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 Degree distributions

o Shortest paths vs. all-routes
o Clustering coefficients
 Geometry of networks

» Network bipartivity

o Degree-degree correlgtions
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Stumpf & Ingram, Europhys. Lett. 71 (2005) 152.
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The qualitative interpretation of the skew is
complicated. For example, a zero value
Indicates that the tails on both sides of the
mean balance out, which is the case for a
symmetric distribution, but is also true for an
asymmetric distribution where the asymmetries
even out, such as one tail being long but thin,
and the other being short but fat. Further, in
multimodal distributions and discrete
distributions, skewness is also difficult to
Interpret. Importantly, the skewness does not
determine the relationship of mean and
median.

Wikipedia



Degree irreqularity indices

» Collatz-Sinogowitz Index (1957)

c5(6)- 4,~(K}
- Bell Index (1992) Unknown
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* Albertson Index (1997)
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Non-standardised skewness: p,; = < Pii > — P

Arithmetic mean deometric mean

<pu>:%(kii+ki,} . {ﬁ]

Estrada: Phys. Rev. E 82, 066102 (2010)



Network degree skewness

p(G)= ZUZEE/)., ,ZE(\F \FJ




The Laplacian Encounter
Graph Laplacian Normalised Graph Laplacian

£ — K—1/2 . L K—1/2

L=K-A kv a2

(k. fori=j, 1 for 1=,

. 1 -

L;=41-1 fori~j, £”:<_W for i~ j,
. K;

|0 otherwise, 0 otherwise,




Randié index



Normalised network degree skewness
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Barab3si-Albert Random Graphs
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Imbreeding

No.of Completed Chains
[9)]

0 2 4 6 8 10 12

No. of intermediaries needed to reach the target
; . person ;

With .lir.o.up. Inbreeding, X's acquaintances
- feed back inlo his own circle, normally
' : - eliminaling new contacls.

Milgram, S., 1967. Psychology today, 2(1), pp.60-67.



e 5 Shortest Path Distance

Strathclyde v -
A path of length / is any sequence of distinct nodes
Vis Vaseooy V) SUCHh as for each i =1, 2,..., | there is a link

from v, to v,,..

o
9 20,
- ® 9000
.’ 0 Q.
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0 9
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d, =5

Shortest Path Distance
(see Chapter 11)
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How t mbreeding'?

Definition 1. Let G = (V, E) be a connected,
simple, undirected network, and let ieV.
Then, the clustering coefficient of the node |
1s given by

(Q
(ﬁ
c
o
=+
~<

number of transitive relations of node i

total number of possible transitive relations of node i

t 2t

C = = .
Duncan Watts ! ki (kI —1)/ 2 ki (k| —1)
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=2  Shortest Path Approaches

Regular Neural network of Random
C. elegans
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(see Chapter 11)




e, Shortest Path Approaches

0.08 0.0005

(see Chapter 11) -




e Shortest Path Approaches

O
O
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D. J. Watts ’ average cliistering
06| average ]
| distance® ]
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S. H. Strogatz p

(see Chapter 11)
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i Shortest Path A Approacnes
The sender does not know the global structure of the network!

There is a high probability that the shortest path connecting

nodes p and g goes through the most connected nodes of
Ihe network.

¢

~.

:" I (o0

o9 *

Sending the ‘information’ to the most connected nodes (hubs)
of the network will increase the chances of reaching the target.

(see Chapter 19)




2, ___
S hortest Path Approaches
- @ But also, there is a high probability that the most connected

@\ej nodes of the network are involved in a high number of
== transitive relations.

.
. .
" ’ .
’ |

o9
® .

(hubs) of the network will increase the chances of getting

Sending the ‘information’ to the most connected nodes
lost. E

(see Chapter 19)
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wis  All-Routes Approaches
Hypothesis: The information not only flows through the shortest
paths but by mean of any available route.

Definition: The communicability between two nodes
In a network is defined as a function of the total
number of routes connecting them, giving more
Importance to the shorter than to the longer ones.

Definition: A route is a walk of length |, which is any
sequence of (not necessarily different) nodes
Vi,..., V; such as for each i =1,...,| thereis a link

from v, to v,;.

