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History and Motivation

Entropy of Deterministic Networks and Network Ensembles 11 September, 2017



A Brief History

The task of measuring graph structure has been a worthwhile
objective for a number of years in many disciplines, including
chemistry, sociology, computer science, and ecology. Efforts
to characterise complexity in networks have gathered pace since
the dawn of the Internet.
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A Brief History

Mathematical studies of graph structure and complexity date
back to Rashevsky (1955) and Mowshowitz (1968).

This formalism was taken up in earnest within the biological and
chemical sciences to classify chemical structures by Bonchev et
al (1977, 1983).

At the turn of the millennium, the network physics community
began to explore network entropy. Notable work was published by
Park and Newman (2004), Anand and Bianconi (2009).

Around the same time, graph entropy was employed to study
social networks (Butts, 2001) and ecological networks (Solé et
al, 2001; Ulanowicz, 2004).
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Why study network entropy?
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Why study network entropy?
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Why study network entropy?

Local behaviour 7→ Global complexity
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Complexity Measures for Deterministic Networks
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Measuring Complexity through Structure

Substructure Count

Idea: Complex networks contain a rich substructure.

Example: Complexity is quantified as the subgraph count

complexity(G ) :=

|E|∑

k=0

subgraphCountk(G )

Notation and terminology: G = (V, E) and we use “graph” and
“network” interchangeably.
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Measuring Complexity through Generation

Generative

Idea: A large number of operations must be performed on a set of
protographs to construct a complex network.

Example: Given a set of protographs isomorphic to stars,
complexity is quantified as the number of unions and intersections
of these elemental graph structures required to generate the edge
set of a given network.
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Measuring Complexity through Encoding

Encoding

Idea: A large number of yes/no questions (bits) are required to
describe a complex network.

Example: A four-node network would require at most six bits to
describe the topology. A 400 node network would require at most
79,800 bits to describe its topology. (Different encoding schemes
lead to different results.)

Do better encoding schemes exist?
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A Journey into Theoretical Computer Science

Encoding measures are related to Kolmolgorov complexity and
minimum description length.

Definition (Kolmolgorov Complexity)

The Kolmolgorov complexity of an object is defined as the smallest
possible description of that object using a fixed, universal
description language.

Definition (Minimum Description Length)

The principle that the best encoding of a dataset is the one that
compresses it the most.
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Encoding Example

1

2

3

4

5

6

7

8

This graph has 28 possible edges, and hence we can encode the graph
using a 28-bit string. Alternatively, we could list the edges as vertex pairs
(in binary) and terminate on one end with the sequence 111111 as follows

111111 001100 001101 010111
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Touching on Communication/Information Theory

Theorem (Compression via Source Coding)

Consider a discrete memoryless source with symbols denoted by
the random variable X . Suppose groups of J symbols are encoded
into sequences of N bits. Let Pe be the probability that a block of
symbols is decoded in error. Then Pe can be made arbitrarily small
if

R =
N

J
≥ entropy(X ) + ε

for some ε > 0 and J sufficiently large. Conversely, if

R ≤ entropy(X )− ε

then Pe becomes arbitrarily close to 1 as J grows large.
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Making the Link: From Complexity to Entropy

Complexity 7→ MDL 7→ Entropy

Entropy has a rich mathematical history in physics and information
theory. Hence, this formalism provides us with a much more
complete set of tools for analysing network structure and
complexity.
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Introduction to Entropy
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Shannon Entropy

Shannon Entropy

Shannon entropy is defined with respect to a probability distribution
{p0, p1, . . .} as

H(p0, p1, . . .) = −c
∑

i

pi log pi

where c is a constant that determines the base of the log.

