universite

PARIS-SACLAY

. L F LUNIVERSITE
N PARIS
o SUD

CentraleSupélec

On Modeling Cellular Networks by Using

Inhomogeneous Poisson Point Processes

Marco D1 Renzo

Paris-Saclay University
Laboratory of Signals and Systems (L2S) — UMRS8506
CNRS - CentraleSupelec — University Paris-Sud
Paris, France

H2020-MCSA marco.direnzo@]2s.centralesupelec.fr

H?2020-MCSA

’ 5G AT A Complex Networks & Point Processes
et )
5Gwireless %

Oxford University, September 2017




5G-PPP - 5G Network Vision

The 5G Infrastructure Puhhc Private Partnership:
[=]%:¢-[=] £ e the next genemmn of

EEI’HH‘IUI’!!EETIE!’! ﬂETWﬂTkS Eﬁﬂ SEIvices.

More information at

WWW.og-ppp.eu

infrastructure..

5G-PPP 5G Vision Document, “The next-generation of communication networks and services”, March
2015. Available: http://5g-ppp.eu/wp-content/uploads/2015/02/5G-Vision-Brochure-v1.pdf.



5G-PPP - 5G Network Vision

020+MN+URC

Device to Device

Moving Netwarks

Ultra Reliable Communication
Massive Machine Communication
Ultra Dense Networks

5G-PPP 5G Vision Document, “The next-generation of communication networks and services”, March
2015. Available: http://5g-ppp.eu/wp-content/uploads/2015/02/5G-Vision-Brochure-v1.pdf. 3



The 5G (Cellular) Network Of The Future

O Buzzword 1: Densification
1.  Access Points (Network Topology, HetNets)
2. Radiating Elements (Large-Scale/Massive MIMO)

Q Buzzword 2: Spectral vs. Energy Efficiency Trade-Off
1.  Shorter Transmission Distance (Relaying, Femto, D2D)

2. Total Power Dissipation (Single-RF MIMO, Antenna Muting)
3.  RF Energy Harvesting, Wireless Power Transfer, Full-Duplex

O Buzzword 3: Spectrum Scarcity
1. Cognitive Radio and Opportunistic Communications

2. mmWave Cellular Communications

Q Buzzword 4: Software-Defined, Centrally-Controlled, Shared, Virtualized
1. SDN, NFV, Network Slicing



Why Network Densification Is So Important ?

... Increase in Capacity Over the Last Decade ...

[ Breakdown of these gains:
L 5 x PHY; 25 x spectrum; 1600 x reduced cells, 5 x rest

Reduced Cells

1 Breakdown of (estimated) cost:

bit/sec/m” <> 1, B, log,(1+SINR)

M. Dohler, R. W. Heath Jr., A. Lozano, C. Papadias, R. A. Valenzuela, “Is the PHY Layer Dead?”, IEEE
Communications Magazine, Vol 49, No 4, pp. 159-165, April 2011. 5



This Talk: Poisson Point Processes and Beyond

[ Part I: Poisson Point Processes for Cellular Networks
» Why do we need Stochastic Geometry ?
» How to use Stochastic Geometry for performance evaluation ?

> Six years later... where are we now ?

Q Part II: Beyond the Poisson Point Process
> Why to go beyond the Poisson Point Process ?
> What are the mathematical challenges of this generalization ?

» Inhomogeneous Poisson Point Processes — An approximation



... Part] ...
(The PPP Saga)



Why? - Densification of Base Stations (your parents net)

Macro



Why? - Densification of Base Stations (your kids net)
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Modeling Cellular Networks — In Industry

The NTT DOCOMO 5G Real-Time Simulator

== —

e 1 =
: 50
. *
' Macro cell w/
= 3 sectors ]
Moving c "
vehicles

e -, -
=y

i
.4

-

-

DOCOMO 5G White Papet, “5G Radio Access: Requirements, Concept and Technologies”, July 2014. 10



Life of a 3GPP Simulation Expert (according to Samsung)

Inspiration strikes! ¢

L1 Weeks writing/debugging code:;

1%

There's a reason the server is called “grumpy”:

UL —— Come back after waiting this long:
o 5 ____— seconds!
4 4 runTineg =
1.4450e+05
Hope you don't find this: < |
|fegmentation violation detected————--
RE = ODODODO0ZcALdaFS B9 = 00002ac:
_interpreter.soc+02245206[ 7] Ox0000:
xa64,/11bmum_interpreter. so+01923475[0 All for a few numbers and a MATLAB plot:
13a/bin/glnxadd /1ibmum_dispatcher.so- Buffer Occupancy —
[ 36] 0x00002ac2133eebd8 Soptr/HW/ app: Dperétn; 1 (lasz): 0,560 u ot
Operator 2 (wifil: 0.807 it
WE Throughput [(Mbps) -

Operator 1 (laa): 10.304 i-
Dperator 2 (wifil: B.708 i f
Packet Latercy (=) E ]
Operator 1 (laa): 0,806 :
Operator 2 (wifi): 0.702 3

Charlie Zhang, Simons Conference on Networks and Stochastic Geometry, October 2015, Austin, USA. 11



Modeling Cellular Networks — In Academia

L5

Traditiu'nal grid mf::del

O Conventional approaches to the analysis and design of cellular
networks (abstraction models) are:

» The Wyner model

» The single-cell interfering model or dominant interferers model

» The regular hexagonal or square grid model

D. H. Ring and W. R. Young, “The hexagonal cells concept”, Bell Labs Technical
Journal; Dec. 1947. http://www.privateline.com/archive /Ringcellreport1947.pdf.

12



Modeling Cellular Networks — In Academia

| «— Reality
VS.

Abstraction
Modeling ~—

Traditiu'nal grid mf::del

O Conventional approaches to the analysis and design of cellular
networks (abstraction models) are:

» The Wyner model

» The single-cell interfering model or dominant interferers model

» The regular hexagonal or square grid model

D. H. Ring and W. R. Young, “The hexagonal cells concept”, Bell Labs Technical
Journal, Dec. 1947. http://www.privateline.com/archive /Ringcellreport1947.pdf.

13



The Conventional Grid-Based Approach
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Traditional grid model

‘ Probe mobile terminal

A Macro base station

14



The Conventional Grid-Based Approach

C('”(f”,{n“)}) =B, log, (1 +SINR(rO<1>,{
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‘ Probe mobile terminal

A Macro base station 15




The Conventional Grid-Based Approach

... Signal-to-Interference-Plus-Noise Ratio (SINR) ...

2

SINR = };ho ‘o [agg(FO):_Z P‘hi‘zri_a
o' +1,, ( ’”o) ic®\BS,,

CCDF(T)=P, (T)=Pr{SINR > T}

cov

( 2 B A
Plh| r“
>T +=...

o’ +1 (ro)

= Pr-<

16



The Conventional Grid-Based Approach

‘ Probe mobile terminal

A Macro base station




The Conventional Grid-Based Approach
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‘ Probe mobile terminal

A Macro base station
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The Conventional Grid-Based Approach

Simple enough... So, where is the issue?

The answer:
...this spatial expectation
cannot be computed mathematically...

19



The Conventional Grid-Based Approach

-

\_

... spatially-average metrics are difficult to
be formulated in mathematical terms ...

l

Monte Carlo Approximations (/N — )

\

C

E =3 c(n5))

)

-

IS (n)
FZ;BW log, (1 + SINR(rO ,{

20



The Conventional Grid-Based Approach: (Some) Issues

O Advantages:

>

Dozens of system parameters can be modeled and tuned in such
simulations, and the results have been sufficiently accurate as to enable
the evaluation of new proposed techniques and guide field deployments

d Limitations:

> Actual coverage regions deviate from a regular grid
» Mathematical modeling and optimization are not possible. Any elegant
and insightful Shannon formulas for cellular networks?
» The abstraction model is not scalable for application to ultra-dense
HetNets (different densities, transmit powers, access technologies, etc...)
. .:. .'.o < D : .' ‘ . ‘ . << i >> - (Zﬁ)
'o e e 1 o .- . .o s 4 o ,-"{B e “I"‘. \‘\ s S T
> Y AL AN e S . Ls S, . : ¥ . B \ ﬁ/ ; (ZE) )
NSO AYARS AT 3 : o Y O
e ] oS & : o. *fs . -4 = {,{h-,.\-; \\\ Meicro [hﬁ Fente. Fﬂm)t
) af S\ SRS2T T o Nl : | \ﬂ)) F’
Actual 4G network today Traditional grid model ‘(Eeﬁt_é, b 21



Let’s Change The Abstraction Model, Then...

