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Structure of the Lecture]

m Background and Motivation
m Methodology

m Part 1
Birth and Death Wireless Queues
Joint work with A. Sankararaman and S. Foss

m Part 2
Wireless Queues under Multihop Routing and Motion
Joint work with S. Rybko, S. Shlosman and S. Vladimirov
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Motivations in Wireless Networks|

m Lack of understanding and analysis of
Space-time interactions

— Static spatial setting well understood: Stochastic Geometry
[FB, Blaszczyszyn 01]

— Churn partly taken into account in flow-based queuing
[Bonald, Proutiere 06|, [Shakkottai, De Veciana 07]

m Contents of this lecture:

First models with such dynamics in stochastic geometry
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Methodology

Everything Should Be Made as Simple as Possible,
But Not Simpler
A. E.
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Setting]

m Infrastructureless Wireless Network:
Ad-hoc Networks, D2D Networks, 1oT

m Markov Models:
Poisson, Exponential

m Mathematical tools:
Stochastic (Geometry, Fluid, Mean-Field
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|- Wireless Birth and Death]|

m Problem Statement
m Summary of Results

m Proof Overview
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Stochastic Network Modell

m S=[-Q,Q] x|—-Q,Q|: torus where the wireless links live
m Links: (Tx-Rx pairs)

m Links: arrive as a PPP on R X S with intensity \:
Prob. of a point arriving in space dx and time dt: Adxdt

m Each Tx has an i.i.d. exponential file size
of mean L bits to transmit to its Rx

m A point exits after the Tx finishes transmitting its file
m P;: set of locations of links present at time t:

&, = {x1,...,XN,}, Xi€S
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Interference and Service Rate

m Interference seen at point x due to configuration ¢

I(x,®)= » Ilx—x)

x;€P#x

— Distance on the torus
—1(-): R™ — R™: path loss function

m The speed of file transfer by link at x in configuration ¢ is

R(x, ®) = Blog, (1 + N+ I(x, <I>))

m B, N Positive constants
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B& D Master Equation

m A point born at x, and time b, with file-size L, dies at time

p
¢ )

dp, =inf ¢ t > by, : / R(xp, ®y)du > L;, »

\ /

m Spatial Birth-Death Process
— Arrivals from the Poisson Rain

— Departures happen at file transfer completion
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Properties of the Dynamics

m The statistical assumptions imply that ¢, is a Markov Pro-
cess on the set of simple counting measures on S

m Fuclidean extension of the flow-level models of
[Bonald, Proutiere 06], [Shakkottai, De Veciana 07]
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Questions

m Existence and uniqueness of the stationary regimes of ®;

m Characterization of the stationary regime(s) if existence
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Main Stability Results|

ai= [ Ujixlax

XES

m Theorem

—If A > m2)La ) , then ®; admits no stationary regime.

A <ipm )L , and r — 1(r) bounded and monotone,
then ®; admits a unique stationary regime

m Necessary condition by Palm calculus
m Sufficient condition by fluid limit

m Corollary
For the path-loss model I(r) =r=*, o > 2, for all A > 0, and all
mean file sizes, the process ®; admits no stationary-regime
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Main Qualitative Result]

m P stationary point-process on S with Palm distribution P’

m Clustering
® is clustered if for all bounded, positive, non-increasing
functions f(-) : R™ — R", the shot noise;

satisfies
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Main Qualitative Result (continued)

m Theorem
The steady-state point process, when it exists, is clustered

m Follows from Palm calculus 4+ the FKG inequality

m Interpretation of the result
The steady-state interference measured at a uniformly ran-
domly chosen point of is larger in mean than that at an
uniformly random location of space.

m Key Observation
— Dynamics Shapes Geometry

— Geometry Shapes Dynamics
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A sample of ® when A =0.99 and 1(r) = (r +1)~%.
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First Quantitative Results

m Mean-field approximations for the intensity of the steady-
state process

1. Poisson heuristic ; - derived by neglecting clustering and
assuming Poisson

2. Second-order heuristic [y based on a second-order cavity
approximation of the dynamics
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Poisson Heuristic|

Exact Rate Conservation Law:

AL = BEQ [10g2 (1 + +1I(O))] .

Poisson Heur.: Largest solution to the fixed point equation:

AL — Dt / e N (1 — e_z)e—ﬁf Jxes(1—eXN)ax 5.,

In(2) z
z=0

Ignores the Palm effect and uses that if X, Y are non-negative
and independent,

E [ln (1 L2 )] = 7 e_az(1 — E[e **])E[e *¥]dz.

