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The unit disk model

Introduced by E. N. Gilbert [Gilbert61]:

Recently random graphs have been studied as models of commu-
nications networks. Points (vertices) of a graph represent stations;
lines of a graph represent two-way channels. In the literature [Austin
et al 1959, Erdős-Rényi 1960 and Gilbert 1959] each pair of stations
has some probability (the same for all pairs of stations regardless of
their separation) of being joined by a channel. Such a model cannot
represent accurately a network of shortrange stations spread over
a wide area. The random plane networks of this paper provide a
simple model in which the range of the stations is a parameter.

To construct a random plane network [now called Random Geo-
metric Graph (RGG)], first pick points from the infinite plane by a
Poisson process with density D [here, ρ] points per unit area. Next
join each pair of points by a line if the pair is separated by distance
less than R [here, r0].

This model remains very popular due to its simplicity [Walters11]; also called
the unit disk or hard connection model. For now, we are looking at just the
connection model; we will see later that its properties are often qualitatively
different from random connection models.



Generalisations of the unit disk model

Deterministic:

Hard annulus Nodes connect with mutual distance r ∈ [rmin, rmax]; helpful to
minimise hop count, improve secrecy.

Anisotropic Nodes have an orientation as well as a position, and connect
under some condition on their separation and orientations; helpful to
take account of beam forming; more on this later.

Partly deterministic:

Quasi unit disk Nodes connect if r < rmin, do not connect if r > rmax and
may connect if rmin < r < rmax depending on other features of the model.

Random: Soft random geometric graphs Now two sources of randomness:

1. Node locations (as before).

2. Links are also random.

The most common approach is to take links with a probability H(r), a function
of the mutual distance r, chosen independently for each pair of nodes.



Examples so far:

Unit disk H(r) = 1[0,r0](r)

Hard annulus H(r) = 1[rmin,rmax](r)

Quasi unit disk (one example)

H(r) =

 1 r < rmin
rmax−r
rmax−rmin rmin < r < rmax

0 r > rmax

Erdős-Rényi H(r) = p, p ∈ [0,1]. No longer a spatial network.

Soft disk H(r) = p1[0,r0](r) Intersection of unit disk and Erdős-Rényi.



Wireless connection models

Connection functions may occur naturally in the analysis of wireless networks.
We assume that a connection is made from node i to node j if the signal to
interference plus noise ratio (SINR) reaches a specified threshold:

Hij = P(SINRij > q)

We have

SINRij =
GiGj|hij|2g(rij)

N + I
where Gi and Gj are the relevant antenna gains, hij is the channel gain, a
random variable, g(r) is the path loss function, N is the noise power and I
the interference power, a sum of contributions from nodes other than i or j.

Since we are considering pair connection functions, we will mostly neglect
interference in this lecture; in practice this is appropriate if the MAC protocol
allows only one transmission at a time in a given frequency channel. Thus

Hij = P
(
|hij|2 >

qN
GiGjg(rij)

)
= F̄|h|2

(
qN

GiGjg(rij)

)
where F̄ is the complementary cumulative distribution function (ccdf): F̄ (0) =
1 decreasing to F̄ (∞) = 0.



Path loss

The path loss function is typically

g(r) =
1

(r/r0)η + ε

where the path loss exponent η = 2 corresponds to free space propagation
(inverse square law), and is often assumed to be in the range [2,6] for more
cluttered environments. The limit η → ∞ gives a very sharp transition near
r = r0, reducing to the unit or soft disk models.

Interference considerations: If ε = 0 then two close nodes transmitting simul-
taneously cannot receive from any other nodes. If η ≤ d (where d is the spatial
dimension) the total power from distant nodes diverges (“Olbers’ paradox.”)

In a medium with absorption, an exponential law

g(r) = exp(−r/r0)

or similar may be appropriate.



Antenna gains

For 2D networks where the radiation patterns have an axis of symmetry
perpendicular to the plane, the gains are uniform in the plane, and the antenna
gains Gi and Gj may be absorbed into the other constants.

Other models, with θ the angle between the axis of the antenna and the line
of sight direction; approximate (and non-normalised) expressions:

Patch antennas: G = 1 + ε cos θ, ε = 1
4
, 1

2
, 3

4
,1

Dipole antennas: G = sinm θ, θ ∈ [0, π], m = 1,2,3,4,5

Directional (eg horn, array) antennas: G = cosλθ, θ ∈ [0, π
2λ

], λ = 1,2,3



Fading models

The channel gain |hij|2 is a random variable, assumed iid for different ij and
with distribution F|h|2 controlled by the propagation conditions, according to
a specific fading model.

