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This Lecture: Tools for System-Level Modeling & Analysis
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 What is stochastic geometry ?
 What are point processes ?
 Why are they useful in communications ?
 Basic definitions
 Poisson point processes
 How to compute sums over point processes
 How to compute products over point processes
 Transformations of point processes (displacement, marking, thinning)
 Palm theory, Palm distribution, conditioning
 Packages for analyzing spatial point processes (spatstat in R)
 Some books

 Part II: Motivating, validating and applying all this to cellular networks
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What is Stochastic Geometry ?
 Stochastic geometry is the area of mathematicalresearch that is aimed to provide suitable mathematicalmodels and appropriate statistical methods to study andanalyze random spatial patterns.

Random point patterns or point processes are the mostbasic and important of such objects, hence pointprocess theory is often considered to be the main sub-field of stochastic geometry.

Random spatial patterns are more general than randompoint patterns. For example, one can model shapes inmultiple dimensions (random shape theory).
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What is a Random Point Process ?
 A random (spatial) point process is a set of locations,distributed within a designated region and presumed tohave been generated by some form of stochasticmechanism.

 A realization of a spatial point process is termed spatialpoint pattern, which is a countable collection of pointsor dataset giving the observed locations of things orevents (in a given dimensional space, e.g., in 2-D).

 The easiest way to visualize a 2-D point pattern is amap of the locations, which is simply a scatterplot butwith the provision that the axes are equally scaled.
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Examples…
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Examples…
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Examples…
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Examples…

Locations of  493 cellular base stations (5 km square area in central London) 
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Examples…Beyond “Points”
O2 + Vodafone O2 Vodafone

Number of  BSs 319 183 136
Number of  rooftop BSs 95 62 33
Number of  outdoor BSs 224 121 103
Average cell radius (m) 63.1771 83.4122 96.7577
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Examples…Beyond “Points” (zoom in)
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What Stochastic Geometry is Useful For ?
 Stochastic geometry is a rich branch of applied probability withseveral applications: material science, image analysis, stereology,astronomy, biology, forestry, geology, communications, etc.
 Stochastic geometry provides answers to questions such as:

How can one describe a (random) collection of points in one,two, or higher dimensions ?
How can one derive statistical properties of such a collectionof points ?
How can one calculate statistical averages over all the possiblerealizations of such a random collection ?
How can one condition on having a point at a fixed location ?
Given an empirical set of points, which statistical model islikely to produce this point set ?
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… In Communications…?
 Point processes are used to model the (spatial) locationsof nodes (users, wireless terminals, base stations,access points, etc.) in (wireless) networks.

 Point process models permit statements about entireclasses of (wireless) networks, instead of just about onespecific configuration of the network.

 In some cases, distributions of relevant performancemetrics over the point process can be calculated, inothers, spatial averaging is performed, which yieldsexpected values of certain performance metrics (e.g.,the likelihood of transmission success).
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On (Complete) Spatial Randomness…

Uniform                                 Random                                 Clustered
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What is a Point Process ? – Mathematical Definition

A point process is a countable random collection of points that reside 
in some measure space, usually the Euclidean space . 
For simplicity, we often consider 2.

1. A point process is denote

d

d 
Notation



 
2

d by 
2. An instance (realization) of the point process is denoted by 
3. The number of points of a point process in the set  is
    denoted by 

A
A








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What is a Point Process ? – Mathematical Definition

2
2

2

Let  be the set of all sequences  satisfying
1. (Finite) Any bounded set  contains a finite number of points
2. (Simple)  if 

A point process in  is a random variable taking 

i j

A
x x i j

 


 

Definition

 


 values in the space 
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What is a Point Process ? – Mathematical Definition

  2
1 2

A point process can be described by using two formalisms:
1. Random set formalism
2. Random measure formalism

The point process is ragarded as a countable random set , ,...  
co

x x  
Random set formalism



   

2

2

nsisting of random variables  as its elements.

The point process is characterized by counting the number of points falling 
in sets ,  i.e., . Hence  is a random vari

ix

A A A



  
Random measure formalism





 
able that assumes 

non-negative interger values.  is called (random) counting measure.  
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Starting Point: Point Process with a Single Point

 

1. Contains only one random point
2. The random point  is uniformly
    distributed in a bounded set 

Thus, let ,  one has

where  denotes the area of  .

x
A

B A
Bx B A

A A


 

Single - Point Point Processes


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Binomial Point Process (BPP)

 

  
N

A  on a bounded set   
is the superposition of Ν independent 
and uniformly distributed points on 
the set .

