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  in	
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•  Secrecy	
  is	
  a	
  key	
  issue	
  in	
  wireless	
  communica4on	
  
networks	
  
–  5G	
  Communica4ons,	
  i.e.,	
  D2D,	
  M2M	
  
–  Near	
  Field	
  Communica4ons,	
  i.e.,	
  Apple	
  Pay	
  
– Military	
  Networks,	
  i.e.,	
  Drone	
  Self-­‐Organized	
  Networks	
  
– Medical	
  Communica4ons	
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Layered	
  communica4ons	
  architecture	
  

Applica4on	
   Secure	
  Shell	
  (SSH)	
  

Transport	
   Transport	
  Layer	
  Security	
  (TLS/SSL)	
  

Network	
   Internet	
  Protocol	
  Security	
  (IPSec)	
  

Link	
   Wired	
  Equivalent	
  Privacy	
  (WEP)	
  

Physical	
   Informa4on	
  theore4c	
  security	
  

Overview	
  of	
  Security	
  in	
  Wireless	
  Networks	
  



Countering	
  Security	
  Threats	
  in	
  Wireless	
  
Networks	
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•  Cryptography	
  

•  Spread	
  spectrum,	
  e.g.,	
  frequency	
  hopping	
  &	
  CDMA	
  

•  Informa4on	
  theore4c	
  security	
  

ü Assumes	
  limited	
  computa4onal	
  power	
  at	
  the	
  eavesdropper	
  
ü Vulnerable	
  to	
  large-­‐scale	
  implementa4on	
  of	
  quantum	
  computers	
  
ü At	
  higher	
  layers	
  of	
  the	
  protocol	
  stack	
  

ü Assumes	
  limited	
  knowledge	
  at	
  the	
  eavesdropper	
  
ü Vulnerable	
  to	
  rogue	
  or	
  captured	
  node	
  events	
  
ü At	
  the	
  physical	
  layer	
  

ü No	
  assump4ons	
  of	
  limited	
  computa4onal	
  power	
  or	
  knowledge	
  at	
  
eavesdropper	
  

ü Absolutely	
  secure	
  
ü At	
  the	
  physical	
  layer	
  
ü Uses	
  signal	
  processing,	
  communica4ons	
  and	
  coding	
  schemes	
  



Fundamentals	
  of	
  PHY	
  Security	
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Breaches	
  in	
  wireless	
  (physical	
  layer)	
  network	
  security	
  

The	
  purpose	
  of	
  an	
  eavesdropper	
  is	
  to	
  
listen	
  to	
  the	
  transmission,	
  and	
  try	
  to	
  
detect	
  the	
  secret	
  messages	
  encoded	
  
therein.	
  

The	
  purpose	
  of	
  a	
  jammer	
  is	
  solely	
  
to	
  disrupt	
  the	
  process	
  of	
  
communica4on	
  by	
  increasing	
  the	
  
legi4mate	
  receiver’s	
  probability	
  
of	
  decoding	
  error.	
  

ü Eavesdropping	
  	
  

ü Jamming	
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•  Wire-­‐tap	
  Channel	
  

Reliability:	
   Security:	
  

[Wyner,	
  1975;	
  Csiszar	
  &	
  Korner;	
  1978]	
  

•  Cipher	
  
[Shannon,	
  1949]	
  Security:	
  

The	
  wire-­‐tap	
  channel	
  must	
  be	
  degraded.	
  

Fundamentals	
  of	
  PHY	
  Security	
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•  Fading	
  Wire-­‐tap	
  Channel	
  

Secrecy	
  capacity:	
  

Secrecy	
  outage	
  probability:	
  

Secrecy	
  connecHvity	
  probability:	
  

Fundamentals	
  of	
  PHY	
  Security	
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Secrecy	
  Enhancement	
  for	
  PHY	
  Security	
  

ü Preprocessing	
  
Ø  Coding	
  	
  
Ø  Secrecy	
  Key	
  Genera4on	
  

ü Signal	
  Processing	
  
Ø  MIMO/massive	
  MIMO	
  &	
  beamforming	
  
Ø  Transmit	
  antenna	
  selec4on	
  
Ø  Full	
  duplex	
  communica4on/ar4ficial	
  noise	
  
	
  

ü Coopera4on	
  Communica4ons	
  
Ø  Relay	
  &	
  ar4ficial	
  noise	
  
	
  

ü Game	
  Theore4c	
  Methods	
  
	
  

Fundamentals	
  of	
  PHY	
  Security	
  



	
  	
  	
  	
  	
  	
  Coding	
  
Ø  To	
  fully	
  exploit	
  the	
  randomness	
  of	
  the	
  channel	
  for	
  security,	
  we	
  need	
  secrecy-­‐

capacity-­‐achieving	
  channel	
  codes	
  

Ø  The	
  coding	
  problem	
  for	
  Alice	
  in	
  the	
  wire	
  tap	
  channel	
  involves	
  adding	
  redundancy	
  
for	
  enabling	
  Bob	
  to	
  correct	
  errors	
  (across	
  the	
  main	
  channel)	
  and	
  adding	
  
randomness	
  to	
  keep	
  Eve	
  in	
  the	
  dark	
  (across	
  the	
  wire-­‐tap	
  channel),	
  which	
  is	
  
different	
  from	
  coding	
  in	
  tradi4onal	
  communica4ons.	
  	
  

Ø  Polar	
  codes,	
  LDPC	
  will	
  be	
  used	
  poten4ally	
  in	
  5G	
  standard	
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Preprocessing	
  

Secrecy	
  Enhancement	
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  Secure	
  key	
  genera4on	
  
Ø  The	
  ability	
  to	
  exchange	
  keys	
  between	
  users	
  is	
  vital	
  in	
  any	
  wireless	
  based	
  security	
  

system.	
  	
  So	
  a	
  key	
  genera4on	
  technique	
  that	
  exploits	
  the	
  randomness	
  of	
  the	
  
wireless	
  channel	
  is	
  a	
  promising	
  alterna4ve	
  to	
  exis4ng	
  key	
  distribu4on	
  techniques,	
  
e.g.,	
  public	
  key	
  cryptography.	
  

[Zhang,	
  2016]	
  

Secrecy	
  Enhancement	
  
Preprocessing	
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ü Antenna	
  selec4on	
  	
  
Ø  Secrecy	
  performance	
  can	
  be	
  enhanced	
  by	
  exploi4ng	
  the	
  diversity	
  gain	
  of	
  the	
  

intended	
  link.	
  
Ø  Reduces	
  the	
  implementa4on	
  complexity	
  of	
  MIMO/massive	
  MIMO	
  
Ø  Channel	
  state	
  informa4on	
  between	
  the	
  transmiLer	
  and	
  eavesdroppers	
  

could	
  be	
  perfectly	
  known	
  or	
  par4ally	
  known.	
  

ü Full	
  duplex	
  transmission	
  
Ø  Thanks	
  to	
  self-­‐interference	
  (SI)	
  cancella4on	
  techniques,	
  the	
  power	
  of	
  

residual	
  SI	
  can	
  be	
  close	
  to	
  the	
  noise	
  level.	
  
Ø  An	
  ar4ficial	
  noise/jamming	
  signal	
  will	
  affect	
  passive	
  eavesdroppers.	
  
	
  

ü Beamforming	
  
Ø  Generate	
  a	
  useful	
  signal	
  with	
  a	
  pencil	
  beam	
  aligned	
  with	
  the	
  legi4mate	
  user	
  (LU)	
  
Ø  Generate	
  an	
  ar4ficial	
  noise	
  signal	
  in	
  the	
  null	
  space	
  of	
  the	
  LU	
  

Secrecy	
  Enhancement	
  
Signal	
  Processing	
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ü What	
  is	
  the	
  advantage	
  of	
  
coopera4ve	
  
communica4on?	
  
Ø  Relays	
  are	
  used	
  to	
  assist	
  

transmission	
  between	
  
source	
  and	
  des4na4on	
  

Ø  Performance	
  gains	
  
Ø  Enlarge	
  the	
  coverage	
  

CooperaHve	
  CommunicaHons	
  

Secrecy	
  Enhancement	
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[Chen,	
  2012]	
  

Secrecy	
  Enhancement	
  
CooperaHve	
  CommunicaHons	
  

ü Relay-­‐assisted	
  &	
  jamming	
  (ar4ficial	
  noise)	
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Ø  Buffer-­‐added	
  relay	
  selec4on	
  

Ø  Dual	
  antenna	
  selec4on	
  with	
  full	
  duplex	
  scheme	
  

Ø  Friendly	
  jammer	
  selec4on	
  

ü Key	
  issues	
  for	
  secrecy	
  enhancement	
  

Ø  Need	
  to	
  know	
  the	
  CSI	
  between	
  the	
  transmiLer	
  and	
  the	
  eavesdropper(s)	
  

Ø  Mostly,	
  only	
  a	
  few	
  nodes	
  have	
  been	
  considered	
  in	
  the	
  literature	
  

Ø  Need	
  to	
  know	
  the	
  loca4on(s)	
  of	
  eavesdropper(s)	
  

CooperaHve	
  CommunicaHons	
  

ü Relay-­‐assisted	
  &	
  jamming	
  (ar4ficial	
  noise)	
  

Secrecy	
  Enhancement	
  



Summary:	
  A	
  significant	
  amount	
  of	
  work	
  has	
  
been	
  done	
  to	
  study	
  informa4on	
  theore4c	
  
security	
  in	
  three-­‐node	
  and	
  small	
  networks.	
  
	
  
We,	
  as	
  a	
  community,	
  are	
  now	
  in	
  a	
  posi2on	
  to	
  
develop	
  models,	
  theory	
  and	
  methods	
  to	
  
describe	
  and	
  op2mize	
  security	
  in	
  large-­‐scale	
  
networks.	
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But	
  what	
  kinds	
  of	
  quesHons	
  would	
  we	
  like	
  
to	
  ask?	
  
	
  
•  Do	
  informa4on	
  theore4c	
  security	
  techniques	
  

scale?	
  
•  How	
  can	
  we	
  design	
  and	
  op4mize	
  network	
  

features?	
  
•  How	
  robust	
  are	
  PHY	
  secrecy	
  solu4ons	
  to	
  

eavesdropper	
  scaling?	
  
•  How	
  does	
  spa4al	
  randomness	
  affect	
  secrecy?	
  



How	
  can	
  we	
  model	
  secrecy	
  in	
  large	
  
networks?	
  

23	
  

•  Point	
  processes	
  and	
  random	
  graph	
  formalisms	
  
ü Large	
  number	
  of	
  nodes	
  can	
  be	
  analysed	
  accurately	
  
ü Average	
  performance	
  can	
  be	
  analysed;	
  loca4ons	
  and	
  CSI	
  for	
  eavesdroppers	
  

are	
  random	
  



Main	
  Network	
  Models	
  for	
  Secrecy	
  

•  Several	
  different	
  network	
  models	
  	
  
have	
  been	
  studied	
  
–  Ad	
  hoc,	
  mul4hop	
  
–  Ad	
  hoc,	
  pairwise	
  
–  Broadcast,	
  cellular	
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Ad	
  hoc,	
  mul4hop	
  

Ad	
  hoc,	
  pairwise	
  



First	
  Secrecy	
  Network	
  Models:	
  
Ad	
  Hoc,	
  Mul4hop	
  

•  The	
  first	
  forays	
  into	
  network	
  secrecy	
  took	
  a	
  simplis4c	
  
view	
  
–  Secrecy	
  graph	
  [Haenggi,	
  2008],	
  [Goel,	
  2010]	
  
–  Few	
  eavesdroppers,	
  focused	
  on	
  hard	
  disk	
  connec4on	
  

–  Directed	
  SG:	
  contains	
  all	
  direc4onal	
  informa4on	
  
–  Basic	
  SG:	
  bidirec4onal	
  secrecy	
  
–  Enhanced	
  SG:	
  secrecy	
  can	
  exist	
  in	
  logical	
  OR	
  fashion	
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•  Pinto	
  et	
  al	
  brought	
  informaHon	
  theoreHc	
  secrecy	
  into	
  the	
  
network	
  domain	
  through	
  the	
  noHon	
  of	
  the	
  “intrinsically	
  
secure	
  graph	
  (iS-­‐graph)”.	
  

[Pinto,	
  2012]	
  

ü The	
  secrecy	
  capacity	
  (rate)	
  of	
  the	
  Gaussian	
  wire-­‐tap	
  channel	
  is	
  

ü Defini4on:	
  Let	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  denote	
  the	
  set	
  of	
  legi4mate	
  nodes	
  
and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  denote	
  the	
  set	
  of	
  eavesdroppers.	
  The	
  iS-­‐graph	
  
is	
  the	
  directed	
  graph	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  with	
  vertex	
  set	
  	
  	
  	
  	
  	
  	
  	
  and	
  edge	
  set	
  

where	
  	
  	
  	
  	
  is	
  a	
  threshold	
  represen4ng	
  the	
  prescribed	
  infimum	
  secrecy	
  	
  	
  
rate	
  for	
  each	
  communica4on	
  link.	
  

Intrinsically	
  Secure	
  Graphs	
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[Pinto,	
  2012]	
  

ü The	
  iS-­‐graph	
  in	
  two	
  dimensional	
  space	
  	
  

ü The	
  Poisson	
  iS-­‐graph	
  is	
  an	
  iS-­‐graph	
  where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  are	
  mutually	
  
independent,	
  homogeneous	
  Poisson	
  point	
  processes	
  with	
  densi4es	
  	
  	
  	
  	
  	
  
and	
  	
  	
  	
  	
  	
  ,	
  respec4vely.	
  

ü In-­‐isolaHon:	
  A	
  typical	
  node	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  cannot	
  receive	
  from	
  any	
  
node	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  )	
  with	
  posi4ve	
  secrecy	
  rate	
  

ü Out-­‐isolaHon:	
  A	
  typical	
  node	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  cannot	
  transmit	
  to	
  	
  
any	
  node	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  )	
  with	
  posi4ve	
  secrecy	
  rate	
  

Intrinsically	
  Secure	
  Graphs	
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•  Full	
  Out	
  and	
  In	
  ConnecHvity	
  in	
  the	
  Poisson	
  iS-­‐Graph	
  
ü Full	
  out	
  connecHvity:	
  A	
  legi4mate	
  node	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  fully	
  out-­‐

connected	
  with	
  respect	
  to	
  a	
  region	
  	
  	
  	
  	
  if	
  in	
  the	
  iS-­‐graph	
  there	
  exists	
  
a	
  directed	
  path	
  from	
  	
  	
  	
  	
  	
  to	
  every	
  node	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

ü Full	
  in	
  connecHvity:	
  A	
  legi4mate	
  node	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  fully	
  in-­‐
connected	
  with	
  respect	
  to	
  a	
  region	
  	
  	
  	
  	
  	
  if	
  in	
  the	
  iS-­‐graph	
  there	
  exists	
  
a	
  directed	
  path	
  to	
  	
  	
  	
  	
  from	
  every	
  node	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

Intrinsically	
  Secure	
  Graphs	
  

[Pinto,	
  2012]	
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•  Why	
  is	
  full	
  secrecy	
  connecHvity	
  important?	
  

ü Full	
  connec4vity	
  is	
  a	
  desirable	
  feature	
  for	
  some	
  scenarios,	
  i.e.,	
  military	
  
networks	
  and	
  disaster	
  relief.	
  

ü  	
  It	
  is	
  a	
  key	
  condi4on	
  that	
  ensures	
  certain	
  high	
  priority	
  nodes	
  in	
  the	
  network	
  
always	
  remain	
  connected.	
  

•  What	
  is	
  full	
  secrecy	
  connecHvity?	
  
ü All	
  nodes	
  can	
  communicate	
  to	
  each	
  other,	
  possibly	
  through	
  mul4ple	
  

hops,	
  with	
  a	
  posi4ve	
  secrecy	
  rate.	
  

•  Three	
  types	
  of	
  full	
  secrecy	
  connecHvity	
  
ü Full	
  bidirec4onal	
  secrecy	
  connec4vity	
  
ü Full	
  strong	
  secrecy	
  connec4vity	
  
ü Full	
  weak	
  secrecy	
  connec4vity	
  

Intrinsically	
  Secure	
  Graphs:	
  Recent	
  Results	
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Fig.	
  1	
  Examples	
  for	
  the	
  three	
  types	
  of	
  full	
  secrecy	
  connec4vity.	
  

ü  Full	
  bidirecHonal	
  secrecy	
  connecHvity	
  (FBSC):	
  All	
  nodes	
  can	
  communicate	
  with	
  
each	
  other	
  through	
  bi-­‐direc4onal	
  links	
  with	
  a	
  posi4ve	
  secrecy	
  rate,	
  possibly	
  
through	
  mul4ple	
  hops.	
  (like	
  Haenggi’s	
  “basic	
  SG”	
  model)	
  

ü  Full	
  strong	
  secrecy	
  connecHvity	
  (FSSC):	
  All	
  nodes	
  can	
  communicate	
  with	
  each	
  
other	
  through	
  direc4onal	
  links	
  with	
  a	
  posi4ve	
  secrecy	
  rate,	
  possibly	
  through	
  
mul4ple	
  hops.	
  

ü  Full	
  weak	
  secrecy	
  connecHvity	
  (FWSC):	
  All	
  nodes	
  can	
  communicate	
  with	
  each	
  
other	
  through	
  either	
  forward	
  direc4onal	
  links	
  or	
  reverse	
  direc4onal	
  links	
  with	
  a	
  
posi4ve	
  secrecy	
  rate,	
  possibly	
  through	
  mul4ple	
  hops.	
  