(see Chapter 19)



()
(7]

= p
Unive silyol‘%fa/ ! ! ~\t g U /:: A pp,~6\/@~\c h

Strathclyde

Communicability

The communicability function between the nodes p and g is
then mathematically defined as

3 @
G, :;q (# of walks In | steps from p to q) @'

where ¢, should:
= makes the series convergent

= gives more weight to the shorter than to the longer walks ‘%

(see Chapter 19)



%  All-Routes Approaches

tyof
Strathclyde

Communicability

Definition: Let £,(V )= {f(p)}pev Zpev f(p)‘Z <oof .
@ | ;

The adjacency operator is a bounded operator on KZ(V)

defined as (Af )(p): Z( f (q)

p.q)eE

Theorem: The number of walks of length | between

the nodes p and g in a network is equal to

" (A




e D All-Routes Approac

Let 4, 2 A, >2---= A be anonincreasing ordering
of the eigenvalues of A, and let gBj be the eigenvector

associated with 4;

The communicability function can be written as:

G, :IZO:CI (AI )pq =§Z;C|ﬁlj¢j,p€0j,q
- 0 i

(see Chapters 12 & 19)
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% All-Routes Approach

University of s

Strathclyde

Communicability

. . 4
”

Factorial penalisation

o (Al |
Gy ZIZ.:( “)pq :(eA)pq :ngjdogpj,qeiJ

Parametric penalisation

Gpq = ﬁolal (AI )pq - ((I —aA) )pq = Zn: ?J_pziq
i j

j=1

O<a<A

(see Chapters 12 & 19)
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Stroke lesions

Shortest path Communicability
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Crofts & Higham: J. Roy. Soc. Interface 6 (2009) 411
Crofts et al: Neurolmage 54 (2011) 161-9
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Figure 1: Facilitator Discovery Process Figure 3: Success rate conparison for the consumer interests
satisfied over time using different centrality schemes for con-
tent distribution

Inspired from the concept of communicability in complex networks, Grank,
a global vehicle scheme allows a vehicles to use a new stable metric named
“Information communicability” to rank different locations in the city and
rank itself accordingly.

Khan, and Ghamri-Doudane. IEEE Comm. Mag. 54.8 (2016): 100-
107.



Unlversilyol

Strathclyde

m
X
> ®

e

Mean Communicability Mean Shortest Path

Ic

C___ (]
L (

)
3

{

(

©

e
e

-y

'
ke

B

b

i

8

-

-

()
<

-

C__J(])

(oR

o

V

-

' '
' odi, o

-

-

.n _Q;nEEnlééQ%#é

»n

& 9
ei ’b‘\ (b\‘ rbl 'bl 0| ,b\ \ | é \l 0\‘ ‘b\ \c' \l | @\|
Q>°°e°®\o Qo&é\\{\@oo(}e& \00«‘\0\0%& S 0\ OQ \\0‘\ Q.o,(\\\kq 0\«2} *\g“
&0@&?}0‘?}&‘\0& & o‘° @'b & C ‘&\0 © \6‘ Q%‘\o Qg,“’Q %
C@\ Qe'\ 00 Q,'b‘ Q‘e N OQ\\\'

path in a variety of situations.

Campbell et al: Bioinformatics 30 (2014) 3387-3389

Network communicability provides advantages over alternative metrics
because it retains topology information, lends itself to set-based analysis
and it is easy to represent with univariate scores. It outperforms shortest
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Granular materials Effects of axial strain
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Mean subgraph centrality
N

(...) weighted subgraph centrality measure correlates strongly with
nonaffine deformation and dissipation, spatially and temporally,
and at both the mesoscopic and macroscopic level. (...) a large
decrease in the value of the weighted subgraph centrality occurs
when a force chain buckles and its local neighboring particles

rearrange.
JO0 Ge Gack!

Walker, Tordesillas.: Int. J. Solids Struct. 47 (2010) 624-629.
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Recall

Definition 1. Let G = (V, E) be a connected,
simple, undirected network, and let ieV.
Then, the clustering coefficient of the node |
1s given by

t 2t.

| K (ki l1)/2 i K (ki _1).