Possibilities are:

No fading hij = 1, gives unit disk model or anisotropic equivalent.

Slow fading Fading timescales large compared with communication channel,
eg large obstacles. Often modelled by the log-normal distribution

F̄|h|2(x) =
1

2
erfc

[
10 log10(x)− µ

σ
√

2

]
Fast fading Effects due to rapidly varying multipath effects. . .



Fast fading

The distribution of the channel gain depends on the number of specular (eg
line of sight (LOS)) and diffuse components. We have

Rayleigh fading (diffuse scattering)

F̄|h|2(x) = e−x

Rician fading (line of sight (LOS) plus diffuse)

F̄|h|2(x) = Q1(
√

2K,
√

2(K + 1)x)

where K is the ratio of LOS to diffuse power; K → 0 gives the Rayleigh
fading case.

Two or more specular components, with or without diffuse Can be ex-
pressed approximately as sums of Q1 functions; see Ref. [DRW02] for
details.

Here, Q1 is the Marcum Q function

QM(a, b) =

∫ ∞
b

x
(x
a

)M−1
exp

(
−
x2 + a2

2

)
IM−1(ax) dx

and IM−1 is the modified Bessel function.



Fast fading models are alike

Rayleigh: We find H(r) = exp(−(r/r0)η) for some constant r0.

Rician: We find H(r) = Q1(
√

2K,
√

2(K + 1)(r/r0)η).

It turns out [BDC13] that for a ≤ 5, Q1 can be approximated by an exponen-
tial,

Q1(a, b) ≈ exp(−eν(a)bµ(a))

with integrated squared error of less than 10−3. This simplifies the analysis,
particularly as we often need to integrate over H(r).
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Multi-antenna systems I: Diversity coding using STBC

Each device has m transmit antennas and n receive antennas. Using a space
time block coding (STBC) scheme we can replace |h|2 by

X =
ζm

m

n∑
i=1

m∑
j=1

|hi,j|2

with

ζm =

{
1 m ≤ 2
2 m ≥ 3

Note that the double sum is the square of the Frobenius norm of the matrix
H with elements hij.

Using the same assumptions as for Rayleigh fading, namely complex Gaussian
distributed hij we obtain a χ2 distribution

F̄X(x) =
Γ(mn, xζm/m)

Γ(mn)

where Γ is the (upper incomplete) gamma function.



Multi-antenna systems II: MIMO-MRC

Each device has m transmit antennas and n receive antennas as before. Now,
using Multiple input multiple output (MIMO) with maximum ratio combining
(MRC), the overall gain is given by the maximum eigenvalue of HTH, where
the T denotes transpose. It is more difficult than STBC to get analytic
expressions; some examples, assuming Rayleigh fading:

MISO and SIMO If m = 1,

F̄λmax(HTH)(x) =
Γ(n, x)

Γ(n)

Similarly, if n = 1, replace n by m above.

MIMO (2,2) If m = n = 2,

F̄λmax(HTH)(x) = e−x(x2 + 2− e−x)

MIMO, many antennas If m,n→∞ so that m/n→ y with 0 ≤ y <∞, then

1

n
λmax(H

TH)
p
→(1 +

√
y)2

with convergence in probability. See Ref. [CGD15].



Connection functions in general spatial networks

Many complex networks naturally have a spatial structure; examples include
transport, neuronal, climate and nanowire networks [Bart11]. If there is data
on both node locations and links, it is possible to construct phomenological
connection functions H(r), which may be longer ranged than those considered
for wireless networks.

For many other kinds of complex networks, eg social networks, a “latent”
space can be constructed in which nearby nodes are more likely to be linked.
Here, we have the flexibility to assign locations to nodes.

In each case, the main question is the extent to which the link independence
assumption holds.



SRGG: General mathematical setting

Space X Originally R2, often [0,1]2 or some other subset of R2 or R3. In the
anisotropic case, we model orientations, so a subset of Rd × SO(d).

Measure Λ on X to define the Poisson Point Process (PPP), that is, the
number of points in a set S ⊂ X is Poisson distributed with mean Λ(S)
and independent of the points not in S. Typically Λ = ρλ where ρ is
a constant density and λ is Lebesgue (more generally Haar) measure.
Technicalities: Need associated σ-algebra on X; Λ should be σ-finite and
nonatomic.

Metric d : X ×X → [0,∞] to define mutual distances between nodes. Nor-
mally Euclidean distance, but often “toroidal” distance on [0,1]2, ob-
tained by identifying opposite edges, to have a finite system avoiding
boundary effects. A metric satisfies

Symmetry d(x, y) = d(y, x). But we can define a nonsymmetric directed
graph from transmitters to receivers.

