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Summary

Most literature focuses on human mobility, eg cellular or mobile ad-hoc net-
work (MANET) applications. Can also consider animals, robot swarms, un-
derwater sensors etc.

1. Random walk

2. Random waypoint

3. Truncated Lévy walk

4. Self-similar least action walk (SLAW)

5. Periodic and social mobility model (PSMM)

For each of these we will be thinking about simulation algorithms, short and
long time properties, effects of boundaries.



Random models

100 steps, differing characteristics...

Random walk Random Waypoint Truncated Lévy



The random walk, neglecting boundaries

The simplest, but also usually least realistic, mobility model is the random
walk (RW). In each time step T , move wth a random velocity (for example
speed ∼ U(vmin, vmax), and angle ∼ U(0,2π)) independent of all previous steps.
Thus the displacement is

∆(t) = V[t/T ]

{
t

T

}
T +

[t/T ]−1∑
i=0

ViT

We see that at short times t < T each node moves ballistically,

∆(t) = Vt

whilst for longer times motion is diffusive, controlled by the central limit
theorem (assuming as usual that E(V) = 0, E(V2) <∞)

P
(

∆(t) ∈ t1/2D
)
→
∫
D

exp
(
− x2

2E(V2)Tt/d

)
(2πE(V2)Tt/d)d/2

dx

So, with high probability ∆(t) is of order
√

E(V2)Tt.

Recurrence: The node returns arbitrarily close to its starting point with prob-
ability 1. Well known to hold for d ≤ 2 and to fail for d = 3 (generalisation
of Pólya’s recurrence theorem for random walks on lattices).



Boundary effects

If a boundary is reached, reflect from it like a mirror and continue for the re-
mainder of the time interval (also for other mobility models). If all boundaries
are straight and and corners of angle π/n (ie rectangles, a few triangles), we
can consider the whole trajectory in free space, then do reflections as needed
to obtain the bounded trajectory.

In the RW at long times, the nodes are distributed uniformly, hence recurrent.



Random waypoint

The random waypoint mobility (RWPM) model is a popular and somewhat
more realistic approach. Each node undergoes a sequence of alternating
flights and pauses.

Flight Choose a random destination point (eg uniformly) in the (bounded,
convex) domain, and a speed, for example vk ∼ U(vmin, vmax). Move
uniformly to the destination point, taking a time τk = |xk+1 − xk|/vk.

Pause Stop for a random time Tk, for example Tk ∼ U(Tmin, Tmax).

Thus

tk =
k−1∑
j=0

(τj + Tj) x(t) =

{
xk + (xk+1 − xk)

t−tk
τk

tk < t < tk + τk
xk+1 tk + τk < t < tk+1

Simulation: Typically all nodes are started unformly in the domain at the
beginning of a flight. This differs from the steady state which is reached after
a few times the longest possible flight plus pause time, namely

D

vmin
+ Tmax

where D is the diameter of the domain.



Average node density I

The waypoints xk are chosen with respect to a given probability density fs(x),
perhaps uniform. However the average node density f(x) differs because
much of the time is spent at intermediate points:

f(x) = psfs(x) + (1− ps)fm(x)

where fm(x) is the density of mobile nodes and the probability that a given
node is static is

ps =
E(T )

E(T ) + E(τ)

If Tk ∼ U(Tmin, Tmax) we have

E(T ) =
Tmin + Tmax

2

while the average flight time is

E(τ) = E(v−1)l̄

where l̄ is the average flight length. If vk ∼ U(vmin, vmax) we have

E(v−1) =
ln vmax − ln vmin
vmax − vmin



Average node density II

We still need l̄ and fm(x). These are found by integrating over source and
destination points, weighted by the flight length since each node spends pro-
portionately longer times on longer flights. The proportion of paths that pass
through a region A gives the integral of fm(x) over A [HLV06]. Remarkably,
fm(x) also gives the expected betweenness centrality of a node at x [GGD15].

We use polar coordinates centred at x in which the domain has equation
r = R(φ). The source node is (r1, φ) for 0 < r1 < a1 ≡ R(φ) and the destination
node (r2, φ+ π) for 0 < r2 < a2 ≡ R(φ+ π).

1D Here, x ∈ [0, L], φ = 0, a1 = L− x, a2 = x.

fm(x) =
2

l̄

∫ a1

0
g(x+ r1) dr1

∫ a2

0
g(x− r2) dr2

l̄ =

∫ L

0

∫ L

0
g(x)g(y)|y − x| dy dx

2D

fm(x) =
2

l̄

∫ 2π

0
dφ

[∫ a1

0
g(x + r1eφ) r1 dr1

∫ a2

0
g(x + r2eφ+π) dr2

]
l̄ =

∫ ∫
g(x)g(y)|y − x| dy dx

In both cases l̄ can also be calculated using the normalisation of f .