Regular
deployment

‘---: ‘:-..:- \‘ i L
'.'-' 3N AL /* S Ve Traditional grid model

Actual 4G network today



Let’s Change The Abstraction Model, Then...

Regular
deployment

i o

Traditional grid mEJdel

Random

deployment
(PPP)

Actual 4G network today

Completely random BSs 23



Stochastic Geometry Based Abstraction Model

A Tractable Approach

d A RANDOM SPATIAL MODEL for Heterogeneous Cellular
Networks (HetNets) modeling, analysis, and optimization

Stochastic Geometry
emerges as a powerful tool for the
analysis, design and optimization

of ultra-dense HetNets

24



Stochastic Geometry: Well-Known Mathematical Tool

Analytical v !ruil. ding

An Introduction to the
Theory of Point Processes:
Volume I: Elementary
Theary and Methods,
Second Edition

IV Dhaley
X Vere-Tomer

Sung Mok Chas « Ditrich S3oyan
Wiitrid Kendall « Joseph Mecke

WELEY BERFES I FROBARILITY AN STATISTIS

Paissomn

Procosses

[[pa="ppll SR o P IR SRl R L

Stachastic
Geometry,

Spatial Statistics
and Random Fields

STOGHASTIC

GEOMETRY

FOR WIRELESS NETWORKS

Poisson
Point Processes

APy TR e ey

A Baddebey 1. Bindny
K. Schnckler W Wil

stochastic
Geometry

25



Stochastic Geometry: Sophisticated Statistical Toolboxes

SpatStat analysing spatial point patterns

News Download Resources Book Help FAQ About

Welcome to the spatstat website
26



Stochastic Geometry: Sophisticated Statistical Toolboxes

Chapman & Hall/CRC
Interdisciplinary Statistics Series

Package ‘spatstat’ Spuliul Point Patterns
July 8, 2016 Methodology and Applications with R

Version 1.46-1

Nickname Spoiler Alert

Date 2016-07-08

Title Spatial Point Pattern Analysis, Model-Fitting, Simulation, Tests

Author Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>,
Rolf Turner <r. turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>,
with substantial contributions of code by
Kasper Klitgaard Berthelsen;

Ottmar Cronie;

Ute Hahn;

Abdollah Jalilian;
Marie-Colette van Lieshout;
Tuomas Rajala;

Dominic Schuhmacher;

and




PPP-Based Abstraction

How It Works (Downlink — 1-tier)

A

‘ Probe mobile terminal

A PPP-distributed macro base station

28



PPP-Based Abstraction

How It Works (Downlink — 1-tier)

A A | A A
A A A
O
A A A A
A A
‘ Probe mobile terminal A

A PPP-distributed macro base station

29



PPP-Based Abstraction

How It Works (Downlink — 1-tier)

A

‘ Probe mobile terminal

A PPP-distributed macro base station

30



1

c(n". (") =B, log, (1 +SINR (11

)

PPP-Based Abstraction

How It Works (Downlink — 1-tier)

A

A

‘ Probe mobile terminal

A\ PPP-distributed macro base station 31



PPP-Based Abstraction C(r(fz),{rf) }) =By log; (1 ’ SINR(FO(Z)’{F"(Z) }))

How It Works (Downlink — 1-tier)

A A

- A
A Intended link  _ A

A S B S
\
\
/ \
t . >

A A

‘ Probe mobile terminal

A\ PPP-distributed macro base station 32



PPP-Based Abstraction C(r()(3)’ {4(3) }) =B, log, (1 +SINR (rf),{;;.“) }))

How It Works (Downlink — 1-tier)

\4

\ /
A \ N , / A
A N Intended link

~ -~
A -l __- |

‘ Probe mobile terminal A

A PPP-distributed macro base station



PPP-Based Abstraction

Are you kidding me? ... What makes it different?

n=l1 34



How It Works: The Magic of Stochastic Geometry (1/6)

... understanding the basic math ...

® 1s a PPP

P_ =Prs

2 -

r

(0]

- Pl

\0'2 +1,, (ro)

> SINR =

>T

P, =Pr{SINR >T}

2 —a

v

)

P|h

)

o’ +]agg (ro)

Le(n)= 3 Pl

35



How It Works: The Magic of Stochastic Geometry (2/6)

... understanding the basic math ...
Plh
2

o+ {0 (ro )

2 -«

r

()

P_ =Prs >T ¢

_ Pr{\hof >(0?+1,, (ro))P_lTrO“}

2

( h | ~exp :>) = E]agg(ro),ro {exp(—(GZ + ]agg (ro))P—lTrOa )}
/MGFX (S) =
B, fe) =)=, {exp(—azP_lTroa JMGE, . (P"T )}

36



How It Works: The Magic of Stochastic Geometry (3/6)

... understanding the basic math ...

PCOV — E’”o {exp (—TGZP—lroa )MGFIagg(’”o) (P_ITI/'Oa )}

+00

- J exp (—T o’ P& )MGangg(

0

. (P'T&%)PDF, (£)dé

0

37



How It Works: The Magic of Stochastic Geometry (3/6)

... understanding the basic math ...

PCOV = ErO {exp (—T o’pP! roa )MGF]agg(ro) ( P—lTrOa )}

+00

= [ exp(~To*P'¢*)MGF,  \(P7'TE)PDE, (£)dé

0

Trivial so far... where is the magic?

38



How It Works: The Magic of Stochastic Geometry (3/6)

... understanding the basic math ...

PCOV = ErO {exp (—T o’pP! roa )MGF]agg(ro) ( P—lTrOa )}

+00

= [ exp(-To*P'¢*)MGF, \(P7'TE)PDE, (£)dé

0

Trivial so far... where is the magic?
Stochastic Geometry provides us with the
mathematical tools for computing, in closed-form,

the MGF and the PDF of the equation above

39



How It Works: The Magic of Stochastic Geometry (4/6)

... understanding the basic math ...

2 _4 The aggregate other-cell interference
/ agg (l/' 0) o Z P ‘hz ‘ I/; constitues a Marked PPP, where the
ieD\BS, marks are the channel power gains

The PDF of the closest-distance

PDF, ((f ) = 27A& exp (—722,52 ) follows from the null probability of

spatial PPPs

The MGF of the aggregate other-

MGF ( S) — cell interference follows from the
(%) Probability Generating Functional
(PGFL) of Marked PPPs

40



How It Works: The Magic of Stochastic Geometry (5/6)

... understanding the basic math ...

ie®D\BS,

ieD\BS,
.

/

(PGFL :>) = eXp —2722! (1— E|h,-|2 {exp(

\

— exp[ﬂﬂroz (1 -, K [1,—5,1 T
0

MGF, (ro)(s)zEcD,{hiz}wxp(—S > P

=E, 1 H E{|h,.|2} {CXp(_

\®)
Q
N—
- _J/
Vv

N

)

J

Vo

5 )})«fdf]

+4)
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How It Works: The Magic of Stochastic Geometry (6/6)

... a relevant example: Interference-Limited regime ...

Coverage:

Rate:

Area Spectral Efficiency:

Potential Spectral Efficiency:

|
21'71(1,—2/05,1—2/05,—T)

C = By jPCOV(x)dx | bit/sec]
ln(2)  1+x

ASE = AC [bit/sec/mz]

PSE(T)= 4B log,(1+T)P,, (T) |bit/sec/m’ |

[6{0)%

42



So Powerful and Just Two Lemmas Need 1o Be Used...
Sums over PPP

Lemma (Campbells theorem)
Let & be a PPP of density \ and f(x) : R> — R™.