Let , then: 
N 1

k k

A A

A

B A B k
B B

k A A


 

  
                

BPP





19

Equivalent Point Processes: Void Probability

  

equivalent
Given two point processes, is there any simple approach to prove 
whether they are  ?

Let a point process . Its void probabilities over all bounded 
sets  are defined as 0A A


 

Void Probability

 2 for .

1. A simple point process is determined by its void probabilities.
2. Two simple point processes are equivalent if they have the 
same void probability distributions 

A

Equivalent point processes



for all bounded sets.
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Stationarity, Isotropy, Motion-Invariance

 
 

 

2
Let a point process = .  is said to be stationary if the translated 
point process =  has the same distribution as  for every .

Let a point process = .  is said to be

n

x n

n

x
x x x

x

 
   

 

Stationarity

Isotropy



 
 isotropic if the rotated point 

process =  has the same distribution as  for every rotation  
about the origin.

A point process is motion-invariant if it is stationary and isotropi

nx 

Motion - Inva

r r r

riant
c.
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Stationarity and Intensity Measure
 
   2

Let a stationary point process . Its density is defined as follows:
for every 

1. The density does not depend on the
Re

 p
mark

arti
s:

cular choice of the set 
2. Stationa

A AA

A




 

Density Intensity  Measure




rity implies that the density is constant
3. The converse is, in general, not true: a constant density does not 
    imply stationarity
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Stationary (Homogeneous) Poisson Point Process (PPP)
 The most widely used model for the spatial locations of nodes

 Most amicable for mathematical analysis
 Considered the “Gaussian of point processes”

 No dependence between node
locations

 Random number of nodes
 Defined on the entire plane

(limiting case of a BPP)
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Homogeneous PPP: Formal Definition

      

2

A stationary point process  of density  is PPP if:

1. The number of points in any bounded set 
     has a  with 
    mean , i.e.

exp!
2. The number of points i

Poisson distributi

n

on

 

k

A
A

AA k Ak




 





   





 
 

2
2

disjoint sets are 
    independent, i.e., for every  and 
     with ,   and 

A homogeneous PPP is completely

     are indepen

 charaterized by

dent

 a single number 

A
B A B A

B




   





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Is the Density of  a Homogeneous PPP Equal to λ ?

         
       
            

2

0 0

0 1
1

1

Let  be a homogeneous PPP and . Then:

1 1 exp!
exp exp                ! !
exp exp                1 ! !

k

k k
k k

k k
k n

k

Proof :
A

AA k A k k AA A A k
A A A Ak kA k A k
A A A AA AA k A n

 
   

    

 

 
 

 




 

     
  
  

 
 








     
0

Note: The result does 

exp                

not depend on th

exp

e set , as expected.

n
A A

A

AA
   




 


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BPP vs. Homogeneous PPP
 

 
2Let  be a homogeneous PPP and . Conditioned on ,  i.e.,  the number

of points in , the points themselves are independently and uniformly distributed in
. In other words, conditioned on ,  the po

A A
A

A A

  





           
              

         
 

2

1

ints constitute a BPP in .

: Consider the void probability of . Let \ .
00

0

exp! x x

0

!e p e p
k

k

k

A

Proof K A K A K
K A kK A k A k

K K k
A k A k

A Ak

A

K K

Kk

k

k

KK  





  
  

 

  

       
       

     



 

     








 







        
 

1

exp!

1 void probability of a BP

exex p!

 

p

P in

k

k k k

k k

A

A K K AAA A
K

K K KkA  
    

         

   
     

A, Φ(A)=k
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BPP vs. Homogeneous PPP: How to Simulate a PPP

 2How to simulate a homogeneous PPP of density  on , ?
1. The number of points in the set  is a Poisson random variable with mean .
2. Conditioned on the number of points, the points are distribu

A L L
A A




 

 
 

How to simulated it in Matlab ?
poissrnd

Points

t

unifrnd , , , 2

ed as a BPP.

N A
L L N


 
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Inhomogeneous PPP – Just a Glimpse…

In homogeneous PPPs, the mean number of points per unit area does not 
vary over space, i.e., they have a constant density measure .

In several applications of interest, it may make sense to consider p



 
 

oint processes
with a location-dependent intensity function: . Its interpretation is as follows:

 is the infinitesimal probability that there is a point of  in a region of 
infinitesimal area  l

x
x dx

dx


 

   

2ocated at .