When {p0, p1, . . .} describes the distribution of a discrete random
variable X , we often write

H(X ) = E[− logP(X )]

If X is a continuous random variable with density p(x), the differential
entropy is defined as

H(X ) = E[− log p(X )] = −
∫

supp(X)

p(x) log p(x)dx
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Properties of Shannon Entropy
I Positive and Finite

0 ≤ H(X ) ≤ log |supp(X)|

I Concave

H(λp0 + (1− λ)p1) ≥ λH(p0) + (1− λ)H(p1), λ ∈ [0, 1]

I Joint Entropy

H(X ,Y ) = E[− logP(X ,Y )]

I Conditional Entropy

H(X |Y ) = E[− logP(X |Y )]

I Independence

H(X |Y ) = H(X )⇒ H(X ,Y ) = H(X ) + H(Y |X ) = H(X ) + H(Y )
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Example: Bernoulli Experiment

Consider a coin toss where the probability of a heads is p and the
probability of a tails is 1− p. The entropy is

H(p) = −p log p − (1− p) log(1− p)

0.2 0.4 0.6 0.8 1.0 p

0.2

0.4

0.6

0.8

1.0

H(p)
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Entropy Variants

Other definitions of entropy exist, which are suitable for use in the
context of ensembles, but comparatively little work related to the
entropy of graph ensembles using these measures has been
reported in the literature.

Rényi Entropy

Rényi entropy of order α is defined for the probability distribution
{p0, p1, . . .} as

Hα(p0, p1, . . .) :=
1

1− α log

(∑

i

pαi

)
.

It generalises Shannon entropy (H = limα→1 Hα), max-entropy
(H0), collision entropy (H2), and min-entropy (limα→∞Hα). It is
Schur concave.
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Entropy Variants

Von Neumann Entropy

The von Neumann entropy of a quantum mechanical system
described by the density ρ is defined as

H(ρ) := −tr(ρ ln ρ)

For the eigendecomposition ρ =
∑

i ωi |i〉 〈i |, the von Neumann
entropy takes the Shannon form

H(ρ) = −
∑

i

ωi lnωi
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Entropy Measures for Deterministic Networks
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General Approach

The key to using entropy as a measure of structural information or
complexity in the context of networks is to define a probability
distribution on an appropriate set of graph invariants
associated with the network.

Take a graph invariant Z (i.e., a property of the graph that is
invariant under isomorphisms) and define an equivalence
relation that induces a set of equivalence classes {Zi}. In
general, we can use the Shannon entropy formalism to define the
entropy of the graph with respect to that equivalence relation as

H(G ) := −
∑

i

|Zi |
|Z| log

|Zi |
|Z|
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Topological Information Content

Consider the automorphism group of a graph, i.e., the set of
graphs derived from vertex permutations whereby edges in the
original graph are contained in the set of edges in the permuted
graph. The equivalence classes of the graph under automorphisms
are called vertex orbits. Let Vi denote the ith orbit, and K is the
number of different orbits. Rashevsky (followed by Mowshowitz)
formalised the notation of topological information content as

Ha(G ) := −
K∑

i=1

|Vi |
|V| log

|Vi |
|V|
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Automorphism Group Example

12

3

4

5

6

78

Automorphisms

(1)(2)(3)(4)(5)(6)(7)(8)
(1 8)(2 7)(3)(4)(5)(6)
(1)(2)(3 5)(4 6)(7)(8)
(1 8)(2 7)(3 5)(4 6)

Vertex orbits

(1 8)(2 7)(3 5)(4 6)
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Chromatic Information Content

The chromatic number of a graph, denoted by χ(G ), is the
smallest number of colours required to colour the vertices such
that no two adjacent vertices share the same colour. Let
V̂ = {Vi |1 ≤ i ≤ χ(G )} denote the a chromatic decomposition of
a graph. Then V̂ forms a set of equivalence classes, and we can
define the chromatic information content of a graph as
(Mowshowitz, 1968)

Hc(G ) := min
V̂



−

χ(G)∑

i=1

|Vi |
|V| log

|Vi |
|V|




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Radial Centric Information Content

The eccentricity σv of a vertex v is the maximum distance (path
length) from that vertex to any other vertex in the network. Let
Vσ denote the set of vertices with eccentricity σ. Denote the
diameter of the graph as D. Then {Vσ} form a set of equivalence
classes, and we can define the radial centric information content
of a graph as (Bonchev, 1983)