E[)  f(x)]=A /R F(x)dx

xed

Products over PPP

Lemma (Probability generating functional (PGFL))

Let ® be a PPP of density \ and f(x) : R?> — [0,1] be a real valued
function. Then

11 f(x)] = exp (—A R2(1 = f(x))dx) .




. On Abstraction Modeling ...

George Edward Pelham Box
(18 October 1919 — 28 March 2013)
Statistician
Fellow of the Royal Society (UK)
Director of the Statistical Research Group
(Princeton University)
Emeritus Professor
(University of Wisconsin-Madison)

“...all models are wrong, but some are useful...”

44



Is This Abstraction Model Accurate?

[ Methodology:

45



Is This Abstraction Model Accurate?

d Methodology:

> Actual base station locations from OFCOM (UK)

OFCOM.:
London
“London
Bridge area”

OFCOM: http:/ /stakeholders.ofcom.org.uk/sitefinder/sitefinder-dataset/

1 radio transmitter found at this map
location.

Name of Operator Vodafone
-Dperator Site Ref. 10277
-StaUOﬂ Type Macrocell

Height of Antenna : 3.9 Metres-
Frequency Range .900 MHz [
_Transmitter Power 7.5 dBW -
_Maximum licensed pcn-\.'ermg 32 dBW
Type of Transmission :GSM

Click here to send an enguiry conceming

this mobile phone base station to the
operator.

Close

Briclge =

London Bridg
Experience

The Vi ;hum

The Shard

2

= London Bridge *
o

|| to search for {eg Postoode, Town or Street)

[

e Millennium Pier - Londay Bridge -
Pier &

o
Y Thome
8

HMS Belfast | &)

Madaje, &
Sino

¢

re Londeon Estates =

ﬁ!rers Flelds Park
4 (8)
<Op ¥

&‘&
&
¥
don Rlverside

City Hall (@

wore Lo

&

Search

Tower of London (=

Tower Bridge (=

£ &
m ﬁé\ £
B nee‘;z!i"tograuhlu uesB2015.Google | 3 Conditiofs dutiisation  Sign#€r une emeur pa%ogmphéque

ngle Operator GSM

Single Operator UMTS

Single Operator TETRA

Base stations with more
than one operator or

technology technology technology more than one
technology
12 2 0 15
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Is This Abstraction Model Accurate?

0 Methodology:
» Actual base station locations from OFCOM (UK)
» Actual building footprints from ORDNANCE SURVEY (UK)

ORDNANCE
SURVEY:
London
“London

Bridge area”

Piar
==
|

R

|I .ll T ——
ooy : ST “—__ HMSBelfsat
! .. l-._ o] "r""-.____

£&7

47

OFCOM: http:/ /stakeholders.ofcom.org.uk/sitefinder/sitefinder-dataset/
ORDNANCE SURVEY: https://www.ordnancesurvey.co.uk/opendatadownload/products.html



Is This Abstraction Model Accurate?

[ Methodology:
> Actual base station locations from OFCOM (UK)
> Actual building footprints from ORDNANCE SURVEY (UK)
» Channel model added on top (1-state and 2-state with LOS/NLOS)

‘ Mobile terminal
A Base station (outdoor)

A\ Base station (rooftop)

2-state: the location of MTs and BSs

and the location/shape of buildings
determine LOS/NLOS conditions

LOS

1-state: all links are either in LOS or
NLOS regardless of the topology

OFCOM: http:/ /stakeholders.ofcom.org.uk/sitefinder/sitefinder-dataset/

48
ORDNANCE SURVEY: https://www.ordnancesurvey.co.uk/opendatadownload/products.html



Practical Example of Blockage Model (3GPP)

... statistically modeling of blockages using LOS/NLOS links ...

3GPP_

1

0.9

081

07F

06}

PLos(

0:4 F
LOS

03r

0.2r

01r

U 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200
r [meter]

T r

18 _ L.
PLos(r) = min [_r ,1} (1 —e 36) + e 36
‘ Mobile terminal

A Base station
49



The London Case Study

02 + Vodafone 02 Vodafone
Number of BSs 319 183 136
Number of rooftop BSs 95 62 33
Number of outdoor BSs 224 121 103
Average cell radius (m) 63.1771 83.4122 96.7577

50



The London Case Study
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The London Case Study
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»
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The London Case Study

PPP Accuracy: 1-State Channel Model

O OFCOM: Actual base station locations, (actual building footprints), actual channels

O PPP: Random base station locations, (actual building footprints), actual channels

0O2+VODAFONE 02 VODAFONE

Coverage probability in London{CO2 and V' odafone, 1 state) Coverage probahility in London{Q2, 1 state) Coverage prabability in London(odafone, 1 state)
1 T T T T T T 4I T T T T T T 1 T T T T T T
—HB— Simulation PPP —8— Simulation PPP —8— Simulation PPP
naf —i=— Simulation Ofcom [H ook —=— Simulation Ofcom [H naf —=— Simulation Ofcom
0ar . n.ar ~ 0.ar
07+ - 0.7k - 0.7+
06+ - D6F - 06F
= = =
o 05} - 2 05 - S 06|
o o o
04+ - 0.4+ - 0.4+
03r . 0.3r . 0.3r
02r . 0.2r . 0.2r
01r 01 7 01F i
':I 1 1 1 1 1 L EI 1 1 1 1 1 1 ':I 1 1 1 1 1 1
=20 15 -10 -5 0 5 10 15 20 -15  -10 -5 0 5 10 15 =20 -15  -10 Rl 0 5 10 15

Threshold (dB) Threshold (dB) Threshaold (dB)



The London Case Study

Poow

PPP Accuracy:
02

2-State Channel Model

VODAFONE

Cowerage probability in London{0 2, 2 state)

Cowerage probability in London(Vodabne, 2 state)

—&— Simulation PPP
—&— Simulation O om ||
—#% Simulation 3 Ball

—&— Simulation PP b
0ek —H&— Simulation O Tom || neb
— % Simulation 3 Ball
06 06}
=
[=]
[ ]
o
D4r D4F
02r 02tk
|:| 1 1 1 1 1 1 |:| 1 1
=20 -15 -10 = 0 5 10 15 =20 -15 -0

Threshold (dB)

0O2+VODAFONE

Cowerage probability in London{02 and Vodabne, 2 state)

Threshold (dB)

—=— Simulation PPP
—&— Simulation Ofcom ||
—+— Simulation 3 Ball
0.6} 7 —
=
o
%]
o B
0.4} _... _
0.2} “B%_E
3
|:| 1 L 1 1 1 1
=20 -15 -10 -5 0 5 10 15

Threshold (dB)
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The London Case Study

T ‘ . ‘ .|
* With blockages (LOS+NLOS)
o Standard model (LOS): r@

*
* o Standard model (NLOS): ron
— * —
N *
L .
Q O * |
2, O *
D O * 7
Q) O *
n'd O * B
o *
*
Moo o O 0O OO0 o 9 % 0 T O I =3 A LOS
O
O
O
041 . . . O o 4
< towards interference-limited
0.2 ‘

| | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000
R m
cell[ ]

M. Di Renzo, W. Lu, and P. Guan, “The Intensity Matching Approach: A Tractable Stochastic Geometry

Approximation to System-Level Analysis of Cellular Networks”, IEEE Trans. Wireless Commun., Sep. 2016. 55



Intrigued Enough? On Experimental Validation...

