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Overview	  of	  Security	  in	  Wireless	  Networks	  
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•  Secrecy	  is	  a	  key	  issue	  in	  wireless	  communica4on	  
networks	  
–  5G	  Communica4ons,	  i.e.,	  D2D,	  M2M	  
–  Near	  Field	  Communica4ons,	  i.e.,	  Apple	  Pay	  
– Military	  Networks,	  i.e.,	  Drone	  Self-‐Organized	  Networks	  
– Medical	  Communica4ons	  



4	  

Layered	  communica4ons	  architecture	  

Applica4on	   Secure	  Shell	  (SSH)	  

Transport	   Transport	  Layer	  Security	  (TLS/SSL)	  

Network	   Internet	  Protocol	  Security	  (IPSec)	  

Link	   Wired	  Equivalent	  Privacy	  (WEP)	  

Physical	   Informa4on	  theore4c	  security	  

Overview	  of	  Security	  in	  Wireless	  Networks	  



Countering	  Security	  Threats	  in	  Wireless	  
Networks	  
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•  Cryptography	  

•  Spread	  spectrum,	  e.g.,	  frequency	  hopping	  &	  CDMA	  

•  Informa4on	  theore4c	  security	  

ü Assumes	  limited	  computa4onal	  power	  at	  the	  eavesdropper	  
ü Vulnerable	  to	  large-‐scale	  implementa4on	  of	  quantum	  computers	  
ü At	  higher	  layers	  of	  the	  protocol	  stack	  

ü Assumes	  limited	  knowledge	  at	  the	  eavesdropper	  
ü Vulnerable	  to	  rogue	  or	  captured	  node	  events	  
ü At	  the	  physical	  layer	  

ü No	  assump4ons	  of	  limited	  computa4onal	  power	  or	  knowledge	  at	  
eavesdropper	  

ü Absolutely	  secure	  
ü At	  the	  physical	  layer	  
ü Uses	  signal	  processing,	  communica4ons	  and	  coding	  schemes	  



Fundamentals	  of	  PHY	  Security	  
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Breaches	  in	  wireless	  (physical	  layer)	  network	  security	  

The	  purpose	  of	  an	  eavesdropper	  is	  to	  
listen	  to	  the	  transmission,	  and	  try	  to	  
detect	  the	  secret	  messages	  encoded	  
therein.	  

The	  purpose	  of	  a	  jammer	  is	  solely	  
to	  disrupt	  the	  process	  of	  
communica4on	  by	  increasing	  the	  
legi4mate	  receiver’s	  probability	  
of	  decoding	  error.	  

ü Eavesdropping	  	  

ü Jamming	  	  
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•  Wire-‐tap	  Channel	  

Reliability:	   Security:	  

[Wyner,	  1975;	  Csiszar	  &	  Korner;	  1978]	  

•  Cipher	  
[Shannon,	  1949]	  Security:	  

The	  wire-‐tap	  channel	  must	  be	  degraded.	  

Fundamentals	  of	  PHY	  Security	  
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•  Fading	  Wire-‐tap	  Channel	  

Secrecy	  capacity:	  

Secrecy	  outage	  probability:	  

Secrecy	  connecHvity	  probability:	  

Fundamentals	  of	  PHY	  Security	  
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Secrecy	  Enhancement	  for	  PHY	  Security	  

ü Preprocessing	  
Ø  Coding	  	  
Ø  Secrecy	  Key	  Genera4on	  

ü Signal	  Processing	  
Ø  MIMO/massive	  MIMO	  &	  beamforming	  
Ø  Transmit	  antenna	  selec4on	  
Ø  Full	  duplex	  communica4on/ar4ficial	  noise	  
	  

ü Coopera4on	  Communica4ons	  
Ø  Relay	  &	  ar4ficial	  noise	  
	  

ü Game	  Theore4c	  Methods	  
	  

Fundamentals	  of	  PHY	  Security	  



	  	  	  	  	  	  Coding	  
Ø  To	  fully	  exploit	  the	  randomness	  of	  the	  channel	  for	  security,	  we	  need	  secrecy-‐

capacity-‐achieving	  channel	  codes	  

Ø  The	  coding	  problem	  for	  Alice	  in	  the	  wire	  tap	  channel	  involves	  adding	  redundancy	  
for	  enabling	  Bob	  to	  correct	  errors	  (across	  the	  main	  channel)	  and	  adding	  
randomness	  to	  keep	  Eve	  in	  the	  dark	  (across	  the	  wire-‐tap	  channel),	  which	  is	  
different	  from	  coding	  in	  tradi4onal	  communica4ons.	  	  

Ø  Polar	  codes,	  LDPC	  will	  be	  used	  poten4ally	  in	  5G	  standard	  	  
	  

11	  

Preprocessing	  

Secrecy	  Enhancement	  
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	  	  	  	  	  	  Secure	  key	  genera4on	  
Ø  The	  ability	  to	  exchange	  keys	  between	  users	  is	  vital	  in	  any	  wireless	  based	  security	  

system.	  	  So	  a	  key	  genera4on	  technique	  that	  exploits	  the	  randomness	  of	  the	  
wireless	  channel	  is	  a	  promising	  alterna4ve	  to	  exis4ng	  key	  distribu4on	  techniques,	  
e.g.,	  public	  key	  cryptography.	  

[Zhang,	  2016]	  

Secrecy	  Enhancement	  
Preprocessing	  
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ü Antenna	  selec4on	  	  
Ø  Secrecy	  performance	  can	  be	  enhanced	  by	  exploi4ng	  the	  diversity	  gain	  of	  the	  

intended	  link.	  
Ø  Reduces	  the	  implementa4on	  complexity	  of	  MIMO/massive	  MIMO	  
Ø  Channel	  state	  informa4on	  between	  the	  transmiLer	  and	  eavesdroppers	  

could	  be	  perfectly	  known	  or	  par4ally	  known.	  

ü Full	  duplex	  transmission	  
Ø  Thanks	  to	  self-‐interference	  (SI)	  cancella4on	  techniques,	  the	  power	  of	  

residual	  SI	  can	  be	  close	  to	  the	  noise	  level.	  
Ø  An	  ar4ficial	  noise/jamming	  signal	  will	  affect	  passive	  eavesdroppers.	  
	  

ü Beamforming	  
Ø  Generate	  a	  useful	  signal	  with	  a	  pencil	  beam	  aligned	  with	  the	  legi4mate	  user	  (LU)	  
Ø  Generate	  an	  ar4ficial	  noise	  signal	  in	  the	  null	  space	  of	  the	  LU	  

Secrecy	  Enhancement	  
Signal	  Processing	  
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ü What	  is	  the	  advantage	  of	  
coopera4ve	  
communica4on?	  
Ø  Relays	  are	  used	  to	  assist	  

transmission	  between	  
source	  and	  des4na4on	  

Ø  Performance	  gains	  
Ø  Enlarge	  the	  coverage	  

CooperaHve	  CommunicaHons	  

Secrecy	  Enhancement	  
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[Chen,	  2012]	  

Secrecy	  Enhancement	  
CooperaHve	  CommunicaHons	  

ü Relay-‐assisted	  &	  jamming	  (ar4ficial	  noise)	  
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Ø  Buffer-‐added	  relay	  selec4on	  

Ø  Dual	  antenna	  selec4on	  with	  full	  duplex	  scheme	  

Ø  Friendly	  jammer	  selec4on	  

ü Key	  issues	  for	  secrecy	  enhancement	  

Ø  Need	  to	  know	  the	  CSI	  between	  the	  transmiLer	  and	  the	  eavesdropper(s)	  

Ø  Mostly,	  only	  a	  few	  nodes	  have	  been	  considered	  in	  the	  literature	  

Ø  Need	  to	  know	  the	  loca4on(s)	  of	  eavesdropper(s)	  

CooperaHve	  CommunicaHons	  

ü Relay-‐assisted	  &	  jamming	  (ar4ficial	  noise)	  

Secrecy	  Enhancement	  



Summary:	  A	  significant	  amount	  of	  work	  has	  
been	  done	  to	  study	  informa4on	  theore4c	  
security	  in	  three-‐node	  and	  small	  networks.	  
	  
We,	  as	  a	  community,	  are	  now	  in	  a	  posi2on	  to	  
develop	  models,	  theory	  and	  methods	  to	  
describe	  and	  op2mize	  security	  in	  large-‐scale	  
networks.	  

21	  
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But	  what	  kinds	  of	  quesHons	  would	  we	  like	  
to	  ask?	  
	  
•  Do	  informa4on	  theore4c	  security	  techniques	  

scale?	  
•  How	  can	  we	  design	  and	  op4mize	  network	  

features?	  
•  How	  robust	  are	  PHY	  secrecy	  solu4ons	  to	  

eavesdropper	  scaling?	  
•  How	  does	  spa4al	  randomness	  affect	  secrecy?	  



How	  can	  we	  model	  secrecy	  in	  large	  
networks?	  

23	  

•  Point	  processes	  and	  random	  graph	  formalisms	  
ü Large	  number	  of	  nodes	  can	  be	  analysed	  accurately	  
ü Average	  performance	  can	  be	  analysed;	  loca4ons	  and	  CSI	  for	  eavesdroppers	  

are	  random	  



Main	  Network	  Models	  for	  Secrecy	  

•  Several	  different	  network	  models	  	  
have	  been	  studied	  
–  Ad	  hoc,	  mul4hop	  
–  Ad	  hoc,	  pairwise	  
–  Broadcast,	  cellular	  

24	  

Ad	  hoc,	  mul4hop	  

Ad	  hoc,	  pairwise	  



First	  Secrecy	  Network	  Models:	  
Ad	  Hoc,	  Mul4hop	  

•  The	  first	  forays	  into	  network	  secrecy	  took	  a	  simplis4c	  
view	  
–  Secrecy	  graph	  [Haenggi,	  2008],	  [Goel,	  2010]	  
–  Few	  eavesdroppers,	  focused	  on	  hard	  disk	  connec4on	  

–  Directed	  SG:	  contains	  all	  direc4onal	  informa4on	  
–  Basic	  SG:	  bidirec4onal	  secrecy	  
–  Enhanced	  SG:	  secrecy	  can	  exist	  in	  logical	  OR	  fashion	  

25	  
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•  Pinto	  et	  al	  brought	  informaHon	  theoreHc	  secrecy	  into	  the	  
network	  domain	  through	  the	  noHon	  of	  the	  “intrinsically	  
secure	  graph	  (iS-‐graph)”.	  

[Pinto,	  2012]	  

ü The	  secrecy	  capacity	  (rate)	  of	  the	  Gaussian	  wire-‐tap	  channel	  is	  

ü Defini4on:	  Let	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  denote	  the	  set	  of	  legi4mate	  nodes	  
and	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  denote	  the	  set	  of	  eavesdroppers.	  The	  iS-‐graph	  
is	  the	  directed	  graph	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  with	  vertex	  set	  	  	  	  	  	  	  	  and	  edge	  set	  

where	  	  	  	  	  is	  a	  threshold	  represen4ng	  the	  prescribed	  infimum	  secrecy	  	  	  
rate	  for	  each	  communica4on	  link.	  

Intrinsically	  Secure	  Graphs	  
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[Pinto,	  2012]	  

ü The	  iS-‐graph	  in	  two	  dimensional	  space	  	  

ü The	  Poisson	  iS-‐graph	  is	  an	  iS-‐graph	  where	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  are	  mutually	  
independent,	  homogeneous	  Poisson	  point	  processes	  with	  densi4es	  	  	  	  	  	  
and	  	  	  	  	  	  ,	  respec4vely.	  

ü In-‐isolaHon:	  A	  typical	  node	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  cannot	  receive	  from	  any	  
node	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (	  	  	  	  	  	  	  	  	  	  	  	  	  )	  with	  posi4ve	  secrecy	  rate	  

ü Out-‐isolaHon:	  A	  typical	  node	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  cannot	  transmit	  to	  	  
any	  node	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (	  	  	  	  	  	  	  	  	  	  	  	  	  )	  with	  posi4ve	  secrecy	  rate	  

Intrinsically	  Secure	  Graphs	  
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•  Full	  Out	  and	  In	  ConnecHvity	  in	  the	  Poisson	  iS-‐Graph	  
ü Full	  out	  connecHvity:	  A	  legi4mate	  node	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  is	  fully	  out-‐

connected	  with	  respect	  to	  a	  region	  	  	  	  	  if	  in	  the	  iS-‐graph	  there	  exists	  
a	  directed	  path	  from	  	  	  	  	  	  to	  every	  node	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  for	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  .	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

ü Full	  in	  connecHvity:	  A	  legi4mate	  node	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  is	  fully	  in-‐
connected	  with	  respect	  to	  a	  region	  	  	  	  	  	  if	  in	  the	  iS-‐graph	  there	  exists	  
a	  directed	  path	  to	  	  	  	  	  from	  every	  node	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  for	  	  	  	  	  	  	  	  	  	  	  	  	  	  .	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

Intrinsically	  Secure	  Graphs	  

[Pinto,	  2012]	  
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•  Why	  is	  full	  secrecy	  connecHvity	  important?	  

ü Full	  connec4vity	  is	  a	  desirable	  feature	  for	  some	  scenarios,	  i.e.,	  military	  
networks	  and	  disaster	  relief.	  

ü  	  It	  is	  a	  key	  condi4on	  that	  ensures	  certain	  high	  priority	  nodes	  in	  the	  network	  
always	  remain	  connected.	  

•  What	  is	  full	  secrecy	  connecHvity?	  
ü All	  nodes	  can	  communicate	  to	  each	  other,	  possibly	  through	  mul4ple	  

hops,	  with	  a	  posi4ve	  secrecy	  rate.	  

•  Three	  types	  of	  full	  secrecy	  connecHvity	  
ü Full	  bidirec4onal	  secrecy	  connec4vity	  
ü Full	  strong	  secrecy	  connec4vity	  
ü Full	  weak	  secrecy	  connec4vity	  

Intrinsically	  Secure	  Graphs:	  Recent	  Results	  
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Fig.	  1	  Examples	  for	  the	  three	  types	  of	  full	  secrecy	  connec4vity.	  

ü  Full	  bidirecHonal	  secrecy	  connecHvity	  (FBSC):	  All	  nodes	  can	  communicate	  with	  
each	  other	  through	  bi-‐direc4onal	  links	  with	  a	  posi4ve	  secrecy	  rate,	  possibly	  
through	  mul4ple	  hops.	  (like	  Haenggi’s	  “basic	  SG”	  model)	  

ü  Full	  strong	  secrecy	  connecHvity	  (FSSC):	  All	  nodes	  can	  communicate	  with	  each	  
other	  through	  direc4onal	  links	  with	  a	  posi4ve	  secrecy	  rate,	  possibly	  through	  
mul4ple	  hops.	  

ü  Full	  weak	  secrecy	  connecHvity	  (FWSC):	  All	  nodes	  can	  communicate	  with	  each	  
other	  through	  either	  forward	  direc4onal	  links	  or	  reverse	  direc4onal	  links	  with	  a	  
posi4ve	  secrecy	  rate,	  possibly	  through	  mul4ple	  hops.	  

•  Three	  types	  of	  full	  secrecy	  connecHvity	  

Intrinsically	  Secure	  Graphs:	  Recent	  Results	  

Refinement	  
of	  Haenggi’s	  
enhanced	  SG	  
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•  Full	  bidirecHonal	  secrecy	  connecHvity:	  
ü  Bidirec4onal	  secrecy	  connec4vity	  

	  

ü  At	  high	  node	  densi4es,	  the	  probability	  of	  full	  connec4vity	  is	  simply	  the	  
complement	  of	  the	  probability	  of	  an	  isolated	  node	  [4].	  Therefore,	  we	  can	  obtain	  
an	  upper	  bound	  for	  the	  overall	  probability	  of	  full	  bidirec4onal	  secrecy	  connec4vity	  
as:	  

	  

Intrinsically	  Secure	  Graphs:	  Recent	  Results	  
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•  Full	  strong	  secrecy	  connecHvity:	  
ü  The	  out-‐isolated	  and	  in-‐isolated	  probability	  for	  legi4mate	  user	  	  	  	  	  	  can	  be	  

defined	  as:	  

	  
	  

ü  The	  lower	  bound	  for	  full	  strong	  secrecy	  connec4vity	  is	  the	  probability	  that	  every	  
node	  is	  out-‐connected	  and	  in-‐connected,	  	  	  	  

	  
•  Full	  weak	  secrecy	  connecHvity:	  

ü  The	  lower	  bound	  for	  full	  weak	  secrecy	  connec4vity	  is	  the	  probability	  that	  every	  
node	  is	  out-‐connected	  or	  in-‐connected,	  	  	  	  

	  

Intrinsically	  Secure	  Graphs:	  Recent	  Results	  



33	  

•  Secrecy	  Enhancement	  Techniques	  
ü Sectorized	  Transmission	  

Ø  Each	  legi4mate	  node	  transmits	  independently	  in	  mul4ple	  sectors	  of	  the	  
plane	  (e.g.,	  using	  direc4onal	  antennas)	  

ü Eavesdropper	  Neutraliza4on	  
Ø  Each	  legi4mate	  node	  guarantees	  the	  absence	  of	  eavesdroppers	  in	  a	  
surrounding	  region	  (e.g.,	  by	  deac4va4ng	  such	  eavesdroppers)	  

[PINTO,	  2012]	  

Network	  Secrecy	  Enhancement	  
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ü Secrecy	  Guard	  Zone	  and	  Ar4ficial	  Noise	  	  
Ø  Since	  unsecure	  transmission	  is	  mainly	  due	  to	  the	  presence	  of	  an	  
eavesdropper	  close	  to	  the	  transmiLer,	  the	  use	  of	  a	  secrecy	  guard	  zone	  
for	  networks	  in	  which	  the	  legi4mate	  transmiLers	  are	  able	  to	  detect	  the	  
existence	  of	  eavesdroppers	  in	  their	  vicini4es	  has	  been	  considered	  

Network	  Secrecy	  Enhancement	  

Snapshot	  of	  a	  part	  of	  a	  network	  with	  a	  
secrecy	  guard	  zone	  around	  each	  
transmiLer.	  TransmiLers	  T0,	  T1,	  and	  T2	  
do	  not	  find	  any	  eavesdroppers	  inside	  their	  
individual	  guard	  zone,	  and	  hence	  can	  
transmit	  confiden4al	  messages	  to	  their	  
intended	  receivers.	  However,	  transmiLer	  
T3	  detects	  an	  eavesdropper,	  E2,	  inside	  its	  
guard	  zone.	  If	  a	  non-‐coopera4ve	  protocol	  
is	  used,	  T3	  remains	  silent.	  If	  a	  coopera4ve	  
protocol	  is	  used,	  T3	  transmits	  ar4ficial	  
noise.	  

[Zhou,	  2011]	  
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Eavesdropper
Information	  link
Eavesdropper	  link
Interference	  link
Self	  Interference	  link

BS

UE

Fig:	  The	  system	  model	  for	  fixed	  BS	  and	  UE	  with	  randomly	  located	  eavesdroppers.	  

ü  Fixed	  loca4on	  for	  BS	  and	  UE,	  random	  
loca4ons	  for	  eavesdroppers	  in	  a	  disc.	  