The average WS clustering is then given by,

— 1
Duncan Watts C = H Z Ci
i



Each triangle contains three
paths of length two

Definition 2. Let G = (V, E) be a connected, simple,
undirected network. Let |Cs| and IP,|be the total number
of triangles and of paths of length two in G. Then,

the global clusteringC = C(G)of G is given by

3Cs
Py

C =



Recall that:

cf = tr()

Example 3




1N 230,000 volts
W 345,000 volts
11500,000 volts
765,000 volts
W high-voltage
direct current
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Lemma 1. Let G =(V, E) be a friendship graph. Then,
the average Watt-Strogatz and the global clustering
coefficients are given, respectively, by

1 n-1 3

C = c=2
n(n——2)+- n n




Let

S --"

Iimézlim( 1 +”‘1j:1
e nos( n(n-2) N

IimC:IimézO

N—oo N—oo n



LLA\

()

Is that a specific disease?
Definition 4. A windmill graph W (17, k) of N =nx +1 nodes
consists of 1 copies of the complete graph K_with every

node connected to a node 1 ¢ K _.

Example 4
] <> w<n
w(2,2) w(2.3) w(2,4)
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Theorem 3. LetW =W (17, x) be a windmill graph. Then,
for a given value of x, the average Watts-Strogatz

and the transitivity indices diverge when the number

of cliqgues tends to infinity,

imCW)=1 limC(Ww)=0

n—o n—>

(=

N
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Real-world networks
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Citation network of “Small-World”
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Remark 1. The average WS clustering coefficient measures
how locally ‘clustered” a network is on average.

Remark 2. The transitivity index measures how globally
‘clustered’ a network is.
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Mapping between disks in the Euclidean
plane R? and points in the Poincaré
half-space model of the three-dimensional
hyperbolic space H3

Krioukov, et al. Phys. Rev. E 82 (2010): 036106.
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Hyperbolic Geometry of Complex Networks (b ¢

Dmitri Krioukov,! Fragkiskos Papadopoulos,? Maksim Kitsak,! Amin Vahdat,? 3d Maridn Boguna*

T Cooperative Association for Internet Data Analysis
University of California, San Diego (UCSD), La Jolla,
“Department of Electrical and Computer E&

University of Cyprus, Kallipoleos 75, Nicosia

?Department of Computer Science a ngineering,
University of California, San Diego (UCSI), a, CA 92093, USA
*Departament de Fisica Fonamental, Universitat de Barc?® 1 Franques 1, 08028 Barcelona, Spain

We develop a geometric framework to study th \mre and function of complex networks. We
assume that hyperbolic geometry underlies thg % rks, and we show that with this assumption,
heterogeneous degree distributions and NHstdring in complex networks emerge naturally
as simple reflections of the negative Md metric property of the underlying hyperbolic
geometry. Conversely, we show that j rk has some metric structure, and if the network degree
distribution is heterogeneous, then etwork has an effective hyperbolic geometry underneath.
We then establish a mapping en ur geometric framework and statistical mechanics of complex

networks. This mapping intefj @i Bedges in a network as non-interacting fermions whose energies are

hyperbolic distances betwgen nddes, while the auxiliary fields coupled to edges are linear functions of

these energies or@ The geometric network ensemble subsumes the standard configuration
r

model and clas§c d graphs as two limiting cases with degenerate geometric structures.
Finally, we s aWargeted transport processes without global topology knowledge, made possible
ic amework, are maximally efficient, according to all efficiency measures, in networks
with strongestWeterogeneity and clustering, and that this efficiency is remarkably robust with respect
to even catastrophic disturbances and damages to the network structure.




% A more natural approach...
e.ﬁ 7 Consider that two nodes p and g are trying to communicate
: '”“‘ with each other by sending information both ways through

the network.

We know that:

- Quantifies the amount of ‘information’ that is sent by p,
(S __ | wanders around the network, and returns to the origin, o

PP | the node p.