Stochastic Geometry Modeling of Cellular Networks:
Analysis, Simulation and Experimental Validation

Wei Lu

Paris-Saclay University

Laboratory of Signals and Systems (UMR-8506)
CNRS-CentraleSupelec-University Paris-Sud Xl

3, rue Joliot-Curie
91192 Gif-sur-Yvette (Paris), France

wel.lu@I2s.centralesupelec.fr

ABSTRACT

Due to the increasing heterogeneity and deployment den-
sity of emerging cellular networks, new flexible and scal-
able approaches for their modeling, simulation, analysis and
optimization are needed. Recently., a new approach has
been proposed: it is based on the theory of point processes
and it leverages tools from stochastic geometry for tractable
system-level modeling, performance evaluation and optimiza-
tion. In this paper, we investigate the accuracy of this
emerging abstraction for modeling cellular networks, by ex-
plicitly taking realistic base station locations, building foot-
prints, spatial blockages and antenna radiation patterns into
account, More specifically, the base station locations and
the building footprints are taken from two publicly available
databases from the United Kingdom. Our study confirms
that the abstraction model based on stochastic geometry is
capable of accurately modeling the communication perfor-
mance of cellular networks in dense urban environments.

Marco Di Renzo
Paris-Saclay University
Laboratory of Signals and Systems (UMR-8506)
CNRS-CentraleSupelec-University Paris-Sud X
3, rue Joliot-Curie
91192 Gif-sur-Yvette (Paris), France
marco.direnzo@I|2s.centralesupelec.fr

pected to provide [1]. Modeling, simulating, analyzing and
optimizing such networks is, however, a non-trivial problem.
This is due to the large number of access points that are ex-
pected to be deployed and their dissimilar characteristics,
which encompass deployment density, transmit power, ac-
cess technology, ete. Motivated by these considerations, sev-
eral researchers are investigating different options for mod-
eling, simulating, mathematically analyzing and optimizing
these networks. The general consensus is, in fact, that the
methods used in the past for modeling cellular networks,
e.g., the hexagonal grid-based model [2], are not sufficiently
scalable and flexible for taking the ultra-dense and irregular
deployments of emerging cellular topologies into account.

Recently, a new approach for overcoming these limitations
has been proposed. It is based on the theory of point pro-
cesses (PP) and leverages tools from stochastic geometry
for system-level modeling, performance evaluation and opti-
mization of cellular networks [3]. In this paper, it is referred

W. Lu and M. Di Renzo, “Stochastic Geometry Modeling of Cellular Networks: Analysis, Simulation and
Experimental Validation”, ACM Int. Conf. Modeling, Analysis and Simulation of Wireless and Mobile
Systems, Nov. 2015. [Online]. Available: http://arxiv.org/pdf/1506.03857.pdf.

W. Lu and M. Di Renzo, “Stochastic Geometry Modeling of mmWave Cellular Networks: Analysis and
Experimental Validation”, IEEE Int. Workshop on Measurement and Networking (M&N) — Special
Session on Advances in 5G Wireless Networks, Oct. 12-13, 2015. 56




Intrigued Enough? On Mathematical Modeling...

The Intensity Matching Approach: A Tractable Stochastic Geometry

Approximation to System-Level Analysis of Cellular Networks

Marco Di Renzo. Senior Member, IEEE, Wei Lu, Student Member, IEEE, and
Peng Guan, Student Member, IEEE

Abstract

The intensity matching approach for tractable performance evaluation and optimization of cellular
networks is introduced. It assumes that the base stations are modeled as points of a Poisson point
process and leverages stochastic geometry for system-level analysis. Its rationale relies on observing that
system-level performance is determined by the intensity measure of transformations of the underlaying
spatial Poisson point process. By approximating the original system model with a simplified one, whose
performance is determined by a mathematically convenient intensity measure, tractable yet accurate
integral expressions for computing area spectral efficiency and potential throughput are provided. The
considered system model accounts for many practical aspects that, for tractability, are typically neglected.
e.p., line-of-sight and non-line-of-sight propagation, antenna radiation patterns. traffic load. practical
cell associations. general fading channels. The proposed approach, more importantly, is conveniently
formulated for unveiling the impact of several system parameters. e.g., the density of base stations and
blockages. The effectiveness of this novel and general methodology is validated with the aid of empirical

data for the locations of base stations and for the footprints of buildings in a dense urban environment.

M. Di Renzo, W. Lu, and P. Guan, “The Intensity Matching Approach: A Tractable Stochastic Geometry
Approximation to System-Level Analysis of Cellular Networks”, IEEE Trans. Wireless Commun., Sep 2016. 57



But, The PPP Is Not Always Accurate

... Cauchy determinantal point process (spatially-repulsive) ...

red line:¢=2.5,blue line:¢=3.5,black line:¢.=4.5
Dg T T T I T T

4 Solid lines: Simulations with R
Markers: Proposed approximation ||
Dashed lines: Poisson networks

Pcov

SINR [dB]
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But, The PPP Is Not Always Accurate: Rule of Thumb

... PPP: Lower-Bound — Grid: Upper-Bound ...

|
—#— Square Grid N=24
—&— Actual
Random (PPF)

Probability of Coverage

0.3

-10 -5 0 5 10 15 20
SINR. Threshold (dB)



Or, It May Not Necessarily Be The Best Choice

Just an Example: Fully-Operational Cellular Networks

and
4/'10 | T T T T T T .
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Or, It May Not Necessarily Be The Best Choice

Just an Example: Epicenters of a Natural Disaster
10

4 T T T T T
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Or, It May Not Necessarily Be The Best Choice

Just an Example: Partially-Operational Cellular Networks

4
4r~10

T
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Or, It May Not Necessarily Be The Best Choice

Just an Example: Drone-Aided Cellular Networks

4
d : 10 T T T T T T |
3
2 ‘i
1 R0 B
B
0 . 25288
S 7
-2
-3
-4 L 1 | | 1 l | | M |
4 -3 -2 -1 0 1 2 3 4
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Or, It May Not Necessarily Be The Best Choice

Just a Science Fiction Example: Drone-Aided Cellular Networks

64



Or, We Just Love Math ©

... The Ginibre Point Process ...

Theorem 1 Consider the cellular network model with a single tier such that the BSs are deployed
according to the a-Ginibre point process with intensity A. Then, the downlink coverage probability

of a typical user is given by

< 0 sas\B/2

P(SINR, > 0) = a/o e L (ﬁ (ﬁ) ) M(s,0) S(s,0)ds, (5)
where Ly denotes the LST of W, and

s a [ tet
M = 1— — 6
=0 H( 5 | e W

— , o0 thet -

5(8,9):;6’ ((1—a)z!+a/8 1+t9(s/t)3/2dt) : (7)

I. Nakata and N. Miyoshi, “Spatial stochastic models for analysis of heterogeneous cellular networks with
repulsively deployed base stations”, Research Reports on Mathematical and Computing Sciences (ISSN
1342-2804), Oct. 2013, B-473. 65



We Are Lucky: Stochastic Geometry Is A Rich Toolbox

Completely random
with zero interaction

_ Point process with Point process with
Lattice repulsion PPP attraction

Matern hard-core process
Strauss process
Perturbed lattice

Ginibre point process

Poisson cluster process
Neyman-Scott process
Matern cluster process
Thomas cluster process

| IR S BN Matern Hard-Core PP

|(:).." 177  Takeahomogeneous PPP and remove any
. ¥ b pairs of points that are closer to each other

than a predefined minimum distance R

Y. J. Chun, M. O. Hasna, A. Ghrayeb, and M. Di Renzo, “On modeling heterogeneous wireless networks
using non-Poisson point processes”, IEEE Commun. Mag.,, submitted. [Online]. Available:
http:/ /arxiv.org/pdf/1506.06296.pdf. 66




... Part II ...
(Beyond The PPP)
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Non-PPPs: The Problem Statement Is The Same...

P, =Pr{SINR >T}

Ccov

A P\h : r
. s SINR =

A ‘A\\ ! A G +]agg ( 0)
\\5___ A .
A agg Z P‘h ‘

ie®\BS,
® is NOT a PPP
P h : r”
P =Pr- >Th=...