•  Three	
  types	
  of	
  full	
  secrecy	
  connecHvity	
  

Intrinsically	
  Secure	
  Graphs:	
  Recent	
  Results	
  

Refinement	
  
of	
  Haenggi’s	
  
enhanced	
  SG	
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•  Full	
  bidirecHonal	
  secrecy	
  connecHvity:	
  
ü  Bidirec4onal	
  secrecy	
  connec4vity	
  

	
  

ü  At	
  high	
  node	
  densi4es,	
  the	
  probability	
  of	
  full	
  connec4vity	
  is	
  simply	
  the	
  
complement	
  of	
  the	
  probability	
  of	
  an	
  isolated	
  node	
  [4].	
  Therefore,	
  we	
  can	
  obtain	
  
an	
  upper	
  bound	
  for	
  the	
  overall	
  probability	
  of	
  full	
  bidirec4onal	
  secrecy	
  connec4vity	
  
as:	
  

	
  

Intrinsically	
  Secure	
  Graphs:	
  Recent	
  Results	
  



32	
  

•  Full	
  strong	
  secrecy	
  connecHvity:	
  
ü  The	
  out-­‐isolated	
  and	
  in-­‐isolated	
  probability	
  for	
  legi4mate	
  user	
  	
  	
  	
  	
  	
  can	
  be	
  

defined	
  as:	
  

	
  
	
  

ü  The	
  lower	
  bound	
  for	
  full	
  strong	
  secrecy	
  connec4vity	
  is	
  the	
  probability	
  that	
  every	
  
node	
  is	
  out-­‐connected	
  and	
  in-­‐connected,	
  	
  	
  	
  

	
  
•  Full	
  weak	
  secrecy	
  connecHvity:	
  

ü  The	
  lower	
  bound	
  for	
  full	
  weak	
  secrecy	
  connec4vity	
  is	
  the	
  probability	
  that	
  every	
  
node	
  is	
  out-­‐connected	
  or	
  in-­‐connected,	
  	
  	
  	
  

	
  

Intrinsically	
  Secure	
  Graphs:	
  Recent	
  Results	
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•  Secrecy	
  Enhancement	
  Techniques	
  
ü Sectorized	
  Transmission	
  

Ø  Each	
  legi4mate	
  node	
  transmits	
  independently	
  in	
  mul4ple	
  sectors	
  of	
  the	
  
plane	
  (e.g.,	
  using	
  direc4onal	
  antennas)	
  

ü Eavesdropper	
  Neutraliza4on	
  
Ø  Each	
  legi4mate	
  node	
  guarantees	
  the	
  absence	
  of	
  eavesdroppers	
  in	
  a	
  
surrounding	
  region	
  (e.g.,	
  by	
  deac4va4ng	
  such	
  eavesdroppers)	
  

[PINTO,	
  2012]	
  

Network	
  Secrecy	
  Enhancement	
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ü Secrecy	
  Guard	
  Zone	
  and	
  Ar4ficial	
  Noise	
  	
  
Ø  Since	
  unsecure	
  transmission	
  is	
  mainly	
  due	
  to	
  the	
  presence	
  of	
  an	
  
eavesdropper	
  close	
  to	
  the	
  transmiLer,	
  the	
  use	
  of	
  a	
  secrecy	
  guard	
  zone	
  
for	
  networks	
  in	
  which	
  the	
  legi4mate	
  transmiLers	
  are	
  able	
  to	
  detect	
  the	
  
existence	
  of	
  eavesdroppers	
  in	
  their	
  vicini4es	
  has	
  been	
  considered	
  

Network	
  Secrecy	
  Enhancement	
  

Snapshot	
  of	
  a	
  part	
  of	
  a	
  network	
  with	
  a	
  
secrecy	
  guard	
  zone	
  around	
  each	
  
transmiLer.	
  TransmiLers	
  T0,	
  T1,	
  and	
  T2	
  
do	
  not	
  find	
  any	
  eavesdroppers	
  inside	
  their	
  
individual	
  guard	
  zone,	
  and	
  hence	
  can	
  
transmit	
  confiden4al	
  messages	
  to	
  their	
  
intended	
  receivers.	
  However,	
  transmiLer	
  
T3	
  detects	
  an	
  eavesdropper,	
  E2,	
  inside	
  its	
  
guard	
  zone.	
  If	
  a	
  non-­‐coopera4ve	
  protocol	
  
is	
  used,	
  T3	
  remains	
  silent.	
  If	
  a	
  coopera4ve	
  
protocol	
  is	
  used,	
  T3	
  transmits	
  ar4ficial	
  
noise.	
  

[Zhou,	
  2011]	
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Eavesdropper
Information	
  link
Eavesdropper	
  link
Interference	
  link
Self	
  Interference	
  link

BS

UE

Fig:	
  The	
  system	
  model	
  for	
  fixed	
  BS	
  and	
  UE	
  with	
  randomly	
  located	
  eavesdroppers.	
  

ü  Fixed	
  loca4on	
  for	
  BS	
  and	
  UE,	
  random	
  
loca4ons	
  for	
  eavesdroppers	
  in	
  a	
  disc.	
  

ü  Flat	
  Rayleigh	
  fading	
  channel.	
  
ü  BS	
  only	
  knows	
  the	
  CSI	
  of	
  the	
  UE,	
  does	
  

not	
  know	
  the	
  CSI	
  for	
  eavesdroppers.	
  
ü  Mul4ple	
  antennas	
  at	
  BS	
  with	
  half	
  

duplex	
  mode	
  and	
  full	
  duplex	
  antenna	
  
at	
  UE.	
  

	
  
	
  

ü Transmit	
  Antenna	
  Selec4on	
  (TAS)	
  &	
  Full	
  Duplex	
  (FD)	
  UE	
  

Network	
  Secrecy	
  Enhancement:	
  
Worked	
  Example	
  1	
  

We	
  will	
  analyze	
  the	
  secrecy	
  outage	
  probability	
  for	
  this	
  model...	
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ü Aqer	
  TAS,	
  the	
  end-­‐to-­‐end	
  SNR	
  at	
  the	
  UE	
  and	
  the	
  worst	
  ED	
  can	
  be	
  wriLen	
  as:	
  
	
  

	
  

	
  

	
  	
  	
  	
  	
  	
  where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  HD	
  UE,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  FD	
  UE,	
  and	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  independent	
  EDs	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  colluding	
  EDs	
  	
  	
  

ü Probability	
  of	
  secrecy	
  outage	
  is	
  well	
  approximated	
  by	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

•  Secrecy	
  Outage	
  Defini4on	
  

Secrecy	
  Outage	
  Analysis:	
  	
  
TAS	
  with	
  HD/FD	
  UE	
  

Eavesdropper
Information	
  link
Eavesdropper	
  link
Interference	
  link
Self	
  Interference	
  link

BS

UE
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and F(·) is an operator that takes different forms depending on
whether EDs act independently or whether they collude. In the
former case, we have

F(·) = max

e2�
(·) (8)

so that we ensure we consider the strongest ED channel, whereas
in the case of colluding eavesdroppers, the operator is given by

F(·) =
X

e2�

(·) (9)

since all EDs are capable of combining their signals in an optimal
manner to decode the message. Based on these formulae, the
secrecy outage probability can be defined as [21]

Pso = P([CBU � CBE⇤ ]
+ < ✏) ' P

✓
�BU

�BE⇤

< �

◆
(10)

where [x]+ = max(0, x), P(·) denotes the probability operator, ✏
denotes the target secrecy rate, � = 2

✏ denotes the target secrecy
SNR ratio4.

III. SECRECY OUTAGE PROBABILITY FOR INDEPENDENTLY
ACTING EAVESDROPPERS

Here, we analyse the secrecy outage probability of the downlink
for HD and FD UEs under the assumption that EDs act inde-
pendently of one another. The EDs cannot share their received
signals in this case, so secrecy outage is dictated by the ED with
highest channel capacity. Hence, F(·) is defined by (8). We begin
by considering an HD UE, then proceed with a treatment of the
problem for an FD UE.

A. Half Duplex UE

Beginning with the right-hand side of (10), the secrecy outage
probability can be evaluated to yield the result stated in the
following proposition.

Proposition 1: The downlink secrecy outage probability for an
HD UE is given by
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where Gm,n
s,t

✓
z

����
u1, . . . , us

v1, . . . , vt

◆
is the Meijer G function, Ck

K =

K!/((K � k)!k!) is the binomial coefficient, ak = kd↵BU , b =

4The approximation in (10) is a standard assumption for systems operating in
the high SNR region. In this paper, this condition implies PB is sufficiently large
and/or R is sufficiently small.

⇡⇢E�(1 + 2/↵)�2/↵, p, q 2 Z+ so that ↵ = p/q is a positive
rational number, and �(x) =

R1
0 tx�1et dt is the standard gamma

function.
Proof: See Appendix I.

Eq. (11) provides an explicit, exact relation between the secrecy
outage probability and various system parameters. A number of
interesting points can be noted from this expression. First, this
is the most complete analysis of the HD UE case reported in
the literature in that any rational path loss exponent is accounted
for in this expression. Indeed, since the path loss exponent is an
experimentally estimated parameter, it is, by definition, rational in
practice due to finite precision measurement equipment. Although
the outage probability is given in terms of the Meijer G function,
it can be easily evaluated using numerical software such as
Mathematica or Maple for any given inputs. It should be noted
that for the special case of ↵ = 2, (11) reduces to the following
expression written in terms of first order modified Bessel functions
of the second kind:

P (H)
so = 1� 2

KX

k=0

(�1)

k+1Ck
K

p
akbK1

⇣
2

p
akb
⌘

(12)

However, for other values of ↵, the expression given in the
proposition is the most compact, accessible form.

For fixed dBU , ⇢E , �, and ↵, the secrecy outage probability
solely depends on the available number of BS antennas K. It is
not a function of the transmit power PB . This is perfectly intuitive
since an increase in PB would yield a proportional increase in both
the UE SNR and the ED SNR. Thus, in order to satisfy a given
secrecy requirement, one must increase the number of antennas
used in the TAS procedure. With large-scale antenna systems and
massive MIMO making headlines in the research community in
recent years, it is prudent to ask how the secrecy outage probability
scales with the number of antennas used for selection. Since the
BS-ED channels are not considered in the selection process, it is
clear that the secrecy outage probability decreased monotonically
with increasing K. But how fast does this occur? The following
lemma provides some insight to this question.

Lemma 2: The downlink secrecy outage probability for an HD
UE located in the presence of independently acting EDs is lower
bounded by

P (H)
so >

⇡⇢Ed
2
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2/↵
�(1 + 2/↵)

e (lnK)

2/↵

✓
1 +O
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1
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2/↵
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(13)

as K ! 1.
Proof: See Appendix II.

This result implies that, for large numbers of antennas, secrecy
performance improves very slowly with increasing K. From a
system design perspective, this is a very important result. It
suggests that even systems with large numbers of antennas (e.g.,
massive MIMO systems with a TAS-based secrecy enhancement
mode) should exploit only a small subset of independent spatial
paths to perform selection. Such an approach would allow the
remaining elements to serve other UEs on separate channels. The
total number of transmit chains (i.e., up-conversion and power
amplification circuitry) required would be the number of UEs
served in a single channel use. The actual benefit brought by TAS
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Outage:	
  HD	
  UE,	
  No	
  Collusion	
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and F(·) is an operator that takes different forms depending on
whether EDs act independently or whether they collude. In the
former case, we have

F(·) = max
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(·) (8)

so that we ensure we consider the strongest ED channel, whereas
in the case of colluding eavesdroppers, the operator is given by

F(·) =
X
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(·) (9)
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manner to decode the message. Based on these formulae, the
secrecy outage probability can be defined as [21]
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where [x]+ = max(0, x), P(·) denotes the probability operator, ✏
denotes the target secrecy rate, � = 2

✏ denotes the target secrecy
SNR ratio4.

III. SECRECY OUTAGE PROBABILITY FOR INDEPENDENTLY
ACTING EAVESDROPPERS

Here, we analyse the secrecy outage probability of the downlink
for HD and FD UEs under the assumption that EDs act inde-
pendently of one another. The EDs cannot share their received
signals in this case, so secrecy outage is dictated by the ED with
highest channel capacity. Hence, F(·) is defined by (8). We begin
by considering an HD UE, then proceed with a treatment of the
problem for an FD UE.

A. Half Duplex UE

Beginning with the right-hand side of (10), the secrecy outage
probability can be evaluated to yield the result stated in the
following proposition.

Proposition 1: The downlink secrecy outage probability for an
HD UE is given by
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4The approximation in (10) is a standard assumption for systems operating in
the high SNR region. In this paper, this condition implies PB is sufficiently large
and/or R is sufficiently small.

⇡⇢E�(1 + 2/↵)�2/↵, p, q 2 Z+ so that ↵ = p/q is a positive
rational number, and �(x) =

R1
0 tx�1et dt is the standard gamma

function.
Proof: See Appendix I.

Eq. (11) provides an explicit, exact relation between the secrecy
outage probability and various system parameters. A number of
interesting points can be noted from this expression. First, this
is the most complete analysis of the HD UE case reported in
the literature in that any rational path loss exponent is accounted
for in this expression. Indeed, since the path loss exponent is an
experimentally estimated parameter, it is, by definition, rational in
practice due to finite precision measurement equipment. Although
the outage probability is given in terms of the Meijer G function,
it can be easily evaluated using numerical software such as
Mathematica or Maple for any given inputs. It should be noted
that for the special case of ↵ = 2, (11) reduces to the following
expression written in terms of first order modified Bessel functions
of the second kind:
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However, for other values of ↵, the expression given in the
proposition is the most compact, accessible form.

For fixed dBU , ⇢E , �, and ↵, the secrecy outage probability
solely depends on the available number of BS antennas K. It is
not a function of the transmit power PB . This is perfectly intuitive
since an increase in PB would yield a proportional increase in both
the UE SNR and the ED SNR. Thus, in order to satisfy a given
secrecy requirement, one must increase the number of antennas
used in the TAS procedure. With large-scale antenna systems and
massive MIMO making headlines in the research community in
recent years, it is prudent to ask how the secrecy outage probability
scales with the number of antennas used for selection. Since the
BS-ED channels are not considered in the selection process, it is
clear that the secrecy outage probability decreased monotonically
with increasing K. But how fast does this occur? The following
lemma provides some insight to this question.

Lemma 2: The downlink secrecy outage probability for an HD
UE located in the presence of independently acting EDs is lower
bounded by
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as K ! 1.
Proof: See Appendix II.

This result implies that, for large numbers of antennas, secrecy
performance improves very slowly with increasing K. From a
system design perspective, this is a very important result. It
suggests that even systems with large numbers of antennas (e.g.,
massive MIMO systems with a TAS-based secrecy enhancement
mode) should exploit only a small subset of independent spatial
paths to perform selection. Such an approach would allow the
remaining elements to serve other UEs on separate channels. The
total number of transmit chains (i.e., up-conversion and power
amplification circuitry) required would be the number of UEs
served in a single channel use. The actual benefit brought by TAS
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and F(·) is an operator that takes different forms depending on
whether EDs act independently or whether they collude. In the
former case, we have

F(·) = max

e2�
(·) (8)

so that we ensure we consider the strongest ED channel, whereas
in the case of colluding eavesdroppers, the operator is given by

F(·) =
X
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since all EDs are capable of combining their signals in an optimal
manner to decode the message. Based on these formulae, the
secrecy outage probability can be defined as [21]
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where [x]+ = max(0, x), P(·) denotes the probability operator, ✏
denotes the target secrecy rate, � = 2

✏ denotes the target secrecy
SNR ratio4.

III. SECRECY OUTAGE PROBABILITY FOR INDEPENDENTLY
ACTING EAVESDROPPERS

Here, we analyse the secrecy outage probability of the downlink
for HD and FD UEs under the assumption that EDs act inde-
pendently of one another. The EDs cannot share their received
signals in this case, so secrecy outage is dictated by the ED with
highest channel capacity. Hence, F(·) is defined by (8). We begin
by considering an HD UE, then proceed with a treatment of the
problem for an FD UE.

A. Half Duplex UE

Beginning with the right-hand side of (10), the secrecy outage
probability can be evaluated to yield the result stated in the
following proposition.

Proposition 1: The downlink secrecy outage probability for an
HD UE is given by
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and/or R is sufficiently small.
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Proof: See Appendix I.

Eq. (11) provides an explicit, exact relation between the secrecy
outage probability and various system parameters. A number of
interesting points can be noted from this expression. First, this
is the most complete analysis of the HD UE case reported in
the literature in that any rational path loss exponent is accounted
for in this expression. Indeed, since the path loss exponent is an
experimentally estimated parameter, it is, by definition, rational in
practice due to finite precision measurement equipment. Although
the outage probability is given in terms of the Meijer G function,
it can be easily evaluated using numerical software such as
Mathematica or Maple for any given inputs. It should be noted
that for the special case of ↵ = 2, (11) reduces to the following
expression written in terms of first order modified Bessel functions
of the second kind:

P (H)
so = 1� 2

KX

k=0

(�1)

k+1Ck
K

p
akbK1

⇣
2

p
akb
⌘

(12)

However, for other values of ↵, the expression given in the
proposition is the most compact, accessible form.

For fixed dBU , ⇢E , �, and ↵, the secrecy outage probability
solely depends on the available number of BS antennas K. It is
not a function of the transmit power PB . This is perfectly intuitive
since an increase in PB would yield a proportional increase in both
the UE SNR and the ED SNR. Thus, in order to satisfy a given
secrecy requirement, one must increase the number of antennas
used in the TAS procedure. With large-scale antenna systems and
massive MIMO making headlines in the research community in
recent years, it is prudent to ask how the secrecy outage probability
scales with the number of antennas used for selection. Since the
BS-ED channels are not considered in the selection process, it is
clear that the secrecy outage probability decreased monotonically
with increasing K. But how fast does this occur? The following
lemma provides some insight to this question.

Lemma 2: The downlink secrecy outage probability for an HD
UE located in the presence of independently acting EDs is lower
bounded by

P (H)
so >

⇡⇢Ed
2
BU�

2/↵
�(1 + 2/↵)

e (lnK)

2/↵

✓
1 +O

✓
1

(lnK)

2/↵

◆◆
(13)

as K ! 1.
Proof: See Appendix II.

This result implies that, for large numbers of antennas, secrecy
performance improves very slowly with increasing K. From a
system design perspective, this is a very important result. It
suggests that even systems with large numbers of antennas (e.g.,
massive MIMO systems with a TAS-based secrecy enhancement
mode) should exploit only a small subset of independent spatial
paths to perform selection. Such an approach would allow the
remaining elements to serve other UEs on separate channels. The
total number of transmit chains (i.e., up-conversion and power
amplification circuitry) required would be the number of UEs
served in a single channel use. The actual benefit brought by TAS
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Fig. 5. The comparison of secrecy outage probabilities for FD and HD UEs with different residual self-interference channel gains, where dBU = 10
m, R = 50 m and ρE = 0.001 m−2.
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versus different path loss exponents for the HD and FD UE cases
operating in the presence of independent and colluding EDs, where
λUU = 0 dB, dBU = 5 m, R = 50 m, ρE = 0.001 m−2

and K = 1 and 5. In this example, there are on average about
eight eavesdroppers in the vicinity of the network. We can see that
the secrecy outage probability for HD UE with independent and
colluding EDs slightly decreases until reaching a flat tail with an
increasing path loss exponent. On the contrary, the secrecy outage
probability for the FD case increases to this saturation point. The
reason is that when the UE’s transmission power fixed, the power of
the jamming signal from the FD UE is attenuated significantly for
large α. Furthermore, it is clear that the secrecy outage probability
for colluding EDs is always higher than for independent EDs.