Hr (G ) := −
D∑

σ=1

|Vσ|
|V| log

|Vσ|
|V|
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Vertex Degree Information Content

Let Vδ denote the set of vertices with degree δ. Denote the
maximum degree of the vertices by δ̄. Then {Vδ} form a set of
equivalence classes, and we can define the vertex degree
information content of a graph as (Bonchev, 1983)

Hv (G ) := −
δ̄∑

δ=0

|Vδ|
|V| log

|Vδ|
|V|

Entropy of Deterministic Networks and Network Ensembles 11 September, 2017



Parametric Graph Entropy

The measures discussed previously are intrinsic to the network in
question. Extrinsic measures can also be defined by placing a
value of some description to features of the graph. The most
general and accessible approach that has been proposed is to use
an information function f : V 7→ R+ that acts on the individual
vertices. Maintaining the need for a probabilistic interpretation
yields (Dehmer, 2011)

Hp(G ) := −
|V|∑

i=1

f (vi )∑|V|
j=1 f (vj)

log
f (vi )∑|V|
j=1 f (vj)
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Different Interpretations for Different Measures

Example (Vertex Degree Information Content vs. Parametric
Degree Entropy)

Let f (vi ) := δ(vi ). For the cycle graph CN with N vertices, the
parametric degree entropy is logN. Yet, there is a single nonempty
degree equivalence class corresponding to δ = 2, and thus the vertex
degree information content is zero.

The vertex degree information content is the entropy of the degree
distribution. It is upper bounded by log(1 + δ̄).

The parametric degree entropy, which can be written as

Hp,δ(G ) = −
|V|∑

i=1

δ(vi )

2|E| log
δ(vi )

2|E|

quantifies the uniformity of the vertex degrees across the set V.

Entropy of Deterministic Networks and Network Ensembles 11 September, 2017



Entropy of Nonspatial Network Ensembles
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Refining the Definition for Ensembles

When working with ensembles of networks, a probability
distribution P can often be naturally defined on the set of
graphs. The graph G then becomes a random variable, and
the entropy of the ensemble G is defined as

H(G) := E[− logP(G )]

in its most general form.
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Erdős-Rényi (ER) Ensembles

Introduced in 1959, this model concerns an ensemble of
graphs GN,E , where each graph is formed of N vertices and E
edges. The random graph (i.e., random variable) GN,E is
drawn uniformly from this set.

There are
(
N(N−1)/2

E

)
graphs in the ensemble. Hence, the

entropy is

H(GN,E ) = log

(
N(N − 1)/2

E

)
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Gilbert Ensembles

Also introduced in 1959, this model concerns an ensemble of graphs GN,p,
where each graph is formed of N vertices and where each edge exists with
probability p independent of all other edges. This is often referred to as
the ER ensemble since Erdős and Rényi considered the model as well.

The entropy of the random graph GN,p is equivalent to the joint entropy
of the edges, i.e.,

H(GN,p) = H(X1,2,X1,3, . . . ,XN−1,N)

where P(Xi,j = 1) = p. Independence implies

H(GN,p) =
∑

i<j

H(Xi,j) =
N(N − 1)

2
H(p)

where H(p) = −p log p − (1− p) log(1− p).
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Exponential Random Graphs (ERG) Ensembles

The ERG model, originally studied in the context of social network
analysis (Holland and Leinhardt, 1981; Frank and Strauss, 1986),
assumes a random graph G has a distribution

P(G ) =
exp(

∑
i θizi (G ))

κ({θi})

where {θi} are model parameters and {zi (G )} are statistical observables.
The parameter κ({θi}) is a normalisation constant that ensures∑

G∈G P(G ) = 1.

From an equilibrium statistical physics perspective, this distribution can
be derived more constructively...
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Exponential Random Graphs (ERG) Ensembles

To derive the ERG distribution using the principles of equilibrium
statistical mechanics, we seek the function P that maximises the Gibbs
entropy functional

S [P] = −
∑

G∈G
P(G ) lnP(G )

subject to the constraints

〈zi 〉 =
∑

G∈G
P(G )zi (G ) and 1 =

∑

G∈G
P(G ).

