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PageRank	
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The	Page	Rank	is	based	on	a	random	
walk	

•  We	assume	to	have	a	
random	walker	on	the	node	
j	of	the		network	

•  With	probability	    			the	
random	walker	hops	to	a	
neighbor	node		

•  With	a	probability	1- 	

	 it	jumps	to	a	random	node		

j
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PageRank	

The	PageRank	xi	of	node	i	is	the	probability	that	
in	the	sta-onary	state	we	find	the	random	

walker	on	node	i	

€ 

xi = ˜ α 
Aij

g j

x j
j
∑ + β

€ 

with
g j = max(k j ,1), ki

Aij =
1 if node j links to node i
0 otherwise
⎧ 
⎨ 
⎩ 

, ˜ α = 0.85

indicaHng	the	degree	of	node	i	



Quan-fying	the		

centrality	of	the	nodes		

with	the		
Func9onal	Mul9plex	PageRank	



Influences	of	mul9links	

In	a	mul-plex	network	different	paGern		of	

connec-ons	might	contribute	differently	to	
the	centrality	of	a	node	

The	influence	of	a	mulHlink					

is	indicated	by				  

€ 

z
! 
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J.	Iacovacci	et	al.	2016	
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The	random	walker	can	jump	to	a	
random	node	
(teleporta-on)	
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z(1,0 )

€ 

z(0 ,1)€ 

z(1,1)

The	random	walker	can	jump		
to	a	neighbor	node,	

	with	a	probability	propor-onal	to		
the	influence	of	the	corresponding	mul-link	

(a)	 (b)	

FuncHonal	MulHplex	PageRank	



Func9onal	Mul9plex	PageRank	

The	centrality	of	a	node	i	

is	a	funcHon	

depending	on	the	values	of	the	influences	z	aXributed	
to	mulHlinks		

For	a	duplex	network	
€ 

Xi(z)

€ 

z = (z(1,0 ),z(0,1),z(1,1))



Non-linear	effects	due	to	the	overlap	
of	the	links	

The	Func-onal	Mul-plex	PageRank	allows	

for	the	inclusion	of	strong	non-linear	effects	
due	to	the	overlap	of	the	links.	

	For	example,		in	a	duplex	network	we	can	have	

and	we	can	weight	mulHlinks	(1,1)	much	more	or	much	less	

than	the	sum	of	the	weight	of	mulHlinks	(0,1)	and	(1,0).		

	 	

€ 

z(1,1) ≠ z(0,1) + z(1,0 )



Absolute	Mul9plex	PageRank	

From	the		
FuncHonal	MulHplex	PageRank		

we	can	extract	the		
Absolute	MulHplex	PageRank	

given	by	

which	can	provide	an	overall	ranking	of	the	nodes	
of	the	mulHplex	network				

€ 

Xi
* =max

z
Xi(z)



The	case	of	a	duplex	network	(M=2)	

	 The	FuncHonal	MulHplex	PageRank,	
	 depends	only	of	the	direcHon	of	the	vector	
of	influences	z,	therefore	we	take	

	 		 	 	 	

	 	 	 with		

€ 

z(1,0 ) = sinθ cosφ
z(0 ,1) = sinθ sinφ
z(1,1) = cosθ

€ 

θ,φ ∈[0,π /2]
€ 

z(1,0 )

€ 

z(0 ,1)

€ 

z(1,1)

€ 

θ

€ 

φ€ 

z



Top	ranked	airports	in	the	duplex	
LuMhansa/Bri9sh	Airways	network	

according	to	the		
Absolute	Mul9plex	PageRank	

	 	



Different	paRern	to	success	of	major	
airports	

•  For	φ=0o	θ=90o	
mulHlinks	(1,0)	have	
major	influence	

•  For	φ=90o	θ=90o	
mulHlinks	(0,1)	have	
major	influence	

•  For		θ=0o	mulHlinks	
(1,1)	have	major	
influence	



Correla9ons	between	the	pa#ern	to	
success	

€ 

ρ =
XiX j − Xi X j

σ iσ j

€ 

Y =
1

NφNθ s=1.. Nθ

∑ Y(φr,θ s )
r=1.. Nφ

∑

σ i = Xi
2 − Xi

2

where	the	average	and	the	standard	deviaHon		
are	calculated	on	a	grid	(φr	,θs)	with		

r=1,2,..,Nφ and	s=1,2,…,Nθ		



Correla9ons	between	the	paRern	to	
success	

between	major	airports	



Duplex	connectome	network	of	
C.elegans	

Top	ranked	neurons	 	 					Pearson	correlaHons	

Similar	neurons	types	have	
correlated	paGern	to	success		



Mul9Rank	
Centrality	of	nodes	and		

Influence	of	layers		

in	large	mul9plex	networks	



Mul9plex	network	representa9on	

Rahmede	et	al.	(2017)	