VI. CONCLUSION

In this paper, we studied a method of enhancing secrecy per-
formance in wireless networks with randomly located independent

and colluding EDs, which relies on the use of TAS at the base
station and an FD jamming scheme at the UE. For both of these
models, we obtained expressions for the secrecy outage probability
in the downlink for HD and FD UE operation. The expressions
for HD systems have very accurate approximate or exact forms
in terms of elementary and/or special functions for all path loss
exponents. Those related to the FD systems have very accurate
approximate or exact integral forms for general path loss exponents,
while exact closed forms are given for specific exponents. These
results have been confirmed by simulated simulations which showed
how secrecy performance can be enhanced by TAS and FD com-
munications. Our results provide useful insight and analytical tools
that can be used to develop adaptive system solutions (examples
were briefly discussed for hybrid HD/FD UE operation) as well as
a solid basis for further study.

APPENDIX I

We assume all channels are independent and identically dis-
tributed (i.i.d.); consequently, the cumulative distribution function
(CDF) and probability density function (PDF) of γBU in (4) with
ϖ = 0 are given by

FγBU (x) =
(
1− e−xdα

BU

)K
=

K∑

k=0

Ck
K(−1)ke−kxdα

BU ,

fγBU (x) =
K∑

k=0

Ck
K(−1)k+1kdαBUe

−kxdα
BU ,

(25)

respectively, where Ck
K = K!/[k!(K − k)!] is the binomial

coefficient. Then, the CDF of γBE∗ in (6) with ϖ = 0 can be

8

calculated as

FγBE∗ (y) = P
(
max
e∈Φ

(
|hB∗Ee |2

dαBEe

)
< y

)

(a)
= EΦ

[
∏

e∈Φ

P
(
|hB∗Ee |2 < ydαBEe

| Φ
)
]

= EΦ

[
∏

e∈Φ

(
1− e−ydα

BEe

)]

(b)
= exp

(
−ρE

∫ 2π

0

∫ R

0
r
(
e−yrα

)
dr dθ

)

(c)
= exp

(
−2πρE

αy
2
α

(
Γ

(
2

α

)
− Γ

(
2

α
, yRα

)))

(d)
≃ exp

(
−2πρE

αy
2
α

Γ

(
2

α

))(
1 +

2πρE

αy
2
α

O(R2−αy2/α−1e−yRα

)

)
,

(26)

where Γ(·) and Γ(·, ·) denote the gamma and upper incomplete
gamma function, respectively, and where eq. (a) follows from the
independence of R.V.s {|hB∗Ee |2;Ee ∈ Φ}; eq. (b) holds for the
probability generating functional lemma [25]; eq. (c) holds by using
eq. (3.326.4) in [26]; eq. (d) follows from the asymptotic expansion
of the incomplete gamma function (R → ∞) [27].

According to the definition of secrecy outage probability in (10),
(25) and (26), we can obtain an approximation of the secrecy outage
probability as follows

P (H)
so = 1−

∫ ∞

0
fγBU (x)FγBE∗

(
x

β

)
dx

= 1−
K∑

k=0

Ck
K(−1)k+1kdαBU

∫ ∞

0
e−kxdα

BU e
− 2πρE

α( x
β )

2/α Γ( 2
α )

dx.

(27)

We let

I =

∫ ∞

0
e−axe−

b
xc dx =

∫ ∞

0
ue−aue

−
(

b1/c

x

)c du

u
(28)

where a = kdαBU , b = 2πρE

α Γ( 2qp )β2q/p and c = 2q/p. By using
the Mellin convolution theorem, we can get the Mellin transform
as

M[I; s] =
p

2qas+1
Γ

(
ps

2q

)
Γ(1 + s). (29)

Then the inverse transform can be written as

I =
p

2πia

∫ u+i∞

u−i∞
Γ (ps)Γ

(
2q(s+

1

2q
)

)
(a2qbp)−s ds

(a)
=

√
pq

a2
p+2q−3

2 π
p+2q

2 −1

1

2πi

×
∫ u+i∞

u−i∞

(
a2qbp

pp4qq2q

)−s p−1∏

n=0

Γ

(
s+

n

p

) 2q−1∏

n=0

Γ

(
s+

1 + n

2q

)
ds

=

√
pq

a2
p+2q−3

2 π
p+2q

2 −1

×Gp+2q,0
0,p+2q

(
a2qk bp

pp4qq2q

∣∣∣∣
−

0, 1
p , ...,

p−1
p , 1

2q ,
2
2q , ..., 1

)
,

(30)

where G(·) denotes Meijer’s G furcation, u > 0 and (a) holds from
the multiplication theorem [27].

APPENDIX II

We begin with the following basic integral definition of the
secrecy outage probability for this case

P (H)
so = b1c1

∫ ∞

0
(1− e−ax)K

e−b1/x
c1

x1+c1
dx (31)

where a = βdαBU , b1 = c1πρEΓ(2/α) and c1 = 2/α. This
expression can easily be derived from the definitions of the UE SNR
and the ED SNR and follows the calculations presented in Appendix
I. Since the integrand is nonnegative on the interval [0,∞), we have
the simple relations

P (H)
so > b1c1

∫ ∞

lnK
a

(1− e−ax)K
e−b1/x

c1

x1+c1
dx

> b1c1

(
1− 1

K

)K ∫ ∞

lnK
a

e−b1/x
c1

x1+c1
dx

=

(
1− 1

K

)K (
1− exp

(
− ac1b1
(lnK)c1

))
(32)

where the equality results from the substitution u = 1/xc1 . Letting
K grow large, the final line of the equation given above becomes

e−1

(
1 +O

(
1

K

))(
1−

(
1− ac1b1

(lnK)c1
+O

(
1

(lnK)2c1

)))

(33)
and the result stated in the lemma follows.

APPENDIX III

According to (10), (4) and (6) with ϖ = 1, we let
X1 = PU max

k∈(1...K)
(|hBiU |2) and X2 = |hUU |2. Then after self-

interference cancellation, the average channel gain of the residual
self-interference can be denoted as λUU . Therefore, the CDF of X1

and the PDF of X2 can be written as

FX1(x1) =
K∑

k=0

Ck
K(−1)ke−

kx1dαBU
PU

fX2(x2) = 1/λUUe
−x2/λUU ,

(34)

respectively. The CDF and PDF of X = X1
X2+1 are given by

FX(x) =

∫ ∞

0
Fx1(x(x2 + 1))fx2(x2) dx2

=
K∑

k=0

Ck
K(−1)k

PU
dα
BU

e−
kxdαBU

PU

PU
dα
BU

+ kxλUU

(35)

and

fX(x) =
K∑

k=0

Ck
K(−1)k+1

(PU + kxλUUdαBU + PUλUU )ke
− kxdαBU

PU

dαBU (
PU
dα
BU

+ kxλUU )2
.

(36)
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calculated as
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e∈Φ
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dαBEe

)
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)

(a)
= EΦ
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)
]
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(
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BEe
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(b)
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(
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)
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)

(c)
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(
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)
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)))

(d)
≃ exp

(
−2πρE

αy
2
α

Γ

(
2

α

))(
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2πρE

αy
2
α

O(R2−αy2/α−1e−yRα

)

)
,

(26)

where Γ(·) and Γ(·, ·) denote the gamma and upper incomplete
gamma function, respectively, and where eq. (a) follows from the
independence of R.V.s {|hB∗Ee |2;Ee ∈ Φ}; eq. (b) holds for the
probability generating functional lemma [25]; eq. (c) holds by using
eq. (3.326.4) in [26]; eq. (d) follows from the asymptotic expansion
of the incomplete gamma function (R → ∞) [27].

According to the definition of secrecy outage probability in (10),
(25) and (26), we can obtain an approximation of the secrecy outage
probability as follows

P (H)
so = 1−

∫ ∞

0
fγBU (x)FγBE∗

(
x

β

)
dx

= 1−
K∑

k=0

Ck
K(−1)k+1kdαBU

∫ ∞

0
e−kxdα

BU e
− 2πρE

α( x
β )

2/α Γ( 2
α )

dx.

(27)

We let

I =

∫ ∞

0
e−axe−

b
xc dx =

∫ ∞

0
ue−aue

−
(

b1/c

x

)c du

u
(28)

where a = kdαBU , b = 2πρE

α Γ( 2qp )β2q/p and c = 2q/p. By using
the Mellin convolution theorem, we can get the Mellin transform
as

M[I; s] =
p

2qas+1
Γ

(
ps

2q

)
Γ(1 + s). (29)

Then the inverse transform can be written as

I =
p

2πia

∫ u+i∞

u−i∞
Γ (ps)Γ

(
2q(s+

1

2q
)

)
(a2qbp)−s ds

(a)
=

√
pq

a2
p+2q−3

2 π
p+2q

2 −1

1

2πi

×
∫ u+i∞

u−i∞

(
a2qbp

pp4qq2q

)−s p−1∏

n=0

Γ

(
s+

n

p

) 2q−1∏

n=0

Γ

(
s+

1 + n

2q

)
ds

=

√
pq

a2
p+2q−3

2 π
p+2q

2 −1

×Gp+2q,0
0,p+2q

(
a2qk bp

pp4qq2q
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−

0, 1
p , ...,

p−1
p , 1

2q ,
2
2q , ..., 1

)
,

(30)

where G(·) denotes Meijer’s G furcation, u > 0 and (a) holds from
the multiplication theorem [27].

APPENDIX II

We begin with the following basic integral definition of the
secrecy outage probability for this case

P (H)
so = b1c1

∫ ∞

0
(1− e−ax)K

e−b1/x
c1

x1+c1
dx (31)

where a = βdαBU , b1 = c1πρEΓ(2/α) and c1 = 2/α. This
expression can easily be derived from the definitions of the UE SNR
and the ED SNR and follows the calculations presented in Appendix
I. Since the integrand is nonnegative on the interval [0,∞), we have
the simple relations

P (H)
so > b1c1

∫ ∞

lnK
a

(1− e−ax)K
e−b1/x

c1

x1+c1
dx

> b1c1

(
1− 1

K

)K ∫ ∞

lnK
a

e−b1/x
c1

x1+c1
dx

=

(
1− 1

K

)K (
1− exp

(
− ac1b1
(lnK)c1

))
(32)

where the equality results from the substitution u = 1/xc1 . Letting
K grow large, the final line of the equation given above becomes

e−1

(
1 +O

(
1

K

))(
1−

(
1− ac1b1

(lnK)c1
+O

(
1

(lnK)2c1

)))

(33)
and the result stated in the lemma follows.

APPENDIX III

According to (10), (4) and (6) with ϖ = 1, we let
X1 = PU max

k∈(1...K)
(|hBiU |2) and X2 = |hUU |2. Then after self-

interference cancellation, the average channel gain of the residual
self-interference can be denoted as λUU . Therefore, the CDF of X1

and the PDF of X2 can be written as

FX1(x1) =
K∑

k=0

Ck
K(−1)ke−

kx1dαBU
PU

fX2(x2) = 1/λUUe
−x2/λUU ,

(34)

respectively. The CDF and PDF of X = X1
X2+1 are given by

FX(x) =

∫ ∞

0
Fx1(x(x2 + 1))fx2(x2) dx2

=
K∑

k=0

Ck
K(−1)k

PU
dα
BU

e−
kxdαBU

PU

PU
dα
BU

+ kxλUU

(35)

and

fX(x) =
K∑

k=0

Ck
K(−1)k+1

(PU + kxλUUdαBU + PUλUU )ke
− kxdαBU

PU

dαBU (
PU
dα
BU

+ kxλUU )2
.

(36)
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(26)

where Γ(·) and Γ(·, ·) denote the gamma and upper incomplete
gamma function, respectively, and where eq. (a) follows from the
independence of R.V.s {|hB∗Ee |2;Ee ∈ Φ}; eq. (b) holds for the
probability generating functional lemma [25]; eq. (c) holds by using
eq. (3.326.4) in [26]; eq. (d) follows from the asymptotic expansion
of the incomplete gamma function (R → ∞) [27].

According to the definition of secrecy outage probability in (10),
(25) and (26), we can obtain an approximation of the secrecy outage
probability as follows
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(28)

where a = kdαBU , b = 2πρE

α Γ( 2qp )β2q/p and c = 2q/p. By using
the Mellin convolution theorem, we can get the Mellin transform
as
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(30)

where G(·) denotes Meijer’s G furcation, u > 0 and (a) holds from
the multiplication theorem [27].

APPENDIX II

We begin with the following basic integral definition of the
secrecy outage probability for this case

P (H)
so = b1c1

∫ ∞

0
(1− e−ax)K

e−b1/x
c1

x1+c1
dx (31)

where a = βdαBU , b1 = c1πρEΓ(2/α) and c1 = 2/α. This
expression can easily be derived from the definitions of the UE SNR
and the ED SNR and follows the calculations presented in Appendix
I. Since the integrand is nonnegative on the interval [0,∞), we have
the simple relations
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))
(32)

where the equality results from the substitution u = 1/xc1 . Letting
K grow large, the final line of the equation given above becomes
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K

))(
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1− ac1b1

(lnK)c1
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(
1

(lnK)2c1

)))

(33)
and the result stated in the lemma follows.

APPENDIX III
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respectively. The CDF and PDF of X = X1
X2+1 are given by
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=
K∑

k=0

Ck
K(−1)k

PU
dα
BU

e−
kxdαBU

PU

PU
dα
BU

+ kxλUU

(35)

and

fX(x) =
K∑

k=0

Ck
K(−1)k+1

(PU + kxλUUdαBU + PUλUU )ke
− kxdαBU

PU

dαBU (
PU
dα
BU

+ kxλUU )2
.

(36)
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calculated as

FγBE∗ (y) = P
(
max
e∈Φ

(
|hB∗Ee |2

dαBEe

)
< y

)

(a)
= EΦ

[
∏

e∈Φ

P
(
|hB∗Ee |2 < ydαBEe

| Φ
)
]

= EΦ

[
∏

e∈Φ

(
1− e−ydα

BEe

)]

(b)
= exp

(
−ρE

∫ 2π

0

∫ R

0
r
(
e−yrα

)
dr dθ

)

(c)
= exp

(
−2πρE

αy
2
α

(
Γ

(
2

α

)
− Γ

(
2

α
, yRα

)))

(d)
≃ exp

(
−2πρE

αy
2
α

Γ

(
2

α

))(
1 +

2πρE

αy
2
α

O(R2−αy2/α−1e−yRα

)

)
,

(26)

where Γ(·) and Γ(·, ·) denote the gamma and upper incomplete
gamma function, respectively, and where eq. (a) follows from the
independence of R.V.s {|hB∗Ee |2;Ee ∈ Φ}; eq. (b) holds for the
probability generating functional lemma [25]; eq. (c) holds by using
eq. (3.326.4) in [26]; eq. (d) follows from the asymptotic expansion
of the incomplete gamma function (R → ∞) [27].

According to the definition of secrecy outage probability in (10),
(25) and (26), we can obtain an approximation of the secrecy outage
probability as follows

P (H)
so = 1−

∫ ∞

0
fγBU (x)FγBE∗

(
x

β

)
dx

= 1−
K∑

k=0

Ck
K(−1)k+1kdαBU

∫ ∞

0
e−kxdα

BU e
− 2πρE

α( x
β )

2/α Γ( 2
α )

dx.

(27)

We let

I =

∫ ∞

0
e−axe−

b
xc dx =

∫ ∞

0
ue−aue

−
(

b1/c

x

)c du

u
(28)

where a = kdαBU , b = 2πρE

α Γ( 2qp )β2q/p and c = 2q/p. By using
the Mellin convolution theorem, we can get the Mellin transform
as

M[I; s] =
p

2qas+1
Γ

(
ps

2q

)
Γ(1 + s). (29)

Then the inverse transform can be written as

I =
p

2πia

∫ u+i∞

u−i∞
Γ (ps)Γ

(
2q(s+

1

2q
)

)
(a2qbp)−s ds

(a)
=

√
pq

a2
p+2q−3

2 π
p+2q

2 −1

1

2πi

×
∫ u+i∞

u−i∞

(
a2qbp

pp4qq2q

)−s p−1∏

n=0

Γ

(
s+

n

p

) 2q−1∏

n=0

Γ

(
s+

1 + n

2q

)
ds

=

√
pq

a2
p+2q−3

2 π
p+2q

2 −1

×Gp+2q,0
0,p+2q

(
a2qk bp

pp4qq2q

∣∣∣∣
−

0, 1
p , ...,

p−1
p , 1

2q ,
2
2q , ..., 1

)
,

(30)

where G(·) denotes Meijer’s G furcation, u > 0 and (a) holds from
the multiplication theorem [27].

APPENDIX II

We begin with the following basic integral definition of the
secrecy outage probability for this case

P (H)
so = b1c1

∫ ∞

0
(1− e−ax)K

e−b1/x
c1

x1+c1
dx (31)

where a = βdαBU , b1 = c1πρEΓ(2/α) and c1 = 2/α. This
expression can easily be derived from the definitions of the UE SNR
and the ED SNR and follows the calculations presented in Appendix
I. Since the integrand is nonnegative on the interval [0,∞), we have
the simple relations

P (H)
so > b1c1

∫ ∞

lnK
a

(1− e−ax)K
e−b1/x

c1

x1+c1
dx

> b1c1

(
1− 1

K

)K ∫ ∞

lnK
a

e−b1/x
c1

x1+c1
dx

=

(
1− 1

K

)K (
1− exp

(
− ac1b1
(lnK)c1

))
(32)

where the equality results from the substitution u = 1/xc1 . Letting
K grow large, the final line of the equation given above becomes

e−1

(
1 +O

(
1

K

))(
1−

(
1− ac1b1

(lnK)c1
+O

(
1

(lnK)2c1

)))

(33)
and the result stated in the lemma follows.

APPENDIX III

According to (10), (4) and (6) with ϖ = 1, we let
X1 = PU max

k∈(1...K)
(|hBiU |2) and X2 = |hUU |2. Then after self-

interference cancellation, the average channel gain of the residual
self-interference can be denoted as λUU . Therefore, the CDF of X1

and the PDF of X2 can be written as

FX1(x1) =
K∑

k=0

Ck
K(−1)ke−

kx1dαBU
PU

fX2(x2) = 1/λUUe
−x2/λUU ,

(34)

respectively. The CDF and PDF of X = X1
X2+1 are given by

FX(x) =

∫ ∞

0
Fx1(x(x2 + 1))fx2(x2) dx2

=
K∑

k=0

Ck
K(−1)k

PU
dα
BU

e−
kxdαBU

PU

PU
dα
BU

+ kxλUU

(35)

and

fX(x) =
K∑

k=0

Ck
K(−1)k+1

(PU + kxλUUdαBU + PUλUU )ke
− kxdαBU

PU

dαBU (
PU
dα
BU

+ kxλUU )2
.

