Short Course on Complex Networks

and Point Processes with Applications
Oxford, Sep 11-12, 2017

Multilayer Networks
Ginestra Bianconi

School of Mathematical Sciences, Queen Mary University of London, London, UK

\-Qs’ Queen Mary

University of London



Multiplex Networks:
centrality measures

\a_é_s’ Queen Mary

University of London



PageRank



The Page Rank is based on a random
walk




The Page Rank is based on a random
walk

e We assume to have a
random walker on the node
j of the network




The Page Rank is based on a random
walk

e We assume to have a
random walker on the node
j of the network

 With probability (tthe
random walker hops to a
neighbor node




The Page Rank is based on a random
walk

e We assume to have a
random walker on the node
j of the network

 With probability (tthe
random walker hops to a
neighbor node

 With a probability 1- &
it jumps to a random node



PageRank

The PageRank x.of node i is the probability that
in the stationary state we find the random
walker on node i

A.
X, = &ijj +3
J J

with

8= max(kj ), kl- indicating the degree of node i

1 if node j links to nodei
A, = , , (a=0.85
710 otherwise



Quantifying the
centrality of the nodes
with the
Functional Multiplex PageRank



Influences of multilinks

In a multiplex network different pattern of
connections might contribute differently to
the centrality of a node

The influence of a multilink m
s indicated by 7"

J. lacovacci et al. 2016



Multilinks PRE (2013)
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Functional Multiplex PageRank

(a) (b)
The random walker can jump
to a neighbor node,
with a probability proportional to
the influence of the corresponding multilink

The random walker can jump to a
random node
(teleportation)



Functional Multiplex PageRank

The centrality of a node |
is a function

X,(z)

depending on the values of the influences z attributed
to multilinks

For a duplex network

z=(z"",2%0 ")



Non-linear effects due to the overlap
of the links

The Functional Multiplex PageRank allows
for the inclusion of strong non-linear effects
due to the overlap of the links.

For example, in a duplex network we can have

1,1 0,1 10
Z( );éz( )_I_Z( )

and we can weight multilinks (1,1) much more or much less
than the sum of the weight of multilinks (0,1) and (1,0).



Absolute Multiplex PageRank

From the
Functional Multiplex PageRank
we canh extract the
Absolute Multiplex PageRank
given by

X =max X ,(z)

which can provide an overall ranking of the nodes

of the multiplex network



The case of a duplex network (M=2)

The Functional Multiplex PageRank,

depends only of the direction of the vector
of influences z, therefore we take

7' =sinfOcos ¢
, Z
7" =sinOsin¢
1,1 Z(O’])
7" =cosO —>
with

0,00, /2]




Top ranked airports in the duplex
Lufthansa/British Airways network
according to the
Absolute Multiplex PageRank

Rank Airport
1 Heathrow Airport (LHR)
2 Munich Airport (MUC)
3 Frankfurt Airport (FRA)
4 Gatwick Airport (LGW)



Different pattern to success of major
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Correlations between the pattern to
success

(XX,)-(X)X))
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where the average and the standard deviation

are calculated on a grid (¢, ,0,) with
r=1,2,..,N,and s=1,2,..,N,
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Correlations between the pattern to

SUuccess
between major airports
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Duplex connectome network of
C.elegans

Top ranked neurons Pearson correlations

Rank Neuron Rank Neuron
AVAR 6 PVCR
AVAL 7 AVDR

AVBL 8 AVER
AVBR 9 AVEL
PVCL 10 DVA

U = O BN =

Similar neurons types have
correlated pattern to success

AVAR AVAL AVBL AVBR PVCL PVCR AVDR AVER AVEL DVA



MultiRank
Centrality of nodes and
Influence of layers
in large multiplex networks



Multiplex network representation

Bipartite network Multiplex network

Colored network

1

Rahmede et al. (2017)