Mul9Rank	

Node	are	central	
	if	already	central	nodes	point	to	them	in	very	

influent	layers	

	 Layers	are		more	influent			

if	very	central	nodes	are	ac-ve	in	it	

	 		



Centrality	of	countries	in	the	
FAO	Mul9plex	Trade	Networks	



Influences	of	layers	in	the	
FAO	Mul9plex	Trade	Networks	

Rahmede	et	al.	(2017)	





Percola9on	in		
single	networks	



! A	connected	component	of	a	network	is	a	subgraph		
induced	by	any	set	of	nodes	such	that	for	each	pair	of	nodes	
	in	the	subgraph	there	is	at	least	one	path	connecHng	them		
and	such	that	no	other	node	is	connected	to	them	by	any	path.	
! The	giant	component	is	the	connected	component	of	the		
network	which	contains	a	number	of	nodes	of	the	same	order		
of	magnitude	of	the	total	number	of	nodes	in	the	network.		



Node failure 

" "               "
We	assume	that	a	fracHon	1-p	of	nodes	is	damaged.	

We	evaluate	the	robustness	of	the	network	by	calculaHng	the	fracHon	S		
of	nodes	in	the	giant	component	a]er	this	inflicted	damage.	



PercolaHon	transiHon	in	Poisson	
networks	

S	is	the	
fracHon	of	
nodes	in	the	

giant	
component	

€ 

S =
(p − pc )

β for p ≥ pc
0 for p < pc

⎧ 
⎨ 
⎩ 

€ 

pc =1/ k
β =1



Robustness	of	Scale-free	networks	under	
random	failure	

€ 

p >
1
k

€ 

p > 0 for γ ∈ (2,3]

Poisson	network	 	 				Scale-free	network	with		

€ 

γ ∈ (2,3]

CondiHon	for	having	a	giant	component	

€ 

p >
k

k(k −1)



Robustness	of	Scale-free	networks	

		Complex	scale	free	networks	are	very	robust	
against	random	damage	

Protein-protein	interacHon	network																						Internet	



1 

S 

0 1 p pc 

AXacks	

Failures	
Topological error 

tolerance 

R.	Albert	et	al.	2000	
Cohen	et	al.	2000	
Cohen	et	al.	2001	
R.	Albert	et	al	2001	



Generalized	percola9on	in	mul9plex	
networks	



Interac9ng	infrastructure	networks	

Complex	infrastructures	are	interdependent	and	
a	failure	in	one	network	can	generate	a	
cascade	of	failures	in	the	Interdependent	
networks	

Buldyrev	et	al.	Nature	2010	



Interdependent	mul9plex	networks	

			A	mulHplex	network	is	interdependent		
	 if	all	the	interlinks	imply	the	

interdependence	of	the	connected	replica	
nodes.	

			Two	nodes	are	interdependent	if	the	damage	
of	one		node	implies	the	damage	of	the	other	
interdependent	node,	independently	on	the	

rest	of	the	network.	



Mutually	connected	giant	component	
Any	two	nodes	of	the	mutually	connected	

giant	component	are	connected	by	at	least	
one	path	in	each	layer	of	the	mul8plex	network	

Buldyrev	et	al.	2010	



Case	of	a	Poisson	mul9plex	network	
with	M	Layers	

Nodes	are	damaged	with	probability	1-p		

FracHon	of	nodes	in	the	GC	of	single	Poisson	layer	with	
average	degree	c:		

		FracHon	of	nodes	in	the	MCGC	of		mulHplex	network	
with	M	Poisson	layers	of		average	degree	c:	
€ 

S = p 1− e−cS( )

€ 

S = p 1− e−cS( )M



Percola9on	on	two	interdependent	Poisson	
networks	with	average	degree	c		

€ 

g(x = S / p) = x − 1− e−cpx( )2 = 0

The	percolaHon	transiHon	at	cp=2.455…		
is	disconHnuous!	



