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5G-PPP - 5G Network Vision

The 5G Infrastructure Puhhc Private Partnership:
[=]%:¢-[=] £ e the next genemmn of

EEI’HH‘IUI’!!EETIE!’! ﬂETWﬂTkS Eﬁﬂ SEIvices.

More information at

WWW.og-ppp.eu

infrastructure..

5G-PPP 5G Vision Document, “The next-generation of communication networks and services”, March
2015. Available: http://5g-ppp.eu/wp-content/uploads/2015/02/5G-Vision-Brochure-v1.pdf.



5G-PPP - 5G Network Vision

020+MN+URC

Device to Device

Moving Netwarks

Ultra Reliable Communication
Massive Machine Communication
Ultra Dense Networks

5G-PPP 5G Vision Document, “The next-generation of communication networks and services”, March
2015. Available: http://5g-ppp.eu/wp-content/uploads/2015/02/5G-Vision-Brochure-v1.pdf. 3



The 5G (Cellular) Network of the Future

O Buzzword 1: Densification
1.  Access Points (Network Topology, HetNets)
2. Radiating Elements (Large-Scale/Massive MIMO)

Q Buzzword 2: Spectral vs. Energy Efficiency Trade-Off
1.  Shorter Transmission Distance (Relaying, Femto, D2D)

2. Total Power Dissipation (Single-RF MIMO, Antenna Muting)
3.  RF Energy Harvesting, Wireless Power Transfer, Full-Duplex

O Buzzword 3: Spectrum Scarcity
1. Cognitive Radio and Opportunistic Communications

2. mmWave Cellular Communications

Q Buzzword 4: Software-Defined, Centrally-Controlled, Shared, Virtualized
1. SDN, NFV, Network Resource Virtualization (NRYV)



This Lecture: System-Level Analysis of 5G Networks

O Stochastic Geometry for Modeling Cellular Networks
» Why do we need Stochastic Geometry ?
» Can Stochastic Geometry model practical network deployments ?
» How to use Stochastic Geometry for performance evaluation ?

> Quick survey of recently proposed mathematical approaches...

0 Cellular “applications”: Not covered in this lecture
> HetNets

Massive MIMO

mmWave cellular

Relaying

Wireless power transfer

YV V. V Y V

etc... etc...



Why? - Densification of Base Stations (your parents net)
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Why? - Densification of Base Stations (your kids net)
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Modeling Cellular Networks — In Industry

The NTT DOCOMO 5G Real-Time Simulator
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DOCOMO 5G White Paper, “5G Radio Access: Requirements, Concept and Technologies”, July 2014. 8



Life of a 3GPP Simulation Expert (according to Samsung)

Inspiration strikes! ¢

L1 Weeks writing/debugging code:;

1%

There's a reason the server is called “grumpy”:

UL —— Come back after waiting this long:
o 5 ____— seconds!
4 4 runTineg =
1.4450e+05
Hope you don't find this: < |
|fegmentation violation detected————--
RE = ODODODO0ZcALdaFS B9 = 00002ac:
_interpreter.soc+02245206[ 7] Ox0000:
xa64,/11bmum_interpreter. so+01923475[0 All for a few numbers and a MATLAB plot:
13a/bin/glnxadd /1ibmum_dispatcher.so- Buffer Occupancy —
[ 36] 0x00002ac2133eebd8 Soptr/HW/ app: Dperétn; 1 (lasz): 0,560 u ot
Operator 2 (wifil: 0.807 it
WE Throughput [(Mbps) -

Operator 1 (laa): 10.304 i-
Dperator 2 (wifil: B.708 i f
Packet Latercy (=) E ]
Operator 1 (laa): 0,806 :
Operator 2 (wifi): 0.702 3

Charlie Zhang, Simons Conference on Networks and Stochastic Geometry, October 2015, Austin, USA. 9



Modeling Cellular Networks — In Academia

L5

Traditiu'nal grid mf::del

O Conventional approaches to the analysis and design of cellular
networks (abstraction models) are:

» The Wyner model

» The single-cell interfering model or dominant interferers model

» The regular hexagonal or square grid model

D. H. Ring and W. R. Young, “The hexagonal cells concept”, Bell Labs Technical
Journal; Dec. 1947. http://www.privateline.com/archive /Ringcellreport1947.pdf.
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Modeling Cellular Networks — In Academia

| «— Reality
VS.

Abstraction
Modeling ~—

Traditiu'nal grid mf::del

O Conventional approaches to the analysis and design of cellular
networks (abstraction models) are:

» The Wyner model

» The single-cell interfering model or dominant interferers model

» The regular hexagonal or square grid model

D. H. Ring and W. R. Young, “The hexagonal cells concept”, Bell Labs Technical
Journal, Dec. 1947. http://www.privateline.com/archive /Ringcellreport1947.pdf.

1



The Conventional Grid-Based Approach
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Traditional grid model

‘ Probe mobile terminal

A Macro base station
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The Conventional Grid-Based Approach

C('”(f”,{n“)}) =B, log, (1 +SINR(rO<1>,{

1)

-~

_—
—_—
e
—
—
—
—_—
—
—
—
—
—
—_—
—_—
—
— iy,

‘ Probe mobile terminal

A Macro base station 13




The Conventional Grid-Based Approach

... Signal-to-Interference-Plus-Noise Ratio (SINR) ...

2

SINR = };ho ‘o [agg(FO):_Z P‘hi‘zri_a
o' +1,, ( ’”o) ic®\BS,,

CCDF(T)=P, (T)=Pr{SINR > T}

cov

( 2 B A
Plh| r“
>T +=...

o’ +1 (ro)

= Pr-<
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The Conventional Grid-Based Approach

‘ Probe mobile terminal

A Macro base station




The Conventional Grid-Based Approach
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‘ Probe mobile terminal

A Macro base station
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The Conventional Grid-Based Approach

B N
C — Ero,{ri} {C(Voa{r}})} z%;C(zﬂ(}(n),{@(n)})

I < () { ()
EZBW log, (1+SINR(rO ,{rl. }))
n=lI
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The Conventional Grid-Based Approach

— N
C=E {C(’”oa{’?})} ~ %;C(nf”)»{n(”)

I < () { ()
WZBW log, (1+SINR(rO ,{rl. }))
n=lI

Simple enough... So, where is the issue?

)

18



The Conventional Grid-Based Approach

C=E,, 1C(n-{n})f= ZC( L })
—ZB log, (1+SINR( (),{r;(”)}))

Simple enough... So, where is the issue?

The answer:
...this spatial expectation
cannot be computed mathematically...

19



The Conventional Grid-Based Approach: (Some) Issues

O Advantages:

>

Dozens of system parameters can be modeled and tuned in such
simulations, and the results have been sufficiently accurate as to enable
the evaluation of new proposed techniques and guide field deployments

d Limitations:

> Actual coverage regions deviate from a regular grid
» Mathematical modeling and optimization are not possible. Any elegant
and insightful Shannon formulas for cellular networks?
» The abstraction model is not scalable for application to ultra-dense
HetNets (different densities, transmit powers, access technologies, etc...)
. .:. .'.o < D : .' ‘ . ‘ . << i >> - (Zﬁ)
'o e e 1 o .- . .o s 4 o ,-"{B e “I"‘. \‘\ s S T
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e ] oS & : o. *fs . -4 = {,{h-,.\-; \\\ Meicro [hﬁ Fente. Fﬂm)t
) af S\ SRS2T T o Nl : | \ﬂ)) F’
Actual 4G network today Traditional grid model ‘(Eeﬁt_é, b 20



Let’s Change the Abstraction Model, Then...

Regular
deployment

‘---: ‘:-..:- \‘ i L
'.'-' 3N AL /* S Ve Traditional grid model

Actual 4G network today



Let’s Change the Abstraction Model, Then...

Regular
deployment

i o

Traditional grid mEJdel

Random

deployment
(PPP)

Actual 4G network today

Completely random BSs 22



Stochastic Geometry Based Abstraction Model

An Emerging (Tractable) Approach

d A RANDOM SPATIAL MODEL for Heterogeneous Cellular
Networks (HetNets):

> K-tier network with BS locations modeled as independent marked
Poisson Point Processes (PPPs)

> The PPP model is surprisingly good for 1-tier as well (macro BSs):
lower/upper bound to reality and trends still hold

> The PPP model makes even more sense for HetNets due to less
regular BSs placements for lower tiers (femto, etc.)

Stochastic Geometry
emerges as a powerful tool for the
analysis, design and optimization

of ultra-dense HetNets

23



The PPP: Does it Make Sense?

O Additive White Gaussian Noise. Does it?
O Independent and Identically Distributed Rayleigh Fading. Does it?
d etc...