The intensity measure of inhomogeneous PPPs is defined as follows:
                     for any bounded set 

A

x

A x dx A



  


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Inhomogeneous PPP – Just a Glimpse…
 

   
        

2

An inhomogeneous point process  of intensity function  is PPP if:

1. The number of points in any bounded set 
     has a  with 
    mean , i.e.

exp!
2.

Poisson distributi

 T

on
A

k

x

A
A x dx

AA k Ak








 

   






 
 

2
2

he number of points in disjoint sets are 
    independent, i.e., for every  and 
     with ,   and 
     are independent

A
B A B A

B


   





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Inhomogeneous PPP – Just a Glimpse…

   
 

2

* *

*
1. Assume that the intensity function is bounded by ,  i

How to simulate an inhomogeneous PPP of intensity function 

.e., .
2. Generate a homogeneous PPP of density

 on 

  on .
3. Samp

,

e 

?

l

x A

x
A

L L

  


  



  *
the obtained random point pattern by deleting each point independently 

    of the others with probabi

Note: The sampling can be performed with the aid of an inde

lity equal to 1

pendent sequence
  

.

 

x 

   
 1 2

*
        , ,...  of random numbers uniformly distributed over 0,1 . More 

           precisely the point  is deleted if .k k k

u u
x u x 
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Voronoi Cell and Voronoi Tessellation: Definitions

 

  2

The Voronoi cell  of a point  of a 
  consists of the locations whose 

distance to  is not greater than their distance 
from any 

general 
point p

other point of 

roces

:

s

:

V x x

x

V x y x y z y z




      

Voronoi Cell

    2
\

        :

The Voronoi tessellation or Voronoi diagram 
of  is the decomposition of the space into 
the Voronoi cells of .

x
y x y y    




Voronoi Tessellation


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Void Probability of  PPP – First Contact Distribution
Let  be a homogeneous PPP of density . The Complementary
Cumulative Dist

Distribution of the distance of

ribution Function (CCDF) of the

 t

 d

he nea

istanc

rest point t

e  of 
the 

o the o

nearest

r

 

i

p

gi

o  

n

int
D



     
   
 
     

2

2

of  to the origin is:
CCDF exp

The Probability Density Function (PDF) of  is:
PDF 2 exp

Let ,  be the ball of center the origin "o" and radius "r". Then:
CCDF ,  is

D

D

D

r D r r

D
r r r

Proof :
B o r

r D r B o r



 


   

 

  



       
    2

 empty , 0 
                 exp , exp

B o r
B o r r 

  
   


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Sums over PPPs: The Campbell Theorem
 

   
2

2Let  be a PPP of density  and : . Then:
                       

The proof is made of two parts:
1. First, we compute the expectation by conditioning on

x

f x
f x f x dx

Proof :








 
     

Campbell Theorem



 



 an area of radius 
    and on the number of points that fall in this finite area.
2. Then, we remove the conditioning with respect to the number of points
    and let the area go to infinit

Ration :

y.

ale

R

 Given a finite area, by conditioning on the number of points falling 
                 into it, the points are independent and uniformly distributed in that
                 area, i.e., they constitute a BPP by definition of PPP.
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Sums over PPPs: The Campbell Theorem
    

 
       \

, ,

Let ,  be the ball of radius  centered at the origin and ,  be the number 
of points in , . Then:

lim lim n nR Rx x B o R x B o R

Detailed Proof :
B o R R n B o R

B o R
f x f x f x n B   

 

                           
          

    
      
      

\
, ,

, ,

,

,

1, ,
1 1
, ,

1                                                 = , ,

n
x B o R B o R

n n
B o R B o R

B o R

o R

f x n B o R n f x dxB o R

n f x dx n f x dxB o R B o R
B o R f x dxB o R



               
        
      

 
 



 

 

 
 

      
 

 
2

,

, ,

                                                 =

lim lim
B o R

R Rx x B o R B o R

f x dx

f x f x f x dx f x dx



   

                           


   



 
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Products over PPPs: Probability Generating Functional
   

    
2

2Let  be a PPP of density  and : 0,1  be a real value function. Then:
                                    exp 1

The proof

x

f x
f x f x dx

Proof :






 
             

Probability Generating Functional (PGFL)







 is made of two parts:
1. First, we compute the expectation by conditioning on an area of radius 
    and on the number of points that fall in this finite area.
2. Then, we remove the conditioning with 

R

Rationale: Given a finite area, by conditioning on the number of po

respect to the number of points
    and let the area go to infinity.