O- +]agg( 0)
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And The Following Still Applies

PCOV — E’”o {exp (—TGZP—lroa )MGFIagg(’”o) (P_ITI/'Oa )}

+00

= [ exp(-To*P'¢*)MGF, \(P7'TE)PDE, (£)dé

0
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And The Following Still Applies

PCOV = ErO {exp (—T o’pP! roa )MGF]agg(ro) ( P—lTrOa )}

+00

- J exp (—T o’ P& )MGangg(

0

. (P'T&%)PDE, (£)dé

0

What About the MGF and the PDF Now ?
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And The Following Still Applies

PCOV = Ero {exp (—T o’pP! roa )MGF]agg(ro) ( P—lTrOa )}

= | exp(~To*P'¢“ )MGF,

agg
0

- (P‘1T§“ ) PDF (&)d¢

What About the MGF and the PDF Now ?

- PDF = Contact Distance Distribution of the PP
- MGF = Reduced Palm Distribution of the PP
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PPP with n=65

Example 1: The Ginibre Point Process (GPP)

0.25-GPP with n=67

0

0
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Example 1: The Ginibre Point Process (GPP)

It 1s known that the moduli (on the complex plane) of the points
of the GPP have the same distribution as independent gamma
random variables [16]. For the 5-GPP, from Theorem 4.7.1 in
[17], we have the following result:

Proposition 1: Let ®. = { X}, be a scaled 3-GPP. For
k € N, let Q) be a random variable with probability density
function

9
fai(q) = (%)kr(k)

i.e., Qr ~ gammal(k, 3/c), with @y, independent of Q; if k #
7. Then the set {|X; | }ien has the same distribution as the set Z
obtained by retaining from {Q }ren each Qi with probability
3 independently of everything else.?

: (8)
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Example 1: The Ginibre Point Process (GPP)

From Theorem 1 and Remark 24 1n [15], we know that there
exists a version of the GPP ®. such that the Palm measure of
®. 1s the law of the process obtained by removing from P,
a Gaussian-distributed point and then adding the origin. Thus,
we have the following proposition.

Proposition 2. (The Palm Measure of the Scaled 3-Ginibre
Point Process): For a scaled 5-GPP ®., the Palm measure of
®. 1s the law of the process obtained by adding the origin and
deleting the point X 1f it belongs (which occurs with probability
$3) to the process ®.., where | X|? = Q.

From Propositions 1 and 2, we observe that the Palm distri-
bution of the squared moduli ) is closely related to the non-
Palm version, the only difference being that )¢ is removed if it
1s included 1n =.



Example 1: The Ginibre Point Process (GPP)

P(SINR > ) = » P(SINR > 0, B, = i)

=1

=Y P(SINR >0, B, =i | T; = 1)P(T; = 1)

4 A
0 (02 + > thka/sz)
b > keN\{i} ’BO:Z’ >

— Q.a/Z
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Example 1: The Ginibre Point Process (GPP)

Theorem 2: For an SINR threshold 6, the coverage proba-
bility of the typical user in the S-Ginibre wireless network is
given by
p(0,0,0)=5 [ e ) 0(0,5,0.5)5(6,5.0,6) ds,

0

(42)
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Example 2: The Determinantal Point Process (DPP)

(]
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Fig. 1. Real macro BS deployments. (a) Houston data set; (b) LA data set.
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Example 2: The Determinantal Point Process (DPP)

Model A o v

Gauss DPP 0.4492 | 0.8417 —
Cauchy DPP 0.4492 1.558 | 3.424
Generalized Gamma DPP | 0.4492 | 2.539 2.63

TABLE 11
DPP PARAMETERS FOR THE LA DATA SET

Model A o %

Gauss DPP 0.2347 | 1.165 -
Cauchy DPP 0.2347 | 2.13 | 3.344
Generalized Gamma DPP | 0.2347 | 3.446 | 2.505
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Example 2: The Determinantal Point Process (DPP)

Lemma 5: For any ® ~ DPP(K), the empty space function
F(r) for r > 0 1s given by:

+00 (_1)11—1 ( )
F(r) = E / det (K (xi, Xj) ), -, .o, dx1 ... dx,.
- Jsony ==

(11)
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Example 2: The Determinantal Point Process (DPP)

Lemma 4 (Shirai et al. [21]): Consider ® ~ DPP(K), where
the kernel K guarantees the existence of ®. Then under the
reduced Palm distribution at xg € R?, ® coincides with another
DPP associated with kernel K, for Lebesgue almost all xo with
K (x0, x9) > 0, where:

! B K(x,y) K(x, x0)
Ko y) = K (x0, x0) det (K(xo,y) K(xo,xo)) NGO

This property shows that DPPs are closed under the reduced
Palm distribution, which provides a tool similar to Slyvniak’s
theorem for Poisson processes [29]. In cellular networks, when
xo 1s chosen as the serving base station to the typical user, this
property shows that all other interferers will form another DPP
with the modified kernel provided in (9).



Example 2: The Determinantal Point Process (DPP)

Theorem 2: The SIR distribution of the typical user at the
origin 1s given by:

P (SIR(0, ®) > T)

Ry
— f A27T Z oy [Rz)n det (K)!CO (x;, xj)lfi,jfn)
0 _HZO .

dx;...dx, | rodro.

ke Lyxi|>rg
A g {1 1+ Tl(x,-)/l(xo)}

xo0=(r0p,0)

(22)
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Example 3: The As-A-PPP (ASAPPP) Approach

SIR CCDF

This SIR gain is nearly constant
over / iIn many cases.

——baseline scheme
—improved scheme

Bs 10 = 0 5 10 15 20 25
8 (dB)

ps(0) =P(SIR>60) = p(0) =P(SIR > 6/G).
Can we quantify this gain?
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Example 3: The As-A-PPP (ASAPPP) Approach

Horizontal gap at probability p
The horizontal gap between two SIR ccdfs is
=1

A FSIRE(P)

p<(0,1),

where I—:(_.;‘_”lz is the inverse of the ccdf of the SIR, and p is the target success
probability.
We also define the asymptotic gain (whenever the limit exists) as

G = lim G(p).
p—1
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Example 3: The As-A-PPP (ASAPPP) Approach

The ISR and the MISR
Definition (ISR)

The interference-to-average-signal ratio is

= /
SR 2 ,
Ex(S)

where E(S) is the desired signal power averaged over the fading.

Comments

@ The ISR is a random variable due to the random positions of BSs and
users. lts mean MISR is a function of the network geometry only.

@ If the desired signal comes from a BS at distance R, (Ex(S))~! = R“.

@ If the interferers are located at distances Ry,

MISR £ E(ISR) =E (R* ) bR ™) = > E (Rik)a




Example 3: The As-A-PPP (ASAPPP) Approach

SIR CDF (out babili .
o7 (oge provad ™) Outage probability:

10

Pout(0) = P(hR™™ < 61)

10}
7 — P(h < 0I5R)
x
B » .
b For exponential h:
— e—BISR
107 _
——baseline scheme (|
, : : —improved scheme N 9 hAISIQ:| 9 i 0
-20 -25 -20 -15 -10 s 0
8 (dB)

So Fsir(8) ~OMISR =  Fga(p) ~ (1= p)/MISR, (p — 1).

MISR
So the asymptotic gain is the ratio of the two MISRs: G = MlSRl
2

We need to find a reference MISR; that is easy to calculate...
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Example 3: The As-A-PPP (ASAPPP) Approach

The MISR for the HIP model
For the (single-tier) HIP model,

MISR = E (R{‘i R;“) ~ i]E (%)a ?
k=2 "

where Ry is the distance to the k-th nearest BS.
The distribution of vy = Ry /Ry is

F(x)=1—(1-x)" xelo,1].

Summing up the a-th moments E(v}'), we obtain (remarkably) [Hael4]

2

MISR = :
2 a—2

This is the baseline MISR relative to which we can measure the gain G.
For « =4, it 1s 1.