Identity of indiscernables d(x, y) = 0 ⇒ x = y. But we can define
d = 0 for nodes at the same location but different orientations.

Triangle inequality d(x, z) ≤ d(x, y) +d(y, z). But we can violate this to
model obstacles.



Poisson and binomial point processes

The expected number of nodes in the PPP is

N̄ =

∫
Λ(dx)

If this is finite, we can define the normalised (ie, probability) measure

Λ̂ = N̄−1Λ

The binomial point process (BPP) is obtained by fixing the number of nodes
N and distributing them independently with respect to Λ̂, which is equivalent
to the PPP conditioned on exactly N nodes. Thus the PPP can be realised
by choosing N according to the discrete Poisson distribution

P(N = n) =
N̄ne−N̄

n!

and realising the corresponding BPP.

For N̄ large, the Poisson distribution is sharply peaked - many results apply
to both Poisson and binomial models.

For more on stochastic geometry, see Refs. [BB09], [Haenggi12].



Connectivity mass

If we condition on a node at some point x ∈ X in the PPP, the surrounding
nodes are still Poisson distributed with intensity Λ. Thus the expected degree
of this node is given by the connectivity mass

M(x) =

∫
H(d(x, y))Λ(dy)

It is natural to assume this is bounded. For example, we want roughly H(r) <
r−d as r →∞ if Λ is uniform on Rd. If in addition N̄ <∞, we have

M(x) = N̄

∫
H(d(x, y))Λ̂(dy)

In the typical case of a uniform density ρ on a finite
domain, M(x) is almost constant in the bulk (in-
terior), decreasing close to the boundaries. This is
responsible for many boundary effects, considered
later.

Note that in the literature, “connectivity mass” often refers to the quantity
M = M/ρ, which depends only on the connection function H(r) and geometry
but not on the density.



Mean degree

The mean degree of a graph K is defined by summing the degrees of nodes
and dividing by the number of nodes. For the BPP we distribute the first
point at x according to Λ̂, then the remaining N − 1 nodes to obtain

EBPP(K) =
N − 1

N̄2

∫
M(x)Λ(dx)

Averaging over this (defining K = −1 for the empty graph) we find

K̄ ≡ EPPP(K) =
N̄ − 1

N̄2

∫
M(x)Λ(dx)

In the limit N̄ →∞ we have simply

K̄ =

∫
M(x)Λ̂(dx)

In the case of uniform density (Λ = ρλ) and negligible boundaries, M(x) is
effectively constant:

M(x) = K̄ = ρ

∫
Rd

H(x)dx = ρSd−1Hd−1

where Sd−1 is the surface of the unit d-ball and Hm the m-th moment of H(r)

Hm =

∫ ∞
0

H(r)rmdr



Examples

1. The original random geometric graph has connection function

H(r) =

{
1 r < r0

0 r > r0

and mean degree when nodes are of density ρ in R2

K̄ = πr2
0ρ

2. Isotropic antenna gains, Rayleigh fading:

H(r) = e−(r/r0)η

where the typical connection range r0 is obtained by combining the various
constants appearing earlier. If the network is of density ρ in a square domain
of side length L, the connectivity mass is

M(x) ≈


πr2

0ρ
2
η
Γ
(

2
η

)
Bulk, far from edge

πr2
0ρ

1
η
Γ
(

2
η

)
Edge, far from corner

πr2
0ρ

1
2η

Γ
(

2
η

)
Exactly at corner

If the boundaries can be ignored (r0 � L) the mean degree is

K̄ = πr2
0ρ

2

η
Γ

(
2

η

)



Anisotropy and mean degree

Again, assume Rayleigh fading and uniform density, neglecting boundary ef-
fects. If the separation of two nodes in 2D is at angle φ and their orientations
are at angles θT and θR, we find

H(r, φ, θT , θR) = exp

[
−

(r/r0)η

GT(φ− θT)GR(φ+ π − θR)

]
and mean degree

K̄ =
ρ

2π

∫
H(r, φ, θT , θR) r dr dφ dθR

=
ρr2

0

2πη
Γ

(
2

η

)
Sη[GT ]Sη[GR]

where

Sη[G] =

∫ 2π

0
G(φ)2/ηdφ



Optimising radiation patterns

If we normalise the gains by fixing∫ 2π

0
GT(φ)dφ =

∫ 2π

0
GR(φ)dφ = 2π

the maximal mean degree is given by the isotropic case for η > 2 and by
extremely directional (delta spike) patterns for η < 2 (see Ref. [CD13]).