' Quantifies the amount of ‘information’ that is sent by p,
G 1 wanders around the network, and arrives to its destination,

P41 the node q.

(see Chapter 19)



.’ A more natural approach...

Strathclyde >~

The goal of communication is to maximise the amount
of information that arrives to its destination by minimising
that which is lost.

SUCCEesS

def

Cpq = Gpp +qu _Zqu

(see Chapter 19)
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D) 0 1 i
siee  Communicability Distan

Theorem: The function (qu Is a Euclidean distance that induces
a natural embedding of the network into a Euclidean space.

Proof: ;
épq:(q)p_(pq) eA((Pp_(pq)
(2, 0 - 0) o (p)
N 0
0 0 - 4, 20 (P)_

(see Chapter 19)
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> (&)} =5.09 (5, ) = 4.80

(i, j)eE (i,j)eE
i’jepl |,j€P2

Remark. The shortest route based on the communicabllity
distance is the shortest path that avoids the nodes with the
highest ‘cliquishness’ in the graph.

(see Chapter 19)



% Communicability geometry

Shortest path/Comm path
e =1.00
I.c =1.07
I =1.12
e =1.69
lec = 7.03
. = CSP
Isfahan, Iran CCP

1,961,260 inhabitants
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.‘ B = .h = .. ..
[¢)] w [¢,] e (6] [&)] (¢)] o] [¢)]

Commun

cability geometry

1,583 pairs of locations in the city connected by the shortest path and by
the shortest communicability route

1000 1500

o

0 Paths

29.5% higher in SP

subgraph centrality  eigen vector cem‘ra/n‘y

4.5 ‘ ‘ - 0.35

03¢

025+

0 500 1000 1500 0 500 1000 1500
Paths Paths

16.8% higher in SP 289.6% higher in SP

G P <L>=45
CP (L) =47
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—.%  Communicability geometry

Strathclyde

Number of cars per hour in the .mornin_q at intersection points

L., =34 [
Lo, =36 '

Isfahan, Iran
1,961,260 inhabitants
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Isfahan, lran
1,961,260 inhabitants

12000

2 10000 -
2
5 15.1% more average
8000 traﬁiccthro'u'gh the
= ? communicability routes
8) than through SP
@ 6000
o
>
< i I

4000 ' [l

2000O 500 1000 1 5IOO

Paths

Are people in Isfahan mad?
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% Communicability geometry
Anaheim, USA
iy 336,265 inhabitants
e 7000 w w w w
6000
=
=
& 5000 35.2% more average
% traffic through the
= 4000 { communicability routes
% than through SP
5 3000
>
<
2000
1000

0 20 40 60 80 100
Paths
Remark. People not always use the shortest path!
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- Definition:
- def G
Yog =
\/Gpp qq

Theorem. The function 7 Is the cosine of the Euclidean
angle spanned by the position vectors of the nodes p and

g.

1 X %
0, =C0S 7 = oS ™
1%l JGpp "




%  Communicability Geomet
swese Communicablility Geometry

Theorem. The communicability distance induces an
embedding of a network into an (n-1)-dimensional
Euclidean sphere of radius:

e _1[,_(2-b)
4 a

» . ¢
»

a=1"e"1 b=58Te "1 c=5"e "3

Remark. The communicability distance matrix C is circum-
Euclidean:

C=51"+15" —2¢" S = diag(eA)

Estrada et al.: Discrete Appl. Math. 176 (2014) 53-77.
Estrada & Hatano: SIAM Rev. 58, 2016, 692-715 .
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Estrada & Hatano: SIAM Rev. 58, 2016, 692-715 .
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C1/2 ]
1/~/2
| 1/2

Ay, =AY,

[_1//2]

1//2

—

Wi =

- 1/2

_1/2
1/2
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Communicability function

qu = Xp - X

q

Estrada: Lin. Alg. Appl. 436 (2012) 4317-4328.
Estrada & Hatano: SIAM Rev. 58, 2016, 692-715 .
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LECTURE 3: BASED ON CHAPTER 18 & 21

Ernesto Estrada

Department of Mathematics & Statistics
University of Strathclyde
Glasgow, UK

www.estradalab.org
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Adjacency matrix spectrum

(see Chapters 2 & 5)
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How much bipartite?