Example 3: The As-A-PPP (ASAPPP) Approach

Gain relative to HIP

We can approximate the SIR distribution of arbitrary point processes and
transmission schemes by shifting the Poisson curve:

o) — HiP ((o_MISR
Pe(6) = P | OriSR
HIP
PPP and square lattice, o= 3.0 PPP and square lattice, a= 4.0
1 . . . . 1 T ; ; -
0.9} 0.9}
0.8} 0.8}
07 z07
14 x
< 0.6} = 0.6t
0.5} 0.5
— PP —PPP
o —square lattice 04 — square lattice
- - -ISR—-based gain \ - - -ISR-based gain :
0. - . - 0. — " . i N
- -15 =10 —B 0 5 10 —%{) -15 -10 =5 0 5 10

6 (dB) 8 (dB) 87




Example 3: The As-A-PPP (ASAPPP) Approach

A. The MISR for General Point Processes

The first result gives an expression for the MISR for a general
point process.

Theorem 1: The MISR of a motion-invariant point process
® 1s given by

1
MISR = 2/ %73 By (1)dr,
0

Bultiy »e-

2n !
K d,
!2n/||y | / yoj(w,w),“.’(”f_ﬂ,%)[a‘?( y0)]

[0.27 "

1 [yoll [ yoll
pgl+)(yo, (T,cm),...,( ¥ de; - - - dg,dyo.
n ,




Let’s Step Back... And The Following Still Applies

PCOV = ErO {exp (—T o’pP! roa )MGF]agg(ro) ( P—lTrOa )}

+00

- J exp (—T o’ P& )MGangg(

0

. (P'T&%)PDE, (£)dé

0

What About the MGF and the PDF Now ?
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And The Following Still Applies = I-PPP

... Inhomogeneous Poisson Point Processes ...

P, =B, exp(-To*P U MGF,_ (P77 )|

400

= [ exp(-Tc?P'&*)MGF,  (P"'T&")PDE, (£)dé

0

Void Prob

PDF <« Pr{®(B[0.7,))=0|=exp(-A([0.7;)))

PGFL 0

MGF < E- > = eXp —j (1 —f(r))A(l) ([0,7’))7’6[7”

o

A([O,ro)) = E{CD(B[O,rO))} = 27[11/1(1/)rdr = 27[1‘0; At(r)rdr
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Why Inhomogeneous Poisson Point Processes ?

[ Mathematical tractability

O I-PPP are “unavoidable” for system-level analysis of HetNets
» The PP of the path-losses is a I-PPP [1]
» Modeling LOS and NLOS [2]
» Modeling the uplink [3]

> Repulsive ? Clustered ? Maybe just Inhomogeneous ?

... “it may be difficult to disentangle” ... [4]

This local aggregation is not simply the result of random point density fluctuations. There
exists a “fundamental ambiguity between heterogeneity and clustering, the first correspond-
ing to spatial variation of the intensity function A(x). the second to stochastic dependence
amongst the points of the process...[and these are|...difficult to disentangle” Diggle (2007).

[1] B Blaszczyszyn et al., “Using Poisson Processes to Model Lattice Cellular Networks”, INFOCOM 2013.
[2] M. Di Renzo et al., “The Intensity Matching Approach: A Tractable Stochastic Geometry Approx. to
System-Level Analysis of Cellular Networks”, IEEE Trans. Wireless Commun., Sep. 2016.

[3] M. Haenggi, “User point processes in cellular networks”, IEEE Wireless Commun. Lett., Feb. 2017.

[4] A. Baddeley et al., Spatial Point Patterns — Methodology and Applications with R, Nov. 2015. 2



But, How 1o Define The Typical User ?

O From empirical data, the BSs are modeled with stationary PPs

> Ginibre PP (see Martin’s paper)
» Determinantal PP (see Jeff’s and Francois’s paper)

>

Qd I-PPPs are non-stationary PPs
» How to define the typical user ?
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But, How 1o Define The Typical User ?

O From empirical data, the BSs are modeled with stationary PPs
> Ginibre PP (see Martin’s paper)
» Determinantal PP (see Jeff’s and Francois’s paper)
> ...

O I-PPPs are non-stationary PPs
» How to define the typical user ?

Approach and Interpretation

- We still assume that the original PP is stationary
- We “create” the inhomogeneity based on how the typical user
of the original PP “sees” the network — “the user’s panorama”
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How Does The Typical User “See” The Network ?

O Let us try to understand it from the Homogeneous PPP (H-PPP)

P = Texp (-To*P'&*)MGF,_ (P'TE")PDE, (£)dé
0

[ The typical user sees the network through:
» The distribution of the distance from the serving BS
» The distribution of the aggregate interference from the other BSs
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How Does The Typical User “See” The Network ?

O Let us try to understand it from the Homogeneous PPP (H-PPP)

P = Texp (-To*P'&*)MGF,_ (P'TE")PDE, (£)dé
0

[ The typical user sees the network through:
» The distribution of the distance from the serving BS
» The distribution of the aggregate interference from the other BSs

Proposed Approach

We introduce a new I-PPP such that the network “seen” by a
user located at the origin is the same as the network “seen” by
the typical user of the original stationary PP, where “seen”

means in terms of PDF and MGF (coverage, in general...)
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How Does The Typical User “See” The Network ?

O Let us try to understand it from the Homogeneous PPP (H-PPP)

P = Texp (-To*P'&*)MGF,_ (P'TE")PDE, (£)dé
0

[ The typical user sees the network through:
» The distribution of the distance from the serving BS
» The distribution of the aggregate interference from the other BSs

Proposed Approach

+00

P = I exp(—TazP_l.f“)M—Gangg(ro)(P‘Té“)ﬁro (&)dé&
0
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Given a PP What Determines The PDF And The MGF ?

O The PDF is determined by the Contact Distance Distribution (or
F-Function):

F(r)=Pr{®(B[u,r))>0} = Pr{ju— | <r|

O The MGF is determined, “at the first order’, by the Ripley’s K-
Function:

AK (r)=E"{®(B[x.r))} =E"{

x—(DH<r}
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Given a PP What Determines The PDF And The MGF ?

O The PDF is determined by the Contact Distance Distribution (or
F-Function):

F(r)="Pr{®(B[u,r))>0} =Pr{ju—|<r|

d The MGF is determined, “at the first order’, by the Ripley’s K-
Function:

AK (r)=E"{®(B[x.r))} =E"{

- </]

Proposed Approach

We introduce a new I-PPP, i.e., we create the inhomogeneity,
such that the F-Function and K-Function of the original PP
“are the same” (in the mean square error sense) as those of
the approximating I-PPP 98



Is One I-PPP Sufficient ? Conflicting Trends...

O F-Function

F-Function
© o o o
w N ()] »

o
(N

0.1

400
Distance

... The Ginibre Point Process as an Example of Repulsive PP ...

FH—PPP (7‘)
=1- exp(—/lﬂrz)
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Is One I-PPP Sufficient ? Conflicting Trends...

... The Ginibre Point Process as an Example of Repulsive PP ...

O K-Function

K-Function

18

16

14

12

-
o

oo

%10°

—%— HPPP
|| —6—GPP i

0 100 200 300 400 500 600 700 800
Distance
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Is One I-PPP Sufficient ? Conflicting Trends...

... The Ginibre Point Process as an Example of Repulsive PP ...

O F-Function

FGPP(’”)ZFH-PPP(’”)

O K-Function:

KGPP (’”) < Ky ppp (’”)
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Is One I-PPP Sufficient ? Conflicting Trends...

... The Ginibre Point Process as an Example of Repulsive PP ...