Uniform waypoints

1D uniform We find on the unit interval [0,1]

f1(x) ≡ fm(x) = 6x(1− x), l̄ =
1

3

On [0, L] we have simply

fm(x) =
f1(x/L)

L
, l̄ =

L

3

2D uniform The above expression reduces to

fm(x) =
1

l̄V 2

∫ π

0
a1a2(a1 + a2)dφ

where V is the area of the domain. For a disk of radius R this gives

fm(r, θ) =
2(R2 − r2)

l̄(πR2)2

∫ π

0

√
R2 − r2 cos2 φdφ, l̄ =

128R

45π

On a rectangle with side lengths (a, b), the approximation

fm(x, y) ≈
f1(x/a)f1(y/b)

ab

is often used; see [BRS03] for more sophisticated approximations. The
full analytical result was finally obtained in Ref. [PDG16]...



In the rectangle [−a, a]× [−b, b] with 1 > y
b
> x

a
> 0 (and similarly for other regions)

f(x, y) =
1

16a2b2l

{
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+
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[
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]
+ 2x(b− y)2 ln

∣∣∣a− x
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∣∣∣+ 4ax(b− y) ln
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b+ y

∣∣∣
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[
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∣∣∣+ ln

∣∣∣y − d4 − b
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∣∣∣]+ c2 ln
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d2 − a− x

∣∣∣+ c3 ln

∣∣∣d2 + b+ y
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∣∣∣
+ c4 ln
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∣∣∣− c5 ln

∣∣∣ y − d4 − b
−d3 − b− y

∣∣∣+ c6 ln

∣∣∣d4 + a+ x
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∣∣∣}
where

c1 = a(a− x)(a+ x)

c2 = b(b− y)(b+ y)

c3 = (a+ x)(b− y)2

c4 = (a+ x)2(b− y)

c5 = (x− a)(b− y)2

c6 = (x− a)2(b− y)

d1 =
√

(a− x)2 + (b− y)2

d2 =
√

(a+ x)2 + (b+ y)2

d3 =
√

(a− x)2 + (b+ y)2

d4 =
√

(a+ x)2 + (b− y)2.



Short time properties

We are now in a position to analyse short time properties, once the system
has reached a steady state. Given a node, its location is distributed according
to f(x) and has a probability ps of being static.

If it is static, the probability that it will remain static for at least a time
∆ < Tmin is found by weighting the distribution of times by T , and integrating
the probability that the time is not within the last ∆ of the pause:

P(tk+1 > t+ ∆|tk+1 < t+ Tk) =

∫ Tmax

Tmin

2T

T 2
max − T 2

min

T −∆

T
dT

= 1−
2∆

Tmax + Tmin

and similarly for Tmin < ∆ < Tmax and in a more involved manner if it is mobile.
Thus, a probability distribution for x(t + ∆) given x(t) can be constructed,
corrected by contributions from situations where the node stops and/or starts
to move in a new direction during the time interval.

This analysis has been carried out in detail in a simplified model (lattice in
1D) to understand time correlation of interference in Ref. [KD16].



Nonuniform waypoints and generalisations

There have also been a number of studies on nonuniform waypoints and
generalisations of RWPM, for example

• A nonuniform waypoint density and/or a position-dependent pause time
distribution can lead to a uniform average mobile density [MRS14].

• Uniform on the boundary, the random waypoint on border (RWPB)
model [HLV06]. The density can be obtained as a limit of the above inte-
grals, and typically increases towards the boundary; if there are straight
segments on the boundary, the node spends a finite fraction of time
there.

• In nonconvex domains, the uniform motion between waypoints can be
replaced by a path that moves to the nearest vertex to the destination
that is visible, the mission critical mobility model (MCM) [PBDK12]. In
this case, a node can spend a finite fraction of its time on the boundary
of the obstacles.



Lévy flights and walks

The standard central limit theorem applies only when the variance of the ran-
dom variable is finite. For heavy tailed symmetric distributions, with densities

fX(x) ∼ x−α−1, x→∞, 0 < α < 2

the sum of iid random variables approaches a Lévy stable law with density

fα,cstable(x) =
1

2π

∫ ∞
−∞

exp[−itx− |ct|α] dt

The constant c > 0 is a scale factor. For most α there is no simple analytic
form; for α → 2 we return to the Gaussian distribution, and α = 1 gives a
Cauchy distribution:

f1,c
stable(x) =

c/π

x2 + c2

Nonsymmetric stable distributions with mean µ and “skewness parameter” β
have been similarly defined, but we will not need them here.