ü  Flat	  Rayleigh	  fading	  channel.	  
ü  BS	  only	  knows	  the	  CSI	  of	  the	  UE,	  does	  

not	  know	  the	  CSI	  for	  eavesdroppers.	  
ü  Mul4ple	  antennas	  at	  BS	  with	  half	  

duplex	  mode	  and	  full	  duplex	  antenna	  
at	  UE.	  

	  
	  

ü Transmit	  Antenna	  Selec4on	  (TAS)	  &	  Full	  Duplex	  (FD)	  UE	  

Network	  Secrecy	  Enhancement:	  
Worked	  Example	  1	  

We	  will	  analyze	  the	  secrecy	  outage	  probability	  for	  this	  model...	  
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ü Aqer	  TAS,	  the	  end-‐to-‐end	  SNR	  at	  the	  UE	  and	  the	  worst	  ED	  can	  be	  wriLen	  as:	  
	  

	  

	  

	  	  	  	  	  	  where	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  for	  HD	  UE,	  	  	  	  	  	  	  	  	  	  	  	  	  	  for	  FD	  UE,	  and	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  for	  independent	  EDs	  and	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  for	  colluding	  EDs	  	  	  

ü Probability	  of	  secrecy	  outage	  is	  well	  approximated	  by	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

•  Secrecy	  Outage	  Defini4on	  

Secrecy	  Outage	  Analysis:	  	  
TAS	  with	  HD/FD	  UE	  

Eavesdropper
Information	  link
Eavesdropper	  link
Interference	  link
Self	  Interference	  link

BS

UE
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and F(·) is an operator that takes different forms depending on
whether EDs act independently or whether they collude. In the
former case, we have

F(·) = max

e2�
(·) (8)

so that we ensure we consider the strongest ED channel, whereas
in the case of colluding eavesdroppers, the operator is given by

F(·) =
X

e2�

(·) (9)

since all EDs are capable of combining their signals in an optimal
manner to decode the message. Based on these formulae, the
secrecy outage probability can be defined as [21]

Pso = P([CBU � CBE⇤ ]
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�BU
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where [x]+ = max(0, x), P(·) denotes the probability operator, ✏
denotes the target secrecy rate, � = 2

✏ denotes the target secrecy
SNR ratio4.

III. SECRECY OUTAGE PROBABILITY FOR INDEPENDENTLY
ACTING EAVESDROPPERS

Here, we analyse the secrecy outage probability of the downlink
for HD and FD UEs under the assumption that EDs act inde-
pendently of one another. The EDs cannot share their received
signals in this case, so secrecy outage is dictated by the ED with
highest channel capacity. Hence, F(·) is defined by (8). We begin
by considering an HD UE, then proceed with a treatment of the
problem for an FD UE.

A. Half Duplex UE

Beginning with the right-hand side of (10), the secrecy outage
probability can be evaluated to yield the result stated in the
following proposition.

Proposition 1: The downlink secrecy outage probability for an
HD UE is given by
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where Gm,n
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v1, . . . , vt
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is the Meijer G function, Ck

K =

K!/((K � k)!k!) is the binomial coefficient, ak = kd↵BU , b =

4The approximation in (10) is a standard assumption for systems operating in
the high SNR region. In this paper, this condition implies PB is sufficiently large
and/or R is sufficiently small.

⇡⇢E�(1 + 2/↵)�2/↵, p, q 2 Z+ so that ↵ = p/q is a positive
rational number, and �(x) =

R1
0 tx�1et dt is the standard gamma

function.
Proof: See Appendix I.

Eq. (11) provides an explicit, exact relation between the secrecy
outage probability and various system parameters. A number of
interesting points can be noted from this expression. First, this
is the most complete analysis of the HD UE case reported in
the literature in that any rational path loss exponent is accounted
for in this expression. Indeed, since the path loss exponent is an
experimentally estimated parameter, it is, by definition, rational in
practice due to finite precision measurement equipment. Although
the outage probability is given in terms of the Meijer G function,
it can be easily evaluated using numerical software such as
Mathematica or Maple for any given inputs. It should be noted
that for the special case of ↵ = 2, (11) reduces to the following
expression written in terms of first order modified Bessel functions
of the second kind:
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p
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p
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(12)

However, for other values of ↵, the expression given in the
proposition is the most compact, accessible form.

For fixed dBU , ⇢E , �, and ↵, the secrecy outage probability
solely depends on the available number of BS antennas K. It is
not a function of the transmit power PB . This is perfectly intuitive
since an increase in PB would yield a proportional increase in both
the UE SNR and the ED SNR. Thus, in order to satisfy a given
secrecy requirement, one must increase the number of antennas
used in the TAS procedure. With large-scale antenna systems and
massive MIMO making headlines in the research community in
recent years, it is prudent to ask how the secrecy outage probability
scales with the number of antennas used for selection. Since the
BS-ED channels are not considered in the selection process, it is
clear that the secrecy outage probability decreased monotonically
with increasing K. But how fast does this occur? The following
lemma provides some insight to this question.

Lemma 2: The downlink secrecy outage probability for an HD
UE located in the presence of independently acting EDs is lower
bounded by
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as K ! 1.
Proof: See Appendix II.

This result implies that, for large numbers of antennas, secrecy
performance improves very slowly with increasing K. From a
system design perspective, this is a very important result. It
suggests that even systems with large numbers of antennas (e.g.,
massive MIMO systems with a TAS-based secrecy enhancement
mode) should exploit only a small subset of independent spatial
paths to perform selection. Such an approach would allow the
remaining elements to serve other UEs on separate channels. The
total number of transmit chains (i.e., up-conversion and power
amplification circuitry) required would be the number of UEs
served in a single channel use. The actual benefit brought by TAS
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Outage:	  HD	  UE,	  No	  Collusion	  
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where [x]+ = max(0, x), P(·) denotes the probability operator, ✏
denotes the target secrecy rate, � = 2

✏ denotes the target secrecy
SNR ratio4.

III. SECRECY OUTAGE PROBABILITY FOR INDEPENDENTLY
ACTING EAVESDROPPERS

Here, we analyse the secrecy outage probability of the downlink
for HD and FD UEs under the assumption that EDs act inde-
pendently of one another. The EDs cannot share their received
signals in this case, so secrecy outage is dictated by the ED with
highest channel capacity. Hence, F(·) is defined by (8). We begin
by considering an HD UE, then proceed with a treatment of the
problem for an FD UE.

A. Half Duplex UE

Beginning with the right-hand side of (10), the secrecy outage
probability can be evaluated to yield the result stated in the
following proposition.
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Proof: See Appendix I.

Eq. (11) provides an explicit, exact relation between the secrecy
outage probability and various system parameters. A number of
interesting points can be noted from this expression. First, this
is the most complete analysis of the HD UE case reported in
the literature in that any rational path loss exponent is accounted
for in this expression. Indeed, since the path loss exponent is an
experimentally estimated parameter, it is, by definition, rational in
practice due to finite precision measurement equipment. Although
the outage probability is given in terms of the Meijer G function,
it can be easily evaluated using numerical software such as
Mathematica or Maple for any given inputs. It should be noted
that for the special case of ↵ = 2, (11) reduces to the following
expression written in terms of first order modified Bessel functions
of the second kind:
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However, for other values of ↵, the expression given in the
proposition is the most compact, accessible form.

For fixed dBU , ⇢E , �, and ↵, the secrecy outage probability
solely depends on the available number of BS antennas K. It is
not a function of the transmit power PB . This is perfectly intuitive
since an increase in PB would yield a proportional increase in both
the UE SNR and the ED SNR. Thus, in order to satisfy a given
secrecy requirement, one must increase the number of antennas
used in the TAS procedure. With large-scale antenna systems and
massive MIMO making headlines in the research community in
recent years, it is prudent to ask how the secrecy outage probability
scales with the number of antennas used for selection. Since the
BS-ED channels are not considered in the selection process, it is
clear that the secrecy outage probability decreased monotonically
with increasing K. But how fast does this occur? The following
lemma provides some insight to this question.

Lemma 2: The downlink secrecy outage probability for an HD
UE located in the presence of independently acting EDs is lower
bounded by

P (H)
so >

⇡⇢Ed
2
BU�

2/↵
�(1 + 2/↵)

e (lnK)

2/↵

✓
1 +O

✓
1

(lnK)

2/↵

◆◆
(13)

as K ! 1.
Proof: See Appendix II.

This result implies that, for large numbers of antennas, secrecy
performance improves very slowly with increasing K. From a
system design perspective, this is a very important result. It
suggests that even systems with large numbers of antennas (e.g.,
massive MIMO systems with a TAS-based secrecy enhancement
mode) should exploit only a small subset of independent spatial
paths to perform selection. Such an approach would allow the
remaining elements to serve other UEs on separate channels. The
total number of transmit chains (i.e., up-conversion and power
amplification circuitry) required would be the number of UEs
served in a single channel use. The actual benefit brought by TAS
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and F(·) is an operator that takes different forms depending on
whether EDs act independently or whether they collude. In the
former case, we have

F(·) = max
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(·) (8)

so that we ensure we consider the strongest ED channel, whereas
in the case of colluding eavesdroppers, the operator is given by

F(·) =
X
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(·) (9)

since all EDs are capable of combining their signals in an optimal
manner to decode the message. Based on these formulae, the
secrecy outage probability can be defined as [21]
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where [x]+ = max(0, x), P(·) denotes the probability operator, ✏
denotes the target secrecy rate, � = 2

✏ denotes the target secrecy
SNR ratio4.

III. SECRECY OUTAGE PROBABILITY FOR INDEPENDENTLY
ACTING EAVESDROPPERS

Here, we analyse the secrecy outage probability of the downlink
for HD and FD UEs under the assumption that EDs act inde-
pendently of one another. The EDs cannot share their received
signals in this case, so secrecy outage is dictated by the ED with
highest channel capacity. Hence, F(·) is defined by (8). We begin
by considering an HD UE, then proceed with a treatment of the
problem for an FD UE.

A. Half Duplex UE

Beginning with the right-hand side of (10), the secrecy outage
probability can be evaluated to yield the result stated in the
following proposition.

Proposition 1: The downlink secrecy outage probability for an
HD UE is given by
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function.
Proof: See Appendix I.

Eq. (11) provides an explicit, exact relation between the secrecy
outage probability and various system parameters. A number of
interesting points can be noted from this expression. First, this
is the most complete analysis of the HD UE case reported in
the literature in that any rational path loss exponent is accounted
for in this expression. Indeed, since the path loss exponent is an
experimentally estimated parameter, it is, by definition, rational in
practice due to finite precision measurement equipment. Although
the outage probability is given in terms of the Meijer G function,
it can be easily evaluated using numerical software such as
Mathematica or Maple for any given inputs. It should be noted
that for the special case of ↵ = 2, (11) reduces to the following
expression written in terms of first order modified Bessel functions
of the second kind:
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However, for other values of ↵, the expression given in the
proposition is the most compact, accessible form.

For fixed dBU , ⇢E , �, and ↵, the secrecy outage probability
solely depends on the available number of BS antennas K. It is
not a function of the transmit power PB . This is perfectly intuitive
since an increase in PB would yield a proportional increase in both
the UE SNR and the ED SNR. Thus, in order to satisfy a given
secrecy requirement, one must increase the number of antennas
used in the TAS procedure. With large-scale antenna systems and
massive MIMO making headlines in the research community in
recent years, it is prudent to ask how the secrecy outage probability
scales with the number of antennas used for selection. Since the
BS-ED channels are not considered in the selection process, it is
clear that the secrecy outage probability decreased monotonically
with increasing K. But how fast does this occur? The following
lemma provides some insight to this question.

Lemma 2: The downlink secrecy outage probability for an HD
UE located in the presence of independently acting EDs is lower
bounded by
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as K ! 1.
Proof: See Appendix II.

This result implies that, for large numbers of antennas, secrecy
performance improves very slowly with increasing K. From a
system design perspective, this is a very important result. It
suggests that even systems with large numbers of antennas (e.g.,
massive MIMO systems with a TAS-based secrecy enhancement
mode) should exploit only a small subset of independent spatial
paths to perform selection. Such an approach would allow the
remaining elements to serve other UEs on separate channels. The
total number of transmit chains (i.e., up-conversion and power
amplification circuitry) required would be the number of UEs
served in a single channel use. The actual benefit brought by TAS
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Outage:	  HD	  UE,	  No	  Collusion	  (Proof)	  
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Fig. 5. The comparison of secrecy outage probabilities for FD and HD UEs with different residual self-interference channel gains, where dBU = 10
m, R = 50 m and ρE = 0.001 m−2.
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Fig. 6. The comparison of secrecy outage probabilities for FD and HD
UEs with different pathloss exponents, where ρE = 0.001 m−2, λUU = 0
dB, dBU = 5 m and R = 50 m.

versus different path loss exponents for the HD and FD UE cases
operating in the presence of independent and colluding EDs, where
λUU = 0 dB, dBU = 5 m, R = 50 m, ρE = 0.001 m−2

and K = 1 and 5. In this example, there are on average about
eight eavesdroppers in the vicinity of the network. We can see that
the secrecy outage probability for HD UE with independent and
colluding EDs slightly decreases until reaching a flat tail with an
increasing path loss exponent. On the contrary, the secrecy outage
probability for the FD case increases to this saturation point. The
reason is that when the UE’s transmission power fixed, the power of
the jamming signal from the FD UE is attenuated significantly for
large α. Furthermore, it is clear that the secrecy outage probability
for colluding EDs is always higher than for independent EDs.

VI. CONCLUSION

In this paper, we studied a method of enhancing secrecy per-
formance in wireless networks with randomly located independent

and colluding EDs, which relies on the use of TAS at the base
station and an FD jamming scheme at the UE. For both of these
models, we obtained expressions for the secrecy outage probability
in the downlink for HD and FD UE operation. The expressions
for HD systems have very accurate approximate or exact forms
in terms of elementary and/or special functions for all path loss
exponents. Those related to the FD systems have very accurate
approximate or exact integral forms for general path loss exponents,
while exact closed forms are given for specific exponents. These
results have been confirmed by simulated simulations which showed
how secrecy performance can be enhanced by TAS and FD com-
munications. Our results provide useful insight and analytical tools
that can be used to develop adaptive system solutions (examples
were briefly discussed for hybrid HD/FD UE operation) as well as
a solid basis for further study.

APPENDIX I

We assume all channels are independent and identically dis-
tributed (i.i.d.); consequently, the cumulative distribution function
(CDF) and probability density function (PDF) of γBU in (4) with
ϖ = 0 are given by

FγBU (x) =
(
1− e−xdα

BU

)K
=

K∑

k=0

Ck
K(−1)ke−kxdα

BU ,

fγBU (x) =
K∑

k=0

Ck
K(−1)k+1kdαBUe

−kxdα
BU ,

(25)

respectively, where Ck
K = K!/[k!(K − k)!] is the binomial

coefficient. Then, the CDF of γBE∗ in (6) with ϖ = 0 can be

8

calculated as

FγBE∗ (y) = P
(
max
e∈Φ

(
|hB∗Ee |2

dαBEe

)
< y

)

(a)
= EΦ

[
∏

e∈Φ

P
(
|hB∗Ee |2 < ydαBEe

| Φ
)
]

= EΦ

[
∏

e∈Φ

(
1− e−ydα

BEe

)]

(b)
= exp

(
−ρE

∫ 2π

0

∫ R

0
r
(
e−yrα

)
dr dθ

)

(c)
= exp

(
−2πρE

αy
2
α

(
Γ

(
2

α

)
− Γ

(
2

α
, yRα

)))

(d)
≃ exp

(
−2πρE

αy
2
α

Γ

(
2

α

))(
1 +

2πρE

αy
2
α

O(R2−αy2/α−1e−yRα

)

)
,

(26)

where Γ(·) and Γ(·, ·) denote the gamma and upper incomplete
gamma function, respectively, and where eq. (a) follows from the
independence of R.V.s {|hB∗Ee |2;Ee ∈ Φ}; eq. (b) holds for the
probability generating functional lemma [25]; eq. (c) holds by using
eq. (3.326.4) in [26]; eq. (d) follows from the asymptotic expansion
of the incomplete gamma function (R → ∞) [27].

According to the definition of secrecy outage probability in (10),
(25) and (26), we can obtain an approximation of the secrecy outage
probability as follows

P (H)
so = 1−

∫ ∞

0
fγBU (x)FγBE∗

(
x

β

)
dx

= 1−
K∑

k=0

Ck
K(−1)k+1kdαBU

∫ ∞

0
e−kxdα

BU e
− 2πρE

α( x
β )

2/α Γ( 2
α )

dx.

(27)

We let

I =

∫ ∞

0
e−axe−

b
xc dx =

∫ ∞

0
ue−aue

−
(

b1/c

x

)c du

u
(28)

where a = kdαBU , b = 2πρE

α Γ( 2qp )β2q/p and c = 2q/p. By using
the Mellin convolution theorem, we can get the Mellin transform
as

M[I; s] =
p

2qas+1
Γ

(
ps

2q

)
Γ(1 + s). (29)

Then the inverse transform can be written as

I =
p

2πia

∫ u+i∞

u−i∞
Γ (ps)Γ

(
2q(s+

1

2q
)

)
(a2qbp)−s ds

(a)
=

√
pq

a2
p+2q−3

2 π
p+2q

2 −1

1

2πi

×
∫ u+i∞

u−i∞

(
a2qbp

pp4qq2q

)−s p−1∏

n=0

Γ

(
s+

n

p

) 2q−1∏

n=0

Γ

(
s+

1 + n

2q

)
ds

=

√
pq

a2
p+2q−3

2 π
p+2q

2 −1

×Gp+2q,0
0,p+2q

(
a2qk bp

pp4qq2q

∣∣∣∣
−

0, 1
p , ...,

p−1
p , 1

2q ,
2
2q , ..., 1

)
,

(30)

where G(·) denotes Meijer’s G furcation, u > 0 and (a) holds from
the multiplication theorem [27].

APPENDIX II

We begin with the following basic integral definition of the
secrecy outage probability for this case

P (H)
so = b1c1

∫ ∞

0
(1− e−ax)K

e−b1/x
c1

x1+c1
dx (31)

where a = βdαBU , b1 = c1πρEΓ(2/α) and c1 = 2/α. This
expression can easily be derived from the definitions of the UE SNR
and the ED SNR and follows the calculations presented in Appendix
I. Since the integrand is nonnegative on the interval [0,∞), we have
the simple relations

P (H)
so > b1c1

∫ ∞

lnK
a

(1− e−ax)K
e−b1/x

c1

x1+c1
dx

> b1c1

(
1− 1

K

)K ∫ ∞

lnK
a

e−b1/x
c1

x1+c1
dx

=

(
1− 1

K

)K (
1− exp

(
− ac1b1
(lnK)c1

))
(32)

where the equality results from the substitution u = 1/xc1 . Letting
K grow large, the final line of the equation given above becomes

e−1

(
1 +O

(
1

K

))(
1−

(
1− ac1b1

(lnK)c1
+O

(
1

(lnK)2c1

)))

(33)
and the result stated in the lemma follows.