(36)
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where

�BE⇤ = F

0

@
P

B

|h
B⇤E

e

|2
d↵

BE

e

$
P

U

|h
UE

e

|2
d↵

UE

e

+ �2
n

1

A (6)

with
B⇤ = arg max

k2{1...K}

✓
|hB

k

U |2

d↵BU

◆
(7)

and F(·) is an operator that takes different forms depending on
whether EDs act independently or whether they collude. In the
former case, we have

F(·) = max

e2�
(·) (8)

so that we ensure we consider the strongest ED channel, whereas
in the case of colluding eavesdroppers, the operator is given by

F(·) =
X

e2�

(·) (9)

since all EDs are capable of combining their signals in an optimal
manner to decode the message. Based on these formulae, the
secrecy outage probability can be defined as [21]

Pso = P([CBU � CBE⇤ ]
+ < ✏) ' P

✓
�BU

�BE⇤

< �

◆
(10)

where [x]+ = max(0, x), P(·) denotes the probability operator, ✏
denotes the target secrecy rate, � = 2

✏ denotes the target secrecy
SNR ratio4.

III. SECRECY OUTAGE PROBABILITY FOR INDEPENDENTLY
ACTING EAVESDROPPERS

Here, we analyse the secrecy outage probability of the downlink
for HD and FD UEs under the assumption that EDs act inde-
pendently of one another. The EDs cannot share their received
signals in this case, so secrecy outage is dictated by the ED with
highest channel capacity. Hence, F(·) is defined by (8). We begin
by considering an HD UE, then proceed with a treatment of the
problem for an FD UE.

A. Half Duplex UE

Beginning with the right-hand side of (10), the secrecy outage
probability can be evaluated to yield the result stated in the
following proposition.

Proposition 1: The downlink secrecy outage probability for an
HD UE is given by

P (H)
so = 1�

KX

k=0

(�1)

k+1Ck
K

p
pq

2

p+2q�3
2 ⇡

p+2q
2 �1

⇥Gp+2q,0
0,p+2q

 
a2qk bp

pp4qq2q

����
�

0, 1
p , ...,

p�1
p , 1

2q ,
2
2q , ..., 1

!
(11)

where Gm,n
s,t

✓
z

����
u1, . . . , us

v1, . . . , vt

◆
is the Meijer G function, Ck

K =

K!/((K � k)!k!) is the binomial coefficient, ak = kd↵BU , b =

4The approximation in (10) is a standard assumption for systems operating in
the high SNR region. In this paper, this condition implies PB is sufficiently large
and/or R is sufficiently small.

⇡⇢E�(1 + 2/↵)�2/↵, p, q 2 Z+ so that ↵ = p/q is a positive
rational number, and �(x) =

R1
0 tx�1et dt is the standard gamma

function.
Proof: See Appendix I.

Eq. (11) provides an explicit, exact relation between the secrecy
outage probability and various system parameters. A number of
interesting points can be noted from this expression. First, this
is the most complete analysis of the HD UE case reported in
the literature in that any rational path loss exponent is accounted
for in this expression. Indeed, since the path loss exponent is an
experimentally estimated parameter, it is, by definition, rational in
practice due to finite precision measurement equipment. Although
the outage probability is given in terms of the Meijer G function,
it can be easily evaluated using numerical software such as
Mathematica or Maple for any given inputs. It should be noted
that for the special case of ↵ = 2, (11) reduces to the following
expression written in terms of first order modified Bessel functions
of the second kind:

P (H)
so = 1� 2

KX

k=0

(�1)

k+1Ck
K

p
akbK1

⇣
2

p
akb
⌘

(12)

However, for other values of ↵, the expression given in the
proposition is the most compact, accessible form.

For fixed dBU , ⇢E , �, and ↵, the secrecy outage probability
solely depends on the available number of BS antennas K. It is
not a function of the transmit power PB . This is perfectly intuitive
since an increase in PB would yield a proportional increase in both
the UE SNR and the ED SNR. Thus, in order to satisfy a given
secrecy requirement, one must increase the number of antennas
used in the TAS procedure. With large-scale antenna systems and
massive MIMO making headlines in the research community in
recent years, it is prudent to ask how the secrecy outage probability
scales with the number of antennas used for selection. Since the
BS-ED channels are not considered in the selection process, it is
clear that the secrecy outage probability decreased monotonically
with increasing K. But how fast does this occur? The following
lemma provides some insight to this question.

Lemma 2: The downlink secrecy outage probability for an HD
UE located in the presence of independently acting EDs is lower
bounded by

P (H)
so >

⇡⇢Ed
2
BU�

2/↵
�(1 + 2/↵)

e (lnK)

2/↵

✓
1 +O

✓
1

(lnK)

2/↵

◆◆
(13)

as K ! 1.
Proof: See Appendix II.

This result implies that, for large numbers of antennas, secrecy
performance improves very slowly with increasing K. From a
system design perspective, this is a very important result. It
suggests that even systems with large numbers of antennas (e.g.,
massive MIMO systems with a TAS-based secrecy enhancement
mode) should exploit only a small subset of independent spatial
paths to perform selection. Such an approach would allow the
remaining elements to serve other UEs on separate channels. The
total number of transmit chains (i.e., up-conversion and power
amplification circuitry) required would be the number of UEs
served in a single channel use. The actual benefit brought by TAS
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calculated as

FγBE∗ (y) = P
(
max
e∈Φ

(
|hB∗Ee |2

dαBEe

)
< y

)

(a)
= EΦ

[
∏

e∈Φ

P
(
|hB∗Ee |2 < ydαBEe

| Φ
)
]

= EΦ

[
∏

e∈Φ

(
1− e−ydα

BEe

)]

(b)
= exp

(
−ρE

∫ 2π

0

∫ R

0
r
(
e−yrα

)
dr dθ

)

(c)
= exp

(
−2πρE

αy
2
α

(
Γ

(
2

α

)
− Γ

(
2

α
, yRα

)))

(d)
≃ exp

(
−2πρE

αy
2
α

Γ

(
2

α

))(
1 +

2πρE

αy
2
α

O(R2−αy2/α−1e−yRα

)

)
,

(26)

where Γ(·) and Γ(·, ·) denote the gamma and upper incomplete
gamma function, respectively, and where eq. (a) follows from the
independence of R.V.s {|hB∗Ee |2;Ee ∈ Φ}; eq. (b) holds for the
probability generating functional lemma [25]; eq. (c) holds by using
eq. (3.326.4) in [26]; eq. (d) follows from the asymptotic expansion
of the incomplete gamma function (R → ∞) [27].

According to the definition of secrecy outage probability in (10),
(25) and (26), we can obtain an approximation of the secrecy outage
probability as follows

P (H)
so = 1−

∫ ∞

0
fγBU (x)FγBE∗

(
x

β

)
dx

= 1−
K∑

k=0

Ck
K(−1)k+1kdαBU

∫ ∞

0
e−kxdα

BU e
− 2πρE

α( x
β )

2/α Γ( 2
α )

dx.

(27)

We let

I =

∫ ∞

0
e−axe−

b
xc dx =

∫ ∞

0
ue−aue

−
(

b1/c

x

)c du

u
(28)

where a = kdαBU , b = 2πρE

α Γ( 2qp )β2q/p and c = 2q/p. By using
the Mellin convolution theorem, we can get the Mellin transform
as

M[I; s] =
p

2qas+1
Γ

(
ps

2q

)
Γ(1 + s). (29)

Then the inverse transform can be written as

I =
p

2πia

∫ u+i∞

u−i∞
Γ (ps)Γ

(
2q(s+

1

2q
)

)
(a2qbp)−s ds

(a)
=

√
pq

a2
p+2q−3

2 π
p+2q

2 −1

1

2πi

×
∫ u+i∞

u−i∞

(
a2qbp

pp4qq2q

)−s p−1∏

n=0

Γ

(
s+

n

p

) 2q−1∏

n=0

Γ

(
s+

1 + n

2q

)
ds

=

√
pq

a2
p+2q−3

2 π
p+2q

2 −1

×Gp+2q,0
0,p+2q

(
a2qk bp

pp4qq2q

∣∣∣∣
−

0, 1
p , ...,

p−1
p , 1

2q ,
2
2q , ..., 1

)
,

(30)

where G(·) denotes Meijer’s G furcation, u > 0 and (a) holds from
the multiplication theorem [27].

APPENDIX II

We begin with the following basic integral definition of the
secrecy outage probability for this case

P (H)
so = b1c1

∫ ∞

0
(1− e−ax)K

e−b1/x
c1

x1+c1
dx (31)

where a = βdαBU , b1 = c1πρEΓ(2/α) and c1 = 2/α. This
expression can easily be derived from the definitions of the UE SNR
and the ED SNR and follows the calculations presented in Appendix
I. Since the integrand is nonnegative on the interval [0,∞), we have
the simple relations

P (H)
so > b1c1

∫ ∞

lnK
a

(1− e−ax)K
e−b1/x

c1

x1+c1
dx

> b1c1

(
1− 1

K

)K ∫ ∞

lnK
a

e−b1/x
c1

x1+c1
dx

=

(
1− 1

K

)K (
1− exp

(
− ac1b1
(lnK)c1

))
(32)

where the equality results from the substitution u = 1/xc1 . Letting
K grow large, the final line of the equation given above becomes

e−1

(
1 +O

(
1

K

))(
1−

(
1− ac1b1

(lnK)c1
+O

(
1

(lnK)2c1

)))

(33)
and the result stated in the lemma follows.

APPENDIX III

According to (10), (4) and (6) with ϖ = 1, we let
X1 = PU max

k∈(1...K)
(|hBiU |2) and X2 = |hUU |2. Then after self-

interference cancellation, the average channel gain of the residual
self-interference can be denoted as λUU . Therefore, the CDF of X1

and the PDF of X2 can be written as

FX1(x1) =
K∑

k=0

Ck
K(−1)ke−

kx1dαBU
PU

fX2(x2) = 1/λUUe
−x2/λUU ,

(34)

respectively. The CDF and PDF of X = X1
X2+1 are given by

FX(x) =

∫ ∞

0
Fx1(x(x2 + 1))fx2(x2) dx2

=
K∑

k=0

Ck
K(−1)k

PU
dα
BU

e−
kxdαBU

PU

PU
dα
BU

+ kxλUU

(35)

and

fX(x) =
K∑

k=0

Ck
K(−1)k+1

(PU + kxλUUdαBU + PUλUU )ke
− kxdαBU

PU

dαBU (
PU
dα
BU

+ kxλUU )2
.

(36)
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calculated as

FγBE∗ (y) = P
(
max
e∈Φ

(
|hB∗Ee |2

dαBEe

)
< y

)

(a)
= EΦ

[
∏

e∈Φ

P
(
|hB∗Ee |2 < ydαBEe

| Φ
)
]

= EΦ

[
∏
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(
1− e−ydα

BEe

)]

(b)
= exp

(
−ρE

∫ 2π

0

∫ R

0
r
(
e−yrα

)
dr dθ

)

(c)
= exp

(
−2πρE

αy
2
α

(
Γ

(
2

α

)
− Γ

(
2

α
, yRα

)))

(d)
≃ exp

(
−2πρE
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2
α

Γ

(
2

α

))(
1 +

2πρE

αy
2
α

O(R2−αy2/α−1e−yRα

)

)
,

(26)

where Γ(·) and Γ(·, ·) denote the gamma and upper incomplete
gamma function, respectively, and where eq. (a) follows from the
independence of R.V.s {|hB∗Ee |2;Ee ∈ Φ}; eq. (b) holds for the
probability generating functional lemma [25]; eq. (c) holds by using
eq. (3.326.4) in [26]; eq. (d) follows from the asymptotic expansion
of the incomplete gamma function (R → ∞) [27].

According to the definition of secrecy outage probability in (10),
(25) and (26), we can obtain an approximation of the secrecy outage
probability as follows

P (H)
so = 1−

∫ ∞

0
fγBU (x)FγBE∗

(
x

β

)
dx

= 1−
K∑

k=0

Ck
K(−1)k+1kdαBU

∫ ∞

0
e−kxdα

BU e
− 2πρE

α( x
β )

2/α Γ( 2
α )

dx.

(27)

We let

I =

∫ ∞

0
e−axe−

b
xc dx =

∫ ∞

0
ue−aue

−
(

b1/c

x

)c du

u
(28)

where a = kdαBU , b = 2πρE

α Γ( 2qp )β2q/p and c = 2q/p. By using
the Mellin convolution theorem, we can get the Mellin transform
as

M[I; s] =
p

2qas+1
Γ

(
ps

2q

)
Γ(1 + s). (29)

Then the inverse transform can be written as

I =
p

2πia

∫ u+i∞

u−i∞
Γ (ps)Γ

(
2q(s+

1

2q
)

)
(a2qbp)−s ds

(a)
=

√
pq

a2
p+2q−3

2 π
p+2q

2 −1

1

2πi

×
∫ u+i∞

u−i∞

(
a2qbp

pp4qq2q

)−s p−1∏

n=0

Γ

(
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n

p

) 2q−1∏

n=0

Γ

(
s+

1 + n

2q

)
ds

=

√
pq

a2
p+2q−3

2 π
p+2q

2 −1

×Gp+2q,0
0,p+2q

(
a2qk bp

pp4qq2q
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−

0, 1
p , ...,

p−1
p , 1

2q ,
2
2q , ..., 1

)
,

(30)

where G(·) denotes Meijer’s G furcation, u > 0 and (a) holds from
the multiplication theorem [27].

APPENDIX II

We begin with the following basic integral definition of the
secrecy outage probability for this case

P (H)
so = b1c1

∫ ∞

0
(1− e−ax)K

e−b1/x
c1

x1+c1
dx (31)

where a = βdαBU , b1 = c1πρEΓ(2/α) and c1 = 2/α. This
expression can easily be derived from the definitions of the UE SNR
and the ED SNR and follows the calculations presented in Appendix
I. Since the integrand is nonnegative on the interval [0,∞), we have
the simple relations

P (H)
so > b1c1

∫ ∞

lnK
a

(1− e−ax)K
e−b1/x

c1

x1+c1
dx

> b1c1

(
1− 1

K

)K ∫ ∞

lnK
a

e−b1/x
c1

x1+c1
dx

=

(
1− 1

K

)K (
1− exp

(
− ac1b1
(lnK)c1

))
(32)

where the equality results from the substitution u = 1/xc1 . Letting
K grow large, the final line of the equation given above becomes

e−1

(
1 +O

(
1

K

))(
1−

(
1− ac1b1

(lnK)c1
+O

(
1

(lnK)2c1

)))

(33)
and the result stated in the lemma follows.

APPENDIX III

According to (10), (4) and (6) with ϖ = 1, we let
X1 = PU max

k∈(1...K)
(|hBiU |2) and X2 = |hUU |2. Then after self-

interference cancellation, the average channel gain of the residual
self-interference can be denoted as λUU . Therefore, the CDF of X1

and the PDF of X2 can be written as

FX1(x1) =
K∑

k=0

Ck
K(−1)ke−

kx1dαBU
PU

fX2(x2) = 1/λUUe
−x2/λUU ,

(34)

respectively. The CDF and PDF of X = X1
X2+1 are given by

FX(x) =

∫ ∞

0
Fx1(x(x2 + 1))fx2(x2) dx2

=
K∑

k=0

Ck
K(−1)k

PU
dα
BU

e−
kxdαBU

PU

PU
dα
BU

+ kxλUU

(35)

and

fX(x) =
K∑

k=0

Ck
K(−1)k+1

(PU + kxλUUdαBU + PUλUU )ke
− kxdαBU

PU

dαBU (
PU
dα
BU

+ kxλUU )2
.

(36)
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calculated as

FγBE∗ (y) = P
(
max
e∈Φ

(
|hB∗Ee |2

dαBEe

)
< y

)

(a)
= EΦ

[
∏

e∈Φ

P
(
|hB∗Ee |2 < ydαBEe

| Φ
)
]

= EΦ

[
∏

e∈Φ

(
1− e−ydα

BEe

)]

(b)
= exp

(
−ρE

∫ 2π

0

∫ R

0
r
(
e−yrα

)
dr dθ

)

(c)
= exp

(
−2πρE

αy
2
α

(
Γ

(
2

α

)
− Γ

(
2

α
, yRα

)))

(d)
≃ exp

(
−2πρE

αy
2
α

Γ

(
2

α

))(
1 +

2πρE

αy
2
α

O(R2−αy2/α−1e−yRα

)

)
,

(26)

where Γ(·) and Γ(·, ·) denote the gamma and upper incomplete
gamma function, respectively, and where eq. (a) follows from the
independence of R.V.s {|hB∗Ee |2;Ee ∈ Φ}; eq. (b) holds for the
probability generating functional lemma [25]; eq. (c) holds by using
eq. (3.326.4) in [26]; eq. (d) follows from the asymptotic expansion
of the incomplete gamma function (R → ∞) [27].

According to the definition of secrecy outage probability in (10),
(25) and (26), we can obtain an approximation of the secrecy outage
probability as follows

P (H)
so = 1−

∫ ∞

0
fγBU (x)FγBE∗

(
x

β

)
dx

= 1−
K∑

k=0

Ck
K(−1)k+1kdαBU

∫ ∞

0
e−kxdα

BU e
− 2πρE

α( x
β )

2/α Γ( 2
α )

dx.

(27)

We let

I =

∫ ∞

0
e−axe−

b
xc dx =

∫ ∞

0
ue−aue

−
(

b1/c

x

)c du

u
(28)

where a = kdαBU , b = 2πρE

α Γ( 2qp )β2q/p and c = 2q/p. By using
the Mellin convolution theorem, we can get the Mellin transform
as

M[I; s] =
p

2qas+1
Γ

(
ps

2q

)
Γ(1 + s). (29)

Then the inverse transform can be written as

I =
p

2πia

∫ u+i∞

u−i∞
Γ (ps)Γ

(
2q(s+

1

2q
)

)
(a2qbp)−s ds

(a)
=

√
pq

a2
p+2q−3

2 π
p+2q

2 −1

1

2πi

×
∫ u+i∞

u−i∞

(
a2qbp

pp4qq2q

)−s p−1∏

n=0

Γ

(
s+

n

p

) 2q−1∏

n=0

Γ

(
s+

1 + n

2q

)
ds

=

√
pq

a2
p+2q−3

2 π
p+2q

2 −1

×Gp+2q,0
0,p+2q

(
a2qk bp

pp4qq2q

∣∣∣∣
−

0, 1
p , ...,

p−1
p , 1

2q ,
2
2q , ..., 1

)
,

(30)

where G(·) denotes Meijer’s G furcation, u > 0 and (a) holds from
the multiplication theorem [27].