A Lévy flight is a random walk with a heavy tailed symmetric distribution.
Realistically it takes a finite time to travel long distances; including a finite
velocity leads to Lévy walk models. These models exhibit a variety of anoma-
lous diffusion properties, for example the super-ballistic Richardson’s law of
turbulent diffusion E(∆(t)2) ∼ t3 [SKW86].



Truncated Lévy walk mobility model

A popular and experimentally validated model of human mobility is the fol-
lowing truncated Lévy walk model [RSHLKC11].

Each node undergoes a sequence of alternating flights and pauses, similar to
RWPM. First choose a random position and values of the constants α, β ∈
(0,2), cf , cp, k, τl, τp > 0, ρ ≈ 0.5. Then,

Flight Choose a random path length l ∼ fα,cfstable(l); reject and resample if l < 0
or l > τl. The flight time is ∆tf = kl1−ρ. The direction θ ∼ U(0,2π).
Move uniformly to the destination point, reflecting from the boundaries
if needed.

Pause Stop for a random time ∆tp ∼ fβ,cpstable(l); reject and resample if ∆tp < 0
or ∆tp > τp.



Simulating the symmetric stable distribution

This is not obvious; an algorithm was given in Ref. [CMS76] for the more
general case of nonzero mean and skewness parameter; in our case:

1. Generate U ∼ U
(
−π

2
, π

2

)
and W ∼ exp(1).

2. Then the desired random variable with density fα,cstable is

X =

{
csin(αU)

cos1/α U

[
cos(U(1−α))

W

]1−α
α

α 6= 1

c tanU α = 1

Note that due to the generalised central limit theorem, the results of a trun-
cated Lévy walk are unlikely to depend sensitively on the choice of distribution
with given tail exponents α (for the path length) and β (for the pause time).



Group, social and periodic mobility models

Recently, a number of very detailed mobility models have been introduced to
describe mobility in specific applications, taking account of effects such as

Groups A group of nodes has a leader and other members, whose mobility
is related.

Social interaction Nodes have preferential attachment, moving to areas
with more nodes. Or, there is an underlying network of friends, which
affects node behaviour and may be affected by node locations.

Time-periodic behaviour Nodes are likely to spend certain times of the
day/week at fixed home or work locations, together with commuting
and social travel at other times.



SLAW

A self-similar least action walk (SLAW) was proposed in Ref. [LHKRC09].
The aim was to include

1. Truncated power law flights and pause times

2. Heterogeneously bounded mobility areas

3. Truncated power law inter-contact times

4. Fractal waypoints



SLAW construction

Fractal waypoints Construct a fractal set of points by recursively subdivid-
ing the region and allocating points nonuniformly at each stage.

Clusters Partition these points into clusters of size roughly 100 metres (typ-
ical connection range).

Walkers Each walker chooses 3 to 5 clusters with a probability weighted by
the number of points in each cluster. Then a set of roughly 10% of
points in each of the chosen clusters, thenone of these points that will
be its home.

Daily walk Each walker chooses a new cluster randomly as before and walk
from home to each of the usual and new chosen points according to a
“least action trip planning” (LATP) algorithm, returning home. Pause
times are chosen from a truncated Lévy distribution as with the TLW
and the total time normalised to 12 hours.

LATP: Choose the next waypoint from all unvisited points with a probability
weighted by distance to the power −α, α ≈ 2.

Simulation code for truncated Lévy walk and SLAW:

http://research.csc.ncsu.edu/netsrv/?q=content/human-mobility-models-download-tlw-slaw



PSMM

The Periodic and Social mobility Model (PSMM) of Ref. [CML11] is:

• Each user has a probability that varies throughout the day of being in
Home or Work states.

• If Home or Work, the location is distributed Normally around these loca-
tions

• There is also a probability of being in a Social state, in which case the
time and location are distributed close (with power law decay) to those
of the social check-ins of the user’s friends.

Fitting this to real data, these authors concluded that social relationships
explain 10-30% of human mobility, while periodic behaviour explains 50-70%.



Dynamic network properties

Mobility models affect the rate of breaking links (both cellular and MANET):

• Low in RW

• Moderate in TLW and related models

• High in RWP.

This then impacts the choice of protocols, eg routing protocol in MANET
applications should be more “reactive” than “proactive” if links break fre-
quently.



Summary

Mobility models are important to describe both short and long timescale
behaviour in networks.

Waypoints can be distributed randomly, from a fixed set, or a combination of
these.

There is generally a trade-off between mathematical tractability/insight and
realism.

Many of the effects of nonuniform spatial distributions, correlated and peri-
odic behaviour, dynamic and collective processes on networks have yet to be
explored.
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