APPENDIX III

According to (10), (4) and (6) with ϖ = 1, we let
X1 = PU max

k∈(1...K)
(|hBiU |2) and X2 = |hUU |2. Then after self-

interference cancellation, the average channel gain of the residual
self-interference can be denoted as λUU . Therefore, the CDF of X1

and the PDF of X2 can be written as

FX1(x1) =
K∑

k=0

Ck
K(−1)ke−

kx1dαBU
PU

fX2(x2) = 1/λUUe
−x2/λUU ,

(34)

respectively. The CDF and PDF of X = X1
X2+1 are given by

FX(x) =

∫ ∞

0
Fx1(x(x2 + 1))fx2(x2) dx2

=
K∑

k=0

Ck
K(−1)k

PU
dα
BU

e−
kxdαBU

PU

PU
dα
BU

+ kxλUU

(35)

and

fX(x) =
K∑

k=0

Ck
K(−1)k+1

(PU + kxλUUdαBU + PUλUU )ke
− kxdαBU

PU

dαBU (
PU
dα
BU

+ kxλUU )2
.

(36)

Calculate	  PDF	  of	  
BS-‐UE	  SNR	  
(all	  channels	  are	  i.i.d.)	  

Calculate	  CDF	  of	  
BS-‐ED	  SNR	  (worst	  case)	  
a)  Condi4on	  on	  ED	  

distances	  and	  invoke	  
independence	  

b)  Probability	  genera4ng	  
func4onal	  for	  PPPs	  

c)  Integrate	  (incomplete	  
gamma	  func4on)	  

d)  Large	  R	  asympto4cs	  for	  
upper	  incomplete	  
gamma	  func4on	  
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calculated as

FγBE∗ (y) = P
(
max
e∈Φ

(
|hB∗Ee |2

dαBEe

)
< y

)

(a)
= EΦ

[
∏

e∈Φ

P
(
|hB∗Ee |2 < ydαBEe

| Φ
)
]

= EΦ

[
∏

e∈Φ

(
1− e−ydα

BEe

)]

(b)
= exp

(
−ρE

∫ 2π

0

∫ R

0
r
(
e−yrα

)
dr dθ

)

(c)
= exp

(
−2πρE

αy
2
α

(
Γ

(
2

α

)
− Γ

(
2

α
, yRα

)))

(d)
≃ exp

(
−2πρE

αy
2
α

Γ

(
2

α

))(
1 +

2πρE

αy
2
α

O(R2−αy2/α−1e−yRα

)

)
,

(26)

where Γ(·) and Γ(·, ·) denote the gamma and upper incomplete
gamma function, respectively, and where eq. (a) follows from the
independence of R.V.s {|hB∗Ee |2;Ee ∈ Φ}; eq. (b) holds for the
probability generating functional lemma [25]; eq. (c) holds by using
eq. (3.326.4) in [26]; eq. (d) follows from the asymptotic expansion
of the incomplete gamma function (R → ∞) [27].

According to the definition of secrecy outage probability in (10),
(25) and (26), we can obtain an approximation of the secrecy outage
probability as follows

P (H)
so = 1−

∫ ∞

0
fγBU (x)FγBE∗

(
x

β

)
dx

= 1−
K∑

k=0

Ck
K(−1)k+1kdαBU

∫ ∞

0
e−kxdα

BU e
− 2πρE

α( x
β )

2/α Γ( 2
α )

dx.

(27)

We let

I =

∫ ∞

0
e−axe−

b
xc dx =

∫ ∞

0
ue−aue

−
(

b1/c

x

)c du

u
(28)

where a = kdαBU , b = 2πρE

α Γ( 2qp )β2q/p and c = 2q/p. By using
the Mellin convolution theorem, we can get the Mellin transform
as

M[I; s] =
p

2qas+1
Γ

(
ps

2q

)
Γ(1 + s). (29)

Then the inverse transform can be written as

I =
p

2πia

∫ u+i∞

u−i∞
Γ (ps)Γ

(
2q(s+

1

2q
)

)
(a2qbp)−s ds

(a)
=

√
pq

a2
p+2q−3

2 π
p+2q

2 −1

1

2πi

×
∫ u+i∞

u−i∞

(
a2qbp

pp4qq2q

)−s p−1∏

n=0

Γ

(
s+

n

p

) 2q−1∏

n=0

Γ

(
s+

1 + n

2q

)
ds

=

√
pq

a2
p+2q−3

2 π
p+2q

2 −1

×Gp+2q,0
0,p+2q

(
a2qk bp

pp4qq2q

∣∣∣∣
−

0, 1
p , ...,

p−1
p , 1

2q ,
2
2q , ..., 1

)
,

(30)

where G(·) denotes Meijer’s G furcation, u > 0 and (a) holds from
the multiplication theorem [27].

APPENDIX II

We begin with the following basic integral definition of the
secrecy outage probability for this case

P (H)
so = b1c1

∫ ∞

0
(1− e−ax)K

e−b1/x
c1

x1+c1
dx (31)

where a = βdαBU , b1 = c1πρEΓ(2/α) and c1 = 2/α. This
expression can easily be derived from the definitions of the UE SNR
and the ED SNR and follows the calculations presented in Appendix
I. Since the integrand is nonnegative on the interval [0,∞), we have
the simple relations

P (H)
so > b1c1

∫ ∞

lnK
a

(1− e−ax)K
e−b1/x

c1

x1+c1
dx

> b1c1

(
1− 1

K

)K ∫ ∞

lnK
a

e−b1/x
c1

x1+c1
dx

=

(
1− 1

K

)K (
1− exp

(
− ac1b1
(lnK)c1

))
(32)

where the equality results from the substitution u = 1/xc1 . Letting
K grow large, the final line of the equation given above becomes

e−1

(
1 +O

(
1

K

))(
1−

(
1− ac1b1

(lnK)c1
+O

(
1

(lnK)2c1

)))

(33)
and the result stated in the lemma follows.

APPENDIX III

According to (10), (4) and (6) with ϖ = 1, we let
X1 = PU max

k∈(1...K)
(|hBiU |2) and X2 = |hUU |2. Then after self-

interference cancellation, the average channel gain of the residual
self-interference can be denoted as λUU . Therefore, the CDF of X1

and the PDF of X2 can be written as

FX1(x1) =
K∑

k=0

Ck
K(−1)ke−

kx1dαBU
PU

fX2(x2) = 1/λUUe
−x2/λUU ,

(34)

respectively. The CDF and PDF of X = X1
X2+1 are given by

FX(x) =

∫ ∞

0
Fx1(x(x2 + 1))fx2(x2) dx2

=
K∑

k=0

Ck
K(−1)k

PU
dα
BU

e−
kxdαBU

PU

PU
dα
BU

+ kxλUU

(35)

and

fX(x) =
K∑

k=0

Ck
K(−1)k+1

(PU + kxλUUdαBU + PUλUU )ke
− kxdαBU

PU

dαBU (
PU
dα
BU

+ kxλUU )2
.

(36)
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calculated as

FγBE∗ (y) = P
(
max
e∈Φ

(
|hB∗Ee |2

dαBEe

)
< y

)

(a)
= EΦ

[
∏

e∈Φ

P
(
|hB∗Ee |2 < ydαBEe

| Φ
)
]

= EΦ

[
∏

e∈Φ

(
1− e−ydα

BEe

)]

(b)
= exp

(
−ρE

∫ 2π

0

∫ R

0
r
(
e−yrα

)
dr dθ

)

(c)
= exp

(
−2πρE

αy
2
α

(
Γ

(
2

α

)
− Γ

(
2

α
, yRα

)))

(d)
≃ exp

(
−2πρE

αy
2
α

Γ

(
2

α

))(
1 +

2πρE

αy
2
α

O(R2−αy2/α−1e−yRα

)

)
,

(26)

where Γ(·) and Γ(·, ·) denote the gamma and upper incomplete
gamma function, respectively, and where eq. (a) follows from the
independence of R.V.s {|hB∗Ee |2;Ee ∈ Φ}; eq. (b) holds for the
probability generating functional lemma [25]; eq. (c) holds by using
eq. (3.326.4) in [26]; eq. (d) follows from the asymptotic expansion
of the incomplete gamma function (R → ∞) [27].

According to the definition of secrecy outage probability in (10),
(25) and (26), we can obtain an approximation of the secrecy outage
probability as follows

P (H)
so = 1−

∫ ∞

0
fγBU (x)FγBE∗

(
x

β

)
dx

= 1−
K∑

k=0

Ck
K(−1)k+1kdαBU

∫ ∞

0
e−kxdα

BU e
− 2πρE

α( x
β )

2/α Γ( 2
α )

dx.

(27)

We let

I =

∫ ∞

0
e−axe−

b
xc dx =

∫ ∞

0
ue−aue

−
(

b1/c

x

)c du

u
(28)

where a = kdαBU , b = 2πρE

α Γ( 2qp )β2q/p and c = 2q/p. By using
the Mellin convolution theorem, we can get the Mellin transform
as

M[I; s] =
p

2qas+1
Γ

(
ps

2q

)
Γ(1 + s). (29)

Then the inverse transform can be written as

I =
p

2πia

∫ u+i∞

u−i∞
Γ (ps)Γ

(
2q(s+

1

2q
)

)
(a2qbp)−s ds

(a)
=

√
pq

a2
p+2q−3

2 π
p+2q

2 −1

1

2πi

×
∫ u+i∞

u−i∞

(
a2qbp

pp4qq2q

)−s p−1∏

n=0

Γ

(
s+

n

p

) 2q−1∏

n=0

Γ

(
s+

1 + n

2q

)
ds

=

√
pq

a2
p+2q−3

2 π
p+2q

2 −1

×Gp+2q,0
0,p+2q

(
a2qk bp

pp4qq2q

∣∣∣∣
−

0, 1
p , ...,

p−1
p , 1

2q ,
2
2q , ..., 1

)
,

(30)

where G(·) denotes Meijer’s G furcation, u > 0 and (a) holds from
the multiplication theorem [27].

APPENDIX II

We begin with the following basic integral definition of the
secrecy outage probability for this case

P (H)
so = b1c1

∫ ∞

0
(1− e−ax)K

e−b1/x
c1

x1+c1
dx (31)

where a = βdαBU , b1 = c1πρEΓ(2/α) and c1 = 2/α. This
expression can easily be derived from the definitions of the UE SNR
and the ED SNR and follows the calculations presented in Appendix
I. Since the integrand is nonnegative on the interval [0,∞), we have
the simple relations

P (H)
so > b1c1

∫ ∞

lnK
a

(1− e−ax)K
e−b1/x

c1

x1+c1
dx

> b1c1

(
1− 1

K

)K ∫ ∞

lnK
a

e−b1/x
c1

x1+c1
dx

=

(
1− 1

K

)K (
1− exp

(
− ac1b1
(lnK)c1

))
(32)

where the equality results from the substitution u = 1/xc1 . Letting
K grow large, the final line of the equation given above becomes

e−1

(
1 +O

(
1

K

))(
1−

(
1− ac1b1

(lnK)c1
+O

(
1

(lnK)2c1

)))

(33)
and the result stated in the lemma follows.

APPENDIX III

According to (10), (4) and (6) with ϖ = 1, we let
X1 = PU max

k∈(1...K)
(|hBiU |2) and X2 = |hUU |2. Then after self-

interference cancellation, the average channel gain of the residual
self-interference can be denoted as λUU . Therefore, the CDF of X1

and the PDF of X2 can be written as

FX1(x1) =
K∑

k=0

Ck
K(−1)ke−

kx1dαBU
PU

fX2(x2) = 1/λUUe
−x2/λUU ,

(34)

respectively. The CDF and PDF of X = X1
X2+1 are given by

FX(x) =

∫ ∞

0
Fx1(x(x2 + 1))fx2(x2) dx2

=
K∑

k=0

Ck
K(−1)k

PU
dα
BU

e−
kxdαBU

PU

PU
dα
BU

+ kxλUU

(35)

and

fX(x) =
K∑

k=0

Ck
K(−1)k+1

(PU + kxλUUdαBU + PUλUU )ke
− kxdαBU

PU

dαBU (
PU
dα
BU

+ kxλUU )2
.

(36)



Outage:	  HD	  UE,	  No	  Collusion	  (Proof)	  

Rearrange	  outage	  expression	  and	  subs4tute	  

39	  
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calculated as

FγBE∗ (y) = P
(
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e∈Φ

(
|hB∗Ee |2

dαBEe

)
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α

))(
1 +

2πρE
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2
α

O(R2−αy2/α−1e−yRα

)

)
,

(26)

where Γ(·) and Γ(·, ·) denote the gamma and upper incomplete
gamma function, respectively, and where eq. (a) follows from the
independence of R.V.s {|hB∗Ee |2;Ee ∈ Φ}; eq. (b) holds for the
probability generating functional lemma [25]; eq. (c) holds by using
eq. (3.326.4) in [26]; eq. (d) follows from the asymptotic expansion
of the incomplete gamma function (R → ∞) [27].

According to the definition of secrecy outage probability in (10),
(25) and (26), we can obtain an approximation of the secrecy outage
probability as follows

P (H)
so = 1−

∫ ∞

0
fγBU (x)FγBE∗
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x
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)
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= 1−
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BU e
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We let

I =

∫ ∞

0
e−axe−

b
xc dx =

∫ ∞

0
ue−aue

−
(

b1/c

x

)c du

u
(28)

where a = kdαBU , b = 2πρE

α Γ( 2qp )β2q/p and c = 2q/p. By using
the Mellin convolution theorem, we can get the Mellin transform
as

M[I; s] =
p

2qas+1
Γ

(
ps

2q

)
Γ(1 + s). (29)

Then the inverse transform can be written as

I =
p

2πia
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)

)
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=
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×
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Γ

(
s+

1 + n

2q

)
ds

=

√
pq

a2
p+2q−3

2 π
p+2q

2 −1

×Gp+2q,0
0,p+2q

(
a2qk bp

pp4qq2q

∣∣∣∣
−

0, 1
p , ...,

p−1
p , 1

2q ,
2
2q , ..., 1

)
,

(30)

where G(·) denotes Meijer’s G furcation, u > 0 and (a) holds from
the multiplication theorem [27].

APPENDIX II

We begin with the following basic integral definition of the
secrecy outage probability for this case

P (H)
so = b1c1

∫ ∞

0
(1− e−ax)K

e−b1/x
c1

x1+c1
dx (31)

where a = βdαBU , b1 = c1πρEΓ(2/α) and c1 = 2/α. This
expression can easily be derived from the definitions of the UE SNR
and the ED SNR and follows the calculations presented in Appendix
I. Since the integrand is nonnegative on the interval [0,∞), we have
the simple relations

P (H)
so > b1c1

∫ ∞

lnK
a

(1− e−ax)K
e−b1/x

c1

x1+c1
dx

> b1c1

(
1− 1

K

)K ∫ ∞

lnK
a

e−b1/x
c1

x1+c1
dx

=

(
1− 1

K

)K (
1− exp

(
− ac1b1
(lnK)c1

))
(32)

where the equality results from the substitution u = 1/xc1 . Letting
K grow large, the final line of the equation given above becomes

e−1

(
1 +O

(
1

K

))(
1−

(
1− ac1b1

(lnK)c1
+O

(
1

(lnK)2c1

)))

(33)
and the result stated in the lemma follows.

APPENDIX III

According to (10), (4) and (6) with ϖ = 1, we let
X1 = PU max

k∈(1...K)
(|hBiU |2) and X2 = |hUU |2. Then after self-

interference cancellation, the average channel gain of the residual
self-interference can be denoted as λUU . Therefore, the CDF of X1

and the PDF of X2 can be written as

FX1(x1) =
K∑

k=0

Ck
K(−1)ke−

kx1dαBU
PU

fX2(x2) = 1/λUUe
−x2/λUU ,

(34)

respectively. The CDF and PDF of X = X1
X2+1 are given by

FX(x) =

∫ ∞

0
Fx1(x(x2 + 1))fx2(x2) dx2

=
K∑

k=0

Ck
K(−1)k

PU
dα
BU

e−
kxdαBU

PU

PU
dα
BU

+ kxλUU

(35)

and

fX(x) =
K∑

k=0

Ck
K(−1)k+1

(PU + kxλUUdαBU + PUλUU )ke
− kxdαBU

PU

dαBU (
PU
dα
BU

+ kxλUU )2
.

(36)
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where

�BE⇤ = F

0

@
P

B

|h
B⇤E

e

|2
d↵

BE

e

$
P

U

|h
UE

e

|2
d↵

UE

e

+ �2
n

1

A (6)

with
B⇤ = arg max

k2{1...K}

✓
|hB

k

U |2

d↵BU

◆
(7)

and F(·) is an operator that takes different forms depending on
whether EDs act independently or whether they collude. In the
former case, we have

F(·) = max

e2�
(·) (8)

so that we ensure we consider the strongest ED channel, whereas
in the case of colluding eavesdroppers, the operator is given by

F(·) =
X

e2�

(·) (9)

since all EDs are capable of combining their signals in an optimal
manner to decode the message. Based on these formulae, the
secrecy outage probability can be defined as [21]

Pso = P([CBU � CBE⇤ ]
+ < ✏) ' P

✓
�BU

�BE⇤

< �

◆
(10)

where [x]+ = max(0, x), P(·) denotes the probability operator, ✏
denotes the target secrecy rate, � = 2

✏ denotes the target secrecy
SNR ratio4.

III. SECRECY OUTAGE PROBABILITY FOR INDEPENDENTLY
ACTING EAVESDROPPERS

Here, we analyse the secrecy outage probability of the downlink
for HD and FD UEs under the assumption that EDs act inde-
pendently of one another. The EDs cannot share their received
signals in this case, so secrecy outage is dictated by the ED with
highest channel capacity. Hence, F(·) is defined by (8). We begin
by considering an HD UE, then proceed with a treatment of the
problem for an FD UE.

A. Half Duplex UE

Beginning with the right-hand side of (10), the secrecy outage
probability can be evaluated to yield the result stated in the
following proposition.

Proposition 1: The downlink secrecy outage probability for an
HD UE is given by

P (H)
so = 1�

KX

k=0

(�1)

k+1Ck
K

p
pq

2

p+2q�3
2 ⇡

p+2q
2 �1

⇥Gp+2q,0
0,p+2q

 
a2qk bp

pp4qq2q

����
�

0, 1
p , ...,

p�1
p , 1

2q ,
2
2q , ..., 1

!
(11)

where Gm,n
s,t

✓
z

����
u1, . . . , us

v1, . . . , vt

◆
is the Meijer G function, Ck

K =

K!/((K � k)!k!) is the binomial coefficient, ak = kd↵BU , b =

4The approximation in (10) is a standard assumption for systems operating in
the high SNR region. In this paper, this condition implies PB is sufficiently large
and/or R is sufficiently small.

⇡⇢E�(1 + 2/↵)�2/↵, p, q 2 Z+ so that ↵ = p/q is a positive
rational number, and �(x) =

R1
0 tx�1et dt is the standard gamma

function.
Proof: See Appendix I.

Eq. (11) provides an explicit, exact relation between the secrecy
outage probability and various system parameters. A number of
interesting points can be noted from this expression. First, this
is the most complete analysis of the HD UE case reported in
the literature in that any rational path loss exponent is accounted
for in this expression. Indeed, since the path loss exponent is an
experimentally estimated parameter, it is, by definition, rational in
practice due to finite precision measurement equipment. Although
the outage probability is given in terms of the Meijer G function,
it can be easily evaluated using numerical software such as
Mathematica or Maple for any given inputs. It should be noted
that for the special case of ↵ = 2, (11) reduces to the following
expression written in terms of first order modified Bessel functions
of the second kind:

P (H)
so = 1� 2

KX

k=0

(�1)

k+1Ck
K

p
akbK1

⇣
2

p
akb
⌘

(12)

However, for other values of ↵, the expression given in the
proposition is the most compact, accessible form.