MultiRank

Node are central

if already central nodes point to them in very
influent layers

Layers are more influent
if very central nodes are active in it



Centrality of countries in the
FAO Multiplex Trade Networks
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Influences of layers in the
FAO Multiplex Trade Networks

s=1, a=1, top 15 s=-1,a=1, top 15
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Rahmede et al. (2017)



Robustness
of
Multilayer Networks



Percolation in
single networks



Giant component

» A connected component of a network is a subgraph
induced by any set of nodes such that for each pair of nodes
in the subgraph there is at least one path connecting them
and such that no other node is connected to them by any path.
»The giant component is the connected component of the
network which contains a number of nodes of the same order
of magnitude of the total number of nodes in the network.




Robusthess of

complex networks

o °
Node failure: \ w
./°

We assume that a fraction 1-p of nodes is damaged.
We evaluate the robustness of the network by calculating the fraction S
of nodes in the giant component after this inflicted damage.




Percolation transition in Poisson
networks

Sis the
fraction of
nodes in the
giant
component

<k>p
) (p =p)" forp=p.  p ik
0 forp<p. P!




Robustness of Scale-free networks under
random failure

Poisson network Scale-free network with /y - (2,3]
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Robustness of Scale-free networks

Protein-protein interaction network Internet
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Complex scale free networks are very robust
against random damage



Scale-free networks and targeted attack toward
nodes of high degree
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Generalized percolation in multiplex
networks



Interacting infrastructure networks

Complex infrastructures are interdependent and
a failure in one network can generate a
cascade of failures in the Interdependent
networks
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Interdependent multiplex networks

A multiplex network is interdependent

if all the interlinks imply the
interdependence of the connected replica
nodes.

Two nodes are interdependent if the damage
of one node implies the damage of the other
interdependent node, independently on the
rest of the network.



Mutually connected giant component

Any two nodes of the mutually connected
giant component are connected by at least
one path in each layer of the multiplex network

BRBE
0 80 it

Buldyrev et al. 2010




Case of a Poisson multiplex network

with M Layers
Nodes are damaged with probability 1-p

Fraction of nodes in the GC of single Poisson layer with
average degree c:

S=p(I1-e)

Fraction of nodes in the MCGC of multiplex network
with M Poisson layers of average degree c:

S=p(l-e)"



Percolation on two interdependent Poisson
networks with average degree c

2
g(x=S/p)=x—(1—e‘c”x) =0

0.2~
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The percolation transition at cp=2.455...
is discontinuous!



Discontinuous hybrid transition

Mutually connected giant component
in a muplex network with M=2 Poisson layers
of average degree c

Square-root
4 singularity
3 —
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2
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cp Buldyrev et al. Nature



Mutual connected component of a
Poisson multiplex network with
no link overlap




Phase diagram of ER-ER interdepedent networks
With average degree z, and z;

Region II:
percolating

Son S-W., et al. EPL(2012) Region I: non percolating




Effects of degree correlations

Positive degree

correlations improve

the robustness of a multiplex
network.

MP maximally positive
Degree correlations

Negative degree correlations
reduce the robustness of a
multiplex network.

MN maximally negative
degree correlations
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Mutually connected component in scale
free multiplex network

Fixed minimal degree (Baxter et al.) Fixed average degree (Parshani et al.)
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Cascade of failure events at the
percolation transition
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Partial interdependence changes the
nature of the percolation transition

e~ ER strong coupling <p. Allowing for partial

m-m ER weak coupling

A—A SF strong coupling Y 4 o Interdependence

»—» SF weak coupling

can change the
nature of the
transition from
discontinuous to
continuous.