Beyond the PPP: Possible, but Math is More Complicated

Completely random
with zero interaction

_ Point process with Point process with
Lattice repulsion PPP attraction

Matern hard-core process
Strauss process
Perturbed lattice

Ginibre point process

Poisson cluster process
Neyman-Scott process
Matern cluster process
Thomas cluster process

| IR S BN Matern Hard-Core PP

|(:).." 177  Takeahomogeneous PPP and remove any
. ¥ b pairs of points that are closer to each other

than a predefined minimum distance R

Y. J. Chun, M. O. Hasna, A. Ghrayeb, and M. Di Renzo, “On modeling heterogeneous wireless networks
using non-Poisson point processes”, IEEE Commun. Mag.,, submitted. [Online]. Available:
http:/ /arxiv.org/pdf/1506.06296.pdf. 25




PPP-based Abstraction

How It Works (Downlink — 1-tier)

A

‘ Probe mobile terminal

A PPP-distributed macro base station

26



PPP-based Abstraction

How It Works (Downlink — 1-tier)

A A | A A
A A A
O
A A A A
A A
‘ Probe mobile terminal A

A PPP-distributed macro base station
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PPP-based Abstraction

How It Works (Downlink — 1-tier)

A

‘ Probe mobile terminal

A PPP-distributed macro base station
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1

c(n". (") =B, log, (1 +SINR (11

)

PPP-based Abstraction

How It Works (Downlink — 1-tier)

A

A

‘ Probe mobile terminal

A\ PPP-distributed macro base station 29



PPP-bpased Abstraction C(r(fz),{rf) }) =By log; (1 ’ SINR(FO(Z)’{F"@) }))

How It Works (Downlink — 1-tier)
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‘ Probe mobile terminal

A\ PPP-distributed macro base station 30



PPP-based Abstraction CA 7] =B togs 1+ SINR (7.7 )

How It Works (Downlink — 1-tier)
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‘ Probe mobile terminal A

A PPP-distributed macro base station



PPP-based Abstraction

B N
C — Ero,{ri} {C(Voa{r}})} z%;C(zﬂ(}(n),{@(n)})

RN () { ()
EZBW log, (1+SINR(rO ,{rl. }))
n=lI



PPP-based Abstraction

C - E’”Oa{’”i} {C(

Are you kidding me? ...
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n=1

—ZB log, (1 +SINR (ro("),{r;(") }))

What makes it different?
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PPP-based Abstraction

C = S {C(’”Oﬂ{’?})} ~ %ic(’/"(n)’{rf(n)})
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Are you kidding me? ... What makes it different?

The answer:
...this spatial expectation
can be computed mathematically...

34



. On Abstraction Modeling ...

George Edward Pelham Box
(18 October 1919 — 28 March 2013)
Statistician
Fellow of the Royal Society (UK)
Director of the Statistical Research Group
(Princeton University)
Emeritus Professor
(University of Wisconsin-Madison)

“...all models are wrong, but some are useful...”

35



Is This Abstraction Model Accurate?

[ Methodology:

36



Is This Abstraction Model Accurate?

d Methodology:

> Actual base station locations from OFCOM (UK)

OFCOM.:
London
“London
Bridge area”

OFCOM: http:/ /stakeholders.ofcom.org.uk/sitefinder/sitefinder-dataset/

1 radio transmitter found at this map
location.

Name of Operator Vodafone
-Dperator Site Ref. 10277
-StaUOﬂ Type Macrocell

Height of Antenna : 3.9 Metres-
Frequency Range .900 MHz [
_Transmitter Power 7.5 dBW -
_Maximum licensed pcn-\.'ermg 32 dBW
Type of Transmission :GSM

Click here to send an enguiry conceming

this mobile phone base station to the
operator.

Close

Briclge =

London Bridg
Experience

The Vi ;hum

The Shard

2

= London Bridge *
o

|| to search for {eg Postoode, Town or Street)

[

e Millennium Pier - Londay Bridge -
Pier &

o
Y Thome
8

HMS Belfast | &)

Madaje, &
Sino

¢

re Londeon Estates =

ﬁ!rers Flelds Park
4 (8)
<Op ¥

&‘&
&
¥
don Rlverside

City Hall (@

wore Lo

&

Search

Tower of London (=

Tower Bridge (=

£ &
m ﬁé\ £
B nee‘;z!i"tograuhlu uesB2015.Google | 3 Conditiofs dutiisation  Sign#€r une emeur pa%ogmphéque

ngle Operator GSM

Single Operator UMTS

Single Operator TETRA

Base stations with more
than one operator or

technology technology technology more than one
technology
12 2 0 15
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Is This Abstraction Model Accurate?

0 Methodology:
» Actual base station locations from OFCOM (UK)
» Actual building footprints from ORDNANCE SURVEY (UK)

ORDNANCE
SURVEY:
London
“London

Bridge area”

Piar
==
|

R

|I .ll T ——
ooy : ST “—__ HMSBelfsat
! .. l-._ o] "r""-.____

£&7

OFCOM: http:/ /stakeholders.ofcom.org.uk/sitefinder/sitefinder-dataset/ 33
ORDNANCE SURVEY: https://www.ordnancesurvey.co.uk/opendatadownload/products.html




Is This Abstraction Model Accurate?

[ Methodology:
> Actual base station locations from OFCOM (UK)
> Actual building footprints from ORDNANCE SURVEY (UK)
» Channel model added on top (1-state and 2-state with LOS/NLOS)

‘ Mobile terminal
A Base station (outdoor)

A\ Base station (rooftop)

2-state: the location of MTs and BSs

and the location/shape of buildings
determine LOS/NLOS conditions

LOS

1-state: all links are either in LOS or
NLOS regardless of the topology

OFCOM: http:/ /stakeholders.ofcom.org.uk/sitefinder/sitefinder-dataset/

39
ORDNANCE SURVEY: https://www.ordnancesurvey.co.uk/opendatadownload/products.html



An Example of Blockage Model (3GPP)

... Impact of LOS/NLOS ...

3GPP_

1

0.9

081

07F

06}

05}

PLos(

04r
LOS

03r

0.2r

01r

U 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200
r [meter]

18 _L _L
Pros(r) = min [?, 1} (1-—e36) +e738
‘ Mbobile terminal

A Base station

40



The London Case Study (1/7)

02 + Vodafone 02 Vodafone
Number of BSs 319 183 136
Number of rooftop BSs 95 62 33
Number of outdoor BSs 224 121 103
Average cell radius (m) 63.1771 83.4122 96.7577

41



The London Case Study (2/7)
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The London Case Study (3/7)
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The London Case Study (4/7)

PPP Accuracy: 1-State Channel Model

O OFCOM: Actual base station locations, (actual building footprints), actual channels

O PPP: Random base station locations, (actual building footprints), actual channels

0O2+VODAFONE 02 VODAFONE

Coverage probability in London{CO2 and V' odafone, 1 state) Coverage probahility in London{Q2, 1 state) Coverage prabability in London(odafone, 1 state)
1 T T T T T T 4I T T T T T T 1 T T T T T T
—HB— Simulation PPP —8— Simulation PPP —8— Simulation PPP
naf —i=— Simulation Ofcom [H ook —=— Simulation Ofcom [H naf —=— Simulation Ofcom
0ar . n.ar ~ 0.ar
07+ - 0.7k - 0.7+
06+ - D6F - 06F
= = =
o 05} - 2 05 - S 06|
o o o
04+ - 0.4+ - 0.4+
03r . 0.3r . 0.3r
02r . 0.2r . 0.2r
01r 01 7 01F i
':I 1 1 1 1 1 L EI 1 1 1 1 1 1 ':I 1 1 1 1 1 1
=20 15 -10 -5 0 5 10 15 20 -15  -10 -5 0 5 10 15 =20 -15  -10 Rl 0 5 10 15

Threshold (dB) Threshold (dB) Threshaold (dB)



The London Case Study (5/7)

Poow

PPP Accuracy: 2-State Channel Model

02

VODAFONE

probability in London(Vodabne, 2 state)

—+&— Simulation PPP
—&— Simulation O om ||
—#% Simulation 3 Ball

Cowerage probability in London{0 2, 2 state) Cowerage
10 o T - ! Y L T 168 i J 4 e Wi !
g —&— Simulation PPP s
ool —H&— Simulation O Tom || el
— % Gimulation 3 Ball
06 06}
=
[=]
[ ]
o
D4r 04t
02r D2F
|:| 1 1 1 1 1 1 |:| 1 1
=20 -15 -10 = 0 5 10 15 =20 -15

Threshold (dB)

0O2+VODAFONE

Cowerage probability in London{02 and Vodabne, 2 state)

Threshold (dB)

—=— Simulation PPP

—&— Simulation Ofcom ||
—+— Simulation 3 Ball

=
(]
[
(W
il EM _
0.2} “E%_E
3
|:| 1 L 1 1 1 1
20 15 10 & 0 5 10

Threshold (dB)
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The London Case Study (6/7)

1 1-State vs. 2-State Channel Models:
> Only LOS - Worse coverage, as interference is enhanced
> Only NLOS - In-between, as intetference is reduced but probe link gets worse
> LOS and NLOS - More realistic: we can model it with stochastic geometry

Pcov

Coverage probability in London{QO2 and Vodafone) Coverage probability in London(QO2) Coverage probability in London(V odafone)
1|:‘|'t_|._mﬂ_' T T T 1@% T T T 1!_._‘}“114_“__'_‘ T T T
—HB— Simulation Ofcom 2 State —HF— Simulation Ofcom 2 State —H&— Simulation Cfcom 2 State
0. f—— Simulation Ofcom 1 State NLOS |4 0. Simulation Ofcom 1 State NLOS [H 0. Simulation Ofcom 1 State NLOS
—iz— Simulation Ofcom 1 State LOS —&+— Simulation Ofcom 1 State LOS —&— Simulation Ofcom 1 State LOS
081 0.8+ 08¢t
0.7¢F 0.7+ 0.7+t
06} 0.6} D6}
= =
0.58F o 05¢F o 05¢
o o
0.4F 0.4+ 0.4+t
03F 0.3+ 03+
02¢ 0.2+ 02+t
01 0.1 0.1
[} i ] [} 1 i 1 [] 1 1 i
-20 -10 0 10 -20 -10 0 10 -20 -10 0 10

Threshold (dB) Threshold (dB) Threshold (dB)



The London Case Study (7/7)

Pcov

Omni-Directional vs. 3GPP Radiation Patterns

London, omni—directional

—+—Vodafone 0
=— 0O2+Vodafone| ,
2% 15 10 5 0 5 10 15
T (dB)

Pcov

—+—\Vodafone :
. —e— 02+Vodafone | :

0 0 10 20 30 4:0 50
T (dB)
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Why Is This Modeling Approach So Accurate?