For fixed dBU , ⇢E , �, and ↵, the secrecy outage probability
solely depends on the available number of BS antennas K. It is
not a function of the transmit power PB . This is perfectly intuitive
since an increase in PB would yield a proportional increase in both
the UE SNR and the ED SNR. Thus, in order to satisfy a given
secrecy requirement, one must increase the number of antennas
used in the TAS procedure. With large-scale antenna systems and
massive MIMO making headlines in the research community in
recent years, it is prudent to ask how the secrecy outage probability
scales with the number of antennas used for selection. Since the
BS-ED channels are not considered in the selection process, it is
clear that the secrecy outage probability decreased monotonically
with increasing K. But how fast does this occur? The following
lemma provides some insight to this question.

Lemma 2: The downlink secrecy outage probability for an HD
UE located in the presence of independently acting EDs is lower
bounded by

P (H)
so >

⇡⇢Ed
2
BU�

2/↵
�(1 + 2/↵)

e (lnK)

2/↵

✓
1 +O

✓
1

(lnK)

2/↵

◆◆
(13)

as K ! 1.
Proof: See Appendix II.

This result implies that, for large numbers of antennas, secrecy
performance improves very slowly with increasing K. From a
system design perspective, this is a very important result. It
suggests that even systems with large numbers of antennas (e.g.,
massive MIMO systems with a TAS-based secrecy enhancement
mode) should exploit only a small subset of independent spatial
paths to perform selection. Such an approach would allow the
remaining elements to serve other UEs on separate channels. The
total number of transmit chains (i.e., up-conversion and power
amplification circuitry) required would be the number of UEs
served in a single channel use. The actual benefit brought by TAS
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calculated as

FγBE∗ (y) = P
(
max
e∈Φ

(
|hB∗Ee |2

dαBEe

)
< y

)

(a)
= EΦ

[
∏

e∈Φ

P
(
|hB∗Ee |2 < ydαBEe

| Φ
)
]

= EΦ

[
∏

e∈Φ

(
1− e−ydα

BEe

)]

(b)
= exp

(
−ρE

∫ 2π

0

∫ R

0
r
(
e−yrα

)
dr dθ

)

(c)
= exp

(
−2πρE

αy
2
α

(
Γ

(
2

α

)
− Γ

(
2

α
, yRα

)))

(d)
≃ exp

(
−2πρE

αy
2
α

Γ

(
2

α

))(
1 +

2πρE

αy
2
α

O(R2−αy2/α−1e−yRα

)

)
,

(26)

where Γ(·) and Γ(·, ·) denote the gamma and upper incomplete
gamma function, respectively, and where eq. (a) follows from the
independence of R.V.s {|hB∗Ee |2;Ee ∈ Φ}; eq. (b) holds for the
probability generating functional lemma [25]; eq. (c) holds by using
eq. (3.326.4) in [26]; eq. (d) follows from the asymptotic expansion
of the incomplete gamma function (R → ∞) [27].

According to the definition of secrecy outage probability in (10),
(25) and (26), we can obtain an approximation of the secrecy outage
probability as follows

P (H)
so = 1−

∫ ∞

0
fγBU (x)FγBE∗

(
x

β

)
dx

= 1−
K∑

k=0

Ck
K(−1)k+1kdαBU

∫ ∞

0
e−kxdα

BU e
− 2πρE

α( x
β )

2/α Γ( 2
α )

dx.

(27)

We let

I =

∫ ∞

0
e−axe−

b
xc dx =

∫ ∞

0
ue−aue

−
(

b1/c

x

)c du

u
(28)

where a = kdαBU , b = 2πρE

α Γ( 2qp )β2q/p and c = 2q/p. By using
the Mellin convolution theorem, we can get the Mellin transform
as

M[I; s] =
p

2qas+1
Γ

(
ps

2q

)
Γ(1 + s). (29)

Then the inverse transform can be written as

I =
p

2πia

∫ u+i∞

u−i∞
Γ (ps)Γ

(
2q(s+

1

2q
)

)
(a2qbp)−s ds

(a)
=

√
pq

a2
p+2q−3

2 π
p+2q

2 −1

1

2πi

×
∫ u+i∞

u−i∞

(
a2qbp

pp4qq2q

)−s p−1∏

n=0

Γ

(
s+

n

p

) 2q−1∏

n=0

Γ

(
s+

1 + n

2q

)
ds

=

√
pq

a2
p+2q−3

2 π
p+2q

2 −1

×Gp+2q,0
0,p+2q

(
a2qk bp

pp4qq2q
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−

0, 1
p , ...,

p−1
p , 1

2q ,
2
2q , ..., 1

)
,

(30)

where G(·) denotes Meijer’s G furcation, u > 0 and (a) holds from
the multiplication theorem [27].

APPENDIX II

We begin with the following basic integral definition of the
secrecy outage probability for this case

P (H)
so = b1c1

∫ ∞

0
(1− e−ax)K

e−b1/x
c1

x1+c1
dx (31)

where a = βdαBU , b1 = c1πρEΓ(2/α) and c1 = 2/α. This
expression can easily be derived from the definitions of the UE SNR
and the ED SNR and follows the calculations presented in Appendix
I. Since the integrand is nonnegative on the interval [0,∞), we have
the simple relations

P (H)
so > b1c1

∫ ∞

lnK
a

(1− e−ax)K
e−b1/x

c1

x1+c1
dx

> b1c1

(
1− 1

K

)K ∫ ∞

lnK
a

e−b1/x
c1

x1+c1
dx

=

(
1− 1

K

)K (
1− exp

(
− ac1b1
(lnK)c1

))
(32)

where the equality results from the substitution u = 1/xc1 . Letting
K grow large, the final line of the equation given above becomes

e−1

(
1 +O

(
1

K

))(
1−

(
1− ac1b1

(lnK)c1
+O

(
1

(lnK)2c1

)))

(33)
and the result stated in the lemma follows.

APPENDIX III

According to (10), (4) and (6) with ϖ = 1, we let
X1 = PU max

k∈(1...K)
(|hBiU |2) and X2 = |hUU |2. Then after self-

interference cancellation, the average channel gain of the residual
self-interference can be denoted as λUU . Therefore, the CDF of X1

and the PDF of X2 can be written as

FX1(x1) =
K∑

k=0

Ck
K(−1)ke−

kx1dαBU
PU

fX2(x2) = 1/λUUe
−x2/λUU ,

(34)

respectively. The CDF and PDF of X = X1
X2+1 are given by

FX(x) =

∫ ∞

0
Fx1(x(x2 + 1))fx2(x2) dx2

=
K∑

k=0

Ck
K(−1)k

PU
dα
BU

e−
kxdαBU

PU

PU
dα
BU

+ kxλUU

(35)

and

fX(x) =
K∑

k=0

Ck
K(−1)k+1

(PU + kxλUUdαBU + PUλUU )ke
− kxdαBU

PU

dαBU (
PU
dα
BU

+ kxλUU )2
.

(36)
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calculated as
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(
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)
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)
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∏
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)
]
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)]
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(
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)
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)

(c)
= exp

(
−2πρE
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)))
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Γ

(
2

α

))(
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2πρE

αy
2
α

O(R2−αy2/α−1e−yRα

)

)
,

(26)

where Γ(·) and Γ(·, ·) denote the gamma and upper incomplete
gamma function, respectively, and where eq. (a) follows from the
independence of R.V.s {|hB∗Ee |2;Ee ∈ Φ}; eq. (b) holds for the
probability generating functional lemma [25]; eq. (c) holds by using
eq. (3.326.4) in [26]; eq. (d) follows from the asymptotic expansion
of the incomplete gamma function (R → ∞) [27].

According to the definition of secrecy outage probability in (10),
(25) and (26), we can obtain an approximation of the secrecy outage
probability as follows

P (H)
so = 1−

∫ ∞

0
fγBU (x)FγBE∗

(
x

β

)
dx

= 1−
K∑

k=0

Ck
K(−1)k+1kdαBU

∫ ∞

0
e−kxdα

BU e
− 2πρE

α( x
β )

2/α Γ( 2
α )

dx.

(27)

We let

I =

∫ ∞

0
e−axe−

b
xc dx =

∫ ∞

0
ue−aue

−
(

b1/c

x

)c du

u
(28)

where a = kdαBU , b = 2πρE

α Γ( 2qp )β2q/p and c = 2q/p. By using
the Mellin convolution theorem, we can get the Mellin transform
as

M[I; s] =
p

2qas+1
Γ

(
ps

2q

)
Γ(1 + s). (29)

Then the inverse transform can be written as

I =
p

2πia

∫ u+i∞

u−i∞
Γ (ps)Γ

(
2q(s+

1

2q
)

)
(a2qbp)−s ds

(a)
=

√
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a2
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2πi

×
∫ u+i∞

u−i∞

(
a2qbp

pp4qq2q
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(
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0, 1
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p−1
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2q ,
2
2q , ..., 1

)
,

(30)

where G(·) denotes Meijer’s G furcation, u > 0 and (a) holds from
the multiplication theorem [27].

APPENDIX II

We begin with the following basic integral definition of the
secrecy outage probability for this case

P (H)
so = b1c1

∫ ∞

0
(1− e−ax)K

e−b1/x
c1

x1+c1
dx (31)

where a = βdαBU , b1 = c1πρEΓ(2/α) and c1 = 2/α. This
expression can easily be derived from the definitions of the UE SNR
and the ED SNR and follows the calculations presented in Appendix
I. Since the integrand is nonnegative on the interval [0,∞), we have
the simple relations

P (H)
so > b1c1

∫ ∞

lnK
a

(1− e−ax)K
e−b1/x

c1

x1+c1
dx

> b1c1

(
1− 1

K

)K ∫ ∞

lnK
a

e−b1/x
c1

x1+c1
dx

=

(
1− 1

K

)K (
1− exp

(
− ac1b1
(lnK)c1

))
(32)

where the equality results from the substitution u = 1/xc1 . Letting
K grow large, the final line of the equation given above becomes

e−1

(
1 +O

(
1

K

))(
1−

(
1− ac1b1

(lnK)c1
+O

(
1

(lnK)2c1

)))

(33)
and the result stated in the lemma follows.

APPENDIX III

According to (10), (4) and (6) with ϖ = 1, we let
X1 = PU max

k∈(1...K)
(|hBiU |2) and X2 = |hUU |2. Then after self-

interference cancellation, the average channel gain of the residual
self-interference can be denoted as λUU . Therefore, the CDF of X1

and the PDF of X2 can be written as

FX1(x1) =
K∑

k=0

Ck
K(−1)ke−

kx1dαBU
PU

fX2(x2) = 1/λUUe
−x2/λUU ,

(34)

respectively. The CDF and PDF of X = X1
X2+1 are given by

FX(x) =

∫ ∞

0
Fx1(x(x2 + 1))fx2(x2) dx2

=
K∑

k=0

Ck
K(−1)k

PU
dα
BU

e−
kxdαBU

PU

PU
dα
BU

+ kxλUU

(35)

and

fX(x) =
K∑

k=0

Ck
K(−1)k+1

(PU + kxλUUdαBU + PUλUU )ke
− kxdαBU

PU

dαBU (
PU
dα
BU

+ kxλUU )2
.

(36)

To	  evaluate...	  
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(26)

where Γ(·) and Γ(·, ·) denote the gamma and upper incomplete
gamma function, respectively, and where eq. (a) follows from the
independence of R.V.s {|hB∗Ee |2;Ee ∈ Φ}; eq. (b) holds for the
probability generating functional lemma [25]; eq. (c) holds by using
eq. (3.326.4) in [26]; eq. (d) follows from the asymptotic expansion
of the incomplete gamma function (R → ∞) [27].

According to the definition of secrecy outage probability in (10),
(25) and (26), we can obtain an approximation of the secrecy outage
probability as follows
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u
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where a = kdαBU , b = 2πρE

α Γ( 2qp )β2q/p and c = 2q/p. By using
the Mellin convolution theorem, we can get the Mellin transform
as
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n=0

Γ

(
s+

n

p

) 2q−1∏

n=0

Γ

(
s+

1 + n

2q

)
ds

=

√
pq

a2
p+2q−3

2 π
p+2q

2 −1

×Gp+2q,0
0,p+2q

(
a2qk bp

pp4qq2q

∣∣∣∣
−

0, 1
p , ...,

p−1
p , 1

2q ,
2
2q , ..., 1

)
,

(30)

where G(·) denotes Meijer’s G furcation, u > 0 and (a) holds from
the multiplication theorem [27].

APPENDIX II

We begin with the following basic integral definition of the
secrecy outage probability for this case

P (H)
so = b1c1

∫ ∞

0
(1− e−ax)K

e−b1/x
c1

x1+c1
dx (31)

where a = βdαBU , b1 = c1πρEΓ(2/α) and c1 = 2/α. This
expression can easily be derived from the definitions of the UE SNR
and the ED SNR and follows the calculations presented in Appendix
I. Since the integrand is nonnegative on the interval [0,∞), we have
the simple relations

P (H)
so > b1c1

∫ ∞

lnK
a

(1− e−ax)K
e−b1/x

c1

x1+c1
dx

> b1c1

(
1− 1

K

)K ∫ ∞

lnK
a

e−b1/x
c1

x1+c1
dx

=

(
1− 1

K

)K (
1− exp

(
− ac1b1
(lnK)c1

))
(32)

where the equality results from the substitution u = 1/xc1 . Letting
K grow large, the final line of the equation given above becomes

e−1

(
1 +O

(
1

K

))(
1−

(
1− ac1b1

(lnK)c1
+O

(
1

(lnK)2c1

)))

(33)
and the result stated in the lemma follows.

APPENDIX III

According to (10), (4) and (6) with ϖ = 1, we let
X1 = PU max

k∈(1...K)
(|hBiU |2) and X2 = |hUU |2. Then after self-

interference cancellation, the average channel gain of the residual
self-interference can be denoted as λUU . Therefore, the CDF of X1

and the PDF of X2 can be written as

FX1(x1) =
K∑

k=0

Ck
K(−1)ke−

kx1dαBU
PU

fX2(x2) = 1/λUUe
−x2/λUU ,

(34)

respectively. The CDF and PDF of X = X1
X2+1 are given by

FX(x) =

∫ ∞

0
Fx1(x(x2 + 1))fx2(x2) dx2

=
K∑

k=0

Ck
K(−1)k

PU
dα
BU

e−
kxdαBU

PU

PU
dα
BU

+ kxλUU

(35)

and

fX(x) =
K∑

k=0

Ck
K(−1)k+1

(PU + kxλUUdαBU + PUλUU )ke
− kxdαBU

PU

dαBU (
PU
dα
BU

+ kxλUU )2
.

(36)



Outage:	  HD	  UE,	  No	  Collusion	  (Proof)	  

41	  

The	  Mellin	  transform	  of	  the	  integral	  is...	  
	  
	  
and	  the	  inverse	  is...	  

8

calculated as

FγBE∗ (y) = P
(
max
e∈Φ

(
|hB∗Ee |2

dαBEe

)
< y

)

(a)
= EΦ

[
∏

e∈Φ

P
(
|hB∗Ee |2 < ydαBEe

| Φ
)
]

= EΦ

[
∏

e∈Φ

(
1− e−ydα

BEe

)]

(b)
= exp

(
−ρE

∫ 2π

0

∫ R

0
r
(
e−yrα

)
dr dθ

)

(c)
= exp

(
−2πρE

αy
2
α

(
Γ

(
2

α

)
− Γ

(
2

α
, yRα

)))

(d)
≃ exp

(
−2πρE

αy
2
α

Γ

(
2

α

))(
1 +

2πρE

αy
2
α

O(R2−αy2/α−1e−yRα

)

)
,

(26)

where Γ(·) and Γ(·, ·) denote the gamma and upper incomplete
gamma function, respectively, and where eq. (a) follows from the
independence of R.V.s {|hB∗Ee |2;Ee ∈ Φ}; eq. (b) holds for the
probability generating functional lemma [25]; eq. (c) holds by using
eq. (3.326.4) in [26]; eq. (d) follows from the asymptotic expansion
of the incomplete gamma function (R → ∞) [27].

According to the definition of secrecy outage probability in (10),
(25) and (26), we can obtain an approximation of the secrecy outage
probability as follows

P (H)
so = 1−

∫ ∞

0
fγBU (x)FγBE∗

(
x

β

)
dx

= 1−
K∑

k=0

Ck
K(−1)k+1kdαBU

∫ ∞

0
e−kxdα

BU e
− 2πρE

α( x
β )

2/α Γ( 2
α )

dx.

(27)

We let

I =

∫ ∞

0
e−axe−

b
xc dx =

∫ ∞

0
ue−aue

−
(

b1/c

x

)c du

u
(28)

where a = kdαBU , b = 2πρE

α Γ( 2qp )β2q/p and c = 2q/p. By using
the Mellin convolution theorem, we can get the Mellin transform
as

M[I; s] =
p

2qas+1
Γ

(
ps

2q

)
Γ(1 + s). (29)

Then the inverse transform can be written as

I =
p

2πia

∫ u+i∞

u−i∞
Γ (ps)Γ

(
2q(s+

1

2q
)

)
(a2qbp)−s ds

(a)
=

√
pq

a2
p+2q−3

2 π
p+2q

2 −1

1

2πi

×
∫ u+i∞

u−i∞

(
a2qbp

pp4qq2q

)−s p−1∏

n=0

Γ

(
s+

n

p

) 2q−1∏

n=0

Γ

(
s+

1 + n

2q

)
ds

=

√
pq

a2
p+2q−3

2 π
p+2q

2 −1

×Gp+2q,0
0,p+2q

(
a2qk bp

pp4qq2q

∣∣∣∣
−

0, 1
p , ...,

p−1
p , 1

2q ,
2
2q , ..., 1

)
,

(30)

where G(·) denotes Meijer’s G furcation, u > 0 and (a) holds from
the multiplication theorem [27].

APPENDIX II

We begin with the following basic integral definition of the
secrecy outage probability for this case

P (H)
so = b1c1

∫ ∞

0
(1− e−ax)K

e−b1/x
c1

x1+c1
dx (31)

where a = βdαBU , b1 = c1πρEΓ(2/α) and c1 = 2/α. This
expression can easily be derived from the definitions of the UE SNR
and the ED SNR and follows the calculations presented in Appendix
I. Since the integrand is nonnegative on the interval [0,∞), we have
the simple relations

P (H)
so > b1c1

∫ ∞

lnK
a

(1− e−ax)K
e−b1/x

c1

x1+c1
dx

> b1c1

(
1− 1

K

)K ∫ ∞

lnK
a

e−b1/x
c1

x1+c1
dx

=

(
1− 1

K

)K (
1− exp

(
− ac1b1
(lnK)c1

))
(32)

where the equality results from the substitution u = 1/xc1 . Letting
K grow large, the final line of the equation given above becomes

e−1

(
1 +O

(
1

K

))(
1−

(
1− ac1b1

(lnK)c1
+O

(
1

(lnK)2c1

)))

(33)
and the result stated in the lemma follows.