Duplex network with Poisson Layers
and Link Overlap

Duplex networks with Poisson multidegree distribution with
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Phase diagram for
the MCGC in a duplex network

Duplex networks with Poisson multidegree distribution with
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0.8+

0.6+

041

0.2

Multiplex network with three Poisson
layers and link overlap

Multiplex networks with three layers with Poisson multidegree distribution

(k) < ) (1) =,

0.5 ‘ 1 1.5

The determination of the MCGC involve solving a non-linear system of three
variables
The network has a continuous phase transition only for complete overlap of the
links



Competing networks

The function of a node in a network
is incompatible with the function
of the same node in the other network network
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Region II: only
one network
can percolate




Percolation in
network of networks



Network of Networks Case |

If a network is
interacting with
another network
all the nodes of
the network are
interdependent

with their “replica
nodes” on the
other network
and vice versa.




The network of networks

Interacting networks Supernetwork
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Network of Networks Case |
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A node is in the mutually
connected giant
component if all the nodes
that can be reached by
interlinks have at least
one neighbor in their layer

that is in the percolation
cluster.




Robustness of the network of networks

* The robustness of a network of networks
belonging to the case | is independent on the
structure of the network of networks as long
as the network of networks is connected.

* All the layers start to percolate when the
fraction of non-damaged nodes p>p,

* The transition is discontinuous as long as M>1
if the layers are not correlated.

G. Bianconi, S.N. Dorogovtsev and J. F. F. Mendes 2014



Network of networks Case li

Every layer o has a
supradegree q

. Therefore every node
of layer a has q, links
to q, replica nodes in
some other layer

chosen randomly




Main results for case |l

The layers with higher superdegree are more fragile
than layers with low superdegree.

In the networks there are multiple percolation

transitions corresponding to the activation of layers
with increasing value of the superdegree.

Each of these transitions is discontinuous is the
networks in the different layers are not correlated for
r=1

If r<1 some of these transitions can become
continuous



Percolation in layers with
superdegree q
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Multiple phase transitions!
Layers with larger superdegree are more

vulnerable!
G. Bianconi and S.N Dorogovstev (2014)



Nature Physics News & Views

news & views

MULTILAYER NETWORKS

Dangerous liaisons?

Many networks interact with one another by forming multilayer networks, but these structures can lead to large
cascading failures. The secret that guarantees the robustness of multilayer networks seems to be in their correlations.

Ginestra Bianconi

atural complex systems evolve
N according to chance and necessity — a
trial and error — because they
are driven by biological evolution. The
expectation is that networks describing
natural complex systems, such as the
brain and biological networks within the
cell, should be robust to random failure.
Otherwise, they would have not survived
under evolutionary pressure. But many
natural networks do not live in isolation;
instead they interact with one another to b
form multilayer networks — and evidence
is mounting that random networks of
networks are acutely susceptible to failure.
‘Writing in Nature Physics, Saulo Reis and
colleagues' have now identified the key
correlations responsible for maintaining
robustness within these multilayer networks.
In the past fifteen years, network theory?>?
has granted solid ground to the expectation
that natural networks resist failure. It has
also extended the realm of robust systems

to man-made self-organized networks that Figure 1| Reis etal.’ have shown that correlations between intra- (red) and interlayer (blue dotted)

do not obey a centralized design, such as the interactions influence the robustness of multilayer networks. a, In the brain, each network layer has
Internet or the World Wide Web. In fact, it multilayer assortativity and the hubs in each layer are also the nodes with more interlinks, so liaisons
has been shown that many isolated complex between layers are trustworthy. b, In complex infrastructures (such as power grids and the Internet), if

biological, teChnOIOSical and S‘).Cial networks  the interlinks are random, the resulting multilayer network is affected by large cascades of failuress, and
are scale free,_ meaning that their nodes liaisons can be considered dangerous.




Mutual connected component of a
Poisson multiplex network with
no link overlap




Redundant interdependencies

Is @ multiplex network more or less robust if
we add new layers?