APPENDIX II

We begin with the following basic integral definition of the
secrecy outage probability for this case

P (H)
so = b1c1

∫ ∞

0
(1− e−ax)K

e−b1/x
c1

x1+c1
dx (31)

where a = βdαBU , b1 = c1πρEΓ(2/α) and c1 = 2/α. This
expression can easily be derived from the definitions of the UE SNR
and the ED SNR and follows the calculations presented in Appendix
I. Since the integrand is nonnegative on the interval [0,∞), we have
the simple relations

P (H)
so > b1c1

∫ ∞

lnK
a

(1− e−ax)K
e−b1/x

c1

x1+c1
dx

> b1c1

(
1− 1

K

)K ∫ ∞

lnK
a

e−b1/x
c1

x1+c1
dx

=

(
1− 1

K

)K (
1− exp

(
− ac1b1
(lnK)c1

))
(32)

where the equality results from the substitution u = 1/xc1 . Letting
K grow large, the final line of the equation given above becomes

e−1

(
1 +O

(
1

K

))(
1−

(
1− ac1b1

(lnK)c1
+O

(
1

(lnK)2c1

)))

(33)
and the result stated in the lemma follows.

APPENDIX III

According to (10), (4) and (6) with ϖ = 1, we let
X1 = PU max

k∈(1...K)
(|hBiU |2) and X2 = |hUU |2. Then after self-

interference cancellation, the average channel gain of the residual
self-interference can be denoted as λUU . Therefore, the CDF of X1

and the PDF of X2 can be written as

FX1(x1) =
K∑

k=0

Ck
K(−1)ke−

kx1dαBU
PU

fX2(x2) = 1/λUUe
−x2/λUU ,

(34)

respectively. The CDF and PDF of X = X1
X2+1 are given by

FX(x) =

∫ ∞

0
Fx1(x(x2 + 1))fx2(x2) dx2

=
K∑

k=0

Ck
K(−1)k

PU
dα
BU

e−
kxdαBU

PU

PU
dα
BU

+ kxλUU

(35)

and

fX(x) =
K∑

k=0

Ck
K(−1)k+1

(PU + kxλUUdαBU + PUλUU )ke
− kxdαBU

PU

dαBU (
PU
dα
BU

+ kxλUU )2
.

(36)
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calculated as

FγBE∗ (y) = P
(
max
e∈Φ

(
|hB∗Ee |2

dαBEe

)
< y

)

(a)
= EΦ

[
∏

e∈Φ

P
(
|hB∗Ee |2 < ydαBEe

| Φ
)
]

= EΦ

[
∏

e∈Φ

(
1− e−ydα

BEe

)]

(b)
= exp

(
−ρE

∫ 2π

0

∫ R

0
r
(
e−yrα

)
dr dθ

)

(c)
= exp

(
−2πρE

αy
2
α

(
Γ

(
2

α

)
− Γ

(
2

α
, yRα

)))

(d)
≃ exp

(
−2πρE

αy
2
α

Γ

(
2

α

))(
1 +

2πρE

αy
2
α

O(R2−αy2/α−1e−yRα

)

)
,

(26)

where Γ(·) and Γ(·, ·) denote the gamma and upper incomplete
gamma function, respectively, and where eq. (a) follows from the
independence of R.V.s {|hB∗Ee |2;Ee ∈ Φ}; eq. (b) holds for the
probability generating functional lemma [25]; eq. (c) holds by using
eq. (3.326.4) in [26]; eq. (d) follows from the asymptotic expansion
of the incomplete gamma function (R → ∞) [27].

According to the definition of secrecy outage probability in (10),
(25) and (26), we can obtain an approximation of the secrecy outage
probability as follows

P (H)
so = 1−

∫ ∞

0
fγBU (x)FγBE∗

(
x

β

)
dx

= 1−
K∑

k=0

Ck
K(−1)k+1kdαBU

∫ ∞

0
e−kxdα

BU e
− 2πρE

α( x
β )

2/α Γ( 2
α )

dx.

(27)

We let

I =

∫ ∞

0
e−axe−

b
xc dx =

∫ ∞

0
ue−aue

−
(

b1/c

x

)c du

u
(28)

where a = kdαBU , b = 2πρE

α Γ( 2qp )β2q/p and c = 2q/p. By using
the Mellin convolution theorem, we can get the Mellin transform
as

M[I; s] =
p

2qas+1
Γ

(
ps

2q

)
Γ(1 + s). (29)

Then the inverse transform can be written as

I =
p

2πia

∫ u+i∞

u−i∞
Γ (ps)Γ

(
2q(s+

1

2q
)

)
(a2qbp)−s ds

(a)
=

√
pq

a2
p+2q−3

2 π
p+2q

2 −1

1

2πi

×
∫ u+i∞

u−i∞

(
a2qbp

pp4qq2q

)−s p−1∏

n=0

Γ

(
s+

n

p

) 2q−1∏

n=0

Γ

(
s+

1 + n

2q

)
ds

=

√
pq

a2
p+2q−3

2 π
p+2q

2 −1

×Gp+2q,0
0,p+2q

(
a2qk bp

pp4qq2q

∣∣∣∣
−

0, 1
p , ...,

p−1
p , 1

2q ,
2
2q , ..., 1

)
,

(30)

where G(·) denotes Meijer’s G furcation, u > 0 and (a) holds from
the multiplication theorem [27].

APPENDIX II

We begin with the following basic integral definition of the
secrecy outage probability for this case

P (H)
so = b1c1

∫ ∞

0
(1− e−ax)K

e−b1/x
c1

x1+c1
dx (31)

where a = βdαBU , b1 = c1πρEΓ(2/α) and c1 = 2/α. This
expression can easily be derived from the definitions of the UE SNR
and the ED SNR and follows the calculations presented in Appendix
I. Since the integrand is nonnegative on the interval [0,∞), we have
the simple relations

P (H)
so > b1c1

∫ ∞

lnK
a

(1− e−ax)K
e−b1/x

c1

x1+c1
dx

> b1c1

(
1− 1

K

)K ∫ ∞

lnK
a

e−b1/x
c1

x1+c1
dx

=

(
1− 1

K

)K (
1− exp

(
− ac1b1
(lnK)c1

))
(32)

where the equality results from the substitution u = 1/xc1 . Letting
K grow large, the final line of the equation given above becomes

e−1

(
1 +O

(
1

K

))(
1−

(
1− ac1b1

(lnK)c1
+O

(
1

(lnK)2c1

)))

(33)
and the result stated in the lemma follows.

APPENDIX III

According to (10), (4) and (6) with ϖ = 1, we let
X1 = PU max

k∈(1...K)
(|hBiU |2) and X2 = |hUU |2. Then after self-

interference cancellation, the average channel gain of the residual
self-interference can be denoted as λUU . Therefore, the CDF of X1

and the PDF of X2 can be written as

FX1(x1) =
K∑

k=0

Ck
K(−1)ke−

kx1dαBU
PU

fX2(x2) = 1/λUUe
−x2/λUU ,

(34)

respectively. The CDF and PDF of X = X1
X2+1 are given by

FX(x) =

∫ ∞

0
Fx1(x(x2 + 1))fx2(x2) dx2

=
K∑

k=0

Ck
K(−1)k

PU
dα
BU

e−
kxdαBU

PU

PU
dα
BU

+ kxλUU

(35)

and

fX(x) =
K∑

k=0

Ck
K(−1)k+1

(PU + kxλUUdαBU + PUλUU )ke
− kxdαBU

PU

dαBU (
PU
dα
BU

+ kxλUU )2
.

(36)
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calculated as

FγBE∗ (y) = P
(
max
e∈Φ

(
|hB∗Ee |2

dαBEe

)
< y

)

(a)
= EΦ
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(
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| Φ
)
]
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(
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)]

(b)
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(
−ρE
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0
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(
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)
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)

(c)
= exp

(
−2πρE

αy
2
α

(
Γ

(
2

α

)
− Γ

(
2

α
, yRα

)))

(d)
≃ exp

(
−2πρE

αy
2
α

Γ

(
2

α

))(
1 +

2πρE

αy
2
α

O(R2−αy2/α−1e−yRα

)

)
,

(26)

where Γ(·) and Γ(·, ·) denote the gamma and upper incomplete
gamma function, respectively, and where eq. (a) follows from the
independence of R.V.s {|hB∗Ee |2;Ee ∈ Φ}; eq. (b) holds for the
probability generating functional lemma [25]; eq. (c) holds by using
eq. (3.326.4) in [26]; eq. (d) follows from the asymptotic expansion
of the incomplete gamma function (R → ∞) [27].

According to the definition of secrecy outage probability in (10),
(25) and (26), we can obtain an approximation of the secrecy outage
probability as follows

P (H)
so = 1−

∫ ∞

0
fγBU (x)FγBE∗

(
x

β

)
dx

= 1−
K∑

k=0

Ck
K(−1)k+1kdαBU

∫ ∞

0
e−kxdα

BU e
− 2πρE

α( x
β )

2/α Γ( 2
α )

dx.

(27)

We let

I =

∫ ∞

0
e−axe−

b
xc dx =

∫ ∞

0
ue−aue

−
(

b1/c

x

)c du

u
(28)

where a = kdαBU , b = 2πρE

α Γ( 2qp )β2q/p and c = 2q/p. By using
the Mellin convolution theorem, we can get the Mellin transform
as

M[I; s] =
p

2qas+1
Γ

(
ps

2q

)
Γ(1 + s). (29)

Then the inverse transform can be written as

I =
p

2πia

∫ u+i∞

u−i∞
Γ (ps)Γ

(
2q(s+

1

2q
)

)
(a2qbp)−s ds

(a)
=

√
pq

a2
p+2q−3

2 π
p+2q

2 −1

1

2πi

×
∫ u+i∞

u−i∞

(
a2qbp

pp4qq2q

)−s p−1∏

n=0

Γ

(
s+

n

p

) 2q−1∏

n=0

Γ

(
s+

1 + n

2q

)
ds

=

√
pq

a2
p+2q−3

2 π
p+2q

2 −1

×Gp+2q,0
0,p+2q

(
a2qk bp

pp4qq2q

∣∣∣∣
−

0, 1
p , ...,

p−1
p , 1

2q ,
2
2q , ..., 1

)
,

(30)

where G(·) denotes Meijer’s G furcation, u > 0 and (a) holds from
the multiplication theorem [27].

APPENDIX II

We begin with the following basic integral definition of the
secrecy outage probability for this case

P (H)
so = b1c1

∫ ∞

0
(1− e−ax)K

e−b1/x
c1

x1+c1
dx (31)

where a = βdαBU , b1 = c1πρEΓ(2/α) and c1 = 2/α. This
expression can easily be derived from the definitions of the UE SNR
and the ED SNR and follows the calculations presented in Appendix
I. Since the integrand is nonnegative on the interval [0,∞), we have
the simple relations

P (H)
so > b1c1

∫ ∞

lnK
a

(1− e−ax)K
e−b1/x

c1

x1+c1
dx

> b1c1

(
1− 1

K

)K ∫ ∞

lnK
a

e−b1/x
c1

x1+c1
dx

=

(
1− 1

K

)K (
1− exp

(
− ac1b1
(lnK)c1

))
(32)

where the equality results from the substitution u = 1/xc1 . Letting
K grow large, the final line of the equation given above becomes

e−1

(
1 +O

(
1

K

))(
1−

(
1− ac1b1

(lnK)c1
+O

(
1

(lnK)2c1

)))

(33)
and the result stated in the lemma follows.

APPENDIX III

According to (10), (4) and (6) with ϖ = 1, we let
X1 = PU max

k∈(1...K)
(|hBiU |2) and X2 = |hUU |2. Then after self-

interference cancellation, the average channel gain of the residual
self-interference can be denoted as λUU . Therefore, the CDF of X1

and the PDF of X2 can be written as

FX1(x1) =
K∑

k=0

Ck
K(−1)ke−

kx1dαBU
PU

fX2(x2) = 1/λUUe
−x2/λUU ,

(34)

respectively. The CDF and PDF of X = X1
X2+1 are given by

FX(x) =

∫ ∞

0
Fx1(x(x2 + 1))fx2(x2) dx2

=
K∑

k=0

Ck
K(−1)k

PU
dα
BU

e−
kxdαBU

PU

PU
dα
BU

+ kxλUU

(35)

and

fX(x) =
K∑

k=0

Ck
K(−1)k+1

(PU + kxλUUdαBU + PUλUU )ke
− kxdαBU

PU

dαBU (
PU
dα
BU

+ kxλUU )2
.

(36)



Scaling	
  for	
  large	
  numbers	
  of	
  antennas...	
  

42	
  

3

where

γBE∗ = F

⎛

⎝
PB |hB∗Ee |

2

dα
BEe

ϖPU |hUEe |2
dα
UEe

+ σ2
n

⎞

⎠ (6)

with
B∗ = arg max

k∈{1...K}

(
|hBkU |2

dαBU

)
(7)

and F(·) is an operator that takes different forms depending on
whether EDs act independently or whether they collude. In the
former case, we have

F(·) = max
e∈Φ

(·) (8)

so that we ensure we consider the strongest ED channel, whereas
in the case of colluding eavesdroppers, the operator is given by

F(·) =
∑

e∈Φ

(·) (9)

since all EDs are capable of combining their signals in an optimal
manner to decode the message. Based on these formulae, the
secrecy outage probability can be defined as [20]

Pso = P([CBU − CBE∗ ]
+ < ϵ) ≃ P

(
γBU

γBE∗

< β

)
(10)

where [x]+ = max(0, x), P(·) denotes the probability operator, ϵ
denotes the target secrecy rate, β = 2ϵ denotes the target secrecy
SNR ratio4.

III. SECRECY OUTAGE PROBABILITY FOR INDEPENDENTLY
ACTING EAVESDROPPERS

Here, we analyse the secrecy outage probability of the downlink
for HD and FD UEs under the assumption that EDs act inde-
pendently of one another. The EDs cannot share their received
signals in this case, so secrecy outage is dictated by the ED with
highest channel capacity. Hence, F(·) is defined by (8). We begin
by considering an HD UE, then proceed with a treatment of the
problem for an FD UE.

A. Half Duplex UE
Beginning with the right-hand side of (10), the secrecy outage

probability can be evaluated to yield the result stated in the
following proposition.

Proposition 1: For large R, the downlink secrecy outage proba-
bility for an HD UE is, to a good approximation, given by

P (H)
so ≃ 1−

K∑

k=0

(−1)k+1Ck
K

√
pq

2
p+2q−3

2 π
p+2q

2 −1

×Gp+2q,0
0,p+2q

(
a2qk bp

pp4qq2q

∣∣∣∣
−

0, 1
p , ...,

p−1
p , 1

2q ,
2
2q , ..., 1

)
(11)

where Gm,n
s,t

(
z

∣∣∣∣
u1, . . . , us

v1, . . . , vt

)
is the Meijer G function, Ck

K =

K!/((K − k)!k!) is the binomial coefficient, ak = kdαBU , b =

4The approximation in (10) is a standard assumption for systems operating in
the high SNR region. In this paper, this condition implies PB is sufficiently large
and/or R is sufficiently small.

πρEΓ(1 + 2/α)β2/α, p, q ∈ Z+ so that α = p/q is a positive
rational number, and Γ(x) =

∫∞
0 tx−1et dt is the standard gamma

function.
Proof: See Appendix I.

Eq. (11) provides an explicit, relation between the secrecy outage
probability and various system parameters. A number of interesting
points can be noted from this expression. First, this is the most
complete analysis of the HD UE case reported in the literature in
that any rational path loss exponent is accounted for in this ex-
pression. Indeed, since the path loss exponent is an experimentally
estimated parameter, it is, by definition, rational in practice due
to finite precision measurement equipment. Although the outage
probability is given in terms of the Meijer G function, it can be
easily evaluated using numerical software such as Mathematica or
Maple for any given inputs. It should be noted that for the special
case of α = 2, (11) reduces to the following expression written in
terms of first order modified Bessel functions of the second kind:

P (H)
so ≃ 1− 2

K∑

k=0

(−1)k+1Ck
K

√
akbK1

(
2
√

akb
)

(12)

However, for other values of α, the expression given in the proposi-
tion is the most compact, accessible form. Note that the expression
given in Proposition 1 is independent of R. This is because the R-
dependent terms in the secrecy outage probability expression decay
exponentially with Rα. (See Appendix I for details.)

For fixed dBU , ρE , β, and α, the secrecy outage probability
solely depends on the available number of BS antennas K. It is
not a function of the transmit power PB . This is perfectly intuitive
since an increase in PB would yield a proportional increase in both
the UE SNR and the ED SNR. Thus, in order to satisfy a given
secrecy requirement, one must increase the number of antennas
used in the TAS procedure. With large-scale antenna systems and
massive MIMO making headlines in the research community in
recent years, it is prudent to ask how the secrecy outage probability
scales with the number of antennas used for selection. Since the
BS-ED channels are not considered in the selection process, it is
clear that the secrecy outage probability decreased monotonically
with increasing K. But how fast does this occur? The following
lemma provides some insight to this question.

Lemma 2: The downlink secrecy outage probability for an HD
UE located in the presence of independently acting EDs is lower
bounded by

P (H)
so >

πρEd2BUβ
2/αΓ(1 + 2/α)

e (lnK)2/α

(
1 +O

(
1

(lnK)2/α

))
(13)

as K → ∞.
Proof: See Appendix II.

This result implies that, for large numbers of antennas, secrecy
performance improves slowly with increasing K. From a system
design perspective, this is a very important result. It suggests
that even systems with large numbers of antennas (e.g., massive
MIMO systems with a TAS-based secrecy enhancement mode)
should exploit only a small subset of independent spatial paths
to perform selection. Such an approach would allow the remaining
elements to serve other UEs on separate channels. The total number
of transmit chains (i.e., up-conversion and power amplification
circuitry) required would be the number of UEs served in a single
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channel use. The actual benefit brought by TAS in the context of
enhancing secrecy performance is explored further in Section V
through numerical simulations.