Bipartite Network
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Problem:

Need to find the best bipartition of the network to identify the number
of frustrating edges. The problem is NP-complete.




- Network Bipartivity

Strathclyde

Algebraic approach

Bipartivity < No odd cycles

Bipartivity <> Tr(sinh(A))=0




B Network Bipartivity

Strathclyde -

Algebraic approach

Tr(exp(A))=Tr(sinh(A))+Tr(cosh(A))

Bipartivity < Tr (exp(A)) =Tr(cosh(A))

_ Tr(cosh(A)) ,Z:;‘COSh(Z" ) _EE

even

b

n

* Tr(exp(A)) 3 exp(4, ) -

j=L
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39 Network Bipartivity

- Theorem:

G G+e

A contribution to even CWs
b contribution to odd CWs




- Network Bipartivity

Strathclyde - ‘

- Algebraic approach

b, =1.000 b, =0.829 b, =0.769 b, =0.721

b, = 0.692 b, = 0.645 b, = 0.645 b, =0.597
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ot Network Bipartiv
(Another) algebraic approach
- Zcosh(/lj) Zsmh(ﬂj)

' . _‘ be - j:l
' > cosh(4; )+ sinh(4;)
j=1 j=1
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- (Another) algebraic approach

b, =1.000 b, = 0.658

b, =0.383 b, =0.289

b, =0.538

b, =0.289

b, =0.194
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Hervibores
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.2 Bipartivity & Airlines Ef:

Strathclyde U v Ve

Sky team One World
WE— British -
IR i AirBerlin -
KLM - i Iberia -
Alitalia - X Finnair -
Czech A - AirNostrum -
' ' ' Niki -
Star Alliance
' : ' ' ' ' 1
Lufthansa - i
Turkish - -Mos
aad -Ho.7
Swiss - -F40.6
Austrian - . - F4 0.5
TAP - -F10.4
Brussels - . L B 0.3
LOT - _F40.2
Aegean - _[70-1
— 0

E. Estrada, J. Gomez-Gardenies / Physica D 323-324 (2016) 57-63
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J=2
J=9

(see Chapter 21)



Siaiayae Finding Bipartitions
— "

Pq

épq:[—sinh(A) <0 épq:[cosh(A) >0

pq pPq

é <0 p and g in different partitions
"1>0 p and q in the same partitions
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Bipartite?

5
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1) Build the 6(-1) matrix

1101 683 709 711 666 819 -562 -798 -729 -7.28 -9.02 -8.73
6.83 803 417 587 543 6.7 -631 -432 -656 -5.65 -7.28 -7.04
709 417 805 562 550 6.73 -542 -6.62 -430 -6.56 -729 -7.05
711 587 562 817 393 680 -568 -596 -6.62 -—-432 -7.98 -7.10
666 543 550 393 737 639 -539 -568 -542 -631 -5.62 -6.77
819 672 673 680 636 93§ -6.77 -710 -7.05 -7.04 -873 -7.28

o>
I

-562 -631 -542 -568 -539 -6.77 |737 393 550 543 ©6.66 6.36
-798 -432 -6.62 -596 -568 -7.10 |393 817 562 587 7.11 6.80
-729 -656 -430 -6.62 -542 -705 |550 562 805 417 709 6.73
-7.28 -565 -656 -432 -631 -7.04 |543 587 417 803 6.83 6.72
-9.02 -728 -729 -798 -562 -873 |666 711 709 683 101 8.19
-8.73 -704 -705 -710 -6.77 -7.28 | 636 680 673 6.72 819 9.38
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Strathclyde  3) Construct the anti-communicability graph

12 8

11 9

10

C,=1{1,2,3,4,5,6

C, ={6,7,8,9,10,11,12}
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Protein-protein interaction network of A. fulgidus

Example




s 9 Finding Bipartitions
Example

m Social network in a sawmill
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Ernesto Estrada
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SOCIAL NETWORK INTERNET