O F-Function

FGPP (’”) = FH-PPP(r)
d K-Function:

KGPP (’”) < Ky ppp (’”)

Proposed Approach

We introduce TWO CONDITIONALLY-INDEPENDENT
I-PPPs, the first one for approximating the F-Function and
the second one for approximating, conditioned on the
location of the serving BS, the K-Function 102




The Inhomogeneous Double Thinning (IDT) Approach

... In Simple Formulas ...

d The 15 I-PPP determines the location of the serving BS:
A (r)=At,(r) such that HFGPP (7) = Fyypep (r)H — 0

d The 2" I-PPP determines the locations of the interfering BSs:

A (r)=Mt (r) such that HKGPP (7) = Kiyppp (r)H — 0

The Essence of the Proposed Approach

... To identify the two thinning functions reported above that
provide accuracy and mathematical tractability ...
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IDT — How It Works

MT

® mMT
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IDT — How It Works

o Homogeneous PPP
with density 4,
MT .. °
Y ® vT
’ . ® @ BsSs
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IDT — How It Works

.. ]
@ ° @
@ ° o 5]
® MT ®
& ® 2 ® @
%
.. } [ ] ... . MT
2]
. " . o @ Thinned BSs
®
'.. . ¢ o ° . @ Retained BSs
]
@ Q. @
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IDT — How It Works

Intended BS

TN 7 = ® v

E . o @ Retained BSs
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IDT — How It Works
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IDT — How It Works
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IDT — How It Works
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IDT — How It Works
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IDT — How It Works

Interfering BSs

® vT
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What Is The “Magic” Thinning Function ?

O F-Function and K-Function

te(r)=f(r;az,bp,c.)
tK(r) = f(r;aK,bK,cK)
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What Is The “Magic” Thinning Function ?

O F-Function and K-Function

te(r)=f(r;az,bp,c.)
te ()= f(r;ag,bye,cy)

... read the paper ...
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What Is The “Magic” Thinning Function ?

O F-Function and K-Function

te(r)=f(r;az,bp,c.)
te ()= f(r;ag,bye,cy)

... read the paper ...

BUT

... the final result is ...
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IDT Approximation Of The Coverage Probability

0 a 2
P (758,030 by sy ) = J-exp(_x ;O-NJGXP(TK (X))SF(x)dx
0

T, (x) =274 H[CKG_K[)K_G);J

g, 3 _lj Db h (1 g,Hg,_gj
3 a T 2 a a T
2 —a
4+ 5k cx — by -, F|- 2 11_2 Xt ¢y — by
2 9% a a k ay
2 2 1
+27A x;C—Kk_; 1—2]«'1(_2,1,1_3,_2-) H (fja_CK_bK
2 a a k ay

S (x) =AY ([0,x))exp(-A, ([0,x))) .




How Good Is The IDT Approach ?

Point Process

Parameters

DPP (Cauchy, Los Angeles)

ABs = 0.2346 BS/km?, o = 2.13, 1 = 3.344, Area = 28 x 28 km”

DPP (Cauchy, Houston)

ABs = 0.4490 BS/km?, o = 1.558, ju = 3.424, Area = 16 x 16 km>

DPP (Gaussian, Los Angeles)

ABs = 0.2345 BS/km?, o = 1.165, Area = 28 x 28 km?

DPP (Gaussian, Houston)

Ags = 0.4492 BS/km?, o = 0.8417, Area = 16 x 16 km?

GPP (Urban, 8 = 0.900)

ABs = 31.56 BS/km*, Area = 3.784°m km*, v = 3.5

GPP (Urban, g = 0.925)

ABs = 31.56 BS/km?®, Area = 3.784°7 km®, v = {2.5,4}

GPP (Urban, 8 = 0.975)

ABs = 31.56 BS/km?®, Area = 3.784*1 km?, v = 3

GPP (Rural, 8 = 0.200)

ABs = 0.03056 BS/km?, Area = 124.578°7 km?, e 3.8

GPP (Rural, 3 = 0.225)

Aes = 0.03056 BS/km>, Area = 124.578%7 km?, v = {3, 4}

GPP (Rural, g = 0.375)

Aps = 0.03056 BS/km?®, Area = 124.578°7 km*, v = 2.5

Lattice PP

ISD = {100, 200, 300, 500} m

Perturbed Lattice PP (Rcenn = 100 m)

s = {50, 80, 100, 200} m

LGCP (Urban) (exponential covariance)

ABs = 4 BS/km?, B = 0.03, 0 = 3.904, u = —0.5634, Area = 20x20 km?

LGCP (London) (exponential covariance)

Aps = 9.919 BS/km?, 3 = 0.054, ¢° = 2.0561, p = 1.2665, Area = 6x6 km”

LGCP (Warsaw) (exponential covariance)

ABs = 27.36 BS/km®, 3 = 0.0288, 0° = 2.7228, u = 1.9477, Area = 8x8 km?

PHP

Reenn = 0.5 km, Apole = 0.005A5s BS/km?, Ruole = 4 km

PHP

Reenn = 0.1 km, Apole = 0.005A8s BS/km?, Ryole = 0.8 km
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How Good Is The IDT Approach ?

Point Process

F-Function (ar, br, cr)

K-Function (ak, bk, ck)

DPP (Cauchy, a = 2.13, p = 3.344)

ap = 0.242792313440063 - 103
bg = 1.00000000050633
cr = 1.29043878627270

ax = 0.665312376961223 - 10 °
bk = 0.0800803505151663
ck = 0.999966929758115

DPP (Cauchy, o = 1.558, p = 3.424)

ar = 0.329932369708525 - 10>
br = 1.00000000203162
cr = 1.31414585197489

ak = 0.925771720753051 - 103
bk = 0.0762137545180777
ck = 0.999929848546426

DPP (Gaussian, a = 1.165)

ap = 0.257595475141932 - 103
br = 1.00000000000057
cp = 1.46642395259731

ax = 0.694526986147307 - 103
bk = 0.00800453473629913
ck = 0.999975490615518

DPP (Gaussian, o = 0.8417)

ap = 0.374139244964067 - 10~3
br = 1.00000000128277
cr = 1.36923913017716

ax = 0.963443744411944 - 1073
bk = 0.00642945511811224
ck = 0.999947574776537

GPP (Urban, 8 = 0.900)

ar = 0.00541280337683543
br = 1.00000000117948
cr = 2.50742980678854

axk = 0.00756610000002220
bk = 0.0140800000000222
ck = 0.999592878386863

GPP (Urban, 5 = 0.925)

ar = 0.00556558536499347
br = 1.00000000213305
cr = 2.52897621056288

ax = 0.00839000000002220
bk = 0.0200000000000222
ck = 0.999432788402679

GPP (Urban, 5 = 0.975)

ar = 0.00586932401892805
bg = 1.00000000000032
cr = 2.68047204883343

ax = 0.0110000000000222
bk = 0.0220000000000222
ck = 0.999243424300274

GPP (Rural, g = 0.200)

ap = 3.99946182077498 - 10>
br = 1.01187371832462
cr = 1.09948962377999

ax = 0.000393029018145069
bk = 0.0119099442149286
ck = 0.999999841554118

GPP (Rural, 8 = 0.225)

ap = 4.55473414133037 - 102
br = 1.01046879386340
cp = 1.11306423054186

ax = 0.000400570907629641
bk = 0.0118898483733152




How Good Is The IDT Approach 7 — GPP

cov
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cov
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O  PPP-H
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How Good Is The IDT Approach ? — Lattice

0.7

0_6
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How Good Is The IDT Approach 7 — LGCP

Urban, v=2.5 Warsaw, v = 3.5
05< T ! T 07 T T T
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How Good Is The IDT Approach ? — Two-Tier

cov
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How Good Is The IDT Approach 7 — LOS & NLOS
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How General Is The IDT Approach ?

... We Tested it for a Variety of Scenarios ...

O Single-tier repulsive and attractive PPs

O Multi-tier repulsive and attractive PPs

O Repulsive and attractive PPs with LOS/NLOS links

1 Repulsive and attractive PPs with bounded path-loss models

0 Repulsive and attractive PPs with elevated base stations

d and combinations of the above...
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How 1o Use The IDT Approach ?

... Itis NOT Just an Approximation ...