APPENDIX III

According to (10), (4) and (6) with ϖ = 1, we let
X1 = PU max

k∈(1...K)
(|hBiU |2) and X2 = |hUU |2. Then after self-

interference cancellation, the average channel gain of the residual
self-interference can be denoted as λUU . Therefore, the CDF of X1

and the PDF of X2 can be written as

FX1(x1) =
K∑

k=0

Ck
K(−1)ke−

kx1dαBU
PU

fX2(x2) = 1/λUUe
−x2/λUU ,

(34)

respectively. The CDF and PDF of X = X1
X2+1 are given by

FX(x) =

∫ ∞

0
Fx1(x(x2 + 1))fx2(x2) dx2

=
K∑

k=0

Ck
K(−1)k

PU
dα
BU

e−
kxdαBU

PU

PU
dα
BU

+ kxλUU

(35)

and

fX(x) =
K∑

k=0

Ck
K(−1)k+1

(PU + kxλUUdαBU + PUλUU )ke
− kxdαBU

PU

dαBU (
PU
dα
BU

+ kxλUU )2
.

(36)
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calculated as

FγBE∗ (y) = P
(
max
e∈Φ

(
|hB∗Ee |2

dαBEe

)
< y

)

(a)
= EΦ

[
∏

e∈Φ

P
(
|hB∗Ee |2 < ydαBEe

| Φ
)
]

= EΦ

[
∏

e∈Φ

(
1− e−ydα

BEe

)]

(b)
= exp

(
−ρE

∫ 2π

0

∫ R

0
r
(
e−yrα

)
dr dθ

)

(c)
= exp

(
−2πρE

αy
2
α

(
Γ

(
2

α

)
− Γ

(
2

α
, yRα

)))

(d)
≃ exp

(
−2πρE

αy
2
α

Γ

(
2

α

))(
1 +

2πρE

αy
2
α

O(R2−αy2/α−1e−yRα

)

)
,

(26)

where Γ(·) and Γ(·, ·) denote the gamma and upper incomplete
gamma function, respectively, and where eq. (a) follows from the
independence of R.V.s {|hB∗Ee |2;Ee ∈ Φ}; eq. (b) holds for the
probability generating functional lemma [25]; eq. (c) holds by using
eq. (3.326.4) in [26]; eq. (d) follows from the asymptotic expansion
of the incomplete gamma function (R → ∞) [27].

According to the definition of secrecy outage probability in (10),
(25) and (26), we can obtain an approximation of the secrecy outage
probability as follows

P (H)
so = 1−

∫ ∞

0
fγBU (x)FγBE∗

(
x

β

)
dx

= 1−
K∑

k=0

Ck
K(−1)k+1kdαBU

∫ ∞

0
e−kxdα

BU e
− 2πρE

α( x
β )

2/α Γ( 2
α )

dx.

(27)

We let

I =

∫ ∞

0
e−axe−

b
xc dx =

∫ ∞

0
ue−aue

−
(

b1/c

x

)c du

u
(28)

where a = kdαBU , b = 2πρE

α Γ( 2qp )β2q/p and c = 2q/p. By using
the Mellin convolution theorem, we can get the Mellin transform
as

M[I; s] =
p

2qas+1
Γ

(
ps

2q

)
Γ(1 + s). (29)

Then the inverse transform can be written as

I =
p

2πia

∫ u+i∞

u−i∞
Γ (ps)Γ

(
2q(s+

1

2q
)

)
(a2qbp)−s ds

(a)
=

√
pq

a2
p+2q−3

2 π
p+2q

2 −1

1

2πi

×
∫ u+i∞

u−i∞

(
a2qbp

pp4qq2q

)−s p−1∏

n=0

Γ

(
s+

n

p

) 2q−1∏

n=0

Γ

(
s+

1 + n

2q

)
ds

=

√
pq

a2
p+2q−3

2 π
p+2q

2 −1

×Gp+2q,0
0,p+2q

(
a2qk bp

pp4qq2q

∣∣∣∣
−

0, 1
p , ...,

p−1
p , 1

2q ,
2
2q , ..., 1

)
,

(30)

where G(·) denotes Meijer’s G furcation, u > 0 and (a) holds from
the multiplication theorem [27].

APPENDIX II

We begin with the following basic integral definition of the
secrecy outage probability for this case

P (H)
so = b1c1

∫ ∞

0
(1− e−ax)K

e−b1/x
c1

x1+c1
dx (31)

where a = βdαBU , b1 = c1πρEΓ(2/α) and c1 = 2/α. This
expression can easily be derived from the definitions of the UE SNR
and the ED SNR and follows the calculations presented in Appendix
I. Since the integrand is nonnegative on the interval [0,∞), we have
the simple relations

P (H)
so > b1c1

∫ ∞

lnK
a

(1− e−ax)K
e−b1/x

c1

x1+c1
dx

> b1c1

(
1− 1

K

)K ∫ ∞

lnK
a

e−b1/x
c1

x1+c1
dx

=

(
1− 1

K

)K (
1− exp

(
− ac1b1
(lnK)c1

))
(32)

where the equality results from the substitution u = 1/xc1 . Letting
K grow large, the final line of the equation given above becomes

e−1

(
1 +O

(
1

K

))(
1−

(
1− ac1b1

(lnK)c1
+O

(
1

(lnK)2c1

)))

(33)
and the result stated in the lemma follows.

APPENDIX III

According to (10), (4) and (6) with ϖ = 1, we let
X1 = PU max

k∈(1...K)
(|hBiU |2) and X2 = |hUU |2. Then after self-

interference cancellation, the average channel gain of the residual
self-interference can be denoted as λUU . Therefore, the CDF of X1

and the PDF of X2 can be written as

FX1(x1) =
K∑

k=0

Ck
K(−1)ke−

kx1dαBU
PU

fX2(x2) = 1/λUUe
−x2/λUU ,

(34)

respectively. The CDF and PDF of X = X1
X2+1 are given by

FX(x) =

∫ ∞

0
Fx1(x(x2 + 1))fx2(x2) dx2

=
K∑

k=0

Ck
K(−1)k

PU
dα
BU

e−
kxdαBU

PU

PU
dα
BU

+ kxλUU

(35)

and

fX(x) =
K∑

k=0

Ck
K(−1)k+1

(PU + kxλUUdαBU + PUλUU )ke
− kxdαBU

PU

dαBU (
PU
dα
BU

+ kxλUU )2
.

(36)
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where

γBE∗ = F

⎛

⎝
PB |hB∗Ee |

2

dα
BEe

ϖPU |hUEe |2
dα
UEe

+ σ2
n

⎞

⎠ (6)

with
B∗ = arg max

k∈{1...K}

(
|hBkU |2

dαBU

)
(7)

and F(·) is an operator that takes different forms depending on
whether EDs act independently or whether they collude. In the
former case, we have

F(·) = max
e∈Φ

(·) (8)

so that we ensure we consider the strongest ED channel, whereas
in the case of colluding eavesdroppers, the operator is given by

F(·) =
∑

e∈Φ

(·) (9)

since all EDs are capable of combining their signals in an optimal
manner to decode the message. Based on these formulae, the
secrecy outage probability can be defined as [20]

Pso = P([CBU − CBE∗ ]
+ < ϵ) ≃ P

(
γBU

γBE∗

< β

)
(10)

where [x]+ = max(0, x), P(·) denotes the probability operator, ϵ
denotes the target secrecy rate, β = 2ϵ denotes the target secrecy
SNR ratio4.

III. SECRECY OUTAGE PROBABILITY FOR INDEPENDENTLY
ACTING EAVESDROPPERS

Here, we analyse the secrecy outage probability of the downlink
for HD and FD UEs under the assumption that EDs act inde-
pendently of one another. The EDs cannot share their received
signals in this case, so secrecy outage is dictated by the ED with
highest channel capacity. Hence, F(·) is defined by (8). We begin
by considering an HD UE, then proceed with a treatment of the
problem for an FD UE.

A. Half Duplex UE
Beginning with the right-hand side of (10), the secrecy outage

probability can be evaluated to yield the result stated in the
following proposition.

Proposition 1: For large R, the downlink secrecy outage proba-
bility for an HD UE is, to a good approximation, given by

P (H)
so ≃ 1−

K∑

k=0

(−1)k+1Ck
K

√
pq

2
p+2q−3

2 π
p+2q

2 −1

×Gp+2q,0
0,p+2q

(
a2qk bp

pp4qq2q

∣∣∣∣
−

0, 1
p , ...,

p−1
p , 1

2q ,
2
2q , ..., 1

)
(11)

where Gm,n
s,t

(
z

∣∣∣∣
u1, . . . , us

v1, . . . , vt

)
is the Meijer G function, Ck

K =

K!/((K − k)!k!) is the binomial coefficient, ak = kdαBU , b =

4The approximation in (10) is a standard assumption for systems operating in
the high SNR region. In this paper, this condition implies PB is sufficiently large
and/or R is sufficiently small.

πρEΓ(1 + 2/α)β2/α, p, q ∈ Z+ so that α = p/q is a positive
rational number, and Γ(x) =

∫∞
0 tx−1et dt is the standard gamma

function.
Proof: See Appendix I.

Eq. (11) provides an explicit, relation between the secrecy outage
probability and various system parameters. A number of interesting
points can be noted from this expression. First, this is the most
complete analysis of the HD UE case reported in the literature in
that any rational path loss exponent is accounted for in this ex-
pression. Indeed, since the path loss exponent is an experimentally
estimated parameter, it is, by definition, rational in practice due
to finite precision measurement equipment. Although the outage
probability is given in terms of the Meijer G function, it can be
easily evaluated using numerical software such as Mathematica or
Maple for any given inputs. It should be noted that for the special
case of α = 2, (11) reduces to the following expression written in
terms of first order modified Bessel functions of the second kind:

P (H)
so ≃ 1− 2

K∑

k=0

(−1)k+1Ck
K

√
akbK1

(
2
√

akb
)

(12)

However, for other values of α, the expression given in the proposi-
tion is the most compact, accessible form. Note that the expression
given in Proposition 1 is independent of R. This is because the R-
dependent terms in the secrecy outage probability expression decay
exponentially with Rα. (See Appendix I for details.)

For fixed dBU , ρE , β, and α, the secrecy outage probability
solely depends on the available number of BS antennas K. It is
not a function of the transmit power PB . This is perfectly intuitive
since an increase in PB would yield a proportional increase in both
the UE SNR and the ED SNR. Thus, in order to satisfy a given
secrecy requirement, one must increase the number of antennas
used in the TAS procedure. With large-scale antenna systems and
massive MIMO making headlines in the research community in
recent years, it is prudent to ask how the secrecy outage probability
scales with the number of antennas used for selection. Since the
BS-ED channels are not considered in the selection process, it is
clear that the secrecy outage probability decreased monotonically
with increasing K. But how fast does this occur? The following
lemma provides some insight to this question.

Lemma 2: The downlink secrecy outage probability for an HD
UE located in the presence of independently acting EDs is lower
bounded by

P (H)
so >

πρEd2BUβ
2/αΓ(1 + 2/α)

e (lnK)2/α

(
1 +O

(
1

(lnK)2/α

))
(13)

as K → ∞.
Proof: See Appendix II.

This result implies that, for large numbers of antennas, secrecy
performance improves slowly with increasing K. From a system
design perspective, this is a very important result. It suggests
that even systems with large numbers of antennas (e.g., massive
MIMO systems with a TAS-based secrecy enhancement mode)
should exploit only a small subset of independent spatial paths
to perform selection. Such an approach would allow the remaining
elements to serve other UEs on separate channels. The total number
of transmit chains (i.e., up-conversion and power amplification
circuitry) required would be the number of UEs served in a single
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channel use. The actual benefit brought by TAS in the context of
enhancing secrecy performance is explored further in Section V
through numerical simulations.

B. Full Duplex UE

In the case where FD jamming is employed by the UE, the
jamming signal will affect both the EDs and the UE. Thus, a self-
interference cancellation scheme must be applied at the UE. Here,
we assume the self-interference cancellation scheme is not perfect,
and thus residual interference will remain. Also, we are interested
in the worst-case secrecy performance. Thus, in this section, we
assume the EDs are interference limited (from the UE’s jamming
signal). Mathematically, we set σ2

n = 0. A similar approach was
taken in [21]–[23]. Now, beginning with the right-hand side of (10),
the secrecy outage probability can be evaluated to yield the result
stated in the following proposition.

Proposition 3: The downlink secrecy outage probability for an
FD UE located in the presence of independently acting EDs is
upper bounded by

P (F )
so ≤ 1− e−ρEπR2

K∑

k=1

(−1)k+1kCk
K

∫ ∞

0

PU
dα
BU

(1 + λUU ) + kxλUU

( PU
dα
BU

+ kxλUU )2

exp

(
ρER

2Ψ

(
x

β
;α,

dBU

R

)
− kdαBU

PU
x

)
dx (14)

where

Ψ(y;α, δ) =

∫ 2π

0

∫ 1

0

yzα+1

yzα + (z2 + δ2 − 2zδ cos θ)α/2
dz dθ

(15)
and λUU = E[|gUU |2] is the average gain of the self-interference
channel at the FD UE.

Proof: See Appendix III.
The bound stated above can be evaluated for given sets of

parameters by using standard numerical integration techniques
or software. Note that the semi-infinite integral is guaranteed to
converge since Ψ(y;α, δ) is finite for y ∈ [0,∞). For the case
where α = 2, the bound simplifies somewhat since Ψ(y;α, δ)
evaluates to

Ψ(y; 2, δ) =
πy

(y + 1)3

(
(y + 1)(ψ(y, δ)− δ2)

+ δ2(y − 1) ln

(
2δ2y

δ2(y − 1) + (y + 1)(ψ(y, δ) + y + 1)

))
(16)

where
ψ(y, δ) =

√
δ4 + 2δ2(y − 1) + (y + 1)2. (17)

For fixed dBU , ρE , λUU , β, and α, the secrecy outage probability
depends on the available number of BS antennas K, but also on
the UE jamming signal power PU . This provides two degrees of
freedom that can be considered at a system level when determining
the best configuration for achieving a target secrecy outage prob-
ability. For example, the UE may locally determine that it should
reduce PU to conserve battery power, which implies the BS should

increase the number of antennas used for TAS. Further analysis of
the trade-off between these parameters and the effect this has on
system performance is presented in Section V.

IV. SECRECY OUTAGE PROBABILITY FOR COLLUDING EDS

Here, we analyse the secrecy outage probability in the downlink
for HD and FD UEs with the assumption that EDs collude with
each other. In contrast to independently acting EDs, colluding EDs
can share their eavesdropping information; therefore, all the eaves-
dropping information can be combined in an effort to decode the
downlink message. Under the assumption that optimal combining
can be achieved by the EDs, F(·) is defined by (9). We first consider
an HD UE, then a treatment of the problem for an FD UE will be
provided.

A. Half Duplex UE

By using the right-hand side of (10) the secrecy outage proba-
bility can written exactly as in Proposition 4.

Proposition 4: The downlink secrecy outage probability for an
HD UE located in the presence of colluding EDs is given by

P (H)
so = 1−

K∑

k=1

Ck
K(−1)k+1

× exp

(
−πR2ρEF

(
1,

2

α
; 1 +

2

α
;− Rα

kβdαBU

))
(18)

where F (a, b; c; z) denotes the Gaussian hypergeometric function.
Proof: See Appendix V.

Eq. (18) provides an explicit, exact relation between the secrecy
outage probability and various system parameters. For α = 2, this
expression simplifies readily to

P (H)
so = 1−

K∑

k=1

Ck
K(−1)k+1

(
1 +

R2

βd2BUk

)−πρEβd2
BUk

. (19)

For α = 4, (18) can be expressed as

P (H)
so = 1−

K∑

k=1

Ck
K(−1)k+1

× exp

(
−πρERdBU

√
βk tan−1

(
R

dBU
√
βk

))
. (20)

Other values of the path loss exponent do not admit closed form
expressions in terms of elementary functions.

B. Full Duplex UE

When FD jamming is utilized by the UE, we assume self-
interference cancellation is employed by the UE and consider the
interference limited regime for EDs (i.e., σ2

n = 0 at each ED).
Following from the right-hand side of (10), the secrecy outage
probability in this scenario can be evaluated to yield the tight bound
stated in the following proposition.



Outage	  Scaling:	  FD	  UE,	  No	  Collusion	  

•  Proposi4on	  3	  does	  not	  admit	  a	  closed	  form	  
•  Occasionally,	  we	  might	  get	  lucky	  with	  closed-‐form	  

calcula4ons	  for	  certain	  system	  parameters	  
–  In	  prac4ce,	  try	  path	  loss	  exponents	  of	  2	  and	  4	  
–  Consider	  “pathological”	  or	  limi4ng	  cases	  
–  Expand	  about	  given	  points,	  e.g.,	  UE	  posi4on	  is	  at	  the	  cell	  edge	  

•  For	  a	  path	  loss	  exponent	  of	  2,	  the	  double	  integral	  reduces	  to	  

45	  

4

channel use. The actual benefit brought by TAS in the context of
enhancing secrecy performance is explored further in Section V
through numerical simulations.

B. Full Duplex UE

In the case where FD jamming is employed by the UE, the
jamming signal will affect both the EDs and the UE. Thus, a self-
interference cancellation scheme must be applied at the UE. Here,
we assume the self-interference cancellation scheme is not perfect,
and thus residual interference will remain. Also, we are interested
in the worst-case secrecy performance. Thus, in this section, we
assume the EDs are interference limited (from the UE’s jamming
signal). Mathematically, we set σ2

n = 0. A similar approach was
taken in [21]–[23]. Now, beginning with the right-hand side of (10),
the secrecy outage probability can be evaluated to yield the result
stated in the following proposition.

Proposition 3: The downlink secrecy outage probability for an
FD UE located in the presence of independently acting EDs is
upper bounded by

P (F )
so ≤ 1− e−ρEπR2

K∑

k=1

(−1)k+1kCk
K

∫ ∞

0

PU
dα
BU

(1 + λUU ) + kxλUU

( PU
dα
BU

+ kxλUU )2

exp

(
ρER

2Ψ

(
x

β
;α,

dBU

R

)
− kdαBU

PU
x

)
dx (14)

where

Ψ(y;α, δ) =

∫ 2π

0

∫ 1

0

yzα+1

yzα + (z2 + δ2 − 2zδ cos θ)α/2
dz dθ

(15)
and λUU = E[|gUU |2] is the average gain of the self-interference
channel at the FD UE.

Proof: See Appendix III.
The bound stated above can be evaluated for given sets of

parameters by using standard numerical integration techniques
or software. Note that the semi-infinite integral is guaranteed to
converge since Ψ(y;α, δ) is finite for y ∈ [0,∞). For the case
where α = 2, the bound simplifies somewhat since Ψ(y;α, δ)
evaluates to

Ψ(y; 2, δ) =
πy

(y + 1)3

(
(y + 1)(ψ(y, δ)− δ2)

+ δ2(y − 1) ln

(
2δ2y

δ2(y − 1) + (y + 1)(ψ(y, δ) + y + 1)

))
(16)

where
ψ(y, δ) =

√
δ4 + 2δ2(y − 1) + (y + 1)2. (17)

For fixed dBU , ρE , λUU , β, and α, the secrecy outage probability
depends on the available number of BS antennas K, but also on
the UE jamming signal power PU . This provides two degrees of
freedom that can be considered at a system level when determining
the best configuration for achieving a target secrecy outage prob-
ability. For example, the UE may locally determine that it should
reduce PU to conserve battery power, which implies the BS should

increase the number of antennas used for TAS. Further analysis of
the trade-off between these parameters and the effect this has on
system performance is presented in Section V.