B. Full Duplex UE

In the case where FD jamming is employed by the UE, the
jamming signal will affect both the EDs and the UE. Thus, a self-
interference cancellation scheme must be applied at the UE. Here,
we assume the self-interference cancellation scheme is not perfect,
and thus residual interference will remain. Also, we are interested
in the worst-case secrecy performance. Thus, in this section, we
assume the EDs are interference limited (from the UE’s jamming
signal). Mathematically, we set σ2

n = 0. A similar approach was
taken in [21]–[23]. Now, beginning with the right-hand side of (10),
the secrecy outage probability can be evaluated to yield the result
stated in the following proposition.

Proposition 3: The downlink secrecy outage probability for an
FD UE located in the presence of independently acting EDs is
upper bounded by

P (F )
so ≤ 1− e−ρEπR2

K∑

k=1

(−1)k+1kCk
K

∫ ∞

0

PU
dα
BU

(1 + λUU ) + kxλUU

( PU
dα
BU

+ kxλUU )2

exp

(
ρER

2Ψ

(
x

β
;α,

dBU

R

)
− kdαBU

PU
x

)
dx (14)

where

Ψ(y;α, δ) =

∫ 2π

0

∫ 1

0

yzα+1

yzα + (z2 + δ2 − 2zδ cos θ)α/2
dz dθ

(15)
and λUU = E[|gUU |2] is the average gain of the self-interference
channel at the FD UE.

Proof: See Appendix III.
The bound stated above can be evaluated for given sets of

parameters by using standard numerical integration techniques
or software. Note that the semi-infinite integral is guaranteed to
converge since Ψ(y;α, δ) is finite for y ∈ [0,∞). For the case
where α = 2, the bound simplifies somewhat since Ψ(y;α, δ)
evaluates to

Ψ(y; 2, δ) =
πy

(y + 1)3

(
(y + 1)(ψ(y, δ)− δ2)

+ δ2(y − 1) ln

(
2δ2y

δ2(y − 1) + (y + 1)(ψ(y, δ) + y + 1)

))
(16)

where
ψ(y, δ) =

√
δ4 + 2δ2(y − 1) + (y + 1)2. (17)

For fixed dBU , ρE , λUU , β, and α, the secrecy outage probability
depends on the available number of BS antennas K, but also on
the UE jamming signal power PU . This provides two degrees of
freedom that can be considered at a system level when determining
the best configuration for achieving a target secrecy outage prob-
ability. For example, the UE may locally determine that it should
reduce PU to conserve battery power, which implies the BS should

increase the number of antennas used for TAS. Further analysis of
the trade-off between these parameters and the effect this has on
system performance is presented in Section V.

IV. SECRECY OUTAGE PROBABILITY FOR COLLUDING EDS

Here, we analyse the secrecy outage probability in the downlink
for HD and FD UEs with the assumption that EDs collude with
each other. In contrast to independently acting EDs, colluding EDs
can share their eavesdropping information; therefore, all the eaves-
dropping information can be combined in an effort to decode the
downlink message. Under the assumption that optimal combining
can be achieved by the EDs, F(·) is defined by (9). We first consider
an HD UE, then a treatment of the problem for an FD UE will be
provided.

A. Half Duplex UE

By using the right-hand side of (10) the secrecy outage proba-
bility can written exactly as in Proposition 4.

Proposition 4: The downlink secrecy outage probability for an
HD UE located in the presence of colluding EDs is given by

P (H)
so = 1−

K∑

k=1

Ck
K(−1)k+1

× exp

(
−πR2ρEF

(
1,

2

α
; 1 +

2

α
;− Rα

kβdαBU

))
(18)

where F (a, b; c; z) denotes the Gaussian hypergeometric function.
Proof: See Appendix V.

Eq. (18) provides an explicit, exact relation between the secrecy
outage probability and various system parameters. For α = 2, this
expression simplifies readily to

P (H)
so = 1−

K∑

k=1

Ck
K(−1)k+1

(
1 +

R2

βd2BUk

)−πρEβd2
BUk

. (19)

For α = 4, (18) can be expressed as

P (H)
so = 1−

K∑

k=1

Ck
K(−1)k+1

× exp

(
−πρERdBU

√
βk tan−1

(
R

dBU
√
βk

))
. (20)

Other values of the path loss exponent do not admit closed form
expressions in terms of elementary functions.

B. Full Duplex UE

When FD jamming is utilized by the UE, we assume self-
interference cancellation is employed by the UE and consider the
interference limited regime for EDs (i.e., σ2

n = 0 at each ED).
Following from the right-hand side of (10), the secrecy outage
probability in this scenario can be evaluated to yield the tight bound
stated in the following proposition.
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channel use. The actual benefit brought by TAS in the context of
enhancing secrecy performance is explored further in Section V
through numerical simulations.

B. Full Duplex UE

In the case where FD jamming is employed by the UE, the
jamming signal will affect both the EDs and the UE. Thus, a self-
interference cancellation scheme must be applied at the UE. Here,
we assume the self-interference cancellation scheme is not perfect,
and thus residual interference will remain. Also, we are interested
in the worst-case secrecy performance. Thus, in this section, we
assume the EDs are interference limited (from the UE’s jamming
signal). Mathematically, we set σ2

n = 0. A similar approach was
taken in [21]–[23]. Now, beginning with the right-hand side of (10),
the secrecy outage probability can be evaluated to yield the result
stated in the following proposition.

Proposition 3: The downlink secrecy outage probability for an
FD UE located in the presence of independently acting EDs is
upper bounded by

P (F )
so ≤ 1− e−ρEπR2

K∑

k=1

(−1)k+1kCk
K

∫ ∞

0

PU
dα
BU

(1 + λUU ) + kxλUU

( PU
dα
BU

+ kxλUU )2

exp

(
ρER

2Ψ

(
x

β
;α,

dBU

R

)
− kdαBU

PU
x

)
dx (14)

where

Ψ(y;α, δ) =

∫ 2π

0

∫ 1

0

yzα+1

yzα + (z2 + δ2 − 2zδ cos θ)α/2
dz dθ

(15)
and λUU = E[|gUU |2] is the average gain of the self-interference
channel at the FD UE.

Proof: See Appendix III.
The bound stated above can be evaluated for given sets of

parameters by using standard numerical integration techniques
or software. Note that the semi-infinite integral is guaranteed to
converge since Ψ(y;α, δ) is finite for y ∈ [0,∞). For the case
where α = 2, the bound simplifies somewhat since Ψ(y;α, δ)
evaluates to

Ψ(y; 2, δ) =
πy

(y + 1)3

(
(y + 1)(ψ(y, δ)− δ2)

+ δ2(y − 1) ln

(
2δ2y

δ2(y − 1) + (y + 1)(ψ(y, δ) + y + 1)

))
(16)

where
ψ(y, δ) =

√
δ4 + 2δ2(y − 1) + (y + 1)2. (17)

For fixed dBU , ρE , λUU , β, and α, the secrecy outage probability
depends on the available number of BS antennas K, but also on
the UE jamming signal power PU . This provides two degrees of
freedom that can be considered at a system level when determining
the best configuration for achieving a target secrecy outage prob-
ability. For example, the UE may locally determine that it should
reduce PU to conserve battery power, which implies the BS should

increase the number of antennas used for TAS. Further analysis of
the trade-off between these parameters and the effect this has on
system performance is presented in Section V.

IV. SECRECY OUTAGE PROBABILITY FOR COLLUDING EDS

Here, we analyse the secrecy outage probability in the downlink
for HD and FD UEs with the assumption that EDs collude with
each other. In contrast to independently acting EDs, colluding EDs
can share their eavesdropping information; therefore, all the eaves-
dropping information can be combined in an effort to decode the
downlink message. Under the assumption that optimal combining
can be achieved by the EDs, F(·) is defined by (9). We first consider
an HD UE, then a treatment of the problem for an FD UE will be
provided.

A. Half Duplex UE

By using the right-hand side of (10) the secrecy outage proba-
bility can written exactly as in Proposition 4.

Proposition 4: The downlink secrecy outage probability for an
HD UE located in the presence of colluding EDs is given by

P (H)
so = 1−

K∑

k=1

Ck
K(−1)k+1

× exp

(
−πR2ρEF

(
1,

2

α
; 1 +

2

α
;− Rα

kβdαBU

))
(18)

where F (a, b; c; z) denotes the Gaussian hypergeometric function.
Proof: See Appendix V.

Eq. (18) provides an explicit, exact relation between the secrecy
outage probability and various system parameters. For α = 2, this
expression simplifies readily to

P (H)
so = 1−

K∑

k=1

Ck
K(−1)k+1

(
1 +

R2

βd2BUk

)−πρEβd2
BUk

. (19)

For α = 4, (18) can be expressed as

P (H)
so = 1−

K∑

k=1

Ck
K(−1)k+1

× exp

(
−πρERdBU

√
βk tan−1

(
R

dBU
√
βk

))
. (20)

Other values of the path loss exponent do not admit closed form
expressions in terms of elementary functions.

B. Full Duplex UE

When FD jamming is utilized by the UE, we assume self-
interference cancellation is employed by the UE and consider the
interference limited regime for EDs (i.e., σ2

n = 0 at each ED).
Following from the right-hand side of (10), the secrecy outage
probability in this scenario can be evaluated to yield the tight bound
stated in the following proposition.
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Fig.	
  8	
  The	
  system	
  model	
  for	
  a	
  spa4ally	
  random	
  wireless	
  network.	
  

ü  Fixed	
  loca4on	
  for	
  BS,	
  random	
  loca4on	
  
(PPP)	
  for	
  eavesdroppers	
  and	
  UEs	
  in	
  an	
  
unbounded	
  two	
  dimensional	
  space.	
  

ü  Flat	
  Rayleigh	
  fading	
  channel.	
  
ü BS	
  only	
  knows	
  the	
  CSI	
  of	
  the	
  UEs,	
  

does	
  not	
  know	
  the	
  CSI	
  for	
  
eavesdroppers.	
  

ü Mul4ple	
  antennas	
  at	
  the	
  BS	
  with	
  TAS.	
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ü Policy	
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Lemma 1: The conditional secrecy outage probability given the
BS-UE distance for UE ordering policy I can be written as

F (I)
so (β | dBUn) = 1−

K∑

i=0

Ci
K(−1)i+1

√
pq

2
p+2q−3

2 π
p+2q

2 −1

×Gp+2q,0
0,p+2q

(
a2q
k bp

pp4qq2q

∣∣∣∣
−

0, 1
p , ...,

p−1
p , 1

2q ,
2
2q , ..., 1

)

,

(9)

where Gm,n
s,t

(
z

∣∣∣∣
u1, . . . , us

v1, . . . , vt

)
is the Meijer G function, α = p/q

with p, q ∈ Z+, a = kdαBUn
, and b = πρEΓ(

2
α + 1)β2/α.

Proof: See Appendix I.

All that remains is to average over the BS-UE distance. The
statistics of the nth nearest neighbor in a PPP are well known.
Using these results, we have that the PDF of dBUn is [24]

fdBUn
(dBUn) = e−ρUπd

2
BUn

2ρnUπ
nd2n−1

BUn

Γ(n)
. (10)

Finally, by using (9) and (10), we arrive at the expression for the
secrecy outage probability shown in

P (I)
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0
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(dBUn) ddBUn
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k
K
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)
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K
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1
4
√
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×G3,2
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, α = 4,

(11)

where
Ae = πρEΓ

(
2
α

+ 1

)
. (12)

B. Policy II: Ordering by Channel Gain

For this ordering policy, let

xn =
dαBUn

max
k∈(1...K)

(|hBkUn |2)
(13)

and define the set Ψ = {xn, n ∈ N}. The following lemmata
allow us to make progress based on these definitions.

Lemma 2: The set Ψ is a PPP and the intensity function can be
given by

ρΨ(ψ) =
K−1∑

l=0

Cl
K(−1)l

2πρUKψ
2
α−1Γ( 2

α + 1)

α(l + 1)
2
α+1

. (14)

Proof: See Appendix II.
Lemma 3: The PDF of xn is given by

fxn(ψ) =
2(Auψ

2
α )n exp

(
−Auψ

2
α

)

αψΓ(n)
, (15)

where

Au =
K−1∑

l=0

Cl
K(−1)l

πρUKΓ( 2
α + 1)

(l + 1)
2
α+1

(16)

and the CDF of 1/xn is given by

F 1
xn

(x) =
Γ(n,Aux

2
α )

Γ(n)
, (17)

where Γ(· , ·) is the upper incomplete gamma function.
Proof: See Appendix III.
Now, by using (8) and (17), we can obtain the secrecy outage

probability for the second UE ordering policy as follows:

P (II)
so (β) = P

(
γBU

γBE∗
< β

)

= 1−
∫ ∞

0

F 1
xn

(βy)fγBE∗ (y) dy

= 1−
(

Auβ
− 2

α

Auβ− 2
α +Ae

)n

(18)

where Ae and Au are defined in (12) and (16), respectively.

IV. SIMULATIONS RESULTS

In this section, simulation results are given to verify the analysis
presented above. In the simulations, we assume the noise variance
σ2
n = 1, and the transmission-power-to-noise ratio PB/σ2

n = 50
dB. The simulation results are obtained by averaging over 105

independent Monte Carlo trials. The single-antenna case (K = 1)
is our benchmark.

Fig. 2 verifies the secrecy outage probability expressions given
in (11) for the nearest UE (n = 1) for ordering policy I. The path
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0.01 m−2 and ρU = 0.5 m−2. We can see that with increasing
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The Beta Reputation System

2 Building Blocks in the Beta Reputation System

The beta reputation system consists of elements that can be used separately or in combination in order
to provide a flexible framework for integrating reputation services into e-commerce applications. The
reputation function and reputation rating which are described in Sections 2.2 and 2.3 below form a
basis on which the building blocks described in the subsequent sections can be added depending on the
requirements.

2.1 The Beta Density Function

Our reputation system is based on the beta probability density function which can be used to repre-
sent probability distributions of binary events. This provides a sound mathematical basis for combining
feedback and for expressing reputation ratings. The mathematical analysis leading to the expression for
posteriori probability estimates of binary events can be found in many text books on probability theory,
e.g. Casella & Berger 1990[2] p.298, and we will only present the results here.

Posteriori probabilities of binary events can be represented as beta distributions. The beta-family of
probability density functions is a continuous family of functions indexed by the two parameters and .
The beta distribution can be expressed using the gamma function as:

where (1)

with the restriction that the probability variable if , and if . The probability
expectation value of the beta distribution is given by:

(2)

Let us consider a process with two possible outcomes , and let be the observed number of
outcome and let be the observed number of outcome . Then the probability density function of
observing outcome in the future can be expressed as a function of past observations by setting:

and where (3)

As an example, a process with two possible outcomes that has produced outcome seven
times and outcome only once, will have a beta function expressed as which is plotted in
Figure 1.
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Abstract

Reputation systems can be used to foster good behaviour and to encourage adherence to contracts in
e-commerce. Several reputation systems have been deployed in practical applications or proposed in the
literature. This paper describes a new system called the beta reputation system which is based on using
beta probability density functions to combine feedback and derive reputation ratings. The advantage of
the beta reputation system is flexibility and simplicity as well as its foundation on the theory of statistics.

1 Introduction

Contracts and agreements need some form of enforcement in order to be respected. Traditionally, trans-
action parties can rely on legal procedures in case of disagreement or contract breach. In e-commerce
it can be difficult to rely on legal procedures because it is often unclear which jurisdiction applies, and
because the cost of legal procedures often are higher than the contractual value itself.

As a substitute for enforcement principles that are used in traditional commerce, reputation sys-
tems have emerged as a method for stimulating adherence to electronic contracts and for fostering trust
amongst strangers in e-commerce transactions [9]. A reputation system gathers, distributes, and aggre-
gates feedback about participants behaviour. According to Resnick et al. [10] reputation mechanisms
can provide an incentive for honest behaviour and help people make decisions about who to trust.

The work reported in this paper has been funded in part by the Co-operative Research Centre for Enterprise Distributed
Systems Technology (DSTC) through the Australian Federal Government’s CRC Programme (Department of Industry, Science
& Resources)
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Audun Jøsang and Roslan Ismail

This curve expresses the uncertain probability that the process will produce outcome during future
observations. The probability expectation value is given by . This can be interpreted as
saying that the relative frequency of outcome in the future is somewhat uncertain, and that the most
likely value is 0.8.

The variable is a probability variable, so that for a given the probability density
represents second order probability. The first-order variable represents the probability of an event,
whereas the density represents the probability that the first-order variable has a specific value.
Since the first-order variable is continuous, the second-order probability for any given value
of is vanishingly small and therefore meaningless as such. It is only meaningful to compute

for a given interval , or simply to compute the expectation value of . Below we
will define a reputation rating that is based on the expectation value.

2.2 The Reputation Function

When observing binary processes with two possible outcomes , the beta function takes the integer
number of past observations of and to estimate the probability of , or in other words, to predict the
expected relative frequency with which will happen in the future.

By replacing the parameters in Eq.(1) by through the mapping of Eq.(3), the parameters
can be directly interpreted as the number of observations of outcome and respectively, and the

prior density function before any observation can be expressed by setting .
Combining feedback resulting from an e-commerce transaction is not the same as statistical observa-

tions of a binary event, because an agent’s perceived satisfaction after a transaction is not binary. Instead
will let positive and negative feedback be given as a pair of continuous values where reflects the
degree of satisfaction and reflects the degree of dissatisfaction. This leads to the following definition
of the reputation function:

Definition 1 (Reputation Function) Let and respectively represent the (collective) amount of
positive and negative feedback about target entity provided by an agent (or collection of agents)
denoted by , then the function defined by:

where (4)

is called ’s reputation function by . The tuple will be called ’s reputation parameters by
. For simplicity and compactness of notation we will sometimes write instead of .

By using Eq.(2) the probability expectation value of the reputation function can be expressed as:

(5)

We will consider reputation functions to be subjective in the sense that if agent provides feedback
about target , then the reputation function resulting from that feedback represents ’s reputation as
seen by , and can not be considered to represent ’s reputation from an objective viewpoint, because
no such thing exists. For this reason is called ’s reputation function by . Superscripts
thus represents the feedback provider, and subscripts represent the feedback target.

4
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protocols are no longer suitable. Some effort has been devoted
to developing trust protocols that can be used in dynamic
ad hoc systems (see, e.g., [5], [8]). However, these were
largely hand-shaking or message-passing procedures designed
to reduce the amount of evidence that was needed before
trust could be established and/or identify malicious entities
operating within the network.