Discon9nuous	hybrid	transi9on		

Mutually	connected	giant	component	
in	a	muplex	network	with	M=2	Poisson	layers		

of		average	degree	c		

Square-root		
singularity	

DisconHnuity	

Buldyrev	et	al.	Nature		



Mutual	connected	component	of	a	
Poisson	mul9plex	network	with		

no	link	overlap	
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Son	S.-W.,	et	al.	EPL(2012)	 Region	I:		non	percolaHng	

Region	II:	
percolaHng	

Phase	diagram	of	ER-ER	interdepedent	networks	
With	average	degree	zA	and	zB	



Effects	of	degree	correla9ons	

PosiHve	degree	
correlaHons		improve		
the	robustness	of	a	mulHplex	
network.	
MP	maximally	posiHve	
Degree	correlaHons	

NegaHve	degree	correlaHons		
reduce	the	robustness	of	a	
mulHplex	network.	
MN	maximally	negaHve	
degree	correlaHons					



Mutually	connected	component	in	scale	
free	mul9plex	network	

The	discon9nuity	decreases,	pc	increases	
with	decreasing	γ	exponent		

Fixed	minimal	degree	(Baxter	et	al.)			Fixed	average	degree	(Parshani	et	al.)	



Cascade	of	failure	events	at	the	
percola9on	transi9on	

Buldyrev	et	al.	Nature		



Par9al	interdependence	changes	the	
nature	of	the	percola9on	transi9on	

Allowing	for	par-al	
interdependence	
can	change	the	
nature	of	the	
transi-on	from	
discon-nuous	to	
con-nuous.			



Duplex	network	with	Poisson	Layers	
and	Link	Overlap	

€ 

k01 = k10 = c1
k11 = c2

Duplex	networks	with	Poisson	mulHdegree	distribuHon	with	

	 	 	 MCGC	

	 	 	 	

€ 

S = p 1− 2e−c1 S−c2 ( S+S2,1 ) + e−2 c1 S−c2 ( S+S2,1 )( )
S(1,1),( 1,0 ) = S2,1 = p e−c1 S−c2 ( S+S2,1 ) − e−2c1 S−c2 ( S+2S2,1 )( )



Phase	diagram	for		
the	MCGC	in	a	duplex	network	

€ 

k01 = k10 = c1
k11 = c2

Duplex	networks	with	Poisson	mulHdegree	distribuHon	with	

Cellai	et	al	(2016)	



Mul9plex	network	with	three	Poisson	
layers	and	link	overlap	

€ 

k001 = k010 = k100 = c1
k110 = k101 = k011 = c2
k111 = c3

MulHplex	networks	with	three	layers	with	Poisson	mulHdegree	distribuHon		

The	determinaHon	of	the	MCGC	involve	solving	a	non-linear	system	of	three	
variables	

The	network	has	a	conHnuous	phase	transiHon	only	for	complete	overlap	of	the	
links			



Compe9ng	networks	

Region	III:	
Bistable	
region,	either	
one	of	the	
networks	
percolates	

Region	II:	only	
one	network	
can		percolate	

The	func9on	of	a	node	in	a	network		
is	incompa9ble	with	the	func9on	

of	the	same	node	in	the	other	network	network	

K.	Zhao	et	al.	JSTAT	(2013)	
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Percola9on	in		
	network	of	networks	



Network	of	Networks	Case	I	

If	a	network	is		
interacHng	with	
another	network	
all	the	nodes	of	
the	network	are	
interdependent	
with	their	“replica	
nodes”	on	the	
other	network		
and	vice	versa.	



The	network	of	networks	

InteracHng	networks	 	 	 Supernetwork	



Network	of	Networks	Case	I	

A	node	is	in	the	mutually	
connected	giant	
component	if	all	the	nodes	
that	can	be	reached	by	
interlinks	have		at	least	
one	neighbor	in	their	layer	
that	is	in	the	percolaHon	
cluster.	



Robustness	of	the	network	of	networks	

•  The	robustness	of	a		network	of	networks	
belonging	to	the	case	I	is	independent	on	the	
structure	of	the	network	of	networks	as	long	
as	the	network	of	networks	is	connected.	

•  All	the	layers	start	to	percolate	when	the	
fracHon	of	non-damaged	nodes	p>pc	

•  The	transiHon	is	disconHnuous	as	long	as	M>1	
if	the	layers	are	not	correlated.	

G.	Bianconi,	S.N.	Dorogovtsev	and	J.	F.	F.	Mendes	2014	



Network	of	networks	Case	II	

Every	layer	α	has	a	
supradegree	q,α.	