Y +a v/

z=0
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Second Order Heuristic|

The intensity [ is given by
AL
Bs —

B log, (1 + Nils)

where I is the smallest solution of the fixed-point equation

I —\L / ([ 1x]]) dx

1
g Blog (1 ™ N+Is+1<uxu>)

\Shot—Noise Spatial Birth and Death Processes




Second Order Heuristic (continued)

m Rationale based on p3(x,y): second moment measure of ®

m Rate Comnservation for p;: when considering I as a constant

1 1
~BI 1+ = ADs
L 0g2( N+Is+1<||x—y||>> b

/02(X7 y>

m From the definition of second moment measure,

o x /02(07X) %
L= [ )20

xXES

which gives the fixed point equation for I

m The formula for 5, follows from Rate Conservation for p; = [
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Tightness Results & Extensions

m The Poisson heuristic is tight in heavy and light traffic

m Recent Extensions obtained with S. Foss:
— Exact expression for the intensity § of & in the Low SINR
regime when replacing the death rate by

B S
In(2)L N+ I(x, ®)

— Scalability result: extension to dynamics on R
using Coupling from the Past techniques.

m Future: introduction of scheduling or multi-user IT
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Summary

m A new basic representation of space time interactions in
wireless networks

m A generative model for clustering as assumed in 3GPP sim-
ulation standards

B A new dynamic notion of capacity involving both queuing
and IT

m First analytical results in the Low SINR case and good
heuristics in general
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Structure of the Lecture]

m Background and Motivation
m Methodology

m Part 1

Birth and Death of Wireless Queues
Joint work with A. Sankararaman and S. Foss

m Part 2
Motion of Wireless Queues under Multihop Routing
Joint work with S. Rybko, S. Shlosman and S. Vladimirov
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Il: Motion and Multi-Hop Routing|

m Problem Statement

m Summary of Results
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Problem Statement]|

m Setting: Grossglauser & Tse 02 scaling law problem
— Multihop relaying
— Opportunistic geographic routing
— Motion of nodes

B New SGH+QT view of the problem
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Example of Geographic Routing

m Nearest Neighbor Geographic Routing
The next hop on the route from S to D is
the nearest among the nodes which are
closer from D than X.

@ On a Poisson P.P., a.s.

— No ties

— Converges in finite number of steps
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Wireless Geographic Routing|

l
P L v |

Trangrnitter
| 1
l o | e Potential
® Receiver

Receiver _
of tagged transmitter

Tagged ~®
Transmitter

Relay
of tagged transmitter

Each node uses Aloha to split
the Poisson p.p. into transmit-
ters and potential receivers

Potential relays of a trans-

mitters: receivers with a large
enough SINR

Geographic Routing: next
hop:= potential relay nearest
to destination
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Traffic and Relaying|

m DTN type assumptions:
— Wireless nodes move
— Each moving node generates packets

— Each generated packet has a destination, e.g. another node
at finite distance

— Multihop relaying: each node transmits

x its own packets

* those of other nodes on their route to destination

— Contention: on each node, packets are queued FIFO and
are served as above (SINR condition)
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Reduction (as per Methodology )|

m Wireless nodes move randomly on a grid or a graph ¢
(e.g. Z or Z/KZ, 72, d-regular graph)

m Traffic:
— Each moving node generates packets at rate A\

— Each generated packet has a destination
(e.g. a point of the grid, vertex of the graph)

m Contention: on each node packets are queued FIFO
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Reduction (as per Methodology :) (continued)

m Motion: neighbor nodes swap their positions with rate
m Wireless: communication to neighbors only

m Opportunistic multihop routing:
upon service at a node, a packet:

—is routed to the neighbor the closest to its destination

— leaves the system if the destination is distance 1 or 0
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Finite Network Markovization

m Assumptions
— Poisson arrivals with intensity A
— exponential service times with mean 1

— finite connected graph with K nodes

m Markov representation with discrete non compact state:

— Permutation on [1,..., K]
(locations of wireless nodes)

— Ordered queue at each node
(finite ordered list of destinations)
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Finite Network Instability Resu|t|

m Maximal degree in the graph: d
m Motion rate

m Theorem
For all 5 > 0, this Markov process is transient when

dii
K>K*:+

m For all load factors, a finite network is unstable when the
diameter of the network is large enough!
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Finite Network Instability Result (continued)

m Sketch of Proof in the d-regular case

— nodes mix to the uniform distribution on [1,... K]