02 + Vodafone 02 Vodafone
Number of BSs 319 183 136
Number of rooftop BSs 95 62 33
Number of outdoor BSs 224 121 103
Average cell radius (m) 63.1771 83.4122 96.7577

48



Intrigued Enough?

... Further Information and Case Studies ...

Stochastic Geometry Modeling of Cellular Networks:
Analysis, Simulation and Experimental Validation

Wei Lu
Paris-Saclay University
Laboratory of Signals and Systems (UMR-8506)
CNRS-CentraleSupelec-University Paris-Sud Xl
3, rue Joliot-Curie
91192 Gif-sur-Yvette (Paris), France
wel.lu@|2s.centralesupelec.fr

ABSTRACT

Due to the increasing heterogeneity and deployment den-
sity of emerging cellular networks, new flexible and secal-
able approaches for their modeling, simulation, analysis and
optimization are needed. Recently, a new approach has
been proposed: it is based on the theory of point processes
and it leverages tools from stochastic geometry for tractable
system-level modeling, performance evaluation and optimiza-
tion. In this paper, we investigate the accuracy of this
emerging abstraction for modeling cellular networks, by ex-
plicitly taking realistic base station locations, building foot-
prints, spatial blockages and antenna radiation patterns into
account, More specifically, the base station locations and
the building footprints are taken from two publicly available
databases from the United Kingdom. Our study confirms
that the abstraction model based on stochastic geometry is
capable of accurately modeling the communication perfor-
mance of cellular networks in dense urban environments.

Marco Di Renzo
Paris-Saclay University
Laboratory of Signals and Systems (UMR-8506)
CNRS-CentraleSupelec-University Paris-Sud Xl
3, rue Joliot-Curie
91192 Gif-sur-Yvette (Paris), France
marco.direnzo@|2s.centralesupelec.fr

pected to provide [1]. Modeling, simulating, analyzing and
optimizing such networks is, however, a non-trivial problem.
This is due to the large number of access points that are ex-
pected to be deployed and their dissimilar characteristics,
which encompass deployment density, transmit power, ac-
cess technology, ete. Motivated by these considerations, sev-
eral researchers are investigating different options for mod-
eling, simulating, mathematically analyzing and optimizing
these networks., The general consensus is, in fact, that the
methods used in the past for modeling cellular networks,
e.g., the hexagonal grid-based model [2], are not sufficiently
scalable and flexible for taking the ultra-dense and irregular
deployments of emerging cellular topologies into account.

Recently, a new approach for overcoming these limitations
has been proposed. It is based on the theory of point pro-
cesses (PP) and leverages tools from stochastic geometry
for system-level modeling, performance evaluation and opti-
mization of cellular networks [3]|. In this paper, it is referred

W. Lu and M. Di Renzo, “Stochastic Geometry Modeling of Cellular Networks: Analysis, Simulation and
Experimental Validation”, ACM Int. Conf. Modeling, Analysis and Simulation of Wireless and Mobile
Systems, Nov. 2015. [Online]. Available: http://arxiv.org/pdf/1506.03857.pdf. 49




How It Works: The Magic of Stochastic Geometry (1/5)

... understanding the basic math ...

® 1s a PPP

P_ =Prs

2 -

r

(0]

- Pl

\0'2 +1,, (ro)

> SINR =

>T

P, =Pr{SINR >T}

2 —a

v

)

P|h

)

o’ +]agg (ro)

Le(n)= 3 Pl
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How It Works: The Magic of Stochastic Geometry (2/5)

... understanding the basic math ...

P_ =Prs

2 -«

r

Pl

o

\02 +1,,, (ro)

>T

;

_ Pr{\hof >(0?+1,, (ro))P_lTrO“}

2

(.
(MGE, (5)= )
\EX {e_SX} =

~ exp :>) B Elagg(ro),ro {GXp (_(02 T g (FO ))P_lTroa )}

=E, {GXP(—G PT ’”oa)MGFfagg(ro) (P _1T,,0a )}
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How It Works: The Magic of Stochastic Geometry (3/5)

... understanding the basic math ...

PCOV — E’”o {exp (—TGZP—lroa )MGFIagg(’”o) (P_ITI/'Oa )}

+00

- J exp (—T o’ P& )MGangg(

0

. (P'T&%)PDF, (£)dé

0
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How It Works: The Magic of Stochastic Geometry (3/5)

... understanding the basic math ...

PCOV = ErO {exp (—T o’pP! roa )MGF]agg(ro) ( P—lTrOa )}

+00

= [ exp(~To*P'¢*)MGF,  \(P7'TE)PDE, (£)dé

0

Trivial so far... where is the magic?
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How It Works: The Magic of Stochastic Geometry (3/5)

... understanding the basic math ...

PCOV = ErO {exp (—T o’pP! roa )MGF]agg(ro) ( P—lTrOa )}

+00

= [ exp(-To*P'¢*)MGF, \(P7'TE)PDE, (£)dé

0

Trivial so far... where is the magic?
Stochastic Geometry provides us with the
mathematical tools for computing, in closed-form,

the MGF and the PDF of the equation above
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How It Works: The Magic of Stochastic Geometry (4/5)

... understanding the basic math ...

2 _4 The aggregate other-cell interference
/ agg (l/' 0) o Z P ‘hz ‘ I/; constitues a Marked PPP, where the
ieD\BS, marks are the channel power gains

The PDF of the closest-distance

PDFFO (.f ) =27A& exp (—722,52 ) follows from the null probability of

spatial PPPs

The MGF of the aggregate other-

MGF ( S) — cell interference follows from the
(%) Probability Generating Functional
(PGFL) of Marked PPPs
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How It Works: The Magic of Stochastic Geometry (5/5)

... understanding the basic math ...

2 —a
MGFIagg(rO) (S) - ECI),{ hi|2} iexp£_sieq§&) P hi ’/; jf
A
=E, 11-6(1;1!50 E{|h,.|2} {exp( v )}j
S
(PGFL =) = exp| 274 | (1 “E,. {exp( )})gdg }
\ z |

\ J
|

available in closed-form in papers
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So Powerful and Just Two Lemmas Need to be Used...
Sums over PPP

Lemma (Campbells theorem)
Let & be a PPP of density \ and f(x) : R> — R™.

E[)  f(x)]=A /R F(x)dx

xed

Products over PPP

Lemma (Probability generating functional (PGFL))

Let ® be a PPP of density \ and f(x) : R?> — [0,1] be a real valued
function. Then

11 f(x)] = exp (—A R2(1 = f(x))dx) .




Error Probability: From Link-Level...

(D —s T —(7)

BPSK ML
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Error Probability: ...to System-Level Analysis

5 +o00 o 5
: a Mo Piaz (2/(6S2)) T (2: Mo, o
() (a0, B,7) = = — — L/ ss)) T | ) g
m T Jo Q(,E;/(H.Qo))

MIMO Setup mo Qo ok Q(¢) ASEP/AFEP | E/A
Sec. V-A m Q/m 0 Ego {2F2 (—3,m;1— 31— |no2 26)) —1 Eq. (17) E
Sec. V-B N, Q|71 — noI? 0 En, {1F1 (=31 — 1 —|Imo* Q€)} —1 Eq. (21) E
Sec. V-C N, 0 0 Eno {1F1 (11— 1;—no*R2€)} — 1 Eq. (17) E
Sec. V-D NN, oy 0 Eno {1F1 (=2:1— i — |l ©€)} -1 Eq. (17) | /A
Sec. V-E N, Q 0 i 0y En, {1F1 (—3:1— 3 —|Imo* Q€)} -1 Eq. (17) E

m#Em=1

Sec. V.F | N, — N: +1 Q 0 Ep, (1P (—5:1— 2| Q¢)} =1 Eq. (17) E

Sec. V-G | Ny —Nu 41 Q/Ny 0 1F1(—4:1—3:-0Q¢) -1 Eq. (17) A
A. Single-Input-Single-Output Transmission over Nakagami-m Fading
B. Spatial Multiplexing MIMO Transmission over Rayleigh Fading — Optimal Demodulation
C. Single-Input-Multiple-Output (SIMO) Transmission over Rayleigh Fading
D. Orthogonal Space-Time Block Coding (OSTBC) Transmission over Rayleigh Fading
E. Spatial Multiplexing MIMO Transmission over Rayleigh Fading — Worst-Case
F. Zero-Forcing (ZF) MIMO Receiver over Rayleigh Fading 59

G. Zero-Forcing MIMO Precoding over Rayleigh Fading



Three New and General Mathematical Tools

1. Average Rate: The MGF-Based Approach

> M. Di Renzo, A. Guidotti, and G. E. Corazza, “Average Rate of Downlink Heterogeneous
Cellular Networks over Generalized Fading Channels — A Stochastic Geometry Approach”,
IEEE Trans. Commun., vol. 61, no. 7, pp. 3050-3071, July 2013.