Therefore	every	node	
of	layer α has	qα links	
to	qα	replica	nodes	in	
some	other	layer	
chosen	randomly	



Main	results	for	case	II		

•  The	layers	with	higher	superdegree	are	more	fragile	
than	layers	with	low	superdegree.	

•  In	the	networks	there	are	mul9ple	percola9on	
transi9ons	corresponding	to	the	ac9va9on	of	layers	
with	increasing	value	of	the	superdegree.	

•  Each	of	these	transiHons	is	disconHnuous	is	the	
networks	in	the	different	layers	are	not	correlated	for	
r=1	

•  If	r<1	some	of	these	transi9ons	can	become	
con9nuous	



Percola9on	in	layers	with	
superdegree	q	

Case	γ=2.8	c=20	

MulHple	phase	transiHons!	
Layers	with	larger	superdegree	are	more		

vulnerable!	
G.	Bianconi	and	S.N	Dorogovstev	(2014)	



Nature	Physics	News	&	Views		



Mutual	connected	component	of	a	
Poisson	mul9plex	network	with		

no	link	overlap	

0 1 2 3 4 5
0

1

2

3

4

cp

cS



Redundant	interdependencies	

	 Is	a	mulHplex	network	more	or	less	robust	if	
we	add	new	layers?	

	 If	interdependencies	are	redundant		

	 and	a		node	can	be	in		the	Redundant	MCGC		

as	long	as	at	least	one	replica	node	is	acHve,		

	 then	the	more	layers	we	add	to	the	network	
the		more	robust	it	becomes	



Redundant	Mutually	Connected	
Giant	Component		

Radicchi	Bianconi	PRX	(2017)	



Equa9ons	

	 x31	(3)=	 	 		+	 	 						+	 	 	 	 	

	x33(3)=	 	 	 			x32(3)	=	 	 				+	 	 	 x22(2)=	 	 						+		 	 	 	 	 				

x31	(2)=	 	 			+	 	 				+	

	x21	(2)=	 	 							+	 	 	 		+	

x32	(2)=		 	 											+	 	 	 	 	 	

x	21	(1)=		 	 										+	 								+																			+																			+		 	 	 	 	 	

	x11	(1)=	 	 									+		 							+																				+																			+		 	 	 	 	 	



Redundant	interdependencies	boost	
the	robustness	of	mul9layer	networks	

Radicchi	Bianconi	PRX	(2017)		



Conclusions	
	 	

	 Percola9on	in	mul9layer	interdependent	networks	

	 													display	surprising	novel	phenomena		

•  In	presence	of	interdependencies,	the	percolaHon	transiHon	
becomes	disconHnuous	and	hybrid	and	is	characterized	by	large	
avalanches	of	failure	events.	

•  In	presence	of	parHal	interdependencies	it	can	become	conHnuous.	

•  In	network	of	networks	it	is	possible	to	observe	mulHple	phase	
transiHon.	

•  Redundant	interdependencies	might	explain	why	many	natural	
made	networks	have	many	layers	as	in	this	framework	the	
robustness	increases	with	the	number	of	layers.	

Percola-on	on	interdependent	networks	
captures	the	possible	mechanisms		
yielding	fragile	mul-layer	networks	



Message	passing	algorithm	for	
percola9on	



Message	passing	algorithms	are	
widely	used	for	

characterizing	cri9cal	phenomena	and	
dynamical	systems	in	complex	

networks	
•  Percola9on	on	single	networks	
(Karrer,	Newman,	Zdeborova	PRL	2014)	
•  Network	control	
(Liu,	SloHne	&	Barabasi	Nature	2011)		
•  Epidemic	spreading	in	mul9-slice	networks	

(Valdano	et	al.	PRX	2015)	



Message	passage	algorithm	
for	the	Giant	Component	of	a	single	network	

€ 

σi→ j = si 1− (1−σl→ i )
l∈N( i)\ j
∏

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

σi = si 1− (1−σl→ i )
l∈N ( i)
∏

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

The	ini-al	node	damage	is	indicated	by		the	variables	si		
associated	to	the	nodes	of	the	network:	

si=0	if	node	i	is	damaged	and	si=1	otherwise.	
The	message	going	from	node	i	to	not	j	follows	

The		node	i	is	in	the	giant	component	if	σi=1	otherwise	σi=0	where		



Message	passage	algorithm	
for	the		

Mutually	Connected	Giant	Component	
in	absence	of	link	overlap	

€ 

σi→ j = si
α=1,M
∏ 1− (1−σl→ i)

l∈Nα ( i)\ j
∏

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

σi = si
α=1,M
∏ 1− (1−σl→ i)

l∈Nα ( i)
∏

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

The	iniHal	node	damage	is	indicated	by	puong	
si=0	if	node	i	is	damaged	and	si=1	otherwise.	