IV. SECRECY OUTAGE PROBABILITY FOR COLLUDING EDS

Here, we analyse the secrecy outage probability in the downlink
for HD and FD UEs with the assumption that EDs collude with
each other. In contrast to independently acting EDs, colluding EDs
can share their eavesdropping information; therefore, all the eaves-
dropping information can be combined in an effort to decode the
downlink message. Under the assumption that optimal combining
can be achieved by the EDs, F(·) is defined by (9). We first consider
an HD UE, then a treatment of the problem for an FD UE will be
provided.

A. Half Duplex UE

By using the right-hand side of (10) the secrecy outage proba-
bility can written exactly as in Proposition 4.

Proposition 4: The downlink secrecy outage probability for an
HD UE located in the presence of colluding EDs is given by

P (H)
so = 1−

K∑

k=1

Ck
K(−1)k+1

× exp

(
−πR2ρEF

(
1,

2

α
; 1 +

2

α
;− Rα

kβdαBU

))
(18)

where F (a, b; c; z) denotes the Gaussian hypergeometric function.
Proof: See Appendix V.

Eq. (18) provides an explicit, exact relation between the secrecy
outage probability and various system parameters. For α = 2, this
expression simplifies readily to

P (H)
so = 1−

K∑

k=1

Ck
K(−1)k+1

(
1 +

R2

βd2BUk

)−πρEβd2
BUk

. (19)

For α = 4, (18) can be expressed as

P (H)
so = 1−

K∑

k=1

Ck
K(−1)k+1

× exp

(
−πρERdBU

√
βk tan−1

(
R

dBU
√
βk

))
. (20)

Other values of the path loss exponent do not admit closed form
expressions in terms of elementary functions.

B. Full Duplex UE

When FD jamming is utilized by the UE, we assume self-
interference cancellation is employed by the UE and consider the
interference limited regime for EDs (i.e., σ2

n = 0 at each ED).
Following from the right-hand side of (10), the secrecy outage
probability in this scenario can be evaluated to yield the tight bound
stated in the following proposition.



Secrecy	  Outage	  Analysis:	  Theory	  vs	  
Simula4on	  

•  We	  can	  easily	  construct	  Monte	  Carlo	  	  
simula4ons	  
–  Fix	  the	  BS	  and	  the	  UE	  and	  generate	  	  
random	  posi4ons	  of	  eavesdroppers	  

–  Generate	  random	  fading	  variates	  
–  Test	  each	  link	  (roll	  the	  dice)	  
–  Log	  the	  results	  
– MATLAB	  is	  par4cularly	  useful	  and	  efficient	  

•  Results	  are	  printed	  in	  your	  notes	  
–  No4ce	  that	  theory	  is	  a	  good	  predictor	  of	  simula4on/reality	  
–  System	  is	  more	  difficult	  to	  simulate	  since	  eavesdropper	  
behaviour	  is	  unknown	  

46	  
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Fig.	  8	  The	  system	  model	  for	  a	  spa4ally	  random	  wireless	  network.	  

ü  Fixed	  loca4on	  for	  BS,	  random	  loca4on	  
(PPP)	  for	  eavesdroppers	  and	  UEs	  in	  an	  
unbounded	  two	  dimensional	  space.	  

ü  Flat	  Rayleigh	  fading	  channel.	  
ü BS	  only	  knows	  the	  CSI	  of	  the	  UEs,	  

does	  not	  know	  the	  CSI	  for	  
eavesdroppers.	  

ü Mul4ple	  antennas	  at	  the	  BS	  with	  TAS.	  

	  
	  

Network	  Secrecy	  Enhancement:	  
Worked	  Example	  2	  

ü Transmit	  Antenna	  Selec4on	  (TAS)	  &	  UE	  Ordering	  
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ü Policy	  II:	  Based	  on	  distance	  and	  fading	  	  
Ø  Order	  the	  UE	  by	  using	  the	  combina4on	  of	  distance	  and	  fading	  (	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  )	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

between	  the	  UE	  and	  the	  BS,	  where	  

Ø  If	  the	  CSI	  can	  be	  es4mated	  accurately,	  we	  can	  (hopefully)	  obtain	  an	  
improved	  secrecy	  performance	  rela4ve	  to	  the	  distance-‐based	  policy	  noted	  
above.	  	  

•  Two	  Ordering	  Policies	  

ü Policy	  I:	  Based	  on	  distance	  	  
Ø  Order	  the	  UE	  by	  using	  the	  distance	  (	  	  	  	  	  	  	  	  )	  between	  the	  UE	  and	  the	  BS	  
Ø  If	  CSI	  cannot	  be	  es4mated	  accurately,	  we	  can	  use	  this	  approach.	  

Secrecy	  Outage	  Analysis:	  TAS	  with	  UE	  Ordering	  
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ü Policy	  II:	  Based	  on	  distance	  and	  fading	  	  
Ø  Order	  the	  UE	  by	  using	  the	  combina4on	  of	  distance	  and	  fading	  (	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  )	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

between	  the	  UE	  and	  the	  BS,	  where	  

Ø  If	  the	  CSI	  can	  be	  es4mated	  accurately,	  we	  can	  (hopefully)	  obtain	  an	  
improved	  secrecy	  performance	  rela4ve	  to	  the	  distance-‐based	  policy	  noted	  
above.	  	  

•  Two	  Ordering	  Policies	  

ü Policy	  I:	  Based	  on	  distance	  	  
Ø  Order	  the	  UE	  by	  using	  the	  distance	  (	  	  	  	  	  	  	  	  )	  between	  the	  UE	  and	  the	  BS	  
Ø  If	  CSI	  cannot	  be	  es4mated	  accurately,	  we	  can	  use	  this	  approach.	  

Secrecy	  Outage	  Analysis:	  TAS	  with	  UE	  Ordering	  



An	  Aside:	  The	  Mapping	  Theorem	  

61	  

Mapping Theorem



Mapping	  Theorem:	  Examples	  

Linear mapping
	  
	  
	  
Distance mapping

62	  
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ü First,	  we	  let	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  and	  define	  the	  intensity	  of	  the	  set	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  as	  	  	  	  	  	  	  .	  The	  intensity	  func4on	  of	  	  	  	  	  	  can	  be	  wriLen	  as	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  ü The	  PDF	  of	  	  	  	  	  	  	  under	  the	  Rayleigh	  fading	  can	  be	  obtained	  as:	  
	  
	  
	  	  	  	  	  	  where	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  and	  the	  CDF	  of	  the	  reciprocal	  of	  	  	  	  	  	  	  is	  

ü Finally,	  the	  secrecy	  outage	  probability	  for	  the	  nth	  UE	  can	  be	  derived	  as	  
	  

	  

Secrecy	  Outage	  Analysis:	  Policy	  II	  

3

Lemma 1: The conditional secrecy outage probability given the
BS-UE distance for UE ordering policy I can be written as

F (I)
so (β | dBUn) = 1−

K∑

i=0

Ci
K(−1)i+1

√
pq

2
p+2q−3

2 π
p+2q

2 −1

×Gp+2q,0
0,p+2q

(
a2q
k bp

pp4qq2q
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−

0, 1
p , ...,

p−1
p , 1

2q ,
2
2q , ..., 1

)

,

(9)

where Gm,n
s,t

(
z

∣∣∣∣
u1, . . . , us

v1, . . . , vt

)
is the Meijer G function, α = p/q

with p, q ∈ Z+, a = kdαBUn
, and b = πρEΓ(

2
α + 1)β2/α.

Proof: See Appendix I.

All that remains is to average over the BS-UE distance. The
statistics of the nth nearest neighbor in a PPP are well known.
Using these results, we have that the PDF of dBUn is [24]

fdBUn
(dBUn) = e−ρUπd

2
BUn

2ρnUπ
nd2n−1

BUn

Γ(n)
. (10)

Finally, by using (9) and (10), we arrive at the expression for the
secrecy outage probability shown in

P (I)
so (β) =

∫ ∞

0
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so (β | dBUn)fdBUn

(dBUn) ddBUn
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)
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(11)

where
Ae = πρEΓ

(
2
α

+ 1

)
. (12)

B. Policy II: Ordering by Channel Gain

For this ordering policy, let

xn =
dαBUn

max
k∈(1...K)

(|hBkUn |2)
(13)

and define the set Ψ = {xn, n ∈ N}. The following lemmata
allow us to make progress based on these definitions.

Lemma 2: The set Ψ is a PPP and the intensity function can be
given by

ρΨ(ψ) =
K−1∑

l=0

Cl
K(−1)l

2πρUKψ
2
α−1Γ( 2

α + 1)

α(l + 1)
2
α+1

. (14)

Proof: See Appendix II.
Lemma 3: The PDF of xn is given by

fxn(ψ) =
2(Auψ

2
α )n exp

(
−Auψ

2
α

)

αψΓ(n)
, (15)

where

Au =
K−1∑

l=0

Cl
K(−1)l

πρUKΓ( 2
α + 1)

(l + 1)
2
α+1

(16)

and the CDF of 1/xn is given by

F 1
xn

(x) =
Γ(n,Aux

2
α )

Γ(n)
, (17)

where Γ(· , ·) is the upper incomplete gamma function.
Proof: See Appendix III.
Now, by using (8) and (17), we can obtain the secrecy outage

probability for the second UE ordering policy as follows:

P (II)
so (β) = P

(
γBU

γBE∗
< β

)

= 1−
∫ ∞

0

F 1
xn

(βy)fγBE∗ (y) dy

= 1−
(

Auβ
− 2

α

Auβ− 2
α +Ae

)n

(18)

where Ae and Au are defined in (12) and (16), respectively.

IV. SIMULATIONS RESULTS

In this section, simulation results are given to verify the analysis
presented above. In the simulations, we assume the noise variance
σ2
n = 1, and the transmission-power-to-noise ratio PB/σ2

n = 50
dB. The simulation results are obtained by averaging over 105

independent Monte Carlo trials. The single-antenna case (K = 1)
is our benchmark.

Fig. 2 verifies the secrecy outage probability expressions given
in (11) for the nearest UE (n = 1) for ordering policy I. The path
loss exponents considered are α = 2 and 4, and we let β = 1
and ρU = 0.5 m−2. Both the simulation and the theoretical results
are presented, which are shown to match perfectly. Furthermore,
it is clear from these results that the secrecy outage probability
decreases as the number of transmit antennas increases for both
cases. For the single-antenna case (K = 1), the secrecy outage
probability decreases when the path loss exponent increases. Phys-
ically, this behavior implies that cluttered environments exhibiting
high propagation losses are more beneficial for secrecy, which was
also confirmed in [21]. However, with TAS, propagation losses
have a deleterious effect on the diversity offered by the selection
scheme. This effect outweighs the benefit that such losses provide
in terms of secrecy. So as the path loss exponent increases, the
secrecy outage probability also increases when TAS is used. This
is an important fact that should be born in mind when designing
secure networks.

Results corresponding to the second UE ordering are illustrated
in Fig. 3. Here, we let n = 1, β = 1 and ρU = 0.5 m−2.
Again, the theoretical results (generated with the help of (18)) are
well matched to the simulation results. The expected trends are
observed in this figure: the secrecy outage probability increases
with the intensity of EDs and decreases with increasing numbers
of transmit antennas. Importantly, we see from Fig. 3 that per-
formance is independent of the path loss exponent for K = 1.
However, we also observe the same trends noted above regarding
the worsening of performance with increasing path loss exponent
for K > 1.

Fig. 4 shows the secrecy outage probability versus the different
ordered UE index for both policy I and policy II, where ρE =
0.01 m−2 and ρU = 0.5 m−2. We can see that with increasing
indices (i.e., second, third, fourth best and so on), the secrecy

Displacement	  
and	  mapping	  
theorems	  



Secrecy	  Outage	  Analysis:	  Theory	  vs	  
Simula4on	  

•  Again,	  results	  are	  printed	  in	  your	  notes	  
–  For	  wireless	  enthusiasts,	  note	  the	  
rela4ve	  behaviour	  of	  outage	  	  for	  
different	  path	  loss	  exponents	  as	  
the	  number	  of	  antennas	  increases	  

•  Being	  able	  to	  predict	  system	  
performance	  in	  wireless	  
networks	  is	  very	  important,	  
par4cularly	  as	  the	  complexity	  
of	  the	  network	  grows	  
(system-‐level	  simula4on	  	  
becomes	  problema4c)	   64	  
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•  Ad	  hoc	  networks	  with	  pairwise	  transmissions,	  transmission	  capacity	  
[Zhou,	  2011]	  

•  Beamforming	  and	  ar4ficial	  noise	  in	  a	  Poisson	  field	  of	  eavesdroppers	  
[Ghogho,	  2011]	  

•  Broadcast	  channels,	  linear	  beamforming	  to	  ensure	  secrecy	  [Geraci,	  
2014]	  

•  Colluding,	  noncolluding	  (independently	  ac4ng)	  eavesdroppers	  
[Zheng,	  2014]	  

•  Ar4ficial	  noise	  enhanced	  transmission	  with	  op4mal	  power	  
alloca4on	  [Zheng,	  2015]	  

•  Antenna	  selec4on,	  full-‐duplex	  ar4ficial	  noise	  [Chen,	  2016]	  
•  Antenna	  selec4on,	  user	  ordering	  [Chen,	  2016]	  
•  Secrecy	  in	  mm-‐wave	  networks	  [Wang,	  2016]	  



From	  Secrecy	  to	  Trust	  

•  Focus	  has	  been	  on	  intrinsic	  security	  through	  
informa4on	  theore4c	  secrecy	  so	  far	  

•  Some	  applica4ons	  require	  trust,	  not	  secrecy	  
–  Low	  security	  ad	  hoc	  networks	  
– Mul4-‐agent	  distributed	  systems	  

	  
We	  need	  a	  way	  to	  model	  trust	  in	  large-‐scale	  networks	  

69	  

Example:	  If	  we	  wish	  to	  perform	  a	  task	  in	  a	  distributed	  network	  of	  
devices,	  an	  ini4a4ng	  device	  may	  need	  to	  assign	  jobs	  to	  other	  
devices.	  	  But	  which	  devices	  can	  it	  trust	  to	  execute	  instruc4ons	  in	  a	  
4mely	  and	  reliable	  manner?	  	  This	  is	  a	  typical	  problem	  in	  AI	  systems.	  



Trusted	  Networks	  
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Network	  Model	  
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2 Building Blocks in the Beta Reputation System

The beta reputation system consists of elements that can be used separately or in combination in order
to provide a flexible framework for integrating reputation services into e-commerce applications. The
reputation function and reputation rating which are described in Sections 2.2 and 2.3 below form a
basis on which the building blocks described in the subsequent sections can be added depending on the
requirements.

2.1 The Beta Density Function

Our reputation system is based on the beta probability density function which can be used to repre-
sent probability distributions of binary events. This provides a sound mathematical basis for combining
feedback and for expressing reputation ratings. The mathematical analysis leading to the expression for
posteriori probability estimates of binary events can be found in many text books on probability theory,
e.g. Casella & Berger 1990[2] p.298, and we will only present the results here.

Posteriori probabilities of binary events can be represented as beta distributions. The beta-family of
probability density functions is a continuous family of functions indexed by the two parameters and .
The beta distribution can be expressed using the gamma function as:

where (1)

with the restriction that the probability variable if , and if . The probability
expectation value of the beta distribution is given by:

(2)

Let us consider a process with two possible outcomes , and let be the observed number of
outcome and let be the observed number of outcome . Then the probability density function of
observing outcome in the future can be expressed as a function of past observations by setting:

and where (3)

As an example, a process with two possible outcomes that has produced outcome seven
times and outcome only once, will have a beta function expressed as which is plotted in
Figure 1.
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3

The Beta Reputation System

2 Building Blocks in the Beta Reputation System

The beta reputation system consists of elements that can be used separately or in combination in order
to provide a flexible framework for integrating reputation services into e-commerce applications. The
reputation function and reputation rating which are described in Sections 2.2 and 2.3 below form a
basis on which the building blocks described in the subsequent sections can be added depending on the
requirements.

2.1 The Beta Density Function

Our reputation system is based on the beta probability density function which can be used to repre-
sent probability distributions of binary events. This provides a sound mathematical basis for combining
feedback and for expressing reputation ratings. The mathematical analysis leading to the expression for
posteriori probability estimates of binary events can be found in many text books on probability theory,
e.g. Casella & Berger 1990[2] p.298, and we will only present the results here.

Posteriori probabilities of binary events can be represented as beta distributions. The beta-family of
probability density functions is a continuous family of functions indexed by the two parameters and .
The beta distribution can be expressed using the gamma function as:

where (1)

with the restriction that the probability variable if , and if . The probability
expectation value of the beta distribution is given by:

(2)

Let us consider a process with two possible outcomes , and let be the observed number of
outcome and let be the observed number of outcome . Then the probability density function of
observing outcome in the future can be expressed as a function of past observations by setting:

and where (3)

As an example, a process with two possible outcomes that has produced outcome seven
times and outcome only once, will have a beta function expressed as which is plotted in
Figure 1.

0.2 0.4 0.6 0.8 1
p

1

2

3

4

5
f

Figure 1: Beta function of event after 7 observations of and 1 observation of .

3

The Beta Reputation System

2 Building Blocks in the Beta Reputation System

The beta reputation system consists of elements that can be used separately or in combination in order
to provide a flexible framework for integrating reputation services into e-commerce applications. The
reputation function and reputation rating which are described in Sections 2.2 and 2.3 below form a
basis on which the building blocks described in the subsequent sections can be added depending on the
requirements.

2.1 The Beta Density Function

Our reputation system is based on the beta probability density function which can be used to repre-
sent probability distributions of binary events. This provides a sound mathematical basis for combining
feedback and for expressing reputation ratings. The mathematical analysis leading to the expression for
posteriori probability estimates of binary events can be found in many text books on probability theory,
e.g. Casella & Berger 1990[2] p.298, and we will only present the results here.

Posteriori probabilities of binary events can be represented as beta distributions. The beta-family of
probability density functions is a continuous family of functions indexed by the two parameters and .
The beta distribution can be expressed using the gamma function as:

where (1)

with the restriction that the probability variable if , and if . The probability
expectation value of the beta distribution is given by:

(2)

Let us consider a process with two possible outcomes , and let be the observed number of
outcome and let be the observed number of outcome . Then the probability density function of
observing outcome in the future can be expressed as a function of past observations by setting:

and where (3)

As an example, a process with two possible outcomes that has produced outcome seven
times and outcome only once, will have a beta function expressed as which is plotted in
Figure 1.

0.2 0.4 0.6 0.8 1
p

1

2

3

4

5
f

Figure 1: Beta function of event after 7 observations of and 1 observation of .

3

The Beta Reputation System

2 Building Blocks in the Beta Reputation System

The beta reputation system consists of elements that can be used separately or in combination in order
to provide a flexible framework for integrating reputation services into e-commerce applications. The
reputation function and reputation rating which are described in Sections 2.2 and 2.3 below form a
basis on which the building blocks described in the subsequent sections can be added depending on the
requirements.