ints falling 
                 into it, the points are independent and uniformly distributed in that
                 area, i.e., they constitute a BPP by definition of PPP.
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Products over PPPs: Probability Generating Functional
    

 
       \

, ,

Let ,  be the ball of radius  centered at the origin and ,  be the number 
of points in , . Then:

lim lim n nR Rx x B o R x B o R

Detailed Proof :
B o R R n B o R

B o R
f x f x f x n B   

 

                           
          

    
    

   
   

\
, ,

0, ,

,

,

1, ,
1 1 ,, ,

1                     ,

n

n
x B o R B o R

n n

n
nB o R B o R

B o

o R

f x n B o R f x dxB o R

f x dx f x dx B o R nB o R B o R

f x dxB o R







               
               

                    


 
 

 

  

 
     

         

    
 

  
 

   

0

,

, ,

, exp ,!
1                     exp , exp , ,

                     exp , exp exp 1

lim

nn

n R

B o R

B o R B o R

Rx x B o

B o R B o Rn

B o R B o R f x dxB o R

B o R f x dx f x dx

f x f x

 

 

  





 

     
      
                

    

 


 
 

    
 

  
2, ,

lim exp 1 exp 1RR B o R
f x dx f x dx 

                                     

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Sums and Products over Inhomogeneous PPPs

       
         

2 2

2Let  be a PPP of intensity function , i.e., =  and : . Then:
                                    

 The same as for the homogeneous ca
x

x dx x dx f x
f x f x dx f x x dx

Proof :

 






  
        

Campbell Theorem

 

 



         
      

2

2

se.

Let  be a PPP of intensity funtion , i.e., =  and : 0,1  be a real 
value function. Then:
               exp 1 exp 1

x

x dx x dx f x

f x f x dx

 



  

                

Probability Generating Functional (PGFL)





     
2

 The same as for the homogeneous case.
f x x dx

Proof :
    


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Displacement Theorem of  (Inhomogeneous) PPP

 
:  A probability measure is a real-valued function defined on a set of 

events in a probability space that satisfies measure properties, i.e., it returns 
values in 0,1  and satisfies the counta

Definition

 Let a point process  on . Let  be a bounded set in . Let ,  be a 
probability kernel fro

ble additivity property.

m  to  for every  of ,  i.e.
p

p

dd
p p

dd d
A p x A

x


 

Random Transformations of  Point Processes
 

  

   
, a probability 

measure on .  on  is called the  of  by the 
probability kernel , ,  where  is a point of ,  
i.e., the transformed version of  acc

tr

o

ansformed point pro

rd

cessp p

p

d d
p

d
p p p p pp x A x A x

x

 
    

 

 

ing to the probability kernel. 
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Displacement Theorem of  (Inhomogeneous) PPP

 
In other words,  is obtained by  each 
point of  on  to some new locations on   according to the kernel 

randomly and 
, ,

whic

independently displa

h denotes the pro

c

bability that the 

in

disp

g

lac
p

p
dd

pp x A


  

   
 

Independent displacements preserve the Poi
If  is a PPP of intensity measure = , then  is a PPP of 
intensity measur

ed version of  (i.e.,

ssonness

 ) l

e 

ie

 equ

s in .p p

p

p

x x A

dx x dx
dx

  


Displacement Theorem

         
         

       

al to:
,

          
Note: 1 if  and 0 othe

   
rwise

pd

p p

d

d

d

A p p p A

p p p

p

p p p p

p p

Ax l x A x
l x l x A l

A p x A
dx

d
l x

x
x

x A
d

x

dx
x 

      
   

  

 
 

1
1

1
 

 

 


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Displacement Theorem of  (Inhomogeneous) PPP
    2,  :pp pl lx x   

                
        

2
1

2
0, 0,

0 0

2
0,

0 0

0, , ,

2 2
A homogeneous PPP in 2-D is transformed into an inhomogeneo

,  a
us PPP i

nd
n 1

,  
-

  
D

p p py y

y
ypl r r r

y l x x dx l r r rdrd

r rdr rdr y






  

  



 

  





  

    
  

 
1 1

1



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Displacement Theorem of  (Inhomogeneous) PPP

                
        

 
 

    

2

1

2
0, 0,

0 0

0,
0 0

2 2 2

,  and ,  and CDF

                

            

0, , ,

2

  

2

  

p p py y

yT
T Ty

T T

p T

y l x x dx l r r rdrd

r T rdr

l r r T

rdrT

r T t t

yT y T







 





    

 


  










   
  

                  
 


  

 

1 1

1





 

 



    2,  :pp pl lx x   
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Displacement Theorem of  (Inhomogeneous) PPP

   
 

Consider the summation  for any measurable function . 
Consider the (rather general) displacement , ,  where  and 

 are independent distributed random variables (that, howe

p p px

p p x

x

Proof :
S f x f

x l x T x
T

 
 



   

       

ver, may depend 
on ) whose distribution is CDF .