Forming the Lagrangian with multipliers {λi}, yields the required
condition

∂

∂P(G )

{
S [P] + λ0

(
1−

∑

X∈G
P(X )

)
+
∑

i

λi

(
〈zi 〉 −

∑

X∈G
P(X )zi (X )

)}
= 0
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Exponential Random Graphs (ERG) Ensembles

Functional differentiation results in

lnP(G ) + 1 + λ0 +
∑

i

λizi (G ) = 0

which leads to

P(G ) =
exp (−∑i λizi (G ))

Z ({λi})
with Z ({λi}) = e1+λ0 .

To recover the relationship to the ERG model and equilibrium statistical
mechanics, note that λi = −θi , Z = κ is the partition function, and∑

i λizi (G ) is the Hamiltonian. The entropy of the ERG ensemble is

H(G) =

(
1 + λ0 +

∑

i

λi 〈zi 〉
)

log e
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Entropy of Spatial Network Ensembles
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Basic Definitions

Definition (Point Process)

A point process is a mathematical model for a set of random
distributed points in some space.

Definition (Binomial Point Process (BPP))

Let λ denote a spatial density defined on a set B ⊆ S. A point
process with N points independently and identically distributed in
B according to λ is called a binomial point process.

Definition (Pair Distance Distribution)

The pair distance distribution gives a statistical description of
the distance between two arbitrary points in some space.
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Spatial Network Model

I Embed N nodes randomly (BPP) in Kd ⊂ Rd .

I Connect nodes i and j , which are separated by a distance ri ,j ,
with probability p(ri ,j).

I Doing this many times yields the a graph ensemble G.

Example (Erdős-Rényi) Example (Spatial)
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Upper Bound on Entropy

Theorem

Given a point process situated in Kd ⊂ Rd admitting the pair distance
density f (r), and assuming a pair connection function p(r), the entropy
of the resulting graph ensemble G satisfies

H(G) ≤ N(N − 1)

2
H(p)

where

p =

∫ D

0

p(r)f (r)dr

and D is the diameter of Kd .

Proof.
The proof uses the correspondence between a graph and its edge set. The
bound follows from an argument based on the concavity of entropy.
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Lower Bound on Entropy

Theorem

Given a point process situated in Kd ⊂ Rd admitting the pair distance
density f (r), and assuming a pair connection function p(r), the entropy
of the resulting graph ensemble G satisfies

H(G) ≥ N(N − 1)

2

∫ D

0

H(p(r))f (r)dr =: H(G|P)

The lower bound H(G|P) is called the conditional entropy of the
ensemble G given the distribution of the point process P.

Proof.

The proof follows from the classical definition of conditional entropy (in
the Shannon sense) and the fact that conditioning cannot increase
uncertainty.
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Consequences of the Bounds

The upper and lower bounds yield the following immediate results:

Property 1 The entropy of an ensemble arising from a soft
connection function scales like N2.

Property 2 Classical random geometric graphs (with a hard
connection function) have zero conditional entropy.

Property 3 The reduction in uncertainty of the ensemble
(topology) given the statistical properties of the
point process quantifies the mutual information
between G and P

I (P;G) := H(G)− H(G|P)
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Controlling Complexity as Networks Scale

If a system has a typical connection range r0, it is
possible to derive scaling laws that provide insight
about how to control the complexity of a network
ensemble as the number of vertices grows large.

Test function:

p(r) = exp (−(r/r0)η)
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Controlling Complexity as Networks Scale

Substituting into (2), we have

H(G) ' �
(n
2)X

k=0

✓�n
2

�

k

◆
pk(1 � p)(

n
2)�k log

⇣
pk(1 � p)(

n
2)�k

⌘

=

✓
n

2

◆
H(p) (9)

where
H(p) = �p log p � (1 � p) log(1 � p) (10)

is the binary entropy function.
The structure of (9) is somewhat predictable. Indeed, if

pi,j = p for all i < j, G is an ER graph. The entropy of
ER graphs is well known to be

HER(G) =

✓
n

2

◆
H(p). (11)

So by assuming pair distances are independent in the RGG case,
we obtain an ER-like result, but where the pairwise connection
probability is averaged over the pair distance distribution.