Connectivity exponent

Many of the above 2D calculations involve the expression 2/η; the corre-
sponding 3D expressions contain 3/η. Denoting C = d/η as the “connectivity
exponent,” we find (see Ref. [CGD15])

• Isotropic radiation patterns are preferable to random directional patterns
if C < 1.

• Interference from distant nodes is finite if C < 1.

• K̄ ∝ P C in terms of the transmit power P .

• K̄ ∝ nC for STBC (n receive antennas)

• K̄ ∝ (
√
m+

√
n)C for MIMO-MRC (m transmit and n receive antennas).



(Full) connectivity and boundaries

Now we ask whether the network is connected in a multi-hop fashion, for
example in a triangular domain. . .

Isolated nodes occur mostly near the corners.



Dependence on density and geometry

Notation: Mean degree K, (full) connection probability Pfc.

We see two main transitions as density increases:

Percolation Formation of a cluster comparable to system size:
Largely independent of geometry. K = 4.5122 . . . in 2D

Connectivity All nodes connected in multi-hop fashion:
Strongly dependent on geometry. K ≈ lnN .

Pfc as a function of density and geometry?



Mathematics of connectivity in RGG

Rigorous results are for N →∞, scaling at least two of r0, ρ and L.

For the random geometric graph in dimension d ≥ 2, it was shown by Penrose,
and by Gupta & Kumar, that the r0 threshold for connectivity is almost
always the same as for isolated nodes.

In turn, isolated nodes are local events, so described by a limiting Poisson
process: The probability of a node having degree k is given by

P (k) =
K̄k

k!
e−K̄

where K̄ is the mean degree, equal to ρπr2
0 for the 2D RGG. This leads to

Pfc ≈ exp
[
−ρV e−ρπr2

0

]
where V is the “volume” (ie area) of the domain.

Remarks: At fixed probability and connection range, V increases exponentially
with ρ; also most isolated nodes are in the bulk when d = 2. The number of
isolated nodes at corners cannot be Poisson.



Connectivity in soft random geometric graphs

Penrose (2016) showed that for connection functions that are symmetric,
positive at the origin and stretched exponentially decaying (also radially sym-
metric and monotonic for d > 2), the number of isolated nodes is asymptoti-
cally Poisson distributed. Further, if its support is sufficiently small, the (full)
connection probability is asymptotically that of there being no isolated nodes.
(See also Mao & Anderson 2013, Iyer arxiv 2015).

Here we assume the resulting formula is approximately valid for finitely many
nodes, including for connection functions with unbounded support:

Pfc ≈ exp

[
−
∫
ρe
−
∫
ρH(r12)dr1dr2

]
where ρ is the density, H(r) is the iid probability of connection between nodes
with mutual distance r and the integrals are over the domain V ⊂ Rd.

We want to approximate Pfc for finite ρ, taking into account boundaries.

In progress: d = 1, eg vehicular networks!



Connectivity and boundaries

For large ρ, Pfc is dominated by the regions of small (reduced) connectivity
mass; recall

M(r2) =

∫
H(r12)dr1

Exactly on the boundary, this is given by

MB = Hd−1ωB

where (recall)

Hm =

∫ ∞
0

H(r)rmdr

is the mth moment, and ωB is the (solid) angle associated with the boundary
component B, eg π/2 for a right angled corner, π for an edge.

Analysing the vicinity of boundaries more carefully. . .



Boundary effects by Laplace’s method

In the following, boundary components are labelled by (d, i), the dimension
of the whole space, and the codimension of the boundary component.

Step 1: Integration on a non-centred line

F (x) =

∫ ∞
0

H(
√
x2 + t2)dt

Expanding in powers of x, taking care with any discontinuities, we find

F (x) = H0 +
x2

2

(
H ′−1 + ∆−1

)
+ . . .

where H0 is the zeroth moment, and

H ′−1 =

∫ ∞
0

H ′(r)

r
dr = H−2

using integration by parts, if the latter converges.

∆−1 =
∑
k

H(rk+)−H(rk−)

rk

where the sum is over discontinuities (as in the unit disk model). It is conve-
nient to combine these in the notation to write

H̃−2 = H ′−1 + ∆−1



Step 2: Connectivity mass of a wedge

Define Mω
2,2(r, θ) to be connectivity mass of a wedge of angle ω from a point

at polar coordinates (r, θ).

