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Measure what is 
measurable, and 
make measurable 
what is not so. 

Galileo Galilei
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Poisson

Exponential

Gamma

Power-law

Log-normal

Stretched exponential

Stumpf & Ingram, Europhys. Lett. 71 (2005) 152.
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Stretched exponential

Log-normal









The qualitative interpretation of the skew is 

complicated. For example, a zero value 

indicates that the tails on both sides of the 

mean balance out, which is the case for a 

symmetric distribution, but is also true for an 

asymmetric distribution where the asymmetries 

even out, such as one tail being long but thin, 

and the other being short but fat. Further, in 

multimodal distributions and discrete 

distributions, skewness is also difficult to 

interpret. Importantly, the skewness does not 

determine the relationship of mean and 

median.

Wikipedia



• Collatz-Sinogowitz Index (1957)
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• Bell Index (1992)
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• Albertson Index (1997)
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Estrada: Phys. Rev. E 82, 066102 (2010)
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But the devil is in the details



S. cereviciaeD. melanogaster

C. elegansH. pylori
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E. coli
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Log-normal
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1,305 mi.

Stanley Milgram

1933-1984



29Milgram, S., 1967. Psychology today, 2(1), pp.60-67.
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Definition 1. Let                  be a connected, 
simple, undirected network, and let         . 
Then, the clustering coefficient of the node    
is given by

Mathematically,
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Example 1
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Example 2

Average WS clustering coefficient of a network
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d 18.7

0.08

12.4

0.0005

926

0.3C
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D. J. Watts

S. H. Strogatz

37



There is a high probability that the shortest path connecting 

nodes p and q goes through the most connected nodes of 

the network.

Sending the ‘information’ to the most connected nodes (hubs) 

of the network will increase the chances of reaching the target.

The sender does not know the global structure of the network!

38



But also, there is a high probability that the most connected 

nodes of the network are involved in a high number of 

transitive relations.

Sending the ‘information’ to the most connected nodes 

(hubs) of the network will increase the chances of getting 

lost.
39



Definition: A route is a walk of length l, which is any 

sequence of (not necessarily different) nodes 

v1,…, vl  such as for each i =1,…,l there is a link 

from vl  to vl+1.

Definition: The communicability between two nodes 

in a network is defined as a function of the total 

number of routes connecting them, giving more 

importance to the shorter than to the longer ones.

40

Hypothesis: The information not only flows through the shortest

paths but by mean of any available route.



41

 
0

#  of walks  in    steps  from    to  
pq l

l

G c l p q






The between the nodes  p and q is 

then mathematically defined as

where cl  should:

▪ makes the series convergent

▪ gives more weight to the shorter than to the longer walks
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Definition: Let                                                                   . 

The adjacency operator is a bounded operator on             

defined as                                                  .

Theorem: The number of walks of length l between 

the nodes p and q in a network is equal to 

.   pq

lA
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The communicability function can be written as: 
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Let                                   be a nonincreasing ordering 

of the eigenvalues of A, and let        be the eigenvector 

associated with       . 
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Crofts et al: NeuroImage 54 (2011) 161-9 
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Khan, and  Ghamri-Doudane. IEEE Comm. Mag. 54.8 (2016): 100-

107.

Inspired from the concept of communicability in complex networks, Grank,
a global vehicle scheme allows a vehicles to use a new stable metric named
“Information communicability” to rank different locations in the city and
rank itself accordingly.
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Network communicability provides advantages over alternative metrics
because it retains topology information, lends itself to set-based analysis
and it is easy to represent with univariate scores. It outperforms shortest
path in a variety of situations.

Campbell et al: Bioinformatics 30 (2014) 3387-3389 



48Walker, Tordesillas.: Int. J. Solids Struct. 47 (2010) 624-629.

(…) weighted subgraph centrality measure correlates strongly with

nonaffine deformation and dissipation, spatially and temporally,

and at both the mesoscopic and macroscopic level. (…) a large 

decrease in the value of the weighted subgraph centrality occurs 

when a force chain buckles and its local neighboring particles 

rearrange. 

I’ll be back!
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Definition 1. Let                  be a connected, 
simple, undirected network, and let         . 
Then, the clustering coefficient of the node    
is given by

The average WS clustering is then given by,
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Definition 2. Let                  be a connected, simple,
undirected network. Let        and      be the total number 
of triangles and of paths of length two in    . Then,
the global clustering                of     is given by 
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C
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Each triangle contains three 
paths of length two
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Recall that:

Example 3
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Lemma 1. Let                  be a friendship graph. Then, 
the average Watt-Strogatz and the global clustering
coefficients are given, respectively, by
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 ,W


K

Definition 4. A windmill graph              of                  nodes 
consists of     copies of the complete graph      with every 
node connected to a node           . 

1n

Ki

Example 4
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Theorem 3. Let                     be a windmill graph. Then, 
for a given value of    , the average Watts-Strogatz
and the transitivity indices diverge when the number
of cliques tends to infinity,
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Real-world networks
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Social scientists

Milgram’s 1967 paper

Physicists 
& 

Mathematicians

16.0C

56.0C

Citation network of “Small-World”



60
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60.0C

Metabolic network of E. coli
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Remark 1. The average WS clustering coefficient measures 
how locally ‘clustered’ a network is on average.

Remark 2. The transitivity index measures how globally 
‘clustered’ a network is.
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Example 6
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Mapping between disks in the Euclidean 

plane R2 and points in the Poincaré 

half-space model of the three-dimensional 

hyperbolic space H3

Krioukov, et al. Phys. Rev. E 82 (2010): 036106.
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Consider that two nodes p and q are trying to communicate 

with each other by sending information both ways through 

the network.

ppG
Quantifies the amount of ‘information’ that is sent by p, 

wanders around the network, and returns to the origin, 

the node p. 

pqG
Quantifies the amount of ‘information’ that is sent by p, 

wanders around the network, and arrives to its destination, 

the node q. 

We know that:



2
def

pq pp qq pqG G G   

The goal of communication is to maximise the amount 

of information that arrives to its destination by minimising 

that which is lost.
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Theorem: The function        is a Euclidean distance that induces

a natural embedding of the network into a Euclidean space.   
pq
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p q
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p q

2P
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Remark. The shortest route based on the communicability

distance is the shortest path that avoids the nodes with the 

highest ‘cliquishness’ in the graph.
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29.5% higher in SP 289.6% higher in SP16.8% higher in SP

SP

CP

45L

47L



74

Isfahan, Iran

1,961,260 inhabitants 

34SPL

36CPL

<Traffic> = 10376.8

<Traffic> = 8081.4
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15.1% more average
traffic through the 

communicability routes
than through SP

Isfahan, Iran

1,961,260 inhabitants 

Are people in Isfahan mad?



76

35.2% more average
traffic through the 

communicability routes
than through SP

Remark. People not always use the shortest path!

Anaheim, USA

336,265 inhabitants 
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qqpp

pq
def

pq
GG
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Theorem. The function       is the cosine of the Euclidean 

angle spanned by the position vectors of the nodes p and 

q.
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Definition:
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Theorem. The communicability distance induces an 

embedding of a network into an (n-1)-dimensional 

Euclidean sphere of radius:

Estrada et al.: Discrete Appl. Math. 176 (2014) 53-77.

ATT essC 211 
  Aediags 



Remark. The communicability distance matrix C is circum-

Euclidean:

Estrada & Hatano: SIAM Rev. 58, 2016, 692-715 .
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Estrada & Hatano: SIAM Rev. 58, 2016, 692-715 .
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