If interdependencies are redundant
and a node can be in the Redundant MCGC
as long as at least one replica node is active,

then the more layers we add to the network
the more robust it becomes



Redundant Mutually Connected
Giant Component
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Radicchi Bianconi PRX (2017)



Equations
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Redundant interdependencies boost
the robustness of multilayer networks
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Conclusions

Percolation on interdependent networks
captures the possible mechanisms
yielding fragile multilayer networks

Percolation in multilayer interdependent networks
display surprising novel phenomena

In presence of interdependencies, the percolation transition
becomes discontinuous and hybrid and is characterized by large
avalanches of failure events.

In presence of partial interdependencies it can become continuous.

In network of networks it is possible to observe multiple phase
transition.

Redundant interdependencies might explain why many natural
made networks have many layers as in this framework the
robustness increases with the number of layers.



Message passing algorithm for
percolation



Message passing algorithms are
widely used for
characterizing critical phenomena and
dynamical systems in complex
networks

* Percolation on single networks

(Karrer, Newman, Zdeborova PRL 2014)

* Network control

(Liu, Slotine & Barabasi Nature 2011)

* Epidemic spreading in multi-slice networks
(Valdano et al. PRX 2015)



Message passage algorithm
for the Giant Component of a single network

The initial node damage is indicated by the variables s;
associated to the nodes of the network:
s=0 if node i is damaged and s =1 otherwise.
The message going from node i to not j follows

o_,=s|1- [|(1-0_)

IEN(i)\ j

The nodeiiisin the giant component if 0,=1 otherwise 6,=0 where

o=s|1- ||1-0._,)

IEN (i)




Message passage algorithm
for the
Mutually Connected Giant Component
in absence of link overlap

The initial node damage is indicated by putting
s.=0 if node i is damaged and s.=1 otherwise.
The generic message going from node i to node j is updated according to

o, =s|]|1- []a-0o-)

a=1.M IEN,, (i) j

A nodeiisin the MCGCif 0,=1 where

O, =5, H 1- H(l—a,ei)

a=1.M IEN,, (i)




Percolation in
multiplex networks
with overlap of the links:
the message passing approach



Directed percolation problem

Nodes in the directed mutually connected giant component
(DMCGC) can be found by using the same algorithm used
in absence of overlap of the links

In absence of overlap of the links
DMCGC=MCGC
Specifically we will have




Difference between the DMCGC and
the MCGC

Not in the DMCGC (a)

In the MCGC (b)

Min et al. (2015) Cellai et al. (2016)



Required properties of the
message passing algorithm for the
MCGC

* The MCGC must be of maximum size:
— the messages are polarized

— the sender node must assume that the target
node is in the MCGC.

* The messages must indicate the set of layers
that connect the sender node to the MCGC.

n=(n,n,...,n,)



The algorithm

The message

> _ (1] [2] [M ] ] _

iej?

indicates that

assuming that j belongs to the MCGC
- node i must be in the MCGC
- node i connects node j to the MCGC exclusively

through the layers o with n =1

It follows specifically that we have
/

J

1
——
1 1

fi, . . = (1,0)



Non-trivial cases for M=2
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How this algorithm can predict
that node jand h
are in the MCGC

~. *-——

Cellai et al. (2016)



Duplex network with Poisson Layers
and Link Overlap

Duplex networks with Poisson multidegree distribution with
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DMGC and MCGC messages

DMCGC MCGC
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Phase diagram for
DMCGC and MCGC

Duplex networks with Poisson multidegree distribution with
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Conclusions

We have formulated a message passing theory for percolation and directed
percolation in multiplex network with link overlap.

 Both algorithms reduce to percolation in multiplex network in absence of
overlap and to percolation on single network in presence of complete overlap.

e The algorithm for directed percolation has an epidemic spreading
interpretation. The algorithm for percolation does not have a feed-forward
character.

* The two critical phenomena have different phase diagrames.

The algorithm for the MCGC can be used to study
1. the robustness of real multiplex networks and

2. to study the percolation phase diagram of multiplex networks with link overlap
and arbitrary number of layers.