2. Average Error Probability: The EiD-Based Approach

» M. Di Renzo and W. Lu, “The Equivalent—in—Distribution (EiD)-based Approach: On
the Analysis of Cellular Networks Using Stochastic Geometry”, IEEE Commun. Lett.,
vol. 18, no. 5, pp. 761-764, May 2014.

> M. Di Renzo and W. Lu, “Stochastic Geometry Modeling and Performance Evaluation of
MIMO Cellular Networks by Using the Equivalent-in-Distribution (EiD)-Based
Approach”, IEEE Trans. Commun., vol. 63, no. 3, pp. 977-996, March 2015.

3. Coverage Probability: The Gil-Pelaez-Based Approach

> M. Di Renzo and P. Guan, “Stochastic Geometry Modeling of Coverage and Rate of
Cellular Networks Using the Gil-Pelaez Inversion Theorem”, IEEE Commun. Lett., vol.
18, no. 9, pp. 1575-1578, September 2014.
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Average Rate of Cellular Networks: The Scenario

Downlink — 1-tier (the paper deals with HetNets)

A
A A
A
A A
A A e -7~ A
I/ ‘/‘ Useful link
A A A A
A A
‘ Probe mobile terminal A

A PPP-distributed macro base station
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Average Rate of Cellular Networks: Problem Statement

(R(é) = E{In(1+SINR (&))!} = E<rln[1+

]agg(g) - Z (Pgbdb_a)

bed{\BS, (&)}

Pg,c |
oy +1g(S))

R= 27zzT§exp{—m§2} E+ ln(1+
0

Pg,s " \
o + 1, (f)deCf

62
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The Rate in Terms of the Coverage: Sketch of the Proof

R=E{In(1+SINR)} = Tln(1+x)fSINR (x)dx

0

—> Integration by parts (FSINR (x) =Py, (%), Fyng (¥) =1— Fype ()

:—ln(1+x)( Fyn (

_[ SINR ) dx
0
F.

()dx

1+ x

- T%(l_FSINR (x))dx = f
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Pcov-based Approach: State-of-the-Art

( (a) +00 +o0 . B
R = QF)\/ / rexp {—W,\-r‘)} 17 (r,t) drdt
0 0

_ i 4 . . _ _
13 (vit) (:}/ exp {—QTrJir_js} (erjs}_l {Mg (—2-?.*-;"_“ (c—t — l) ljs) — 1} T (r, s)ds

— 0

g

e ; 2/ F00!
Ts (r, s) - exp {ﬁ,\!‘z = Qo ke (271'_,1'.9}2/ / 2/ [F (—2/a, 2Wj.5"r_“;r) —T {—2;’(}-}} fr (z) a'..r}
0

\

O Bottom Line:

» Mathematically tractable and insightful for Rayleigh fading

> Closed-form expressions for special cellular setups (always for
Rayleigh fading)

> Intractable multi-fold integrals for fading channels different from
Rayleigh

J. G. Andrews, F. Baccelli, and R. K. Ganti, “A Tractable Approach to Coverage and Rate in Cellular
Networks”, IEEE Trans. Commun., vol. 59, no. 11, pp. 3122-3134, Nov. 2011. 64



The Enabling Result

= {n (14 751

Pgo&™“ }
E<ln([1+ ' .
{ ( UJQV + Lage (€)

00 .
_ / GXD{ z}MIagg (3~§) [1 o MU (SNRé-_az)} dz
J 0

K. Hamdi, “A Useful Lemma for Capacity Analysis of Fading Interference Channels”, IEEE Trans.
Commun., vol. 58, no. 2, pp. 411-416, Feb. 2010. 65



The Enabling Result: Sketch of Proof

Lemma 1: For any x > 0

Z

Sl |
In (14 x) :/ (1—e ") e ?dz. (6)
0

K. Hamdi, “A Useful Lemma for Capacity Analysis of Fading Interference Channels”, IEEE Trans.
Commun., vol. 58, no. 2, pp. 411-416, Feb. 2010. 66



The Enabling Result: Sketch of Proof

In order to give a formal proof of Lemma 1, consider the
following series expansion of In (1 4+ x) which is valid for

all = > 0 [20, Eq. 4.1.25]

o0 1 , n
1n(1+m):2£(1j_$) < B ) (10)

n=1

Now, using the identity! (e.g. [19, Egs. 8.312.2 or 3.381.4])

co n—1
" = [ %e_smds, n,x >0 (11)
Jo

(10) becomes

o0 Do,gn_l i
In(l+z) = Z f F(n)e_STds

which reduces to (6) when we substitute s = zx.

K. Hamdi, “A Useful Lemma for Capacity Analysis of Fading Interference Channels”, IEEE Trans.
Commun., vol. 58, no. 2, pp. 411-416, Feb. 2010. 67



MGF-based Approach: The Main Theorem

¢ +0oo
B / [1 — Mo (SNRy)] 91 4,
0 Y
Gr (y) . _— /W&g‘l {~7AZ; (SNRy) €} exp {—ye? } de
= - — 2 Texp—T SDNRy)&rexpi—yé2 ¢ d
YT 2 (SNRy) 2 21 (SNRy) o Bl bt il

21 (y) = Mi(y) + 71 (y)
Ti)=T(1-2) Y " MP () [T (2~

k=0
k) ~
',-‘L/{Er (y) :E{g;,"H EKP{—H%}}

+E)]™

2|2

O Note: The “inner integral” can be solved in closed-form with the aid
of the Meijer G-function and the Mellin-Barnes theorem. Proposed
efficient numerical methods for this computation

M. Di Renzo, A. Guidottiy, and G. E. Corazza, “Average Rate of Downlink Heterogeneous Cellular
Networks over Generalized Fading Channels — A Stochastic Geometry Approach”, IEEE Trans. Commun.,
vol. 61, no. 7, pp. 3050-3071, July 2013. 68



On the Computation of T,(*)

Q It can be computed in closed-form for the most common fading
channel models

[ No need of computing an infinite summation and the derivatives of
the MGF of the interference

0 An example: Composite Nakagami-m fast-fading with Log-Normal
shadowing

9 = l
T o m+1 1 — =
rly) ~=m o) E

NcHg
Z = = —(m—+1
>< l}_l': ndu:il -{j + .’?;"wn) { )

1n—1

2 g
xﬁEGH'LLQ-y@+”MH1)

@)

M. Di Renzo, A. Guidottiy, and G. E. Corazza, “Average Rate of Downlink Heterogeneous Cellular
Networks over Generalized Fading Channels — A Stochastic Geometry Approach”, IEEE Trans. Commun.,

vol. 61, no. 7, pp. 3050-3071, July 2013. 69



Simple Mathematical Expressions for Special Setups

d Dense cellular networks:

e = Al (z) dz

R < lim R(\) =RM=) =

A—+ o0 0 ﬂ4j() T}:);

O Interference-limited cellular networks:

T 1 - Mp(z) d=
J0 MI()‘F‘TI(\J«

= (SNReo) __
R 3 o = REV) =

O High-SNR regime:

- 1
(SNR>1) _ 2(SNRoo) _ (- —&/ZF (1 f_l)
e ) T 3) SNR

/ i 1 . dz
(2) + Tz ()] /2
<RI S\TR) <725NR%}
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ASEP of Ad-Hoc Networks: The Scenario

A Interfering link

A A

‘ Probe/intended receiver
A\ PPP-distributed interferers

A Useful transmitter at a fixed distance = cell association is neglected



ASEP of Ad-Hoc Networks: Problem Statement

A < |A[ U+2Re{AN}+2Re{ AT, }

. J/

/ J/

Decision g -~ ~~
Metric Useful AWGN Aggregate
Signal U Interference

- Z ) = 4 =
Lioe = Z | = Lo :Bll/zGI = SO{S(CZI =2/b, 97/1)
1€Dppp [

( gy
B, 51 1o (x/20,)

M, (s)=E, {exp(—SBI )} - eXp(_Sl/b, )
G~ CN (0,477 )

/i

M. Di Renzo, C. Merola, A. Guidotti, F. Santucci, G. E. Corazza, “Error Performance of Multi-—Antenna

Receivers in a Poisson Field of Interferers — A Stochastic Geometry Approach”, IEEE Trans. Commun.,
vol. 61, no. 5, pp. 2025-2047, May 2013. 72




Stable Distribution (x=2 2 Gaussian, =0 = S«S)

Although the probability density function for a general stable distribution cannot be
written analytically, the general characteristic function can be. Any probability
distribution is given by the Fourier transform of its characteristic function @(f) by:

f@)=5 [ "t dt

— 00

A random variable X is called stable if its characteristic function can be written as

p(t; a, B, ¢, w) = exp[ itpu—|ct|” (1—iBsgn(t)®) |
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Stable Distribution (x=2 2 Gaussian, =0 = S«S)

0.7 : g . | ' . ; | ' ; ; |
ﬂ
0.6 — 0=2.0
—o=1.5
— o0=1.0
0= — 0=05
[3:
04 C:l
0.3
0.2
0.1
0.0 ===




ASEP of Ad-Hoc Networks: Methodology

o |A, \ U+2Re{A N}+2Re{AZ(B}/2C_}])}

Decmon — 7
Metric Useful AWGN Aggregate
Signal Interference
Equivalent AWGN

conditioning upon B,

O

(STEP 1: The frameworks developed without interference can be
applied by conditioning upon B,

STEP 2: The conditioning can be removed either numerically
\_ or analytically (we did it analytically) )

M. Di Renzo, C. Merola, A. Guidotti, F. Santucci, G. E. Corazza, “Error Performance of Multi-—Antenna

Receivers in a Poisson Field of Interferers — A Stochastic Geometry Approach”, IEEE Trans. Commun.,
vol. 61, no. 5, pp. 2025-2047, May 2013. 75



ASEP of Ad-Hoc Networks: The Result

A < |A[ U+2Re{AN}+2Re{ AT, }

.