If  was a PPP, from the PGFL theorem, we would have:
exp exp exp

                    exp

x

p p p p

x T

p

p p
x x

x T t t

S f x f x
 

 


                       

 

 



  

     1 exp
d p

p p pf x dx      

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Displacement Theorem of  (Inhomogeneous) PPP
  

       
        

Let us compute exp  without assuming that  is a PPP:
exp exp exp

                    exp , exp ,
Let define

p p p p

x

p

p p
x x

p x T p x
x x

S
S f x f x

f l x T f l x T
 

 

 
                       
            

 
 



  

  

      
         

       
        

 exp , ,  we have:

exp exp 1

                    exp 1 exp ,

                    exp 1 exp , CDF

          

x

d

xd

xd

T p x

x

T p x

p T

f x f l x T

S f x f x dx

f l x T dx

f l x t dt dx

 

 
              

        
        

 

 



 








 



     
         

          exp 1 exp
the last identity holds if CDF , .

d p

x

p p p

p p T p

f x dx
dx dt dx p x dx dx

        
    


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Marked Point Processes

 
2

A point process is made into a  by attaching a characteristic 
(a mark) to each point of the process. Thus a marked point process on  is a 
random sequence 

m

,  for 1, 2,...,  

arked point process

n n my x m n 


2
where the points  constitute the 

point process , i.e.,  (unmarked or ground process) and  are the 
marks corrresponsing to the respective points . The marks belong to a given 
space and ha

n

n m
n

x
x m

x
   

ve some given distribution.

Examples:
-  is the center of an atom and  is the type of atom
-  is the location of a tree and  is the type of tree
-  is the location of a transmitter and  is the trans

x m
x m
x m mit power

-  is the location of a transmitter and  is the channel gainx m
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Marking Theorem for Inhomogeneous PPP

 
A marked point process is said to be  if, given the locations
of the points of the ground point process ,  the marks are mutually 
independent random vectors 

independently ma e

o

rk d
d

ix  
Independent Marks



      
n  and if the conditional distribution of the mark

 of a point  depends only on the point  it is attached to, i.e., 
,  where  on  is the probability kernel (distribution) 

of

l

l
x x

m x x m
m x F dm F dm

   
 




 

 
 

 the marks.

Let a ground PPP  with intensity measure  on  and marks with 
distributions  on . The independently marked point process  is 
a PPP on  with intensit

d

l
x M

d l

dx
F dm

 




Marking Theorem of PPPs



 

      
y measure equal to:

                                     ,

 It is the same as for the displacement theorem.

M xd x m F dm dx

Proof :

  
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Bottom Line…
 Independent displacements of a PPP result in a PPP
 Independent markings of a PPP result in a PPP
 These transformations occur in several applications…
 To deal with them, apply the constructive proof used toprove the displacement theorem
 You will be able to compute “sums over PPPs”, “productsover PPPs”, etc. of a large class of “practicaltransformations” of PPPs…
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Example: Independent Thinning

 thinLet a point process . The point process  obtained from  by randomly
and indepenently removing some fractions of its points with probability 1-  
is called thin

p x
  

Independent Thinned Point Processes

 

 
 

ned point process with retention probability .

The thinning by retention probability  of an inhomogeneous PPP of
intensity measure  is an inhomogenous PPP of intensity mea

p x

p x
dx

Thinning Theorem of PPPs

     thin

sure:
                                             

 It is an application of the displacement theorem. Let's do it...

dx p x dx

Proof :

  
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Example: Independent Thinning
   

       
  

       
     

Consider the summation  for any measurable function ,
where 1  & 0 1 . 

Let us compute exp : 
exp exp exp

exp exx

xx
x x

x x
x x

x
x

S f x f
p x p x

S
S f x f x

f x p x


 

 




 

 

 
    


                

     



 


 



  

        
         

         
          

       

2

2

2

p 1

Let define exp 1 ,  we have:
ex

PGFL of a PPP w

p exp 1

ith intensity meas

exp 1 exp 1

exp 1 exp

x

x

f x p x

f x p x f x p x
S f x f x dx

p x f x p x dx

f x p x dx



 

     
   

              
          
       


 



 





 






 

     thinure dx p x dx  
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Independent Thinning: An Illusory Paradox
A Bernoulli trial is an idealized coin flip. The probability of heads is  and the 
probability of tails is 1 . Sequences of Bernoulli trials are independent.