— the proportion of time the server harboring a packet is a

neighbor of its destination vertex is order %.
—if A > %, drift inside orthant is positive on all coordinates

— supermartingale argument
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Replicated Version

m N-Replica version of the network on G
m New graph Gy with
- Vn=V x{1,...,N}
— edge between (u,i) and (v,j) if (u,v) edge in G
m Routing
— destination is any replica of the destination vertex in G

—routing to one of the N replicas closest to destination at
random

m Swaping: between a replica and any neighboring replica at
random
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The 3-Replica Version of Z/KZ
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Instability of the N-Replica Version of a Finite Network

m Same instability result for Gy as for G for fixed N

m Example The N-replica version of the network on % is un-

stable under the same condition as the network on -2 namely

KZ
if K> 3/\
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Mean-Field Version|

m Mean-Field version of the network on G:
weak limit of the latter when N tends to infinity.

m Notation: network on G

m Existence: tightness arguments
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Mean Field Networks on Z|

m Non Linear Markov Process roughly, dynamical system on
probability measures ;1 on queue states

u(q) = p(ng,...,ny), ng:relative location of dest(cy)

m Functional equation for fixed points i(q) of this dynamical
system
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Mean Field Networks on Z (continued)

m Theorem For all 0 <7 <1, there exists
aunique 0 < A=), <1
a unique probability distribution ;= p,, on the queue state
such that, for the exogenous arrival A\,

— 1 is solution of the functional equation and

—the total rate in a node under p is 7

m Sketch of Proof
Special case where the destination is the vertex of birth
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Existence of Multiple Solutions

m Theorem For the mean-field version of the network on Z,
there exists a A\, such that for all A\ < \,, there are at least
two different values n =7_(\) and n = n,(\) s.t.

= Al) = A
—1n-(A)—>0as A\—0
—1n.(A)—>1as A—0
m Sketch of Proof
— When 7 tends to 0, \(n) = Aqp tends to 0 by M /M /1
— When 7 tends to 1, \(n) = Aqp tends to 0 by M /M /1 as well
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[llustration

m MC of the distance to destination:
pmn+1)=p5, pmn-1)=75+7,
with v =1 —1n,
p(1,2)=05, p(1,0)=75, p(1,*) =2

and

p(0,1) =25, p(0,*) =7,

where * is absorbing
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lllustration (continued)

m Mean # nodes visited by a customer till absorption:

m Flow equation:

/]’]:

232
(36+7)

EN] =1+
.

232 )
=)
b <1+v66+w

When (3 is large, there are two roots

with

0<n <n" <1,

1—A—/(1—\)2— 8\
Ly ;

B

2
1A+ /(1= 22— 88
A+ 5

vm — 0, vT—1,

when A\ — 0
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Generalization|

m The multiple fixed point result can be extended to the
Cayley graph of any group G s.t.

— G has a finite generating set
— G is infinite

— the arrival rate, swap rate, swap rule, destination rule are
G-invariant

m Example: the network of (Z)* has at least to fixed points
stationary regimes for every A < A\, with A\, > 0.
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I\/Ieta—StabiIity|

m Finitely many replicas—Infinitely many replicas stability dif-
ference.

m No contradiction with the fact that, for N < oo, the network
of (Z)N has no stationary regimes
the time - replica diagram does not commute here!
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Current and Future Extensions|

m Wireless primitives: (SINR, MAC) to assess transmission
between nearby nodes

m Motion primitives: Brownian, random waypoint

m Queuing primitives: beyond Poisson arrivals and exponen-
tial service times

m Scheduling: beyond FIFO: needed to see why motion in-
creases capacity
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Summary

m Way to go but first step of a mean-field representation of
mutihop routing in wireless networks beyond scaling laws

m Meta-stability is encouraging news

@ When fully interconnected with SG, new analytical handle
for optimization in this class of problems.
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Proof Sketch - Necessary Condition

Assume stability and write down ‘Rate Conservation Equations’.
Then find a contradiction.

implies  E[D(0)] + ANEX[Y(0) =Y (07)] =0



Proof Sketch - Necessary Condition

S ¢ (S)
: = — Red - Epochs of Death
- L ' Black - Epochs of Arrivals
— —— RCLimplies  A|S| = A,