/ J/

Decision g -~ ~~
Metric Useful AWGN Aggregate
Signal Interference

O

- Z\ = 4 =
Lo = Z bl, = laga :Bll/zG] = SaS(al =2/b, 97/1)
1€Dppp [

M. Di Renzo, C. Merola, A. Guidotti, F. Santucci, G. E. Corazza, “Error Performance of Multi-—Antenna

Receivers in a Poisson Field of Interferers — A Stochastic Geometry Approach”, IEEE Trans. Commun.,
vol. 61, no. 5, pp. 2025-2047, May 2013. 76




ASEP of Cellular Networks: The Scenario

A

A

A A

Useful link (r,)

A Interfering link

\ /
A A\\\ /

‘ Probe mobile terminal

A PPP-distributed interfering macro base stations

A Tagged macro base station at a random distance = cell association is NOT neglectdd



ASEP of Cellular Networks: Problem Statement

AJJ \A\ u(r, )+2Re{A N}+2Re{A Tooo ()}

v

Decision Useful AWGN Aggrg:gate
Metric Signal Interference

— Z. d
Lo (ro): Z d_.; = o (”o):???

d; >,

O

-
Q1: What is the distribution of I,,. ?
Q2: Can we develop an Equivalent-in-Distribution (EiD)
representation of I, for arbitrary 1r,>0 ?

N

.

M. Di Renzo and W. Lu, “The Equivalent-in-Distribution (EiD)-based Approach: On the Analysis of
Cellular Networks Using Stochastic Geometry”, IEEE Commun. Lett., vol. 18, no. 5, pp. 761-764, May 2014.78




EiD-bpased Approach: Main Results (1/2)

[II. CHARACTERISTIC FUNCTION OF a4, ()

In this section, the CF of 7,4, (-) is computed. For simplicity,
we use the notation z; = a;a; exp{jb;}exp{jo;}. Hence,
ia.gg () Slmphﬁes {0 ?agg (T‘O) = ZiE‘I’L\D) '\/E (ZE/T?)

Proposition 1: Let the system model of Section II. The CF

. . , "
Of iage (70) given rg is ®;  (wirg) = P, (|w| _;ro):

N2 M +oo .- 2 .
ooy o | pamrd oy 21 ( Jl?
(I)'iagg (|Q.J| ’TD) — SNy M Z qu iS -I"gb
(3)

mi=1 g=:

where T, = (—4)" 7 (¢)™" (—1/b), ((1 - 1/b)q)

M. Di Renzo and W. Lu, “The Equivalent-in-Distribution (EiD)-based Approach: On the Analysis of
Cellular Networks Using Stochastic Geometry”, IEEE Commun. Lett., vol. 18, no. 5, pp. 761-764, May 2014.79



EiD-bpased Approach: Main Results (2/2)

Theorem I: Let iagq (7o) having CF ®;  (-:79) in (3). Let
Ba%)g for ¢ € NT be independent real RVs whose MGF is
MB(Q) (s) = exp{—s?}. Let Gg%g for ¢ € N be independent

complex Gaussian RVs Giy ~ CN (0,0 2(ro)) with:

O 4 5]
(?0) = 4 [pA?TTUT ( = ) o .s(m}’ :| . (5)
"0 T m=1

The RVs B{%, and GZ, are independent for ¢ € NT. Then:

; d .(d
iagg (70) = ?gggz: \/ B%gGggg (6)

M. Di Renzo and W. Lu, “The Equivalent-in-Distribution (EiD)-based Approach: On the Analysis of
Cellular Networks Using Stochastic Geometry”, IEEE Commun. Lett., vol. 18, no. 5, pp. 761-764, May 2014.80



ASEP of Cellular Networks: M. etbodo]ogy

o A, U+2Re{A N}+2Re< ZBW )G, (q) |t

Dec151on - v ~

Metric Usefull AWGN N )
Signa Aggregate
Interference
Equivalent AWGN

conditioning upon B; (1),B;(2),--,B; ()

(STEP 1: The frameworks developed without interference can be\
applied by conditioning upon B,(1), B;(2), ..., B{(®©)

STEP 2: The conditioning can be removed either numerically
\_ or analytically (we did it analytically) Y

M. Di Renzo and W. Lu., “Stochastic Geometry Modeling and Performance Evaluation of MIMO Cellular

Networks by Using the Equivalent-in-Distribution (EiD)-Based Approach”, IEEE Trans. Commun., vol.
63, no. 3, pp. 977-996, March 2015. 81



EiD-based Approach: The MIMO Case

£ +00
_ _. a Mo Prat do 2 Mo,
oo .
709 (@, B,7) = = — = (2/{Kth)) T (2imo0, @) 5,
s T Jo Q (z/(Kk20))

MIMO Setup mo Qo o2 Q (&) ASEP/AFEP | E/A
Sec. V-A m Q/m 0 Eno {2F2 (—2,m;1 — 2;1;— |no|® £¢)} - Eq. (17) E
Sec. V-B N, Q |[7e — noll 0 En, {1F1 (—3;1— 2 —|Ingl” Q2€)} - Eq. (21) E
Sec. V-C N, Q 0 Epo {1F1 (—2:1— 15— |no>2€)} — Eq. (17) E
Sec. V-D N.N, iy 0 Enpo {1F1 (311 —|Ino]? Q) } - Eq. (17) | E/A
Sec. V-E N, Q Q i n5 " Ey, {1F1 (=31 — L= |Inol* €)} - Eq. (17) E
Sec. -F | N, —N: +1 Q 0 Eng {1F1 (=21 — 3 —|Ino]* ©2€)} — Eq. (17) E
Sec. V-G | Ny —Nu+1 Q/Ny 0 1F1 (=31 —4;-9¢) -1 Eq. (17) A

A. Single-Input-Single-Output Transmission over Nakagami-m Fading

B. Spatial Multiplexing MIMO Transmission over Rayleigh Fading — Optimal Demodulation

C. Single-Input-Multiple-Output (SIMO) Transmission over Rayleigh Fading

D. Orthogonal Space-Time Block Coding (OSTBC) Transmission over Rayleigh Fading

E. Spatial Multiplexing MIMO Transmission over Rayleigh Fading — Worst-Case

F. Zero-Forcing (ZF) MIMO Receiver over Rayleigh Fading
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G. Zero-Forcing MIMO Precoding over Rayleigh Fading




EiD-based Approach: The MIMO Case (Approx.)

Proposition 3: Let ASEPpgk in (32). The following ap-
proximation holds:

- 0)
ASEPpgk & Khao

K(PDS)K 253 (K:(Q] 1/2 0 0 1 ) (33)
_ _ .
var (k) N0 Kpgic 0
where K2 = 1/2 if M = 2 and KJPSK —1if M > 4,
K;S)K — myp and K:gs)]a{ =p(b—1)""sin"2 (x/M)[ravol
Proof: See Appendix IV. L[]

In spite of being an approximation, (33) 1s surprisingly
simple and insicrhtful In parti{,ular._ it depends on two main
parameters, i.e., }CPSK and }CPBK By direct inspection of the

Meijer G-function in (33), it follows that ASEPpsk monoton-

; | ; ; .
ically decreases as }CéS)K increases and that it monotonically

2)

S L ( -
INCIreadses ds }CPSK INCICAses.
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Coverage/Rate of Cellular Networks: The Scenario

A

A

A A

Useful link (r,)

A Interfering link

\ /
A A\\\ /

‘ Probe mobile terminal

A\ PPP-distributed interfering macro base stations

A\ Tagged macro base station at a random distance



Coverage/Rate of Cellular Networks: Problem Statement

] F}.},{:}TD—Q =
SINR. = T 9) = YT
Ji{ 4 PI{IQQ {T{:}) gg {?D) ZEE“I’(HD} B ?'E
Peov{T) =Pe{BINR = T}
, (ay
R =E{In(1+SINR)} = Peov (exp (t) — 1) dt
0

b 1—|—-:{.L
&) _ / In (14 y) PLL) (y) dy
0
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The Rate in Terms of the Coverage: Sketch of the Proof

