.

2. Consider a network whose nodes form a point process. Assume that we want to

identify one of them as the intended transmitter, while the other act as the interferers.

The computation of the sum interference from all the interferers requires the
conditioning on the location of the intended transmitter and its exclusion from the

set of interferers for computing the distribution of the sum interference.

Reduced Palm Distribution

Consider the event (or property) E of a point process ®.

The reduced Palm distribution is the probability that ®@ has property £ conditioning
on a point of @ being located at x and not counting it, i.e., the point on which we
condition is not included in the distribution.

The following notations are equivalent and used interchangeably:

IP’(CD\{x} eE‘xeCD):IP)(CD\{x} eEHx):]P)!x (E):IP’! (E)

X
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Reduced Palm Distribution: Application Example

P, =Pr{SINR >T}

Ccov

® 1s a PPP

PCOV

= Pr<

SINR — Phozro_“
’ o +]agg( 0)
Ly (r)= 2 P[r
ie®\BS,
( Plhlre
- >Tir=..

O- +]agg( 0)

—a
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Reduced Palm Distribution of PPP: Slivnyak Theorem

Slivnyak - Mecke Theorem

The reduced Palm distribution of a PPP 1s equal to its original distribution:
P (E)=P(E)

Note: This implies that, for a PPP, a new point can be added or a point can be
removed from the point process without disturbing the distribution of the other

points of the process. This originates from their complete spatial randomness.
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Reduced Palm Distribution: Sums over Point Processes

Campbell - Mecke Theorem
Let @ be a point process of intensity measure A (dx) and E* {-} be the expectation

under the reduced Palm distribution. Let /'(-) be a real-valued function.
The following holds:

{focp\ } jE‘x A (dx)

xed

Campbell - Mecke Theorem of PPPs

5 %/ ({3 [ B/ (@) A

xed R2
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Counter-Example that the PPP is Special: Beta-Ginibre

Poisson Ginibre
10 — 10 : —
*
B 51
L
0k 0L
|- -
SR -3 =
L] . . L .
~10 T | I | s | | i i A | L% | 1 | ) s ~10 | i A ) - | | 1 I ) | 1 | | i |
=10 -5 4] 5 10 -10 =5 0 5
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Counter-Example that the PPP is Special: Beta-Ginibre

Proposition 1. Let . = { X, };cn be a scaled B-GPP. For
k €N, let Qr be a random variable with probability density

function
k—1,—54

fou(q) = —

(8/¢)FT (k)

e, Qr ~ gammal(k,/c), with Qy independent of Q; if
k # 4. Then the set {|X;|?};en has the same distribution as
the set = obtained by retaining from {Qy }ren each Q. with

probability (B independently of everything else .
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Counter-Example that the PPP is Special: Beta-Ginibre

Proposition 2. (The Palm measure of the scaled 5-Ginibre
point process). For a scaled 3-GPP ®., the Palm measure
of . is the law of the process obtained by adding the origin
and deleting the point X if it belongs (which occurs with
probability ) to the process ®., where | X|* = Q.

From Propositions 1 and 2, we observe that the Palm
distribution of the squared moduli )y is closely related to
the non-Palm version, the only difference being that () is
removed if it 1s included in =.
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Playing with Point Processes

SpatStat analysing spatial point patterns

News Download Resources Book Help FAQ About

Welcome to the spatstat website
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Playing with Point Processes
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“Cappuccino” Point Process: The Time Has Come...
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