The study of trust in wireless networks has largely been
based on the assumption that a communication link between
two arbitrary nodes can be formed. Yet recent theoretical work
on wireless network connectivity has provided insight into how
the intricate features of the physical communication medium,
the encoding and decoding techniques, and the geometric
properties of the network domain influence whether a set of
nodes can even form a connected network in the first place [3],
[9]. It stands to reason that by incorporating trust into these
models, engineers will be able to glean important information
about the relationship between the adopted trust protocol and
the physical and stochastic nature of the underlying commu-
nication environment, which can ultimately be used to design
better trust protocols and more efficient communication and
networking techniques.

B. Contributions
In this paper, we address the question of whether a set

of devices, or nodes, can form a trusted, fully connected
network by analyzing the probability that nodes belonging
to a trustworthy subset can connect without allowing nodes
from an untrustworthy subset to join the network. To this
end, we incorporate trust into the network model detailed
in [3] and present a leading order analysis of the probability
of trusted connectivity for two trust models: proximity-based
trust, where trust between two nodes is a function of the
distance between them, and experience-based trust, where
trust is dependent upon the outcomes from prior interactions
between nodes. Both models are probabilistic, a condition that
has been adopted in other works (see, e.g., [7], [10]), and one
that we motivate in the next section. Our analysis illustrates
a clear and simple mathematical relationship between the
local pairwise trust probabilities and the underlying physics of
the communication medium, and thus we conclude that trust
protocols should be designed as part of the larger complex
wireless communication system rather than as standalone add-
on features.

II. TRUST AS A RANDOM PROCESS

We adopt a probabilistic model of trust between two com-
municating devices. This will enable us to account for trust
when studying the properties of wireless networks within a
stochastic framework. Before discussing technical details, it is
important to motivate this view of trust as a random process.

First, consider the process of network formation, during
which a given node may not have a priori knowledge of the
integrity of neighbouring nodes. For a given node configu-
ration, deterministic protocols can be employed to establish
communication and trust, which then leads to a particular state

node 1�

node 2�

node 3�n

trust�
communication�

Fig. 1. Example depicting the illogical case where nodes are allowed to
form trust relationships without being able to directly communicate.

of the network, including topology, traffic flows, etc. However,
it is informative to be able to study network performance
averaged over many such instantiations. Such analysis can
yield optimised protocols and more efficient designs. This
averaging leads to the need for a stochastic trust model.

One might also consider the dynamic properties of a
network. The temporal evolution of the network state will
affect trust and communication. Nodes may enter or leave the
network, and the locations of the nodes may change over time.
The processes can be modelled stochastically, thus pointing to
a need for a compatible trust model.

Let us now establish a rigorous mathematical definition of
trust between two nodes i and j. In what follows, we will
often refer to the nodes by their locations ri, rj ∈ V , where
V ⊆ Rd is a Lebesgue measurable set for some positive integer
d with measure vd(V) = V . Note that V is typically just the
Euclidean area (two dimensions) or volume (three dimensions)
of the network domain V . Let {i ∼ j} signify the event that
node i directly trusts node j and vice versa1. Furthermore, let
{i ↔ j} signify the event that nodes i and j can communicate
directly (according to some criterion), with {i ! j} denoting
the complement of that event. We can write the probability
that a trusted connection is established between nodes i and j
as

P(i ∼ j) = P(i ∼ j|i ↔ j)P(i ↔ j)

+ P(i ∼ j|i ! j)P(i ! j). (1)

In our connectivity model, the second term in (1) will equate
to zero. To understand the logic behind this assertion, consider
Fig. 1, which depicts three nodes along with a configuration
of trust links as well as communication links. This example
corresponds to the situation where the second term in (1) is not
zero. Node 2 can communicate with nodes 1 and 3 directly,
but nodes 1 and 3 cannot communicate directly. On the other
hand, according to the diagram, nodes 1 and 3 have established

1We assume that all pairwise interaction is bidirectional in this work.
Extension to directed models is of interest (cf. [6], [10]), but is not considered
in this preliminary study.
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that we motivate in the next section. Our analysis illustrates
a clear and simple mathematical relationship between the
local pairwise trust probabilities and the underlying physics of
the communication medium, and thus we conclude that trust
protocols should be designed as part of the larger complex
wireless communication system rather than as standalone add-
on features.

II. TRUST AS A RANDOM PROCESS

We adopt a probabilistic model of trust between two com-
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when studying the properties of wireless networks within a
stochastic framework. Before discussing technical details, it is
important to motivate this view of trust as a random process.

First, consider the process of network formation, during
which a given node may not have a priori knowledge of the
integrity of neighbouring nodes. For a given node configu-
ration, deterministic protocols can be employed to establish
communication and trust, which then leads to a particular state

node 1�
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node 3�n
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communication�

Fig. 1. Example depicting the illogical case where nodes are allowed to
form trust relationships without being able to directly communicate.

of the network, including topology, traffic flows, etc. However,
it is informative to be able to study network performance
averaged over many such instantiations. Such analysis can
yield optimised protocols and more efficient designs. This
averaging leads to the need for a stochastic trust model.

One might also consider the dynamic properties of a
network. The temporal evolution of the network state will
affect trust and communication. Nodes may enter or leave the
network, and the locations of the nodes may change over time.
The processes can be modelled stochastically, thus pointing to
a need for a compatible trust model.

Let us now establish a rigorous mathematical definition of
trust between two nodes i and j. In what follows, we will
often refer to the nodes by their locations ri, rj ∈ V , where
V ⊆ Rd is a Lebesgue measurable set for some positive integer
d with measure vd(V) = V . Note that V is typically just the
Euclidean area (two dimensions) or volume (three dimensions)
of the network domain V . Let {i ∼ j} signify the event that
node i directly trusts node j and vice versa1. Furthermore, let
{i ↔ j} signify the event that nodes i and j can communicate
directly (according to some criterion), with {i ! j} denoting
the complement of that event. We can write the probability
that a trusted connection is established between nodes i and j
as

P(i ∼ j) = P(i ∼ j|i ↔ j)P(i ↔ j)

+ P(i ∼ j|i ! j)P(i ! j). (1)

In our connectivity model, the second term in (1) will equate
to zero. To understand the logic behind this assertion, consider
Fig. 1, which depicts three nodes along with a configuration
of trust links as well as communication links. This example
corresponds to the situation where the second term in (1) is not
zero. Node 2 can communicate with nodes 1 and 3 directly,
but nodes 1 and 3 cannot communicate directly. On the other
hand, according to the diagram, nodes 1 and 3 have established

1We assume that all pairwise interaction is bidirectional in this work.
Extension to directed models is of interest (cf. [6], [10]), but is not considered
in this preliminary study.
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trust in a direct manner. This could only have been achieved
by using node 2 as an intermediary. But such a procedure is
not possible since node 1 does not trust node 2. Hence, it
must be that nodes can only establish trust directly if they
can communicate directly, or if they can connect via a trusted
indirect path. Since we are inherently coupling trust and
communication in this connectivity study, the latter possibility
will be absorbed into the model and we can thus ignore it. It
is worth noting, however, that if we were concerned with the
notion of trust accessibility [11] rather than just connectivity,
indirect trust relationships would be the focus of the work.

Returning to (1), we can write

P(i ∼ j) = TijHij = τij (2)

where Tij is the conditional probability that i and j trust
each other given that they can communicate and Hij is the
probability that i and j can communicate. There is a rich
theory associated with the pairwise connectivity probability
Hij , which is intimately connected to the pair connected-
ness function in the statistical physics literature [3], [12].
But what probability distribution should we assume for the
pairwise trust probability Tij? Some studies have addressed
this question for non-geometric network models [7], [10].
In the next section, we will observe through an analysis
of the connectivity properties of random geometric networks
admitting trust relationships that the answer to this question
largely depends on the global properties of the network.

III. NETWORK CONNECTIVITY ANALYSIS

Consider a set A of NA nodes located in V . We assume
the nodes in A constitute a trustworthy set in the sense
that an omniscient entity observing the system would see
that all nodes in A can trust each other. It is important to
note that, in actuality, each node is unaware that all other
nodes in the domain can be trusted; hence, there is a nonzero
probability that pairwise connections will not be established
between nodes in A, even where the communication channel
permits. The density of trustworthy nodes in V is denoted by
ρA = NA/V , where we recall that V = vd(V).

Now suppose a second set B of NB nodes is also contained
in V . We define B as an untrustworthy set in the sense that the
aforementioned omniscient observer would see that nodes in A
should not trust nodes in B. In reality, this distinction between
the sets A and B could manifest as a low trust probability Tij

for some i ∈ A and j ∈ B, provided a suitable trust protocol is
designed. The density of untrustworthy nodes is ρB = NB/V .

We will limit discussion to the case where there is one set
of each type of node; however, generalization of the ensuing
analysis to more complex scenarios is possible. Moreover, for
the sake of exposition, we assume nodes in both sets can
occupy any point in V , but it is straightforward to extend the
theory detailed herein to other configurations, including the
case where the subspaces occupied by A and B are disjoint.

We assume that nodes are distributed uniformly in V .
Consequently, we define the spatial average of a function

f(r1, . . . , rN ) over V as

⟨f⟩ = 1

V N

ˆ
VN

f(r1, . . . , rN ) dr1 · · · drN . (3)

The notation ⟨·⟩S will be used to denote averaging with respect
to a set of points S .

Finally, in order to maintain simplicity and tractability, it is
assumed that the pairwise communication channels and trust
process describing the interactions between nodes in A are
independent. The same assumption is made for the statistical
events corresponding to B as well as the links between the
trustworthy and untrustworthy sets.

A. Proximity-Based Trust
As mentioned in section I-B, we will consider two broad

classes of trust model: proximity-based trust and experience-
based trust. The underlying assumptions on which these
models are based influence the statistical properties of the trust
distribution Tij .

The proximity-based model draws its name from the as-
sumption that Tij (and thus τij) is a function of the distance
separating nodes i and j. This assumption might be applicable
in disaster relief or emergency public safety networks – both
in a proprietary context as well as part of highly anticipated
5G D2D services – where the requirement for a quick set-up
and the localized nature of the network might imply the most
trusted devices would be those in the immediate geographic
region. Additionally, sensor networks that perform localized
and distributed processing may fall into this category. The
arguably more prosaic case of D2D communication in 5G
cellular networks for file sharing purposes could also be
considered to adhere to a proximity-based trust model. As a
consequence of the proximity argument, we will often write
τij as τ(|ri − rj |) or τ(rij) in what follows, where nodes i
and j are located at ri and rj , respectively, and rij = |ri−rj |.
The same notation will be used for Hij and Tij . The set
membership of i and j will be clear from the context.

A fully connected network (in the communication sense) is
defined as one where a communication path exists between any
two arbitrary nodes, possibly using intermediate nodes to link
shorter paths. We can extend this definition to include a model
of trust by defining a trusted network as a fully connected
network where the paths between nodes are comprised of
trusted links2. To analyze the probability that a trusted network
can be established, we begin with the probability that the nodes
in set A, with locations a1, . . . ,aNA , form a trusted network.
By taking the cluster expansion approach used in [3], we can
write this probability as

Pt,A(a1, . . . ,aNA) = 1−
∑

g∈GA
NA−1

πg −
∑

g∈GA
NA−2

πg − · · · (4)

where GA
n denotes the set of graphs (i.e., networks) comprised

of nodes in A with largest trusted component of size n, and

2From this point onward, the use of the term trust will generally imply
that both communication and trust are established. A sound basis for this
implication follows from the argument made in section II.
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by using node 2 as an intermediary. But such a procedure is
not possible since node 1 does not trust node 2. Hence, it
must be that nodes can only establish trust directly if they
can communicate directly, or if they can connect via a trusted
indirect path. Since we are inherently coupling trust and
communication in this connectivity study, the latter possibility
will be absorbed into the model and we can thus ignore it. It
is worth noting, however, that if we were concerned with the
notion of trust accessibility [11] rather than just connectivity,
indirect trust relationships would be the focus of the work.

Returning to (1), we can write

P(i ∼ j) = TijHij = τij (2)

where Tij is the conditional probability that i and j trust
each other given that they can communicate and Hij is the
probability that i and j can communicate. There is a rich
theory associated with the pairwise connectivity probability
Hij , which is intimately connected to the pair connected-
ness function in the statistical physics literature [3], [12].
But what probability distribution should we assume for the
pairwise trust probability Tij? Some studies have addressed
this question for non-geometric network models [7], [10].
In the next section, we will observe through an analysis
of the connectivity properties of random geometric networks
admitting trust relationships that the answer to this question
largely depends on the global properties of the network.

III. NETWORK CONNECTIVITY ANALYSIS

Consider a set A of NA nodes located in V . We assume
the nodes in A constitute a trustworthy set in the sense
that an omniscient entity observing the system would see
that all nodes in A can trust each other. It is important to
note that, in actuality, each node is unaware that all other
nodes in the domain can be trusted; hence, there is a nonzero
probability that pairwise connections will not be established
between nodes in A, even where the communication channel
permits. The density of trustworthy nodes in V is denoted by
ρA = NA/V , where we recall that V = vd(V).

Now suppose a second set B of NB nodes is also contained
in V . We define B as an untrustworthy set in the sense that the
aforementioned omniscient observer would see that nodes in A
should not trust nodes in B. In reality, this distinction between
the sets A and B could manifest as a low trust probability Tij

for some i ∈ A and j ∈ B, provided a suitable trust protocol is
designed. The density of untrustworthy nodes is ρB = NB/V .

We will limit discussion to the case where there is one set
of each type of node; however, generalization of the ensuing
analysis to more complex scenarios is possible. Moreover, for
the sake of exposition, we assume nodes in both sets can
occupy any point in V , but it is straightforward to extend the
theory detailed herein to other configurations, including the
case where the subspaces occupied by A and B are disjoint.

We assume that nodes are distributed uniformly in V .
Consequently, we define the spatial average of a function

f(r1, . . . , rN ) over V as

⟨f⟩ = 1

V N

ˆ
VN

f(r1, . . . , rN ) dr1 · · · drN . (3)

The notation ⟨·⟩S will be used to denote averaging with respect
to a set of points S .

Finally, in order to maintain simplicity and tractability, it is
assumed that the pairwise communication channels and trust
process describing the interactions between nodes in A are
independent. The same assumption is made for the statistical
events corresponding to B as well as the links between the
trustworthy and untrustworthy sets.

A. Proximity-Based Trust
As mentioned in section I-B, we will consider two broad

classes of trust model: proximity-based trust and experience-
based trust. The underlying assumptions on which these
models are based influence the statistical properties of the trust
distribution Tij .

The proximity-based model draws its name from the as-
sumption that Tij (and thus τij) is a function of the distance
separating nodes i and j. This assumption might be applicable
in disaster relief or emergency public safety networks – both
in a proprietary context as well as part of highly anticipated
5G D2D services – where the requirement for a quick set-up
and the localized nature of the network might imply the most
trusted devices would be those in the immediate geographic
region. Additionally, sensor networks that perform localized
and distributed processing may fall into this category. The
arguably more prosaic case of D2D communication in 5G
cellular networks for file sharing purposes could also be
considered to adhere to a proximity-based trust model. As a
consequence of the proximity argument, we will often write
τij as τ(|ri − rj |) or τ(rij) in what follows, where nodes i
and j are located at ri and rj , respectively, and rij = |ri−rj |.
The same notation will be used for Hij and Tij . The set
membership of i and j will be clear from the context.

A fully connected network (in the communication sense) is
defined as one where a communication path exists between any
two arbitrary nodes, possibly using intermediate nodes to link
shorter paths. We can extend this definition to include a model
of trust by defining a trusted network as a fully connected
network where the paths between nodes are comprised of
trusted links2. To analyze the probability that a trusted network
can be established, we begin with the probability that the nodes
in set A, with locations a1, . . . ,aNA , form a trusted network.
By taking the cluster expansion approach used in [3], we can
write this probability as

Pt,A(a1, . . . ,aNA) = 1−
∑

g∈GA
NA−1

πg −
∑

g∈GA
NA−2

πg − · · · (4)

where GA
n denotes the set of graphs (i.e., networks) comprised

of nodes in A with largest trusted component of size n, and

2From this point onward, the use of the term trust will generally imply
that both communication and trust are established. A sound basis for this
implication follows from the argument made in section II.
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πg is the probability of the graph g occurring, which is

πg =
∏

(i,j)∈g

τij
∏

(i,j)/∈g

(1− τij). (5)

We can construct the probability that a trusted network is
established in the presence of untrustworthy nodes by forming
the average

Pt =

〈〈
Pt,A(a1, . . . ,aNA)

NB∏

j=1

NA∏

i=1

(1− τ(|ai − bj |))
〉

A

〉

B
(6)

where the double product denotes the probability that there
is no trusted connection between nodes in A and nodes in
B (which have locations b1, . . . ,bNB ). Concentrating on the
case where the trustworthy set A is dense, we retain the first
two terms in (4) and write3

Pt ≈
〈

NB∏

j=1

〈
NA∏

i=1

(1− τij)

〉

A

〉

B

−
〈〈(

NA∑

p=1

∏

i ̸=p

(1− τip)

)(
NB∏

j=1

NA∏

i=1

(1− τij)

)〉

A

〉

B

.

(7)

Note that the leading term in (7), which we denote by P (1)
t ,

only depends on the trust relationship between the two sets
A and B. The correction term depends on this relationship as
well, but also encompasses the internal connectivity properties
of the set A through the summation, which corresponds to the
probability that there is an isolated node in A. The isolated
node probability is a function of both physical connectivity
(through Hij) and the trust protocol (through Tij). Hence,
even this simple approximation provides insight into how trust
protocols are ultimately linked to the physical properties of the
communication system.

To explore this notion further, we focus on P (1)
t for the

remainder of the paper; discussion of correction terms, while
interesting from a technical point of view, will be deferred to
a later contribution. The dai integrals in the inner average of
P (1)
t separate, and thus we can write

P (1)
t =

〈
NB∏

j=1

(
1− ρA

NA

ˆ
V
τ(|a− bj |) da

)NA
〉

B

=

(
1

V

ˆ
V
e−ρA

´
V τ(|a−b|) da(1 +O(1/NA)) db

)NB

(8)

which, to leading order, is a good approximation for V ≫√
NA. Recall, however, that (7) is accurate in the dense

regime; hence, if V scales such that ρA becomes small,
the approximation is no longer accurate. For further details
regarding scaling assumptions, see [3].

3See [3] for details of this approximation.