R=E{In(1+SINR)} = [ In(1+x) fog (x)

— Integration by parts
A |
:_ln(l'l'x)(l_FSINR(x))O +jm(1_ﬁémR(x))dx
0
T T Fae (%)
:-([m(l—FSINR(x))dx=£ SiNix dx
:>y:1n(1+x)

—> Integration by parts...again... y



Gil-Pelaez Based Approach

A\
|

+ 00
PC‘.DV (T) — / Pr Ia,gg (5) E f‘?‘g (5) d'f

0 - T P

+ o0 - — v 2
0§ 0N

U

11 ] d
Fy (x) =CDE, (x) =~ ~— [ Im{exp(~jeox) CE, (a))}f
0

M. Di Renzo and P. Guan, “Stochastic Geometry Modeling of Coverage and Rate of Cellular Networks
Using the Gil-Pelaez Inversion Theorem”, IEEE Commun. Lett., vol. 18, no. 9, pp. 1575-1578, Sep. 2014. 87



Gil-Pelaez Approach: Coverage Probability

Peov (T) = Pr {SINR > T}

y

Theorem 1: Let P.o (+) in (2). It can be formulated as:

1 T . T dx |
PCDV (T) — 5 — 2 ﬁ Im {M’}"D ('}T) -FNI (1) ? (4)
where the following functions are introduced:
oo 2
. a_ 9N 2 ;
Fi () = / Yyexp | Jy ol i exp (—mAy~ T (jz)) dy (5)
0

2 2
Yi(2) =By $1F1 [ ——31— =527 (6)
(84 Y

oo



Gil-Pelaez Approach: Average Rate

b + o0 .
R (:} — / In (14 y) P({:jt-i' (y) dy
0

I

Theorem 2: Let R in (3). It can be formulated as:
R = -2\ / o Im {jFo (jx) Fni () } dx 9)
J 0

where /i () is defined in (5) and Fq (-) is given as follows:

T Iy [ a z o
Fo (2)2/ ( ; "’)M%) () dy (10)
0 Y Y
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Gil-Pelaez Approach: Interference-Limited Scenario

Corollary 1: Let Py (+) in (2) with 0%, =0, i.e., PLﬁJ (-).
It can be formulated as:

e, 1 L free Mo, (§5 dx
P([_“.(ZHJ (L) = o = — / Im{ e () T) } ’ (7)
2 T J0 i i y

Corollary 2: Let R in (3) with 03, = 0, i.e., RI°°l. Tt can
be formulated as:

i e Fo (9=
R[OG]:——/ Im{j U("?:I) dx (11)
7™ Jo Tr (jz)
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Gil-Pelaez Approach: Gamma-Distributed Power-Gains (1/3)

Relevant for studying MIMO cellular networks over Rayleigh fading

By assuming v ~ G (mg,€g) and v; ~ G (my,Qr),
Corollary 1 and Corollary 2 can be simplified as tfollows:

—+oo
L a 1 [ 1+ jrox)” ™0 dax
plesl ()@ 1 _ 2 / Im (;9“”1) . T 12
o Fq (—E,'}“?lj';j_—a;jﬁlj;lf) T

0
e (633 (moe| T )

R[] = / Im < o
gd (?'?10) : o F1 (—%,?Tl;;l—%;jm;x) : ¥
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Gil-Pelaez Approach: Gamma-Distributed Power-Gains (2/3)

Closed-form approximations

Proposition 1: Let PL?E]() in (12). The following holds:

1 3 %2 1\ e
0 ) (14)

Proposition 2: Let RI*°! in (13). The following holds:

(15)
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Gil-Pelaez Approach: Gamma-Distributed Power-Gains (3/3)

Closed-form approximations: Performance trends

Remark 3: By direct inspection of (14), the coverage prob-
ability has the following performance trends: 1) 1t increases
as 1 = Qg (o —2)/(T€y) increases:; ii) it increases as g
increases; and 111) it 1s independent of my. [ ]

Remark 5: By plotting the Meijer G-function m (15) as
a function of n = (Q0/Q7)(a — 2) and mg, the same
performance trends as for the coverage (Remark 3) hold.
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The Intensity Matching (IM) Approach

A Complete Mathematical Framework for System-Level Analysis

d M. Di Renzo, W. Lu, and P. Guan, “The Intensity Matching
Approach: A Tractable Stochastic Geometry Approximation to
System-Level Analysis of Cellular Networks”, IEEE Trans.
Wireless Commun., IEEE Early Access.

» Realistic path-loss model with LOS/NLOS conditions
» Arbitrary shadowing and fading

> General antenna-array radiation pattern
> Multi-tier topology with practical cell association

> Realistic traffic load models as a function of the densities of
BSs and MTs

> ...
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IM Approach: Why So Many Details are Needed?

... Impact of LOS/NLOS ...
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Modeling Blockages: A Practical Example

... the mmWave case study ...
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IM Approach: Why So Many Details are Needed?

... Impact of LOS/NLOS ...
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IM Approach: Why So Many Details are Needed?

... Impact of LOS/NLOS on network densification (fully-loaded) ...
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IM Approach: Why So Many Details are Needed?

... Impact of LOS/NLOS (fully-loaded) ...
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IM Approach: Why So Many Details are Needed?

... Impact of Load of Base Stations ...
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IM Approach: Why So Many Details are Needed?

... Impact of Load of Base Stations ...
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IM Approach: Why So Many Details are Needed?

... Impact of Antenna Directionality ...

Omni-directional antennas
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IM Approach: Why So Many Details are Needed?

... Impact of Antenna Directionality ...
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IM Approach: Why So Many Details are Needed?

... Sub-Linear Trend of the Area Spectral Efficiency = A-Rate ...
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Intrigued Enough? On Experimental Validation...

Stochastic Geometry Modeling of Cellular Networks:
Analysis, Simulation and Experimental Validation

Wei Lu

Paris-Saclay University

Laboratory of Signals and Systems (UMR-8506)
CNRS-CentraleSupelec-University Paris-Sud Xl

3, rue Joliot-Curie
91192 Gif-sur-Yvette (Paris), France

wel.lu@I2s.centralesupelec.fr

ABSTRACT

Due to the increasing heterogeneity and deployment den-
sity of emerging cellular networks, new flexible and scal-
able approaches for their modeling, simulation, analysis and
optimization are needed. Recently., a new approach has
been proposed: it is based on the theory of point processes
and it leverages tools from stochastic geometry for tractable
system-level modeling, performance evaluation and optimiza-
tion. In this paper, we investigate the accuracy of this
emerging abstraction for modeling cellular networks, by ex-
plicitly taking realistic base station locations, building foot-
prints, spatial blockages and antenna radiation patterns into
account, More specifically, the base station locations and
the building footprints are taken from two publicly available
databases from the United Kingdom. Our study confirms
that the abstraction model based on stochastic geometry is
capable of accurately modeling the communication perfor-
mance of cellular networks in dense urban environments.

Marco Di Renzo
Paris-Saclay University
Laboratory of Signals and Systems (UMR-8506)
CNRS-CentraleSupelec-University Paris-Sud X
3, rue Joliot-Curie
91192 Gif-sur-Yvette (Paris), France
marco.direnzo@I|2s.centralesupelec.fr

pected to provide [1]. Modeling, simulating, analyzing and
optimizing such networks is, however, a non-trivial problem.
This is due to the large number of access points that are ex-
pected to be deployed and their dissimilar characteristics,
which encompass deployment density, transmit power, ac-
cess technology, ete. Motivated by these considerations, sev-
eral researchers are investigating different options for mod-
eling, simulating, mathematically analyzing and optimizing
these networks. The general consensus is, in fact, that the
methods used in the past for modeling cellular networks,
e.g., the hexagonal grid-based model [2], are not sufficiently
scalable and flexible for taking the ultra-dense and irregular
deployments of emerging cellular topologies into account.

Recently, a new approach for overcoming these limitations
has been proposed. It is based on the theory of point pro-
cesses (PP) and leverages tools from stochastic geometry
for system-level modeling, performance evaluation and opti-
mization of cellular networks [3]. In this paper, it is referred

W. Lu and M. Di Renzo, “Stochastic Geometry Modeling of Cellular Networks: Analysis, Simulation and
Experimental Validation”, ACM Int. Conf. Modeling, Analysis and Simulation of Wireless and Mobile
Systems, Nov. 2015. [Online]. Available: http://arxiv.org/pdf/1506.03857.pdf.

W. Lu and M. Di Renzo, “Stochastic Geometry Modeling of mmWave Cellular Networks: Analysis and
Experimental Validation”, IEEE Int. Workshop on Measurement and Networking (M&N) — Special
Session on Advances in 5G Wireless Networks, Oct. 12-13, 2015. 107




Rationale of the IM Approach: Multi-Ball Approximation

... the approach (e.g., 3-ball case) ...

[ Practical link-state models are approximated using a multi-ball model

d The related parameters are computed using the “intensity matching” criterion
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Rationale of the IM Approach: Multi-Ball Approximation

Why Matching the Intensity Measures ?