Denote the numbers of heads and tails ob

p
q p 

served in a sequence of 1 independent 
Bernoulli trials by  and , respectively. The sequence of Bernoulli trials is 
performed (conceptually) many times, so the observed numbers  and  are 
real

h t
h t

n
n n

n n



If exactly 
 trials are always performed, the random variables 

izations of random variables, denoted by  and , respective
 and  are not independent 

because of the deterministic constraint

ly. 

 
h

t
t

hn N N
N N

n

if the sequence length  is a realization of a Poisson distributed random
variable, denoted by , then  and  are independent

.

However, 
! The

randomized constraint hold
 random varia

s
bles

 

h

t
h t

t

h

n n

n
N N N

n n n 

 

, but it is not enough to induce any 
dependence whatever between  and .h tN N
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Independent Thinning: An Illusory Paradox
 is a Poisson random variable with density  and its realization  is the length 

of the number of Bernoulli trials performed. Then , where  and 
are the observed numbers of heads and tails.

h t h t

N n
n n n n n


 

 

     
   

 The random variables  and  
are with mean intensities  and 1 .

Let us prove the 

 Poisson distribut

independence:
, ,

ed 

,
exp! 1h

h t

h h t t h h t t

nn
h

n

N N

N n N n NN

p p

N n n
n p pn

N n N n

n

n

 

 



   
    

  



   

independent



   
         
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Palm Theory and Conditioning
 Palm theory formalizes the notion of the conditional distributionof a general point process given that it has a point at somelocation.
 Palm probability/measure is the probability of an event giventhat the point process contains a point at some location.
 Palm theory formalizes the notion of the “typical point” of apoint process. Informally, the typical point results from aselection procedure in which every point has the same chance ofbeing selected.
 On the other hand, a point chosen according to some samplingprocedure, such as the point closest to the origin, is not typical,because it has been selected in a specific manner.
 Palm distribution is the conditional point process distributiongiven that a point exists at a specific location.
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Palm Distribution: Notation

   

Consider the event (or property)  of a point process .

The following notations are equivalent and used interchangeably:
 has property  has property 

                                     

E

E x E x



   
 

 

  
 
 

                                     
                                     

x

x

E x
E
E






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Reduced Palm Distribution: Definition and Notation
1. When calculating Palm probabilities it is more natural not to consider the point 
of the point process that we condition on.
2. Consider a network whose nodes form a point process. Assume th

Rationale

at we want to 
identify one of them as the intended transmitter, while the other act as the interferers. 
The computation of the sum interference from all the interferers requires the 
conditioning on the location of the intended transmitter and its exclusion from the 
set of interferers for computing the distribution of the sum interference. 

Consider the event (or property) E
Reduced Palm Distribution

 of a point process .
The reduced Palm distribution is the probability that  has property  conditioning
on a point of  being located at  and not counting it, i.e., the point on which we
condition is

E
x






         ! !

 not included in the distribution.
The following notations are equivalent and used interchangeably:
               \ \ x

xx E x x E x E E          
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Reduced Palm Distribution: Application Example
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Reduced Palm Distribution of  PPP: Slivnyak Theorem

   !
The reduced Palm distribution of a PPP is equal to its original distribution:
                                          

Note: This implies that, for a PPP, a ne

   

w t

  

poin

x E E
Slivnyak - Mecke Theorem

 

 can be added or a point can be 
removed from the point process without disturbing the distribution of the other
points of the process. This originates from their complete spatial randomness.
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Reduced Palm Distribution: Sums over Point Processes

  
 

!Let  be a point process of intensity measure  and  be the expectation 
under the reduced Palm distribution. Let  be a real-valued function. 
The following holds:
         

xdx
f

  


Campbell - Mecke Theorem
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!                , \ ,

                         , \ ,

x
x

x

f x x f x dx

f x x f x dx
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 

 
Campbell - Mecke Theorem of PPPs
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

 

 
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Counter-Example that the PPP is Special: Beta-Ginibre
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Counter-Example that the PPP is Special: Beta-Ginibre
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Counter-Example that the PPP is Special: Beta-Ginibre
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Playing with Point Processes
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Playing with Point Processes
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Useful Material
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“Cappuccino” Point Process: The Time Has Come… 
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