It is clear from (8) that a well designed trust protocol will
ensure that τij ≪ 1 over all of V when i ∈ A and j ∈ B, or
equivalently

T (rij) ≪
1

ρAH(rij)
, rij ≥ 0. (9)

Note that this is a sufficient condition, and it draws a direct
mathematical link between the trust protocol and the physical
environment in which the network is situated. To the best of
the author’s knowledge, such a relationship has not previously
been investigated. Eq. (9) implies that a trust protocol need
not be concerned too much with authentication of nodes in B
that lie far from a given reference node (in A) since Hij ≪ 1
in this case. However, the protocol must ensure that nodes
located sufficiently close to the reference node are queried
extensively in order to maintain a high degree of separation
between nodes in A and those in B. Of course, the protocol
must also ensure that nodes in A are likely to establish trusted
connections, which leads to the requirement Tij ≈ 1 for
i, j ∈ A. This juxtaposition of design rules points to a need
for further investigation of well-established trust protocols as
well as the development of new methods that take into account
the underlying physics of the system, as discussed above.

To obtain the rule given in (9), we made no assumptions
about the size of the set B. But it should be observed that
NB is small enough that (9) does not depend on ρB . Now,
returning to (8) and assuming that τ is small as previously
discussed, the exponential in the integral can be expanded to
first order to yield

P (1)
t ≈

(
1− ρAρBM [τ ]

NB

)NB

(10)

where
M [τ ] =

ˆ
V2

τ(|a− b|) da db (11)

is the mass of the pairwise trust-connection probability τ
expressed as an average over all possible configurations of
node pairs. Letting NB grow large yields the compact and
rather convenient expression

P (1)
t ≈ e−ρAρBM [τ ]. (12)

It is possible to use the techniques detailed in [3] to obtain a
representation for M [τ ] in terms of contributions arising from
different geometric features of V . Physically, (12) depicts the
exponential dependence the network trust probability has on
the average proportion of trusted links between A and B.

Another approach that we can employ to further analyze
M [τ ] when V is a convex, compact set is to transform the
2d-dimensional integral into a one-dimensional integral with
respect to the distance between nodes located at a and b,
which is called the pair distance and is denoted by r = |a−b|.
It is known from the theory of stochastic geometry that the
pair distance density function can be written as [13]

℘(r) =
vd−1(Sd−1

r )

V 2
γV(r) (13)
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πg is the probability of the graph g occurring, which is
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τij
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(i,j)/∈g

(1− τij). (5)

We can construct the probability that a trusted network is
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where the double product denotes the probability that there
is no trusted connection between nodes in A and nodes in
B (which have locations b1, . . . ,bNB ). Concentrating on the
case where the trustworthy set A is dense, we retain the first
two terms in (4) and write3
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Note that the leading term in (7), which we denote by P (1)
t ,

only depends on the trust relationship between the two sets
A and B. The correction term depends on this relationship as
well, but also encompasses the internal connectivity properties
of the set A through the summation, which corresponds to the
probability that there is an isolated node in A. The isolated
node probability is a function of both physical connectivity
(through Hij) and the trust protocol (through Tij). Hence,
even this simple approximation provides insight into how trust
protocols are ultimately linked to the physical properties of the
communication system.

To explore this notion further, we focus on P (1)
t for the

remainder of the paper; discussion of correction terms, while
interesting from a technical point of view, will be deferred to
a later contribution. The dai integrals in the inner average of
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which, to leading order, is a good approximation for V ≫√
NA. Recall, however, that (7) is accurate in the dense

regime; hence, if V scales such that ρA becomes small,
the approximation is no longer accurate. For further details
regarding scaling assumptions, see [3].

3See [3] for details of this approximation.
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ensure that τij ≪ 1 over all of V when i ∈ A and j ∈ B, or
equivalently

T (rij) ≪
1
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, rij ≥ 0. (9)

Note that this is a sufficient condition, and it draws a direct
mathematical link between the trust protocol and the physical
environment in which the network is situated. To the best of
the author’s knowledge, such a relationship has not previously
been investigated. Eq. (9) implies that a trust protocol need
not be concerned too much with authentication of nodes in B
that lie far from a given reference node (in A) since Hij ≪ 1
in this case. However, the protocol must ensure that nodes
located sufficiently close to the reference node are queried
extensively in order to maintain a high degree of separation
between nodes in A and those in B. Of course, the protocol
must also ensure that nodes in A are likely to establish trusted
connections, which leads to the requirement Tij ≈ 1 for
i, j ∈ A. This juxtaposition of design rules points to a need
for further investigation of well-established trust protocols as
well as the development of new methods that take into account
the underlying physics of the system, as discussed above.

To obtain the rule given in (9), we made no assumptions
about the size of the set B. But it should be observed that
NB is small enough that (9) does not depend on ρB . Now,
returning to (8) and assuming that τ is small as previously
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expressed as an average over all possible configurations of
node pairs. Letting NB grow large yields the compact and
rather convenient expression
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It is possible to use the techniques detailed in [3] to obtain a
representation for M [τ ] in terms of contributions arising from
different geometric features of V . Physically, (12) depicts the
exponential dependence the network trust probability has on
the average proportion of trusted links between A and B.

Another approach that we can employ to further analyze
M [τ ] when V is a convex, compact set is to transform the
2d-dimensional integral into a one-dimensional integral with
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regime; hence, if V scales such that ρA becomes small,
the approximation is no longer accurate. For further details
regarding scaling assumptions, see [3].
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It is clear from (8) that a well designed trust protocol will
ensure that τij ≪ 1 over all of V when i ∈ A and j ∈ B, or
equivalently

T (rij) ≪
1

ρAH(rij)
, rij ≥ 0. (9)

Note that this is a sufficient condition, and it draws a direct
mathematical link between the trust protocol and the physical
environment in which the network is situated. To the best of
the author’s knowledge, such a relationship has not previously
been investigated. Eq. (9) implies that a trust protocol need
not be concerned too much with authentication of nodes in B
that lie far from a given reference node (in A) since Hij ≪ 1
in this case. However, the protocol must ensure that nodes
located sufficiently close to the reference node are queried
extensively in order to maintain a high degree of separation
between nodes in A and those in B. Of course, the protocol
must also ensure that nodes in A are likely to establish trusted
connections, which leads to the requirement Tij ≈ 1 for
i, j ∈ A. This juxtaposition of design rules points to a need
for further investigation of well-established trust protocols as
well as the development of new methods that take into account
the underlying physics of the system, as discussed above.

To obtain the rule given in (9), we made no assumptions
about the size of the set B. But it should be observed that
NB is small enough that (9) does not depend on ρB . Now,
returning to (8) and assuming that τ is small as previously
discussed, the exponential in the integral can be expanded to
first order to yield

P (1)
t ≈

(
1− ρAρBM [τ ]

NB

)NB

(10)

where
M [τ ] =

ˆ
V2

τ(|a− b|) da db (11)

is the mass of the pairwise trust-connection probability τ
expressed as an average over all possible configurations of
node pairs. Letting NB grow large yields the compact and
rather convenient expression

P (1)
t ≈ e−ρAρBM [τ ]. (12)

It is possible to use the techniques detailed in [3] to obtain a
representation for M [τ ] in terms of contributions arising from
different geometric features of V . Physically, (12) depicts the
exponential dependence the network trust probability has on
the average proportion of trusted links between A and B.

Another approach that we can employ to further analyze
M [τ ] when V is a convex, compact set is to transform the
2d-dimensional integral into a one-dimensional integral with
respect to the distance between nodes located at a and b,
which is called the pair distance and is denoted by r = |a−b|.
It is known from the theory of stochastic geometry that the
pair distance density function can be written as [13]

℘(r) =
vd−1(Sd−1

r )

V 2
γV(r) (13)

979

Bridging	
  probability	
  



Proximity	
  Based	
  Trust	
  

78	
  

Leading	
  order	
  probability	
  of	
  trusted	
  connec4vity	
  

density	
  of	
  set	
  A	
  
no.	
  nodes	
  in	
  set	
  A	
  



Proximity	
  Based	
  Trust	
  

79	
  

A	
  well	
  designed	
  trust	
  protocol	
  will	
  ensure	
  that	
  

• Links	
  trust	
  protocol	
  to	
  density	
  of	
  network	
  A	
  and	
  physical	
  
communica4on	
  

• Valid	
  irrespec4ve	
  of	
  size	
  of	
  set	
  B	
  

πg is the probability of the graph g occurring, which is

πg =
∏

(i,j)∈g

τij
∏

(i,j)/∈g

(1− τij). (5)

We can construct the probability that a trusted network is
established in the presence of untrustworthy nodes by forming
the average

Pt =

〈〈
Pt,A(a1, . . . ,aNA)

NB∏
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NA∏
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(1− τ(|ai − bj |))
〉

A

〉

B
(6)

where the double product denotes the probability that there
is no trusted connection between nodes in A and nodes in
B (which have locations b1, . . . ,bNB ). Concentrating on the
case where the trustworthy set A is dense, we retain the first
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〉
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∏
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〉

B
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(7)

Note that the leading term in (7), which we denote by P (1)
t ,

only depends on the trust relationship between the two sets
A and B. The correction term depends on this relationship as
well, but also encompasses the internal connectivity properties
of the set A through the summation, which corresponds to the
probability that there is an isolated node in A. The isolated
node probability is a function of both physical connectivity
(through Hij) and the trust protocol (through Tij). Hence,
even this simple approximation provides insight into how trust
protocols are ultimately linked to the physical properties of the
communication system.

To explore this notion further, we focus on P (1)
t for the

remainder of the paper; discussion of correction terms, while
interesting from a technical point of view, will be deferred to
a later contribution. The dai integrals in the inner average of
P (1)
t separate, and thus we can write

P (1)
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j=1
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1− ρA

NA

ˆ
V
τ(|a− bj |) da

)NA
〉

B

=
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V
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)NB

(8)

which, to leading order, is a good approximation for V ≫√
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the approximation is no longer accurate. For further details
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M [τ ] when V is a convex, compact set is to transform the
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where Sd−1
r = {x ∈ Rd : ∥x∥ = r} is the sphere of

dimension d − 1 and radius r with “surface area” given by
vd−1(Sd−1

r ) = 2πd/2rd−1/Γ(d/2). The term γV(r) is known
as the isotropized set covariance of V , and it represents the
proportion of the set V with points that admit pairings with a
separation of exactly r units of distance. Now, assuming the
diameter of V is given by D = sup{|a − b| : a,b ∈ V}, we
can use (13) to rewrite the trust volume as

M [τ ] =
2πd/2

Γ(d/2)

ˆ D

0
rd−1γV(r)τ(r) dr. (14)

The isotropized set covariance has a closed form for some
bounding geometries in R2 and R3 (see, e.g., [13] and refer-
ences therein). Moreover, if τ is small for r ≫ 0, we may
expand the integrand of (14) to obtain4

M [τ ] =
πd/2T (0)V

Γ
(
d
2 + 1

) rd0 +O(rd+1
0 ) (15)

for some typical connection range parameter r0 ≪ D. Details
are omitted for brevity, but higher order expansions are pos-
sible. This expansion provides a clear link between the trust
probability T , the volume of the domain V , and the dimension
of the system d. Note that the pairwise connection probability
H does not factor into the expression since communication is
guaranteed over short distances.

B. Experience-Based Trust
The experience-based trust model is more suitable for

studying the dynamic properties of a network or trust-critical
applications such as those where nodes collaborate in order to
attain some high priority goal (e.g., critical sensing and actua-
tion scenarios). In this model, the trust probability describing
the interaction between two nodes is not a function of distance
between them. Instead, this probability is formed from prior
experience. For example, if node i has interacted with node j
in the past, and has built up a catalogue of evidence that mostly
points toward node j being trustworthy, then Tij will be close
to one. Of course, if two nodes have no previous experience
(i.e., node i has no a priori knowledge of the trustworthiness of
node j), then it is logical that Tij = 1/2 initially. Over time,
Tij can be refined. Distributed trust establishment protocols
also fall into the experience-based trust model [10], [14].

It is clear that Tij is a random variable. It is common to
model random probabilities of this nature as beta distributed
random variables owing to the fact that beta and binomial
distributions are conjugate, and, as stated above, we wish to
be able to update Tij based on experience or information
gathered, which could take the form of the numbers of
successful and unsuccessful transactions. This approach to
modelling random probabilities is fairly commonplace, having
been employed to study multi-agent systems [7], [15], [16]
and develop reputation systems for applications such as e-
commerce [17].

4This condition may be met in practice for certain “hard” connectivity
models or when τ decays exponentially. Line-of-site Bluetooth-like or near-
field connections fall into this scenario.

For the remainder of this discussion, we will be interested
in studying the steady-state, average probability that a trusted
network can form. This focus enables us to extend the aver-
aging operation over the distribution of Tij when analyzing
the connectivity properties of the network. Thus, the exact
distribution of Tij can be abstracted for the moment.

Considering only the leading order term in (7), we can
average with respect to the trust probabilities {Tij} under the
assumption that these variables are independent and identically
distributed to obtain

P (1)
t =

〈
NB∏

j=1

〈
NA∏

i=1

(1− E[Tij ]Hij)

〉

A

〉

B

. (16)

As an aside, we see that if Tij is beta distributed with
density function given by f(t) = B(α,β)−1tα−1(1 − t)β−1

for 0 ≤ t ≤ 1 and B(α,β) = Γ(α)Γ(β)/Γ(α + β), then
E[Tij ] = α/(α + β) for all i and j denoting nodes in A and
B, respectively. Following the calculation through as in the
preceding section, we arrive at the approximation

P (1)
t ≈ 1− ρAρBE[T ]

ˆ
V2

H(|a− b|) da db (17)

where we have omitted the subscript indices from Tij and used
the assumption that

E[T ] ≪ 1

ρAρB
´
V2 H da db

(18)

for links between the sets A and B. Again, this brief analysis
demonstrates the leading order relationship that exists between
the physical system and the steady-state behaviour of the trust
protocol. By employing the tools of stochastic geometry and
those used in [3], we can develop the theory further in the
manner discussed in section III-A.

IV. NUMERICAL RESULTS

To better illustrate the effect that trust has on network con-
nectivity, the probability that a trusted network is established
in the presence of a set of untrustworthy nodes is presented as
a function of ρA in Fig. 2. For this example, a square domain
(d = 2) of side length L = 7 was taken to be the bounding
geometry. A Gaussian connectivity function was assumed, i.e.,

H(r) = e−βr2 , r ≥ 0 (19)

which corresponds to a rich scattering environment (Rayleigh
fading) with an empirical path loss exponent of η = 2. For
simplicity, β was set equal to one here. It was assumed that five
untrustworthy nodes shared the domain with the trustworthy
nodes, i.e., NB = 5. The trust distribution corresponding to
links between the sets A and B followed a proximity-based
model, and was defined to be

T (r) = mH(r) (20)

for simplicity5, with m ≥ 0 being a design parameter that
governs how trusting nodes are of each other. It was assumed

5Other exponential models were studied as well, some being similar to
those reported in [10], but the basic trends of the results were similar. Hence,
those results have been omitted here.
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attain some high priority goal (e.g., critical sensing and actua-
tion scenarios). In this model, the trust probability describing
the interaction between two nodes is not a function of distance
between them. Instead, this probability is formed from prior
experience. For example, if node i has interacted with node j
in the past, and has built up a catalogue of evidence that mostly
points toward node j being trustworthy, then Tij will be close
to one. Of course, if two nodes have no previous experience
(i.e., node i has no a priori knowledge of the trustworthiness of
node j), then it is logical that Tij = 1/2 initially. Over time,
Tij can be refined. Distributed trust establishment protocols
also fall into the experience-based trust model [10], [14].

It is clear that Tij is a random variable. It is common to
model random probabilities of this nature as beta distributed
random variables owing to the fact that beta and binomial
distributions are conjugate, and, as stated above, we wish to
be able to update Tij based on experience or information
gathered, which could take the form of the numbers of
successful and unsuccessful transactions. This approach to
modelling random probabilities is fairly commonplace, having
been employed to study multi-agent systems [7], [15], [16]
and develop reputation systems for applications such as e-
commerce [17].

4This condition may be met in practice for certain “hard” connectivity
models or when τ decays exponentially. Line-of-site Bluetooth-like or near-
field connections fall into this scenario.

For the remainder of this discussion, we will be interested
in studying the steady-state, average probability that a trusted
network can form. This focus enables us to extend the aver-
aging operation over the distribution of Tij when analyzing
the connectivity properties of the network. Thus, the exact
distribution of Tij can be abstracted for the moment.

Considering only the leading order term in (7), we can
average with respect to the trust probabilities {Tij} under the
assumption that these variables are independent and identically
distributed to obtain

P (1)
t =

〈
NB∏

j=1

〈
NA∏

i=1

(1− E[Tij ]Hij)

〉

A

〉

B

. (16)

As an aside, we see that if Tij is beta distributed with
density function given by f(t) = B(α,β)−1tα−1(1 − t)β−1

for 0 ≤ t ≤ 1 and B(α,β) = Γ(α)Γ(β)/Γ(α + β), then
E[Tij ] = α/(α + β) for all i and j denoting nodes in A and
B, respectively. Following the calculation through as in the
preceding section, we arrive at the approximation

P (1)
t ≈ 1− ρAρBE[T ]

ˆ
V2

H(|a− b|) da db (17)

where we have omitted the subscript indices from Tij and used
the assumption that

E[T ] ≪ 1

ρAρB
´
V2 H da db

(18)

for links between the sets A and B. Again, this brief analysis
demonstrates the leading order relationship that exists between
the physical system and the steady-state behaviour of the trust
protocol. By employing the tools of stochastic geometry and
those used in [3], we can develop the theory further in the
manner discussed in section III-A.

IV. NUMERICAL RESULTS

To better illustrate the effect that trust has on network con-
nectivity, the probability that a trusted network is established
in the presence of a set of untrustworthy nodes is presented as
a function of ρA in Fig. 2. For this example, a square domain
(d = 2) of side length L = 7 was taken to be the bounding
geometry. A Gaussian connectivity function was assumed, i.e.,

H(r) = e−βr2 , r ≥ 0 (19)

which corresponds to a rich scattering environment (Rayleigh
fading) with an empirical path loss exponent of η = 2. For
simplicity, β was set equal to one here. It was assumed that five
untrustworthy nodes shared the domain with the trustworthy
nodes, i.e., NB = 5. The trust distribution corresponding to
links between the sets A and B followed a proximity-based
model, and was defined to be

T (r) = mH(r) (20)

for simplicity5, with m ≥ 0 being a design parameter that
governs how trusting nodes are of each other. It was assumed

5Other exponential models were studied as well, some being similar to
those reported in [10], but the basic trends of the results were similar. Hence,
those results have been omitted here.
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