Total bits left in the network i.e. remaining ‘workload’

RCL |mpl|es

ASIL=E | > R(z, )

— — " | z€o




Proof Sketch - Necessary Condition

S Sum of interference seen at all points

_ — — Y(t) = Z I(x, ¢r)

- TEPDt

Red - Epochs of Death

— ¢ 4 . Black - Epochs of Arrivals
RCL implies A S|ES[Z] = AEL[D]
PASTA and RCL for ¢,(S) E[Z] = E%[D]
Campbell’s Theorem E[Z] = QE[QTO(’S)] / 1(||z||)dz
S TrES

Handle E'%[D] through Papangelou’s Stochastic Intensity formula



Proof Sketch - Necessary Condition

Elpo(S)]

We have E[Z] = E}[D] = 2 5 / [(||z]|)dx
| ‘ T€ES

The Death Point process admits as stochastic intensity - R = Z R(x, ¢)
with respect to the filtration Fy = o(¢s : s < 1) T€He

dIP%| _ Ry
dP 7o~ T E[Ry]

Papangelou’s theorem implies

This gives

E}[D] = E [EESO]D] _9E | 0 > B:00) 14, o)




Proof Sketch - Necessary Condition

_ om0 iy _ o @0(S)] 1D
wenae  BIZ] = EB[D] = 227020 [ i(lal)a

and

Ep[D] =E [EE:O]D] = 2K Eﬁgo] > iz 00) I(z, ¢o)

Algebra -

2IEE[ng(S)]/ (|l ) = 2 EY, [R(0, ¢0)I(d0)|E[po(S)]

ST s MIS|
E. [R(07¢0)[(07¢0)]
I(||z|))dz = —2°
I 2

Noticing that  R(x.¢)I(z,¢) < C'log,(e) vyields the necessary condition !



“Clustering” in Steady State

Assuming there is a stationary regime,

ASIL=E ZR z, ¢o) —Ego[R<o,¢o>]ﬁ|Sl

From RCL arguments 0

Eg, [12(0, ¢0)1(0, ¢o)]
(||| da = —*———

Negative Association yields — Eg [R(0, $0)1(0, ¢o)] < Eg, [R(0, ¢o)]EG, [1(0, ¢o)]
Putting the above together  [E[1(0, ¢g)| < EOO[I(Q P0)]

Implies Clustering if path-loss is non-increasing and implies repulsion if path-loss is non-
decreasing



Proof Sketch - Sufficient Condition

Consider an approximate birth-death process on the € width lattice which is easy to
study.

Tesselate into grids of side length at-most € which results in N, grids.
A,
/

/




Proof Sketch - Sufficient Condition

Consider an approximate birth-death process on the € width lattice which is easy to
study.

Tesselate into grids of side length at-most € which results in N, grids.

A;
// Denote by @; as the configuration at time ¢
in this € approximate system
Denote by the vector X(t) € NV
where X;(t) = ¢;(A;)
.a]




Proof Sketch - Sufficient Condition

Consider an approximate birth-death process on the € width lattice which is easy to
study.

Tesselate into grids of side length at-most € which results in N, grids.

A,
// Denote by @; as the configuration at time ¢
in this € approximate system
Denote by the vector X(t) € NV
where X;(t) = ¢;(A;)
.a _
J Want X(t) as a Markov Chain on NV e

and want to work out a natural coupling with ¢+

|«




Proof Sketch - Sufficient Condition

Xi(t) = o5 (Ay) Want X (t) as a Markov Chain onN*Ve
Z o and want to work out a natural coupling with ¢y

A;

/ Arrivals - PPP on R x S with intensity )\
/ IID exponential File Sizes of mean L

.a/j




Proof Sketch - Sufficient Condition

Xi(t) = oy (A;)
A;

/

Want X(t) as a Markov Chain onN™e
and want to work out a natural coupling with ¢y

Arrivals - PPP on R x S with intensity )\

/

IID exponential File Sizes of mean L

le (:U, y) - The path-loss function is such that

le(x7y) — l(a’iaa’j) forall x € A; |y € Aj

implies X (%) is a Markov Chain
I ’




Proof Sketch - Sufficient Condition

Xi(t) = o5 (Ay) Want X (t) as a Markov Chain onN*Ve
Z o and want to work out a natural coupling with ¢y