70 . . 000 — :

o eene eeerenenes e e e e r=0.26 r=-0229
BOF o vt e o 500
501 e evreereneene e e e . ] 400k ]
R N + LR * [F-DE 4+ A * * * *
OF TRt ddiiast it il i ddiiiiil veees . : 1 @ 300r -
$3806350005000000 004000000 Ne 004 : @
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0 20 40 60 8 0 100 200 300 400 200 600
Degree Degree
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r>0 Assortative

r<o0 Disassortative
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9,
e OEGree-degree correlarions

clustering
1 I I I | I 1

@)

) 0.8

=
(&)
o
@

Degree assortativity
o

O
o

_1 | | | | | 0
0 2000 4000 6000 8000 10000

Graph

11,117 connected graphs with 8 nodes
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r=0.129

r=-0.277

r=-0.304
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= Disassortative Assortative

r=-0.538 r=0.200
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33z

Then, we write:

S kk; (k2 +K2) -2 (kk,) 20
1)

1, ]

Zkikj(ki2+kf—2kikj)§o
)

Zkikj(ki_kj)z 0
i, ]

Which proves that the denominator is never negative.



.5 Degree-degree correlations

Strathclyde

Let us analyse every part of the Pearson coefficient:

> (k)= 3K

(i,j)eE

Zkf=zt:(kf—kt+kt) :>( (ki+kj)j2:(2|P2|+2m)2
(i ')eE
:Zt:(kt(kt—l))+zt:kt

=2|P,|+2m;
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Let us write P, = @—@—@—@ as:

Rl= > (k-1)(k;-1)-3[Cy

(i,j)eE

= > (kk;)= X (k+k;)+m=3|C,|
(i,j)eE (i,j)eE

Thus:
(i,j)eE (i,j)eE

=m+2|R,|+|R,|+3|C,|
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...% Degree-degree correlations

Strathclyde - =

- We can the write,
1 1 )
E(m+2|P2|+|F>3|+3|c:3|)—m(2|P2|+2m)

%(6|81,3|+6|P2|+2m)—

1
yP (2|, +2m)’

Usmg | r/s| |Pr|/|Ps| we 931'

|P2| |P3/2|@|P2/1|
r =

3813‘ |P 1 |P2/1|

And finally,

[ — ‘PZ‘(‘33/2‘+C_ P2/1)
3‘81,3 +‘P2‘(1_ P2/1)




B < < -~
< D/@g‘f\:\z—"-da ree correlations

Strathclyde - -

3‘81,3‘+‘P2‘(1— Pz,l) C =3|C;|/|R|

P-&—@® FP-06 @ F-00 0@

sk.<: c.<I

Estrada, E., Combinatorial study of degree assortativity in networks. Physical Review E 84 2011, 047101
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Assortative

r>0

‘P2/1‘ <‘P3/2‘+C

Disassortative

r<0

‘PZ/l‘ >‘P3/2‘+C



...% Degree-degree correlations
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e

DISASSORTATIVE ASSORTATIVE

‘P2/1‘>‘P3/2‘+C ||:)2/1|<||:)3/2|"‘C

r=-0.538 r=0.200
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_ |P2|(|P3/2|+C _|P2/1|)
3[S1e] +[Po|(1- [P

TABLE 1. Relative branching (| P/ |), transitivity (C), intermod-
ular connectivity (| P3;2|) , and assortativity coefficient for real-world

networks.

Network | Poyi | | P2 C r
Prison 425 < (409 + 0.288)
Protein residue 441 < (445 + 0417)
St. Marks 10.54 < (1046 + 0.291)
Geom 1742 < (22.09 + 0.224)
Corporate 1942 < (20.60 + 0.498)
Roget 9.55 < (10.08 + 0,1342
Jazz 127.30 < (144.84 + 0.771
Zachary 677 > (449 + 0.256)
Drugs 1458 > (12.84 + 0.368)
Transcription 12.51 > (3,01 + 1},016)
Bridge Brook 2242 > (17.31 + 0.191
USAir97 43.36 > 536,% + 0,39-5;
Internet 91.00 > (11.53 + 0.015)