2.1 The Beta Density Function

Our reputation system is based on the beta probability density function which can be used to repre-
sent probability distributions of binary events. This provides a sound mathematical basis for combining
feedback and for expressing reputation ratings. The mathematical analysis leading to the expression for
posteriori probability estimates of binary events can be found in many text books on probability theory,
e.g. Casella & Berger 1990[2] p.298, and we will only present the results here.

Posteriori probabilities of binary events can be represented as beta distributions. The beta-family of
probability density functions is a continuous family of functions indexed by the two parameters and .
The beta distribution can be expressed using the gamma function as:

where (1)

with the restriction that the probability variable if , and if . The probability
expectation value of the beta distribution is given by:

(2)

Let us consider a process with two possible outcomes , and let be the observed number of
outcome and let be the observed number of outcome . Then the probability density function of
observing outcome in the future can be expressed as a function of past observations by setting:

and where (3)

As an example, a process with two possible outcomes that has produced outcome seven
times and outcome only once, will have a beta function expressed as which is plotted in
Figure 1.

0.2 0.4 0.6 0.8 1
p

1

2

3

4

5
f

Figure 1: Beta function of event after 7 observations of and 1 observation of .

3

15th Bled Electronic Commerce Conference

e-Reality: Constructing the e-Economy

Bled, Slovenia, June 17 - 19, 2002

The Beta Reputation System

Audun Jøsang

Distributed Systems Technology Centre
Queensland University of Technology, GPO Box 2434, Brisbane Qld 4001, Australia

tel:+61-7-3864 1051, fax:+61-7-3864 1282
email: ajosang@dstc.edu.au

Roslan Ismail

Information Security Research Centre
Queensland University of Technology, GPO Box 2434, Brisbane Qld 4001, Australia

tel:+61-7-3864 2575, fax:+61-7-3221 2384
email: r.ismail@student.qut.edu.au

Abstract

Reputation systems can be used to foster good behaviour and to encourage adherence to contracts in
e-commerce. Several reputation systems have been deployed in practical applications or proposed in the
literature. This paper describes a new system called the beta reputation system which is based on using
beta probability density functions to combine feedback and derive reputation ratings. The advantage of
the beta reputation system is flexibility and simplicity as well as its foundation on the theory of statistics.

1 Introduction

Contracts and agreements need some form of enforcement in order to be respected. Traditionally, trans-
action parties can rely on legal procedures in case of disagreement or contract breach. In e-commerce
it can be difficult to rely on legal procedures because it is often unclear which jurisdiction applies, and
because the cost of legal procedures often are higher than the contractual value itself.

As a substitute for enforcement principles that are used in traditional commerce, reputation sys-
tems have emerged as a method for stimulating adherence to electronic contracts and for fostering trust
amongst strangers in e-commerce transactions [9]. A reputation system gathers, distributes, and aggre-
gates feedback about participants behaviour. According to Resnick et al. [10] reputation mechanisms
can provide an incentive for honest behaviour and help people make decisions about who to trust.

The work reported in this paper has been funded in part by the Co-operative Research Centre for Enterprise Distributed
Systems Technology (DSTC) through the Australian Federal Government’s CRC Programme (Department of Industry, Science
& Resources)
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This curve expresses the uncertain probability that the process will produce outcome during future
observations. The probability expectation value is given by . This can be interpreted as
saying that the relative frequency of outcome in the future is somewhat uncertain, and that the most
likely value is 0.8.

The variable is a probability variable, so that for a given the probability density
represents second order probability. The first-order variable represents the probability of an event,
whereas the density represents the probability that the first-order variable has a specific value.
Since the first-order variable is continuous, the second-order probability for any given value
of is vanishingly small and therefore meaningless as such. It is only meaningful to compute

for a given interval , or simply to compute the expectation value of . Below we
will define a reputation rating that is based on the expectation value.

2.2 The Reputation Function

When observing binary processes with two possible outcomes , the beta function takes the integer
number of past observations of and to estimate the probability of , or in other words, to predict the
expected relative frequency with which will happen in the future.

By replacing the parameters in Eq.(1) by through the mapping of Eq.(3), the parameters
can be directly interpreted as the number of observations of outcome and respectively, and the

prior density function before any observation can be expressed by setting .
Combining feedback resulting from an e-commerce transaction is not the same as statistical observa-

tions of a binary event, because an agent’s perceived satisfaction after a transaction is not binary. Instead
will let positive and negative feedback be given as a pair of continuous values where reflects the
degree of satisfaction and reflects the degree of dissatisfaction. This leads to the following definition
of the reputation function:

Definition 1 (Reputation Function) Let and respectively represent the (collective) amount of
positive and negative feedback about target entity provided by an agent (or collection of agents)
denoted by , then the function defined by:

where (4)

is called ’s reputation function by . The tuple will be called ’s reputation parameters by
. For simplicity and compactness of notation we will sometimes write instead of .

By using Eq.(2) the probability expectation value of the reputation function can be expressed as:

(5)

We will consider reputation functions to be subjective in the sense that if agent provides feedback
about target , then the reputation function resulting from that feedback represents ’s reputation as
seen by , and can not be considered to represent ’s reputation from an objective viewpoint, because
no such thing exists. For this reason is called ’s reputation function by . Superscripts
thus represents the feedback provider, and subscripts represent the feedback target.

4
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protocols are no longer suitable. Some effort has been devoted
to developing trust protocols that can be used in dynamic
ad hoc systems (see, e.g., [5], [8]). However, these were
largely hand-shaking or message-passing procedures designed
to reduce the amount of evidence that was needed before
trust could be established and/or identify malicious entities
operating within the network.

The study of trust in wireless networks has largely been
based on the assumption that a communication link between
two arbitrary nodes can be formed. Yet recent theoretical work
on wireless network connectivity has provided insight into how
the intricate features of the physical communication medium,
the encoding and decoding techniques, and the geometric
properties of the network domain influence whether a set of
nodes can even form a connected network in the first place [3],
[9]. It stands to reason that by incorporating trust into these
models, engineers will be able to glean important information
about the relationship between the adopted trust protocol and
the physical and stochastic nature of the underlying commu-
nication environment, which can ultimately be used to design
better trust protocols and more efficient communication and
networking techniques.

B. Contributions
In this paper, we address the question of whether a set

of devices, or nodes, can form a trusted, fully connected
network by analyzing the probability that nodes belonging
to a trustworthy subset can connect without allowing nodes
from an untrustworthy subset to join the network. To this
end, we incorporate trust into the network model detailed
in [3] and present a leading order analysis of the probability
of trusted connectivity for two trust models: proximity-based
trust, where trust between two nodes is a function of the
distance between them, and experience-based trust, where
trust is dependent upon the outcomes from prior interactions
between nodes. Both models are probabilistic, a condition that
has been adopted in other works (see, e.g., [7], [10]), and one
that we motivate in the next section. Our analysis illustrates
a clear and simple mathematical relationship between the
local pairwise trust probabilities and the underlying physics of
the communication medium, and thus we conclude that trust
protocols should be designed as part of the larger complex
wireless communication system rather than as standalone add-
on features.

II. TRUST AS A RANDOM PROCESS

We adopt a probabilistic model of trust between two com-
municating devices. This will enable us to account for trust
when studying the properties of wireless networks within a
stochastic framework. Before discussing technical details, it is
important to motivate this view of trust as a random process.

First, consider the process of network formation, during
which a given node may not have a priori knowledge of the
integrity of neighbouring nodes. For a given node configu-
ration, deterministic protocols can be employed to establish
communication and trust, which then leads to a particular state

node 1�

node 2�

node 3�n

trust�
communication�

Fig. 1. Example depicting the illogical case where nodes are allowed to
form trust relationships without being able to directly communicate.

of the network, including topology, traffic flows, etc. However,
it is informative to be able to study network performance
averaged over many such instantiations. Such analysis can
yield optimised protocols and more efficient designs. This
averaging leads to the need for a stochastic trust model.

One might also consider the dynamic properties of a
network. The temporal evolution of the network state will
affect trust and communication. Nodes may enter or leave the
network, and the locations of the nodes may change over time.
The processes can be modelled stochastically, thus pointing to
a need for a compatible trust model.

Let us now establish a rigorous mathematical definition of
trust between two nodes i and j. In what follows, we will
often refer to the nodes by their locations ri, rj ∈ V , where
V ⊆ Rd is a Lebesgue measurable set for some positive integer
d with measure vd(V) = V . Note that V is typically just the
Euclidean area (two dimensions) or volume (three dimensions)
of the network domain V . Let {i ∼ j} signify the event that
node i directly trusts node j and vice versa1. Furthermore, let
{i ↔ j} signify the event that nodes i and j can communicate
directly (according to some criterion), with {i ! j} denoting
the complement of that event. We can write the probability
that a trusted connection is established between nodes i and j
as

P(i ∼ j) = P(i ∼ j|i ↔ j)P(i ↔ j)

+ P(i ∼ j|i ! j)P(i ! j). (1)

In our connectivity model, the second term in (1) will equate
to zero. To understand the logic behind this assertion, consider
Fig. 1, which depicts three nodes along with a configuration
of trust links as well as communication links. This example
corresponds to the situation where the second term in (1) is not
zero. Node 2 can communicate with nodes 1 and 3 directly,
but nodes 1 and 3 cannot communicate directly. On the other
hand, according to the diagram, nodes 1 and 3 have established

1We assume that all pairwise interaction is bidirectional in this work.
Extension to directed models is of interest (cf. [6], [10]), but is not considered
in this preliminary study.
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trust in a direct manner. This could only have been achieved
by using node 2 as an intermediary. But such a procedure is
not possible since node 1 does not trust node 2. Hence, it
must be that nodes can only establish trust directly if they
can communicate directly, or if they can connect via a trusted
indirect path. Since we are inherently coupling trust and
communication in this connectivity study, the latter possibility
will be absorbed into the model and we can thus ignore it. It
is worth noting, however, that if we were concerned with the
notion of trust accessibility [11] rather than just connectivity,
indirect trust relationships would be the focus of the work.

Returning to (1), we can write

P(i ∼ j) = TijHij = τij (2)

where Tij is the conditional probability that i and j trust
each other given that they can communicate and Hij is the
probability that i and j can communicate. There is a rich
theory associated with the pairwise connectivity probability
Hij , which is intimately connected to the pair connected-
ness function in the statistical physics literature [3], [12].
But what probability distribution should we assume for the
pairwise trust probability Tij? Some studies have addressed
this question for non-geometric network models [7], [10].
In the next section, we will observe through an analysis
of the connectivity properties of random geometric networks
admitting trust relationships that the answer to this question
largely depends on the global properties of the network.

III. NETWORK CONNECTIVITY ANALYSIS

Consider a set A of NA nodes located in V . We assume
the nodes in A constitute a trustworthy set in the sense
that an omniscient entity observing the system would see
that all nodes in A can trust each other. It is important to
note that, in actuality, each node is unaware that all other
nodes in the domain can be trusted; hence, there is a nonzero
probability that pairwise connections will not be established
between nodes in A, even where the communication channel
permits. The density of trustworthy nodes in V is denoted by
ρA = NA/V , where we recall that V = vd(V).

Now suppose a second set B of NB nodes is also contained
in V . We define B as an untrustworthy set in the sense that the
aforementioned omniscient observer would see that nodes in A
should not trust nodes in B. In reality, this distinction between
the sets A and B could manifest as a low trust probability Tij

for some i ∈ A and j ∈ B, provided a suitable trust protocol is
designed. The density of untrustworthy nodes is ρB = NB/V .

We will limit discussion to the case where there is one set
of each type of node; however, generalization of the ensuing
analysis to more complex scenarios is possible. Moreover, for
the sake of exposition, we assume nodes in both sets can
occupy any point in V , but it is straightforward to extend the
theory detailed herein to other configurations, including the
case where the subspaces occupied by A and B are disjoint.

We assume that nodes are distributed uniformly in V .
Consequently, we define the spatial average of a function

f(r1, . . . , rN ) over V as

⟨f⟩ = 1

V N

ˆ
VN

f(r1, . . . , rN ) dr1 · · · drN . (3)

The notation ⟨·⟩S will be used to denote averaging with respect
to a set of points S .

Finally, in order to maintain simplicity and tractability, it is
assumed that the pairwise communication channels and trust
process describing the interactions between nodes in A are
independent. The same assumption is made for the statistical
events corresponding to B as well as the links between the
trustworthy and untrustworthy sets.

A. Proximity-Based Trust
As mentioned in section I-B, we will consider two broad

classes of trust model: proximity-based trust and experience-
based trust. The underlying assumptions on which these
models are based influence the statistical properties of the trust
distribution Tij .

The proximity-based model draws its name from the as-
sumption that Tij (and thus τij) is a function of the distance
separating nodes i and j. This assumption might be applicable
in disaster relief or emergency public safety networks – both
in a proprietary context as well as part of highly anticipated
5G D2D services – where the requirement for a quick set-up
and the localized nature of the network might imply the most
trusted devices would be those in the immediate geographic
region. Additionally, sensor networks that perform localized
and distributed processing may fall into this category. The
arguably more prosaic case of D2D communication in 5G
cellular networks for file sharing purposes could also be
considered to adhere to a proximity-based trust model. As a
consequence of the proximity argument, we will often write
τij as τ(|ri − rj |) or τ(rij) in what follows, where nodes i
and j are located at ri and rj , respectively, and rij = |ri−rj |.
The same notation will be used for Hij and Tij . The set
membership of i and j will be clear from the context.

A fully connected network (in the communication sense) is
defined as one where a communication path exists between any
two arbitrary nodes, possibly using intermediate nodes to link
shorter paths. We can extend this definition to include a model
of trust by defining a trusted network as a fully connected
network where the paths between nodes are comprised of
trusted links2. To analyze the probability that a trusted network
can be established, we begin with the probability that the nodes
in set A, with locations a1, . . . ,aNA , form a trusted network.
By taking the cluster expansion approach used in [3], we can
write this probability as

Pt,A(a1, . . . ,aNA) = 1−
∑

g∈GA
NA−1

πg −
∑

g∈GA
NA−2

πg − · · · (4)

where GA
n denotes the set of graphs (i.e., networks) comprised

of nodes in A with largest trusted component of size n, and

2From this point onward, the use of the term trust will generally imply
that both communication and trust are established. A sound basis for this
implication follows from the argument made in section II.
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f(r1, . . . , rN ) dr1 · · · drN . (3)
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process describing the interactions between nodes in A are
independent. The same assumption is made for the statistical
events corresponding to B as well as the links between the
trustworthy and untrustworthy sets.
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As mentioned in section I-B, we will consider two broad

classes of trust model: proximity-based trust and experience-
based trust. The underlying assumptions on which these
models are based influence the statistical properties of the trust
distribution Tij .

The proximity-based model draws its name from the as-
sumption that Tij (and thus τij) is a function of the distance
separating nodes i and j. This assumption might be applicable
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in a proprietary context as well as part of highly anticipated
5G D2D services – where the requirement for a quick set-up
and the localized nature of the network might imply the most
trusted devices would be those in the immediate geographic
region. Additionally, sensor networks that perform localized
and distributed processing may fall into this category. The
arguably more prosaic case of D2D communication in 5G
cellular networks for file sharing purposes could also be
considered to adhere to a proximity-based trust model. As a
consequence of the proximity argument, we will often write
τij as τ(|ri − rj |) or τ(rij) in what follows, where nodes i
and j are located at ri and rj , respectively, and rij = |ri−rj |.
The same notation will be used for Hij and Tij . The set
membership of i and j will be clear from the context.

A fully connected network (in the communication sense) is
defined as one where a communication path exists between any
two arbitrary nodes, possibly using intermediate nodes to link
shorter paths. We can extend this definition to include a model
of trust by defining a trusted network as a fully connected
network where the paths between nodes are comprised of
trusted links2. To analyze the probability that a trusted network
can be established, we begin with the probability that the nodes
in set A, with locations a1, . . . ,aNA , form a trusted network.
By taking the cluster expansion approach used in [3], we can
write this probability as

Pt,A(a1, . . . ,aNA) = 1−
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πg − · · · (4)

where GA
n denotes the set of graphs (i.e., networks) comprised

of nodes in A with largest trusted component of size n, and

2From this point onward, the use of the term trust will generally imply
that both communication and trust are established. A sound basis for this
implication follows from the argument made in section II.

978

πg is the probability of the graph g occurring, which is

πg =
∏

(i,j)∈g

τij
∏

(i,j)/∈g

(1− τij). (5)

We can construct the probability that a trusted network is
established in the presence of untrustworthy nodes by forming
the average

Pt =

〈〈
Pt,A(a1, . . . ,aNA)

NB∏

j=1

NA∏

i=1

(1− τ(|ai − bj |))
〉

A

〉

B
(6)

where the double product denotes the probability that there
is no trusted connection between nodes in A and nodes in
B (which have locations b1, . . . ,bNB ). Concentrating on the
case where the trustworthy set A is dense, we retain the first
two terms in (4) and write3

Pt ≈
〈

NB∏

j=1

〈
NA∏

i=1

(1− τij)

〉

A

〉

B

−
〈〈(

NA∑

p=1

∏

i ̸=p

(1− τip)

)(
NB∏

j=1

NA∏

i=1

(1− τij)

)〉

A

〉

B

.

(7)

Note that the leading term in (7), which we denote by P (1)
t ,

only depends on the trust relationship between the two sets
A and B. The correction term depends on this relationship as
well, but also encompasses the internal connectivity properties
of the set A through the summation, which corresponds to the
probability that there is an isolated node in A. The isolated
node probability is a function of both physical connectivity
(through Hij) and the trust protocol (through Tij). Hence,
even this simple approximation provides insight into how trust
protocols are ultimately linked to the physical properties of the
communication system.

To explore this notion further, we focus on P (1)
t for the

remainder of the paper; discussion of correction terms, while
interesting from a technical point of view, will be deferred to
a later contribution. The dai integrals in the inner average of
P (1)
t separate, and thus we can write

P (1)
t =

〈
NB∏

j=1

(
1− ρA

NA

ˆ
V
τ(|a− bj |) da

)NA
〉

B

=

(
1

V

ˆ
V
e−ρA

´
V τ(|a−b|) da(1 +O(1/NA)) db

)NB

(8)

which, to leading order, is a good approximation for V ≫√
NA. Recall, however, that (7) is accurate in the dense

regime; hence, if V scales such that ρA becomes small,
the approximation is no longer accurate. For further details
regarding scaling assumptions, see [3].

3See [3] for details of this approximation.

It is clear from (8) that a well designed trust protocol will
ensure that τij ≪ 1 over all of V when i ∈ A and j ∈ B, or
equivalently

T (rij) ≪
1

ρAH(rij)
, rij ≥ 0. (9)

Note that this is a sufficient condition, and it draws a direct
mathematical link between the trust protocol and the physical
environment in which the network is situated. To the best of
the author’s knowledge, such a relationship has not previously
been investigated. Eq. (9) implies that a trust protocol need
not be concerned too much with authentication of nodes in B
that lie far from a given reference node (in A) since Hij ≪ 1
in this case. However, the protocol must ensure that nodes
located sufficiently close to the reference node are queried
extensively in order to maintain a high degree of separation
between nodes in A and those in B. Of course, the protocol
must also ensure that nodes in A are likely to establish trusted
connections, which leads to the requirement Tij ≈ 1 for
i, j ∈ A. This juxtaposition of design rules points to a need
for further investigation of well-established trust protocols as
well as the development of new methods that take into account
the underlying physics of the system, as discussed above.