The independence assumption that led to (6) deserves com-
ment. In fact, it can easily be reasoned that pair distances are
not necessarily independent when the network domain is finite.
Consider a simple example of three nodes positioned on the
interior of a circle. Suppose node i resides on the boundary,
and nodes j and k are positioned such that ri,j and ri,k are both
approximately D, the diameter of the circle. Clearly, nodes j
and k must lie very close to each other, and so knowledge of
ri,j and ri,k provides statistical information about rj,k.

If we return to the original definition of the entropy of G
provided in (2), we can make use of the fact that, for a given
number of nodes n, the distribution of G is equivalent to the
distribution of the edge set. Let Xi,j denote a Bernoulli random
variable that models the existence (or not) of edge (i, j). It
follows that we can write

H(G) = H(X1,2, X1,3, . . . , Xn�1,n) 
X

i<j

H(Xi,j) (12)

where equality holds if all {Xi,j} are independent. The random
variable Xi,j is physically related to nodes i and j, but since
pair distance information is not included in (12), we can write

P(Xi,j) =

Z D

0

P(Xi,j |ri,j)f(ri,j) dri,j = p (13)

for all i < j. It follows that

H(G) 
✓

n

2

◆
H(p). (14)

Thus, the approximation given in (9) is an upper bound on
H(G). It is important to note that although we have arrived at
this bound by simple means via (12), this approach abstracts
the pair distance considerations taken earlier, and as a result it
is perhaps less physically intuitive. Indeed, without considering
the effects of the embedding geometry, it is not immediately
obvious that (12) does not hold with equality.

Fig. 1. Entropy of an RGG with n = 5 nodes and pair connection functions
with typical range r0 for a unit square. Solid lines: upper bound h(n). Markers:
numerical simulations for H(G).

IV. EFFECT OF FADING CHANNELS ON UNCERTAINTY

We now study topological uncertainty in fading channels
by analyzing the entropy approximation (bound) given in
the previous section, which we denote by h(n) =

�
n
2

�
H(p)

to aid exposition. Our focus is on systems that experience
diffuse multipath propagation. In other words, we investigate
the case when the small-scale fading model is Rayleigh, and
the pairwise connection function that will form the basis of this
analysis is that given in (1).

Before proceeding with a detailed analysis, it is instructive to
examine Fig. 1, which shows the graph entropy H(G) and the
bound h(n) for a five-node network plotted against the typical
connection range r0 for path loss exponents ⌘ = 2, 3, 4,1.
The bounding geometry is a unit square in this example. A few
important things can be noted from the figure. First, the bound
h(n) is relatively accurate, particularly for very soft connection
functions (e.g., ⌘ = 2) and for small/large r0. Second, the
entropy decreases as r0 ! 0 and r0 ! 1. Third, the maxima
of h(n) and H(G) appear to coincide fairly well2. Motivated
by these observations, we will analyze the small/large typical
connection range regimes and develop scaling laws that link
r0 and the number of nodes in the network n to the entropy
bound h(n).

A. Small Typical Connection Range

Our main results relate to the case where the typical con-
nection range decreases as the number of nodes in the network
grows large (see Fig. 2). Intuitively, one can recognize that
it is possible for the entropy bound to tend to zero in such
a case, which would signify that the network is completely
disconnected3. Hence, it is of fundamental interest to ascertain

2This is an interesting property that warrants further study, but we refrain
from addressing it in this paper.

3Of course, h(n) = 0 may also signify that the network is completely
connected (a complete graph); but this is impossible in the scaling regime
considered here (r0 ! 0). We will consider r0 ! 1 in the next section.
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Controlling Complexity as Networks Scale
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Statistical Characterisation of Sets

Definition (Set Covariance)

In d dimensions, the set covariance of a convex set Kd is given by

cKd
(r) =

∫

Rd

1Kd
(x)1Kd

(x− r)dx, r ∈ Rd

where 1Kd
(x) is the indicator function for x ∈ Kd .