[ Consider the general association criterion as follows:

l(rn)

n

BS, is chosen as the minimum of the set ¥ = ,ned

D is a (hon-homogeneous) PPP of BSs with density A(t) = A*p(r)

1(r) denotes the path-loss function

Y is a random variable that accounts for all random variables that are taken
into account for cell association except for the distance (e.g., shadowing)

O Based on the displacement theorem of PPPs, the set W is a PPP in R* whose
intensity measure is the following:

Ay ([O,x)) = 2701:‘?0 Pr <@ c [O,x)}p(r)rdr

+00

: Pr {l(r) € [O, x§)|Y = §}p(r)rdr}

0

=27AE,
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Rationale of the IM Approach: Multi-Ball Approximation

Why Matching the Intensity Measures ?

0 Since the intensity measure is now known and W is still a PPP, the coverage
probability can be formulated, after some algebra, as follows:

los =miny { LOS )/ YLos} InLos = Mg o {ZNLOS (” )/ YNLOS}
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Rationale of the IM Approach: Multi-Ball Approximation

Why Matching the Intensity Measures ?

void probability th.
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Intrigued Enough? On Mathematical Modeling...

The Intensity Matching Approach: A Tractable Stochastic Geometry

Approximation to System-Level Analysis of Cellular Networks

Marco Di Renzo. Senior Member, IEEE, Wei Lu, Student Member, IEEE, and
Peng Guan, Student Member, IEEE

Abstract

The intensity matching approach for tractable performance evaluation and optimization of cellular
networks is introduced. It assumes that the base stations are modeled as points of a Poisson point
process and leverages stochastic geometry for system-level analysis. Its rationale relies on observing that
system-level performance is determined by the intensity measure of transformations of the underlaying
spatial Poisson point process. By approximating the original system model with a simplified one, whose
performance is determined by a mathematically convenient intensity measure, tractable yet accurate
integral expressions for computing area spectral efficiency and potential throughput are provided. The
considered system model accounts for many practical aspects that, for tractability, are typically neglected.
e.p., line-of-sight and non-line-of-sight propagation, antenna radiation patterns. traffic load. practical
cell associations. general fading channels. The proposed approach, more importantly, is conveniently
formulated for unveiling the impact of several system parameters. e.g., the density of base stations and
blockages. The effectiveness of this novel and general methodology is validated with the aid of empirical

data for the locations of base stations and for the footprints of buildings in a dense urban environment.

M. Di Renzo, W. Lu, and P. Guan, “The Intensity Matching Approach: A Tractable Stochastic Geometry
Approximation to System-Level Analysis of Cellular Networks”, IEEE Trans. Wireless Commun., to appeat. 112



The Intensity Matching Approach: Main Takes
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M. Di Renzo, W. Lu, and P. Guan, “The Intensity Matching Approach: A Tractable Stochastic Geometry
Approximation to System-Level Analysis of Cellular Networks”, IEEE Trans. Wireless Commun., to appeat. 113



The Intensity Matching Approach: Main Takes

Very Dense (VD) Networks | Dense (D) Networks
Aps / Rate / - ASE /A Rate N, - ASE?
Mt Rate , - ASE 7 Rate ++ — ASE <
Ngrp Rate /* - ASE / Rate <+ — ASE
Pps 7 Rate «++ - ASE Rate <+ - ASE «
G A Rate * — ASE / Rate »* — ASE ~
Dy / Rate N\, — ASE 3\, Rate ™, — ASE N\,
Os 7 Rate /' - ASE / Rate /4 — ASE 7
Sparse (S) Networks | Very Sparse (VS) Networks
Rate /' —~ ASE A/ Rate / - ASE /
Rate ++ — ASE Rate <+ - ASE «
Rate ™, — ASE /A Rate , — ASE A
Rate 4 - ASE A/ Rate /# - ASE /
Rate /' - ASE A Rate 2 - ASE A
Rate / —~ ASE A Rate «++ - ASE «
Rate 7 — ASE 7”7 Rate / - ASE ~

Approximation to System-Level Analysis of Cellular Networks”, IEEE Trans. Wireless Commun., to appeat.

M. Di Renzo, W. Lu, and P. Guan, “The Intensity Matching Approach: A Tractable Stochastic Geometry
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The Intensity Matching Approach: Main Takes
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What the IM Approach Allows Us to Model...?

The Intensity Matching Approach: A Tractable Stochastic Geometry

Approximation to System-Level Analysis of Cellular Networks

Marco Di Renzo. Senior Member, IEEE, Wei Lu, Student Member, IEEE, and
Peng Guan, Student Member, IEEE

Abstract

The intensity matching approach for tractable performance evaluation and optimization of cellular
networks is introduced. It assumes that the base stations are modeled as points of a Poisson point
process and leverages stochastic geometry for system-level analysis. Its rationale relies on observing that
system-level performance is determined by the intensity measure of transformations of the underlaying
spatial Poisson point process. By approximating the original system model with a simplified one, whose
performance is determined by a mathematically convenient intensity measure, tractable yet accurate
integral expressions for computing area spectral efficiency and potential throughput are provided. The
considered system model accounts for many practical aspects that, for tractability, are typically neglected.
e.p., line-of-sight and non-line-of-sight propagation, antenna radiation patterns. traffic load. practical
cell associations. general fading channels. The proposed approach, more importantly, is conveniently
formulated for unveiling the impact of several system parameters. e.g., the density of base stations and
blockages. The effectiveness of this novel and general methodology is validated with the aid of empirical

data for the locations of base stations and for the footprints of buildings in a dense urban environment.

M. Di Renzo, W. Lu, and P. Guan, “The Intensity Matching Approach: A Tractable Stochastic Geometry
Approximation to System-Level Analysis of Cellular Networks”, IEEE Trans. Wireless Commun., to appear. 116



... General Cell Association Criteria

... shortest distance ...

a m)® - BS'
- ~ . 117




Criteria

ciation

... General Cell Asso

... highest average received power with shadowing ...
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... General Cell Association Criteria

... smallest path-loss with LOS/NLOS links ...
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... General Cell Association Criteria

... two-tier biased smallest path-loss ...
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... Practical Blockage Models

I pLos(T) | pnLos(r) | pouT(r)
3GPP [8] min{g';‘;‘l.cag} (l—e_l*::_c) +e_7’3»r_c 1 — pros(r) 0
Random Shape [15] ars exp (—brsr) 1 — pros(r) 0
Linear [12] 1 — pnros(r) min {arr + by, e } 0
Empirical mmWave [10] (1 —pour (r)) e =" 1 — pros(r) — pour(r) | max{0,1 — ¢ "mm" T Cmm }
Two-ball mmWave [10] see (1) with S = 3, s = {LLOS,NLOS,OUT}, B=2

\ B

NN
\

(=]
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500
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... Practical Load Models

Lemma 2: Consider the triplet {Ags, Anr, N} Pser (+) can be formulated as follows:

Psel (ABs, AmT, V) = 1 — f::.el (fs,{;} fst.;j)

where oF} (-,-,-,-) is the Gauss hypergeometric function and:

3.5457(4.5+N N 45+ Nun
£ = £5) (hms, M, Naw) = 2020 (yp/ As) "™ (k)

MT/ABS
O — £ (Ags, Awr, Nas) = wra=—2F1 (1,4.5+ Ngp, 1 + Nyp, 7o/ 2es
Jset = Jsa (ABs; Aur, NrB) = (Hm o2f1 D+ NeB, 1 + VBB, 35757 /ane
fs{;} — fE{:]) (}kgs, AMT, NRB) == F(E—I—f\. QFI (140 + Ngg, 2 + Ngp, 3_5?115;?/?85)
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... Practical Load Models

Lemma 3: Consider the triplet {Ags, Amt, VrB}- Post () can be formulated as follows:

Poft (ABs, Amr, VrB) = 1 — Amr/(AsNrB) — Pgﬁ +ngf +Pm=f

where p(m) — p'{;} (ABs, AmT, Nrp) for z = {a,b,c, } are as follows:

off
(@) 3.5%5T(4.54Ngg) (Amr/Ags)'TVRB F(1,45+ N 24 N vt/ ABs
Pot = I'(3.5)'(2+NrB) (3.54+AmT/Ass)™ 5+:RB £+ TUVRE, 4 T IVHE) 3.5+ vt /Ans
(b) 3.5%5(4.5+Npp) (AT /Aps) T'RB AmT/ABS
Poff = T(3.5)Nrel'(1+Nag) (3.5+A3.,{TM135}4 S+NRB 217 (1,4.5 + Nip, 2+ Ngs, 3.5+ M1/ ABS
. (e) . 3.53 "F(S 54+ '\'[{}3] (A\ITKABS +Ng ] }'*MT;"-}"BS
Poff = T(35)Nral'(3+Nrs) (3.5+Aur/Aps)” “J”WRE 2£1(2,5.5+ Nrp, 3 + Vg, 3.5+ vt/ ABs
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... Practical Radiation Patterns

Gq (0q)
Omni-directional 1
s _(B/5 .-'{le-dB:l _ .
3GPP [19] (3GPP) 1 —(8/5)(8c / b4 )1 1y, e-:-:r-'rn] (|6 | BTG 1 -*qf“’t[@,ﬁmp] J (164])
q 3
UWLA [20] TV N sin (‘\.q"r.u os (8, )sin_l (mv ! cos (8,) d,)|”
1 e (Ba]) + 75 ““'f spoee) ] (Fal)
Three-Sector [21] oyt (1 = (|9 | — a‘w‘”"“‘"‘")/eq) L[z ygzone] (6]
1 (} (2, hLL‘J(|9 |_ i ““*‘-C:')/Eq) L[ﬂ[ ) ‘i:g_E{:(-j‘I (|9q|}
17.-‘|-_'|| .L_I.J‘q
Two-lobe [10] see (12) with K, =
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... Relevant Key Performance Indicators

ASE = (Ayrpsa/In (2))In (1 4+ SINR); PT = Ayrpsa log, (1 + T) Pr {SINR > T}

.l:_l'-'\-\.