To obtain the rule given in (9), we made no assumptions
about the size of the set B. But it should be observed that
NB is small enough that (9) does not depend on ρB . Now,
returning to (8) and assuming that τ is small as previously
discussed, the exponential in the integral can be expanded to
first order to yield

P (1)
t ≈

(
1− ρAρBM [τ ]

NB

)NB

(10)

where
M [τ ] =

ˆ
V2

τ(|a− b|) da db (11)

is the mass of the pairwise trust-connection probability τ
expressed as an average over all possible configurations of
node pairs. Letting NB grow large yields the compact and
rather convenient expression

P (1)
t ≈ e−ρAρBM [τ ]. (12)

It is possible to use the techniques detailed in [3] to obtain a
representation for M [τ ] in terms of contributions arising from
different geometric features of V . Physically, (12) depicts the
exponential dependence the network trust probability has on
the average proportion of trusted links between A and B.

Another approach that we can employ to further analyze
M [τ ] when V is a convex, compact set is to transform the
2d-dimensional integral into a one-dimensional integral with
respect to the distance between nodes located at a and b,
which is called the pair distance and is denoted by r = |a−b|.
It is known from the theory of stochastic geometry that the
pair distance density function can be written as [13]

℘(r) =
vd−1(Sd−1

r )

V 2
γV(r) (13)

979



Proximity	  Based	  Trust	  

77	  

Probability	  that	  a	  trusted	  network	  is	  established	  in	  the	  
presence	  of	  untrustworthy	  nodes	  (set	  B)...	  

	  

	  

	  

If	  trustworthy	  set	  A	  is	  dense...	  

πg is the probability of the graph g occurring, which is
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τij
∏

(i,j)/∈g

(1− τij). (5)

We can construct the probability that a trusted network is
established in the presence of untrustworthy nodes by forming
the average

Pt =

〈〈
Pt,A(a1, . . . ,aNA)

NB∏

j=1

NA∏
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(1− τ(|ai − bj |))
〉
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〉

B
(6)

where the double product denotes the probability that there
is no trusted connection between nodes in A and nodes in
B (which have locations b1, . . . ,bNB ). Concentrating on the
case where the trustworthy set A is dense, we retain the first
two terms in (4) and write3

Pt ≈
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(1− τij)

〉
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−
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NA∑
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(1− τip)

)(
NB∏
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NA∏
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(1− τij)
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〉
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(7)

Note that the leading term in (7), which we denote by P (1)
t ,

only depends on the trust relationship between the two sets
A and B. The correction term depends on this relationship as
well, but also encompasses the internal connectivity properties
of the set A through the summation, which corresponds to the
probability that there is an isolated node in A. The isolated
node probability is a function of both physical connectivity
(through Hij) and the trust protocol (through Tij). Hence,
even this simple approximation provides insight into how trust
protocols are ultimately linked to the physical properties of the
communication system.

To explore this notion further, we focus on P (1)
t for the

remainder of the paper; discussion of correction terms, while
interesting from a technical point of view, will be deferred to
a later contribution. The dai integrals in the inner average of
P (1)
t separate, and thus we can write

P (1)
t =

〈
NB∏

j=1

(
1− ρA

NA

ˆ
V
τ(|a− bj |) da

)NA
〉

B

=

(
1

V

ˆ
V
e−ρA

´
V τ(|a−b|) da(1 +O(1/NA)) db

)NB

(8)

which, to leading order, is a good approximation for V ≫√
NA. Recall, however, that (7) is accurate in the dense

regime; hence, if V scales such that ρA becomes small,
the approximation is no longer accurate. For further details
regarding scaling assumptions, see [3].

3See [3] for details of this approximation.

It is clear from (8) that a well designed trust protocol will
ensure that τij ≪ 1 over all of V when i ∈ A and j ∈ B, or
equivalently

T (rij) ≪
1

ρAH(rij)
, rij ≥ 0. (9)

Note that this is a sufficient condition, and it draws a direct
mathematical link between the trust protocol and the physical
environment in which the network is situated. To the best of
the author’s knowledge, such a relationship has not previously
been investigated. Eq. (9) implies that a trust protocol need
not be concerned too much with authentication of nodes in B
that lie far from a given reference node (in A) since Hij ≪ 1
in this case. However, the protocol must ensure that nodes
located sufficiently close to the reference node are queried
extensively in order to maintain a high degree of separation
between nodes in A and those in B. Of course, the protocol
must also ensure that nodes in A are likely to establish trusted
connections, which leads to the requirement Tij ≈ 1 for
i, j ∈ A. This juxtaposition of design rules points to a need
for further investigation of well-established trust protocols as
well as the development of new methods that take into account
the underlying physics of the system, as discussed above.

To obtain the rule given in (9), we made no assumptions
about the size of the set B. But it should be observed that
NB is small enough that (9) does not depend on ρB . Now,
returning to (8) and assuming that τ is small as previously
discussed, the exponential in the integral can be expanded to
first order to yield

P (1)
t ≈

(
1− ρAρBM [τ ]

NB

)NB

(10)

where
M [τ ] =

ˆ
V2

τ(|a− b|) da db (11)

is the mass of the pairwise trust-connection probability τ
expressed as an average over all possible configurations of
node pairs. Letting NB grow large yields the compact and
rather convenient expression

P (1)
t ≈ e−ρAρBM [τ ]. (12)

It is possible to use the techniques detailed in [3] to obtain a
representation for M [τ ] in terms of contributions arising from
different geometric features of V . Physically, (12) depicts the
exponential dependence the network trust probability has on
the average proportion of trusted links between A and B.

Another approach that we can employ to further analyze
M [τ ] when V is a convex, compact set is to transform the
2d-dimensional integral into a one-dimensional integral with
respect to the distance between nodes located at a and b,
which is called the pair distance and is denoted by r = |a−b|.
It is known from the theory of stochastic geometry that the
pair distance density function can be written as [13]
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where the double product denotes the probability that there
is no trusted connection between nodes in A and nodes in
B (which have locations b1, . . . ,bNB ). Concentrating on the
case where the trustworthy set A is dense, we retain the first
two terms in (4) and write3
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Note that the leading term in (7), which we denote by P (1)
t ,

only depends on the trust relationship between the two sets
A and B. The correction term depends on this relationship as
well, but also encompasses the internal connectivity properties
of the set A through the summation, which corresponds to the
probability that there is an isolated node in A. The isolated
node probability is a function of both physical connectivity
(through Hij) and the trust protocol (through Tij). Hence,
even this simple approximation provides insight into how trust
protocols are ultimately linked to the physical properties of the
communication system.

To explore this notion further, we focus on P (1)
t for the

remainder of the paper; discussion of correction terms, while
interesting from a technical point of view, will be deferred to
a later contribution. The dai integrals in the inner average of
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which, to leading order, is a good approximation for V ≫√
NA. Recall, however, that (7) is accurate in the dense

regime; hence, if V scales such that ρA becomes small,
the approximation is no longer accurate. For further details
regarding scaling assumptions, see [3].

3See [3] for details of this approximation.

It is clear from (8) that a well designed trust protocol will
ensure that τij ≪ 1 over all of V when i ∈ A and j ∈ B, or
equivalently

T (rij) ≪
1

ρAH(rij)
, rij ≥ 0. (9)

Note that this is a sufficient condition, and it draws a direct
mathematical link between the trust protocol and the physical
environment in which the network is situated. To the best of
the author’s knowledge, such a relationship has not previously
been investigated. Eq. (9) implies that a trust protocol need
not be concerned too much with authentication of nodes in B
that lie far from a given reference node (in A) since Hij ≪ 1
in this case. However, the protocol must ensure that nodes
located sufficiently close to the reference node are queried
extensively in order to maintain a high degree of separation
between nodes in A and those in B. Of course, the protocol
must also ensure that nodes in A are likely to establish trusted
connections, which leads to the requirement Tij ≈ 1 for
i, j ∈ A. This juxtaposition of design rules points to a need
for further investigation of well-established trust protocols as
well as the development of new methods that take into account
the underlying physics of the system, as discussed above.

To obtain the rule given in (9), we made no assumptions
about the size of the set B. But it should be observed that
NB is small enough that (9) does not depend on ρB . Now,
returning to (8) and assuming that τ is small as previously
discussed, the exponential in the integral can be expanded to
first order to yield

P (1)
t ≈
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1− ρAρBM [τ ]
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where
M [τ ] =
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V2

τ(|a− b|) da db (11)

is the mass of the pairwise trust-connection probability τ
expressed as an average over all possible configurations of
node pairs. Letting NB grow large yields the compact and
rather convenient expression

P (1)
t ≈ e−ρAρBM [τ ]. (12)

It is possible to use the techniques detailed in [3] to obtain a
representation for M [τ ] in terms of contributions arising from
different geometric features of V . Physically, (12) depicts the
exponential dependence the network trust probability has on
the average proportion of trusted links between A and B.

Another approach that we can employ to further analyze
M [τ ] when V is a convex, compact set is to transform the
2d-dimensional integral into a one-dimensional integral with
respect to the distance between nodes located at a and b,
which is called the pair distance and is denoted by r = |a−b|.
It is known from the theory of stochastic geometry that the
pair distance density function can be written as [13]
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where the double product denotes the probability that there
is no trusted connection between nodes in A and nodes in
B (which have locations b1, . . . ,bNB ). Concentrating on the
case where the trustworthy set A is dense, we retain the first
two terms in (4) and write3
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Note that the leading term in (7), which we denote by P (1)
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only depends on the trust relationship between the two sets
A and B. The correction term depends on this relationship as
well, but also encompasses the internal connectivity properties
of the set A through the summation, which corresponds to the
probability that there is an isolated node in A. The isolated
node probability is a function of both physical connectivity
(through Hij) and the trust protocol (through Tij). Hence,
even this simple approximation provides insight into how trust
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interesting from a technical point of view, will be deferred to
a later contribution. The dai integrals in the inner average of
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which, to leading order, is a good approximation for V ≫√
NA. Recall, however, that (7) is accurate in the dense

regime; hence, if V scales such that ρA becomes small,
the approximation is no longer accurate. For further details
regarding scaling assumptions, see [3].

3See [3] for details of this approximation.

It is clear from (8) that a well designed trust protocol will
ensure that τij ≪ 1 over all of V when i ∈ A and j ∈ B, or
equivalently

T (rij) ≪
1

ρAH(rij)
, rij ≥ 0. (9)

Note that this is a sufficient condition, and it draws a direct
mathematical link between the trust protocol and the physical
environment in which the network is situated. To the best of
the author’s knowledge, such a relationship has not previously
been investigated. Eq. (9) implies that a trust protocol need
not be concerned too much with authentication of nodes in B
that lie far from a given reference node (in A) since Hij ≪ 1
in this case. However, the protocol must ensure that nodes
located sufficiently close to the reference node are queried
extensively in order to maintain a high degree of separation
between nodes in A and those in B. Of course, the protocol
must also ensure that nodes in A are likely to establish trusted
connections, which leads to the requirement Tij ≈ 1 for
i, j ∈ A. This juxtaposition of design rules points to a need
for further investigation of well-established trust protocols as
well as the development of new methods that take into account
the underlying physics of the system, as discussed above.

To obtain the rule given in (9), we made no assumptions
about the size of the set B. But it should be observed that
NB is small enough that (9) does not depend on ρB . Now,
returning to (8) and assuming that τ is small as previously
discussed, the exponential in the integral can be expanded to
first order to yield

P (1)
t ≈

(
1− ρAρBM [τ ]

NB

)NB

(10)

where
M [τ ] =

ˆ
V2

τ(|a− b|) da db (11)

is the mass of the pairwise trust-connection probability τ
expressed as an average over all possible configurations of
node pairs. Letting NB grow large yields the compact and
rather convenient expression

P (1)
t ≈ e−ρAρBM [τ ]. (12)

It is possible to use the techniques detailed in [3] to obtain a
representation for M [τ ] in terms of contributions arising from
different geometric features of V . Physically, (12) depicts the
exponential dependence the network trust probability has on
the average proportion of trusted links between A and B.

Another approach that we can employ to further analyze
M [τ ] when V is a convex, compact set is to transform the
2d-dimensional integral into a one-dimensional integral with
respect to the distance between nodes located at a and b,
which is called the pair distance and is denoted by r = |a−b|.
It is known from the theory of stochastic geometry that the
pair distance density function can be written as [13]

℘(r) =
vd−1(Sd−1

r )

V 2
γV(r) (13)
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πg is the probability of the graph g occurring, which is

πg =
∏

(i,j)∈g

τij
∏

(i,j)/∈g

(1− τij). (5)

We can construct the probability that a trusted network is
established in the presence of untrustworthy nodes by forming
the average
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Pt,A(a1, . . . ,aNA)
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NA∏
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(1− τ(|ai − bj |))
〉

A

〉

B
(6)

where the double product denotes the probability that there
is no trusted connection between nodes in A and nodes in
B (which have locations b1, . . . ,bNB ). Concentrating on the
case where the trustworthy set A is dense, we retain the first
two terms in (4) and write3
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∏
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〉
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.

(7)

Note that the leading term in (7), which we denote by P (1)
t ,

only depends on the trust relationship between the two sets
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well, but also encompasses the internal connectivity properties
of the set A through the summation, which corresponds to the
probability that there is an isolated node in A. The isolated
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even this simple approximation provides insight into how trust
protocols are ultimately linked to the physical properties of the
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To explore this notion further, we focus on P (1)
t for the

remainder of the paper; discussion of correction terms, while
interesting from a technical point of view, will be deferred to
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If	  the	  trust	  bridging	  probability	  is	  small,	  we	  can	  
approximate	  (to	  first	  order)...	  

	  

	  

	  

	  

Exponen4al	  approxima4on	  valid	  for	  large	  |B|,	  small(ish)	  
density	  of	  set	  B,	  and	  small	  bridging	  probability	  
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The	  power	  of	  pair	  distance...	  

Transform	  integrals	  using	  pair	  distance	  to	  obtain	  

	  

	  

If	  τ	  is	  small	  for	  r	  >>	  0	  (and	  the	  bounding	  region	  is	  convex),	  
we	  have	  

	  

	  

Links	  the	  dimension	  of	  the	  network	  d,	  the	  volume	  of	  the	  
confining	  geometry	  V,	  and	  the	  trust	  protocol	  

where Sd−1
r = {x ∈ Rd : ∥x∥ = r} is the sphere of

dimension d − 1 and radius r with “surface area” given by
vd−1(Sd−1

r ) = 2πd/2rd−1/Γ(d/2). The term γV(r) is known
as the isotropized set covariance of V , and it represents the
proportion of the set V with points that admit pairings with a
separation of exactly r units of distance. Now, assuming the
diameter of V is given by D = sup{|a − b| : a,b ∈ V}, we
can use (13) to rewrite the trust volume as

M [τ ] =
2πd/2

Γ(d/2)

ˆ D

0
rd−1γV(r)τ(r) dr. (14)

The isotropized set covariance has a closed form for some
bounding geometries in R2 and R3 (see, e.g., [13] and refer-
ences therein). Moreover, if τ is small for r ≫ 0, we may
expand the integrand of (14) to obtain4

M [τ ] =
πd/2T (0)V

Γ
(
d
2 + 1

) rd0 +O(rd+1
0 ) (15)

for some typical connection range parameter r0 ≪ D. Details
are omitted for brevity, but higher order expansions are pos-
sible. This expansion provides a clear link between the trust
probability T , the volume of the domain V , and the dimension
of the system d. Note that the pairwise connection probability
H does not factor into the expression since communication is
guaranteed over short distances.

B. Experience-Based Trust
The experience-based trust model is more suitable for

studying the dynamic properties of a network or trust-critical
applications such as those where nodes collaborate in order to
attain some high priority goal (e.g., critical sensing and actua-
tion scenarios). In this model, the trust probability describing
the interaction between two nodes is not a function of distance
between them. Instead, this probability is formed from prior
experience. For example, if node i has interacted with node j
in the past, and has built up a catalogue of evidence that mostly
points toward node j being trustworthy, then Tij will be close
to one. Of course, if two nodes have no previous experience
(i.e., node i has no a priori knowledge of the trustworthiness of
node j), then it is logical that Tij = 1/2 initially. Over time,
Tij can be refined. Distributed trust establishment protocols
also fall into the experience-based trust model [10], [14].

It is clear that Tij is a random variable. It is common to
model random probabilities of this nature as beta distributed
random variables owing to the fact that beta and binomial
distributions are conjugate, and, as stated above, we wish to
be able to update Tij based on experience or information
gathered, which could take the form of the numbers of
successful and unsuccessful transactions. This approach to
modelling random probabilities is fairly commonplace, having
been employed to study multi-agent systems [7], [15], [16]
and develop reputation systems for applications such as e-
commerce [17].

4This condition may be met in practice for certain “hard” connectivity
models or when τ decays exponentially. Line-of-site Bluetooth-like or near-
field connections fall into this scenario.

For the remainder of this discussion, we will be interested
in studying the steady-state, average probability that a trusted
network can form. This focus enables us to extend the aver-
aging operation over the distribution of Tij when analyzing
the connectivity properties of the network. Thus, the exact
distribution of Tij can be abstracted for the moment.

Considering only the leading order term in (7), we can
average with respect to the trust probabilities {Tij} under the
assumption that these variables are independent and identically
distributed to obtain

P (1)
t =

〈
NB∏

j=1

〈
NA∏

i=1

(1− E[Tij ]Hij)

〉

A

〉

B

. (16)

As an aside, we see that if Tij is beta distributed with
density function given by f(t) = B(α,β)−1tα−1(1 − t)β−1

for 0 ≤ t ≤ 1 and B(α,β) = Γ(α)Γ(β)/Γ(α + β), then
E[Tij ] = α/(α + β) for all i and j denoting nodes in A and
B, respectively. Following the calculation through as in the
preceding section, we arrive at the approximation

P (1)
t ≈ 1− ρAρBE[T ]

ˆ
V2

H(|a− b|) da db (17)

where we have omitted the subscript indices from Tij and used
the assumption that

E[T ] ≪ 1

ρAρB
´
V2 H da db

(18)

for links between the sets A and B. Again, this brief analysis
demonstrates the leading order relationship that exists between
the physical system and the steady-state behaviour of the trust
protocol. By employing the tools of stochastic geometry and
those used in [3], we can develop the theory further in the
manner discussed in section III-A.

IV. NUMERICAL RESULTS

To better illustrate the effect that trust has on network con-
nectivity, the probability that a trusted network is established
in the presence of a set of untrustworthy nodes is presented as
a function of ρA in Fig. 2. For this example, a square domain
(d = 2) of side length L = 7 was taken to be the bounding
geometry. A Gaussian connectivity function was assumed, i.e.,

H(r) = e−βr2 , r ≥ 0 (19)

which corresponds to a rich scattering environment (Rayleigh
fading) with an empirical path loss exponent of η = 2. For
simplicity, β was set equal to one here. It was assumed that five
untrustworthy nodes shared the domain with the trustworthy
nodes, i.e., NB = 5. The trust distribution corresponding to
links between the sets A and B followed a proximity-based
model, and was defined to be

T (r) = mH(r) (20)

for simplicity5, with m ≥ 0 being a design parameter that
governs how trusting nodes are of each other. It was assumed

5Other exponential models were studied as well, some being similar to
those reported in [10], but the basic trends of the results were similar. Hence,
those results have been omitted here.
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