Definition (Isotropised Set Covariance)

The isotropised set covariance is given by

cKd
(r) =

∫

Sd−1

cKd
(ru)U(du), r ≥ 0

where u is a vector denoting a point on the unit sphere Sd−1.
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Another Look at Pair Distance

Theorem (Pair Distance Density Function)

The pair distance probability density function is given by

f (r) =
2πd/2rd−1cKd

(r)

Γ(d/2) vol(Kd)2
.

Theorem (Small Argument)

For small distances, the pair distance density can be approximated
to first order as

f (r) ' vol(Kd)− r lim
r→0

∫

Sd−1

vol((Kd ∩ (Kd + ru))u⊥)U( du)
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Scaling Law in 2D

Theorem

As N →∞, the entropy of a graph in K2 can be bounded away
from zero only if

r2
0 log

(
1

r0

)
= Ω

(
1

N2

)
.

The entropy bound will tend to a limit `h > 0 as N →∞ if

r0(N) = exp

(
1

2
Wm

(
− 2`h
u2N(N − 1)

))

=

(
`h

u2N2logN

) 1
2
(

1 + O

(
1

logN

))

where Wm(x) is the lower branch (−1/e ≤ x < 0 and Wm ≤ −1)
of the solution to x = W expW.
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Scaling Law in 3D

Theorem

As N →∞, the entropy of a graph in K3 can be bounded away
from zero only if

r3
0 log

(
1

r0

)
= Ω

(
1

N2

)
.

The entropy bound will tend to a limit `h > 0 as N →∞ if

r0(N) = exp

(
1

3
Wm

(
− 2`h
u3N(N − 1)

))

=

(
`h

u3N2logN

) 1
3
(

1 + O

(
1

logN

))

where u3 = 4πΓ(3/η)/(ηV (K3)) is the fractional volume of a soft
unit ball.
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Maximum Entropy Pair Connection Function
(Conditional Entropy)

As with nonspatial networks, it is natural to study the maximum entropy
properties of the pair connection function for spatial ensembles. One
must first define a set of meaningful constraints

∫ D

0

θ`(r)p(r)dr , ` = 1, . . . , L

Solving the associated constrained variational problems yields the entropy
maximising function

p(r) =
1

eψ(r) + 1

where

ψ(r) =
2

N(N − 1)f (r)

L∑

`=1

λ`θ`(r)
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Applications
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Applications: Measuring Complexity in Practice

Example (Wireless Networks)

The pair connection function in wireless networks is typically well defined.
Hence, we can quantify how complex engineered networks are.
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Applications: Measuring Complexity in Practice

Example (Airline Networks)

Flight path data is available for primary airports. Here, we show that the
(conditional) entropy of the primary conterminous US airline network is
nearly maximal, despite the difference in pair connection functions.
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Applications: Communication Network Protocols

Example (Routing Protocol Design)

The parametric graph entropy model has been adopted to design routing
protocols in communication networks. The idea is to design a
time-dependent stability metric for each link (S t

l ). A probability
distribution for each link in the routing table of the ith node can then be
defined

pl =
S t
l∑

l∈Rt
i
S t
l

and the entropy at time t and the ith node calculated to be

Hi (t) = − 1

log |Rt
i |
∑

l

pl log pl .

Routing will be executed such that stability (measured through node
entropy) is maximised.
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Applications: Graph Compression

Example (Compressing Graphical Structures)

Choi and Szpankowski (2012) studied the problem of structural entropy
(defined with respect to isomorphic graphs) in Gilbert graph ensembles
and used this to derive structural compression algorithms. Applications
include the compression of biological or medical datasets and
topographical maps. It was shown that for p � lnN/N and
1− p � lnN/N, the structural entropy of the ensemble is

HS(GN,p) ∼ N(N − 1)

2
H(p)− logN!.

The compression algorithm is iterative: the number of neighbours of a
vertex are stored and the remaining vertices are partitioned into disjoint
sets depending on their relationship to this vertex; a neighbour of the
original vertex is then selected and the process repeats, where
partitioning is executed by taking into account all parent vertices.
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