The	generic	message	going	from	node	i	to	node	j	is	updated	according	to	

A	node	i	is	in	the	MCGC	if		σi=1	where			



Percola9on	in		

mul9plex	networks		
with	overlap	of	the	links:	

the	message	passing	approach	



Directed	percola9on	problem	

Nodes	in	the	directed	mutually	connected	giant	component	
(DMCGC)	can	be	found	by	using	the	same	algorithm	used	

in	absence	of	overlap	of	the	links	

In	absence	of	overlap	of	the	links		
DMCGC=MCGC	

Specifically	we	will	have			

€ 

σi→ j = 0



Difference	between	the	DMCGC	and	
the	MCGC	

Min	et	al.	(2015)	Cellai	et	al.	(2016)														

€ 

h

€ 

j



Required	proper9es	of	the	
message	passing	algorithm	for	the	

MCGC	

•  The	MCGC	must	be	of	maximum	size:		
– the	messages	are	polarized		

– the	sender	node	must	assume	that	the	target	
node	is	in	the	MCGC.	

•  The	messages	must	indicate	the	set	of	layers																											
that	connect	the	sender	node	to	the	MCGC.		

  

€ 

! n = (n1, n2 …, nM )



The	algorithm	
			 		 	 The	message			 				 	

	 		 	 indicates	that	
assuming	that	j	belongs	to	the	MCGC		
-	node	i	must	be	in	the	MCGC	
-  node	i	connects	node	j	to	the	MCGC	exclusively	
through	the	layers	α	with		

It	follows	specifically	that	we	have	

  

€ 

! n i→ j = (ni→ j
[1] ,ni→ j

[2 ] ,…ni→ j
[M ] ), ni→ j

[α ] = 0,1

  

€ 

! n i→ j = (1,0)€ 

ni→ j
[α ] = 1



Non-trivial	cases	for	M=2	

  

€ 

! n i→ j = (1,0)

  

€ 

! m ij = (1,1)  

€ 

! m ij = (1,0)   

€ 

! m ij = (0,1)

  

€ 

! n i→ j = (1,0)

  

€ 

! n i→ j = (0,1)

  

€ 

! n i→ j = (1,1)



How	this	algorithm	can	predict	
that	node	j	and	h		
are	in	the	MCGC	

Cellai	et	al.	(2016)	



Duplex	network	with	Poisson	Layers	
and	Link	Overlap	

€ 

k01 = k10 = c1
k11 = c2

Duplex	networks	with	Poisson	mul9degree	distribu9on	with	

	 	 	 MCGC	

	 	 	 DMGC	

€ 

S = p 1− 2e−c1 S−c2 ( S+S2,1 ) + e−2 c1 S−c2 ( S+S2,1 )( )
S(1,1),( 1,0 ) = S2,1 = p e−c1 S−c2 ( S+S2,1 ) − e−2c1 S−c2 ( S+2S2,1 )( )

€ 

S = p 1− 2e−( c1 +c2 )S + e−( 2 c1 +c2 )S( )



DMGC	and	MCGC	messages	
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Phase	diagram	for		
DMCGC	and	MCGC	
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Conclusions	
We	 have	 formulated	 a	 message	 passing	 theory	 for	 percola-on	 and	 directed	

percola-on	in	mul-plex	network	with	link	overlap.	

•  Both	 algorithms	 reduce	 to	 percola-on	 in	 mul-plex	 network	 in	 absence	 of	
overlap	and	to	percola-on	on	single	network	in	presence	of	complete	overlap.	

•  The	 algorithm	 for	 directed	 percola-on	 has	 an	 epidemic	 spreading	
interpreta-on.	 The	 algorithm	 for	 percola-on	 does	 not	 	 have	 a	 feed-forward	
character.	

•  The	two	cri-cal	phenomena	have	different	phase	diagrams.	

The	algorithm	for	the	MCGC	can	be	used	to	study		

1.  	the	robustness	of	real	mul-plex	networks	and		

2. to	study	the	percola-on	phase	diagram	of	mul-plex	networks	with	link	overlap	
and		arbitrary	number	of	layers.	