Mθ
2,2(ξ csc θ,0) = M2A +M2B +M2C

M2A =
∫ θ

0 dφ
∫∞

0 H(r)dr = θH1

M2B =
∫ ξ

0 dx
∫∞

0 dtH(
√
x2 + t2) =

∫ ξ
0 dxF (x)

M2C =
∫ ξ

0 dx
∫ x cot θ

0 dtH(
√
x2 + t2)

≈ 1
2
H(0)ξ2 cot θ

��
��

�
��

�
��

�
��

�
��

�
��
�
��
�
��
�
��
�
�

�
��

�
��

�
��
�
��
�
��
�
��
�
�

w θ

A
A
A
A

ξ
AAU

AAK

A

B

C

Putting it together we have for this wedge

Mθ
2,2(ξ csc θ,0) = θH1 + ξH0 +

ξ2

2
H(0) cot θ +

ξ3

6
H̃−2 + . . .

From this we can find a general wedge, edge and bulk:

Mω
2,2(r, θ) = Mθ

2,2(r,0) +Mθ′

2,2(r,0) (θ′ = ω − θ)

= ωH1 + rH0(sin θ + sin θ′) +
r2

4
H(0)(sin 2θ + sin 2θ′)

+
r3

6
H̃−2(sin3 θ + sin3 θ′) + . . .

M2,1(r) = 2Mπ/2
2,2 (r,0) = πH1 + 2rH0 +

r3

3
H̃−2 + . . .

M2,0 = 2πH1



Step 3: Calculation of the outer integral

Here, we use Laplace’s method, treating ρ as the large parameter. For ex-
ample, a wedge of angle ω:

P ω
2,2 = ρ

∫
wedge

e−ρM
ω
2,2(r,θ)rdrdθ

= ρ

∫ ω

0
dθ

∫ ∞
0

rdre
−ρ
[
ωH1+rH0(sin θ+sin θ′)+H(0)r2

4
(sin 2θ+sin 2θ′)+

H̃−2r
3

6
(sin3 θ+sin3 θ′)+...

]
= ρe−ρωH1

∫ ω

0
dθ

∫ ∞
0

rdre−ρrH0(sin θ+sin θ′)[
1−

ρH(0)r2

4
(sin 2θ + sin 2θ′)−

ρH̃−2r3

6
(sin3 θ + sin3 θ′) + . . .

]
= e−ρωH1

∫ ω

0
dθ[
1

ρH2
0(sin θ + sin θ′)2

−
3H(0)(sin 2θ + sin 2θ′)

2ρ2H4
0(sin θ + sin θ′)4

−
4H̃−2(sin3 θ + sin3 θ′)

ρ3H5
0(sin θ + sin θ′)5

+ . . .

]
= e−ρωH1

[
1

ρH2
0 sinω

−
H(0)(2 cosω + 1)

ρ2H4
0 sin2 ω

−
2H̃−2

ρ3H5
0 sinω

+ . . .

]



General formula

Pfc = exp

[
−
∑
B

ρ1−iBGBVBe
−ρωBHd−1

]
where iB is the boundary codimension, VB is its d− i dimensional volume, and
GB is the geometrical factor

GB i = 0 i = 1 i = 2 i = 3
d = 2 1 1

2H0

1
H2

0 sinω

d = 3 1 1
2πH1

1
π2H2

1 sin(ω/2)
4

π2H3
1ω sinω

where the 3D corner has a right angle.

Curved boundaries? To leading order, modification of the exponential but
not the geometrical factor:

P2,1 = . . . e−ρ(πH1−κH2)

P3,1 = . . . e−πρ(2H2−κH3)

where κ is (mean) curvature.

Summary: We can do arbitrary convex geometries with piecewise smooth
boundaries; H(r) appears only via a few moments.



Example: A square

The previous formula gives

1− Pfc ≈ L2ρe−πρ +
4L
√
π
e−

πρ

2 +
16

πρ
e−

πρ

4



Phase diagram

Testing convergence of
1− Pfc∑

B . . .



Conclusion

We have shown how to construct pair connection functions and use these
to calculate mean degrees and connectivity of networks in general convex
domains.

More on pair connection functions and their moments can be found in Ref. [DG16].

From this point, we can branch out in several directions:

Link correlations In the RGG, nodes that are very close are likely to have
exactly the same environment. This is less often true for the SRGG.
These correlations can be quantified using graph entropy.

Asymmetry Transmission power diversity leads naturally to spatial digraphs
(directed networks).

Interference Behaviour of a network depends in practice on signals from
many other nodes transmitting simultaneously, leading naturally to spatial
hypergraphs.
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