R =Y .esE o {E{m (1+sNR (")) | 2} Pr {20 = 1} ]

— Y. E { [ exp (—0%2) Mo (M Lgﬂi) MI-ng(L":”) (z[ Lgﬂ}) d_) T, (Lgm)}
= D aes f[} fﬂ exp (—oyz) M _ )Mfacg (2) (2| 2)Ts () fLmJ () £

-
.-t.

C(T) = Tes By {Pr {SINR (L{") > T‘ L“”} Pr{L® ={"}}
=Y usELo {Pr { Iy (L) < 4 EunC0a” z,‘ P}, (1)}
== T(é =y fIm {exp (1 ”JN)M © (HF-PRBL . )Mfﬂgg y (12] z) } )T (i)ngm (z)dx

s=eS5 0
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... Proof of Several Performance Trends

Very Dense (VD) Networks | Dense (D) Networks
Aps / Rate / - ASE /A Rate N, - ASE?
Mt Rate , - ASE 7 Rate ++ — ASE <
Ngrp Rate /* - ASE / Rate <+ — ASE
Pps 7 Rate «++ - ASE Rate <+ - ASE «
G A Rate * — ASE / Rate »* — ASE ~
Dy / Rate N\, — ASE 3\, Rate ™, — ASE N\,
Os 7 Rate /' - ASE / Rate /4 — ASE 7
Sparse (S) Networks | Very Sparse (VS) Networks
Rate /' —~ ASE A/ Rate / - ASE /
Rate ++ — ASE Rate <+ - ASE «
Rate ™, — ASE /A Rate , — ASE A
Rate 4 - ASE A/ Rate /# - ASE /
Rate /' - ASE A Rate 2 - ASE A
Rate / —~ ASE A Rate «++ - ASE «
Rate 7 — ASE 7”7 Rate / - ASE ~
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... Proof of Several Performance Trends
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... Experimental Validation

Path-Loss oros = 2.6, anLos = 3.8, ELos = KNLOS = (4?Tf|_‘+f£‘ﬂ)z with f(} = 2.1 GHz, e0 = 3 - 10% m/s
Shﬂdowing, fadjng TLOs — 4 dB, ONLOS — 10 dB, QLDS = QNLDS = 11 MmMryos = 2.8, mNLOs = 1
BS power, noise Pss = 20 dBm, oy = —174 + 10log,,(Bw) + F dBm with Bw = 180 kHz, F = 10 dB
Link-state 3GPP [8]: asq = 18, bag = 36, cac = 1; RS [23]: aps = 1, bps = 0.046 m ™'
Empirical BSs: 02 in [7, Table 1], [7, Fig. 1]. Rcen = 83.4 m; buildings: London [7, Fig. 1], [7, Sec. 2.3.1]
AT = (WR%IT}_I Ryt = {3.9,7.6,11.9, 50,100} m is the population density of Paris, London, Rome, Pennsylvania, Texas
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Beyond the PPP-Based Modeling: The «-Ginibre PP
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Beyond the PPP-Based Modeling: The «-Ginibre PP

Theorem 1 Consider the cellular network model with a single tier such that the BSs are deployed
according to the a-Ginibre point process with intensity A. Then, the downlink coverage probability

of a typical user is given by
S s 0 B/2
P(SINR, > 0) = a/o EW( (“) ) M(s,0) S(s,0)ds, (5)

where Ly denotes the LST of W, and

s o0 tet
M(s, ) JHO(l-a+ S 1+9(3/t)ﬁ/2dt), (6)
oo Jo%s) tie_t -1
S 11— ! : 3
(5,0) = ;s( az+a/s 1+t9(s/t)5/2dt) (7)

I. Nakata and N. Miyoshi, “Spatial stochastic models for analysis of heterogeneous cellular networks with
repulsively deployed base stations”, Research Reports on Mathematical and Computing Sciences (ISSN
1342-2804), Oct. 2013, B-473. 130



Beyond the PPP-Based Modeling: The «-Ginibre PP

Proposition 1 Let X;, i € N, denote the points of the a-Ginibre point process with intensity A.
Then, the set {

Xi|*}ien has the same distribution as Y = {}'T’i}‘iem, which s constructed from
Y = {Y;}ien such that Y;, i € N, are mutually independent and each Y; follows the ith Erlang
distribution with rate parameter m A\/a (Y; ~ Gammal(i,7 A/a)) and it is included in Y with

probability o independently of others.

According to Proposition 1, we can construct the a-Ginibre point process 1% with intensity
A from the usual Ginibre point process (IIR:,O = {Yf}ieﬁ] with intensity A/a by independent a-
thinning; that is, by deleting each point X, i € N, of (I);I/a with probability 1 — « independently.

Note that, by Proposition 1, the set {|X;|?};en has the same distribution as Y = {Y;};en such

that Y; ~ Gamma(i, 7 A/a), i € N, are mutually independent.

I. Nakata and N. Miyoshi, “Spatial stochastic models for analysis of heterogeneous cellular networks with

repulsively deployed base stations”, Research Reports on Mathematical and Computing Sciences (ISSN
1342-2804), Oct. 2013, B-473. 131



Beyond the PPP-Based Modeling: The «-Ginibre PP
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I. Nakata and N. Miyoshi, “Spatial stochastic models for analysis of heterogeneous cellular networks with
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1342-2804), Oct. 2013, B-473. 132



The Road Ahead: IM Approach for non-Poisson Nets

... Cauchy determinantal point process (spatially-repulsive) ...

Pcov

red line:¢=2.5,blue line:¢=3.5,black line:¢.=4.5

4 Solid lines: Simulations with R
Markers: Proposed approximation ||
Dashed lines: Poisson networks

SINR [dB]
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... final thoughts ...
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The Role of Stochastic Geometry in Communications

1.4 The role of analytic modeling

The analytic-modeling-based investigation of deployment scenarios has two phases. In
3 : the first phase, we use probabilistic models for the locations of the BSs to determine
AI]EII}’HCHI NIOdE.'hHg analytic expressions for the CCDF of the SINR in the deployment region. In other
(}f Het{'ﬂfogeneous words, the use of a stochastic model (Poisson point process, or PPP) for the locations
Cellular Networks of the BSs allows us to write an analytic expression for the expectation of (1.4) with
respect to either the joint distribution of (Rg, Ry, ..., R)y) or the conditional joint distri-
bution of (Ry, ..., Ry) given Ry = rg. Further, these results can be extended to arbitrary
fading distributions and arbitrary numbers of tiers of BSs.

Geometry, Coverage, and Capacity

Sayandev Mukherjee _ . . L o . .
As we shall see, this has the benefit of providing insights into the combinations of

deployment parameters that affect the CCDF of the SINR, and therefore the different
sets of deployment parameters that are equivalent in that they yield the same CCDF of
the SINR. This analytic phase allows us to sift through the large space of combinations
of deployment parameters to settle quickly on certain equivalence classes of deployment
parameters, each class corresponding to some desired CCDF of the SINR. The service
provider may then choose a set of deployment parameters from one of these equivalence
classes based on its economic utility function.

In the next phase of the network design, the shortlist of deployment scenarios (as

CAMBRIDGE

defined by the deployment parameters) chosen in the first phase may be investigated in
depth via simulation. This effectively uses the power of detailed simulation, incorporat-
ing all relevant aspects whose behavior and impact on performance is to be investigated,
for a few selected deployment scenarios.

S. Mukherjee: “Analytical Modeling of Heterogeneous Cellular Networks”, Cambridge University Press,
January 2014. 135



The Renaissance of (Network) Communication Theory

... IEEE TCOM Novw. 2011 — now ...

THE IMPACT OF COMMUNICATION

THEORY ON TECHNOLOGY DEVELOPMENT:
IS THE BEST BEHIND US, OR AHEAD?”

aka “Is Communication Theory Dead ?

-

PLENARY PANEL: “The Impact of Communication Theory on Technology Development: Is the Best
Behind us or Ahead?”, IEEE Communications Theory Workshop, May 2010. 136



Bottom Line

d

Stochastic geometry provides suitable mathematical models and
appropriate statistical methods to study and analyze heterogeneous
(future deployments) cellular networks

It is instrumental for identifying subsets of candidate (feasible,
relevant) solutions based on which finer-grained simulations can be
conducted, thus significantly reducing the time and cost of optimizing
complex communication networks

Its application to cellular network designs, however, necessitates to
abandon conventional and comfortable assumptions

> Poisson (complete spatially random) modeling
> Simplistic path-loss models

» Simplistic transmission schemes

>

Relying upon adequate approximations to avoid oversimplifying the
system model is not an option. CAUTION is, however, mandatory. 137



The System-Level Side of 5G — YouTube Video

[ https:/ /youtu.be/MBSIvOYYvB0 |
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