0 Given a PP, you can use it as an approximation ...

0 Given some empirical data, you can estimate the F-Function, the
K-Function, and “match” them to two I-PPPs ...

0 You can use it as a new parametric approach for modeling
cellular networks, analyzing the trade-offs of different radio
access technologies, optimizing their performance, etc. ...

Q It provides, in addition, a simple and easy-to-compute approach

for estimating the “deployment gain” and for applying the
ASAPPP approach (repulsive PPs) ...
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Intrigued Enough ? ... Here Is The Paper...

TRANSACTIONS ON WIRELESS COMMUNICATIONS

— .“"-—i ]
I | I

Inhomogeneous Double Thinning — Modeling and Analyzing

Cellular Networks Using Inhomogeneous Poisson Point Processes

Marco Di Renzo, Senior Member, IEEE, and Shanshan Wang, Student Member, IEEE

Abstract

In this paper, we introduce a new methodology for modeling and analyzing downlink cellular
networks, where the Base Stations (BSs) constitute a stationary Point Process (PP) that exhibits some
degree of interaction among the points, i.e., spatial inhibition (repulsiveness) or spatial aggregation
(clustering). The proposed approach is based on the theory of Inhomogeneous Poisson Point Processes

(I-PPP) and is referred to as Inhomogeneous Double Thinning (IDT) approach. In a stationary PP, the
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... final thoughts and takes ...
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On The Role Of Stochastic Geometry

1.4 The role of analytic modeling

The analytic-modeling-based investigation of deployment scenarios has two phases. In
3 : the first phase, we use probabilistic models for the locations of the BSs to determine
AI]EII}’HCHI NIOdE.'hHg analytic expressions for the CCDF of the SINR in the deployment region. In other
(}f Het{'ﬂfogeneous words, the use of a stochastic model (Poisson point process, or PPP) for the locations
Cellular Networks of the BSs allows us to write an analytic expression for the expectation of (1.4) with
respect to either the joint distribution of (Rg, Ry, ..., R)y) or the conditional joint distri-
bution of (Ry, ..., Ry) given Ry = rg. Further, these results can be extended to arbitrary
fading distributions and arbitrary numbers of tiers of BSs.

Geometry, Coverage, and Capacity

Sayandev Mukherjee _ . . L o . .
As we shall see, this has the benefit of providing insights into the combinations of

deployment parameters that affect the CCDF of the SINR, and therefore the different
sets of deployment parameters that are equivalent in that they yield the same CCDF of
the SINR. This analytic phase allows us to sift through the large space of combinations
of deployment parameters to settle quickly on certain equivalence classes of deployment
parameters, each class corresponding to some desired CCDF of the SINR. The service
provider may then choose a set of deployment parameters from one of these equivalence
classes based on its economic utility function.

In the next phase of the network design, the shortlist of deployment scenarios (as

CAMBRIDGE

defined by the deployment parameters) chosen in the first phase may be investigated in
depth via simulation. This effectively uses the power of detailed simulation, incorporat-
ing all relevant aspects whose behavior and impact on performance is to be investigated,
for a few selected deployment scenarios.

S. Mukherjee: “Analytical Modeling of Heterogeneous Cellular Networks”, Cambridge University Press,
January 2014. 128



The Renaissance Of (Network) Communication Theory

... IEEE TCOM Novw. 2011 — now ...

THE IMPACT OF COMMUNICATION

THEORY ON TECHNOLOGY DEVELOPMENT:
IS THE BEST BEHIND US, OR AHEAD?”

aka “Is Communication Theory Dead ?

-

PLENARY PANEL: “The Impact of Communication Theory on Technology Development: Is the Best
Behind us or Ahead?”, IEEE Communications Theory Workshop, May 2010. 129



Stochastic Geometry For Commun. — Bottom Line

[ Stochastic geometry provides us with suitable mathematical models
and appropriate statistical methods for analyzing and optimizing
heterogeneous (future deployments) cellular networks

d It is instrumental for identifying subsets of candidate (feasible,
relevant) solutions based on which finer-grained simulations can be
conducted, thus significantly reducing the time and cost of optimizing
complex communication networks

0 Its application to cellular network designs, however, necessitates to
abandon conventional and comfortable assumptions

> Poisson (complete spatially random) models
Simplistic path-loss models

>
» Simplistic transmission schemes
>

O Relying upon adequate approximations to avoid oversimplifying the
system model is not an option. CAUTION is, however, mandatory 139



Stochastic Geometry For Commun. — Bottom Line

EVERYTHING ShOULD BE MADE
AS SIMPLE AS POSSIBLE

- g , BUT DI

ot ’g SIWPLE

__.:.r

_I—%
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Stochastic Geometry For Cellular Nets — YouTube Video

[ https:/ /youtu.be/MBSIvOYYvB0 | =




... System-Level Optimization ...
(latest results — just submitted)
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System-Level Energy Efficiency Optimization

TRANSACTIONS ON WIRELESS COMMUNICATIONS

System-Level Modeling and Optimization of the Energy Efficiency

in Cellular Networks — A Stochastic Geometry Framework

Marco D1 Renzo, Senior Member, IEEE, Alessio Zappone, Senior Member, IEEE,
Thanh Tu Lam, Student Member, IEEE, and Mérouane Debbah, Fellow, IEEE

Abstract

In this paper, we analyze and optimize the energy efficiency of downlink cellular networks. With the
aid of tools from stochastic geometry, we introduce a new closed-form mathematical expression of the
potential spectral efficiency (bit/sec/m?) in the interference-limited regime. Unlike currently available
mathematical frameworks, the proposed analytical formulation explicitly depends on the transmit power

and density of the base stations. This is obtained by generalizing the definition of coverage probability
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System-Level Network Slicing Optimization (INFOCOM)

STORNS: Stochastic Radio Access Network Slicing

Vincenzo Sciancalepore, Marco Di Renzo, Xavier Costa-Perez
NEC Europe Labs (Germany) & CNRS / Paris-Saclay University (France)

Abstract—Network virtualization and softwarization are key
enablers of the novel network slicing concept. Network slicing in-
troduces new business models such as allowing telecom providers
to lease virtualized slices of their infrastructure to tenants, e.g.,
industry verticals (automotive, e-health, factories, etc.). However,
this new paradigm poses a major challenge when applied to radio
access networks (RAN): How to achieve revenue maximization
while meeting the diverse service level agreements (SLAs) requested
by the tenants?

In this paper, we propose a new analytical framework, based
on stochastic geometry theory, to model realistic RANs that
leverage the business opportunities offered by network slicing.
Moreover, we mathematically prove the benefits of network
as compared to un-sliced RANs. Based on this finding, we
design a new admission control functional block, STORNS, which
takes decisions considering per slice SLA guaranteed average
experienced throughput. A radio resource allocation strategy is
introduced to optimally allocate transmit power and bandwidth
(i.e., a slice of radio access resources) to the users of each tenant of
the cellular network. Numerical results are illustrated to validate
our proposed solution in terms of potential spectral efficiency and
to compare it against un-sliced RANSs.

I. INTRODUCTION

Network Slicing Management

g
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Fig. 1: Illustration of the Network Slicing Concept
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... back tomorrow about this ...
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2 EU-Funded Ph.D. Scholarships Available

Qd Ph.D. Scholarship CNRS-1:

“Modeling mmWave cellular communications via hyper dense small

cell deployments”

» This research project is concerned with assessing fundamental trade-offs
between spectrum and infrastructure sharing, by combining SDN and NFV
principles and to quantify the resulting network performance gains

O Ph.D. Scholarship CNRS-2:

“Device- or user-centric wireless access and multi-connectivity design

at mmWave frequencies”

> This research project is concerned with rethinking the cell-centric cellular
architecture by developing user-centric concepts that maximizes throughput
and minimizes power consumption, to enable multiple per-user connections
with several access points for infinite capacity and zero latency perception

[ ... best way to apply ... J

email me: marco.di.renzo@gmail.com 137




Thank You for Your Attention
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