A,
/ Arrivals - PPP on R x S with intensity )\
/ IID exponential File Sizes of mean L
[e (CL’, y) - The path-loss function is such that
le(ﬂf,y) — l(a’iaa’j) forall x € A; |y € Aj
®
a;j implies X (%) is a Markov Chain

For a simple coupling argument, want

Ie le<$7y) Zl(x,y)Va’;,yES

+—>



Proof Sketch - Sufficient Condition

Xi(t) = o5 (Ay) Want X (t) as a Markov Chain onN*Ve
Z o and want to work out a natural coupling with ¢y

A,
/ Arrivals - PPP on R x S with intensity )\
/ IID exponential File Sizes of mean L
[e (CL’, y) - The path-loss function is such that
le(ﬂf,y) — l(a’iaa’j) forall x € A; |y € Aj
®
a;j implies X (%) is a Markov Chain

For a simple coupling argument, want

Ie le<$7y) Zl(x,y)Va’;,yES

+—>
€

le(a, bj) = sup{l(||bi = bjl[) : [la; — || € {0, €}, |laj — bsl| € 10, €}}

Need monotonicity of I(r) !



Proof Sketch - Sufficient Condition

A;
/
/ 9) 2 Uk~ yll) Yo,y € 8
implies @y stochastically dominates @y
®a; Hence for a given X if @jis stable, then

@y is stable for that A




Proof Sketch - Sufficient Condition

A;
/

/

lﬁ(xvy) Z Z(HCE o y||) ) Vway €S

implies @y stochastically dominates @y

Hence for a given X if @jis stable, then
@y is stable for that )\

One can show that if AL/ Sle(x,o)dx < log,(e)
xe

then ¢§ Is stable and hence so is ¢t



Proof Sketch - Sufficient Condition

A;

/

/

+—>
€

|

lﬁ(xvy) Z Z(HCE o y||) ) Vway €S

implies @y stochastically dominates @y

Hence for a given X if @jis stable, then
@y is stable for that )\

One can show that if AL/ Sle(x,o)dw < log,(e)
xe

then ¢§ Is stable and hence so is ¢t

Obtaining the best possible bound (by optimizing over € ) gives that
lim inf )\L/ lc(x,0)dr < log,(e)  asthe stability region of Oy
TES

€l0



Proof Sketch - Sufficient Condition

;‘h X(t) € NV with X, (t) = ¢5(A;)
./ ¢y is ergodic if and only if X(t) is ergodic

The Evolution

X; — X; +1 atrate e’

1 1

I e IO =30 — 16 = i)le(asa;)

g=1

+—>



Proof Sketch - Sufficient Condition

;‘h X(t) € NV with X, (t) = ¢5(A;)
./ ¢y is ergodic if and only if X(t) is ergodic

The Evolution

X; — X; +1 atrate e’

°u; 1 1
X; — X; — 1 atrate ECXZ' log, (1 T Ny +I.€(X)>
Ne
I e LX) =YX -1 = 0)le(as, ;)
j=1
+—>
€

Analyze this evolution through Fluid Limit techniques of [Dai 95], [Massoulié 07].

J.G. Dai, “On Positive Harris Recurrence of Multi-class Queuing Networks: A Unified Approach through Fluid Limit Models”
L. Massoulie”, “Structural Properties of Proportional Fairness: Stability and Insensitivity*



Proof Sketch - Sufficient Condition

The Evolution

X; — X; +1 atrate A2
1 1
X; — X; —1 atrate ZCXi log, (1 + N +I§(X)>

The Fluid model of the above evolution
X; (t) = Iy (0) + )\6215 — Dz (t)

with the derivative of the interference satisfying Di(t) =

Interference in the fluid scale Z-’ g Ty (t)le(ar, a;)




Proof Sketch - Sufficient Condition

The Evolution
X; — X; +1 atrate A2
1 1
X; = X; —1 atrate ECXi log, (1 + N +I§(X)>

The Fluid model of the above evolution
X; (t) = Iy (0) + )\6215 — Dz (t)

with the derivative of the interference satisfying Di(t) =

I (t)
Interference in the fluid scale Z-’ Z T ()l (ak, a;)
Or equivalently
d ()C'1
—Iz(t):)\GQ— L ( ) Og2<6)
dt sz ij(tﬂe(ak‘vai)

The fluid model arises as a result of appropriate space-time scaling



Proof Sketch - Sufficient Condition

The Evolution

X; — X; +1 atrate A2
1
X; — X; —1 atrate ECXi log, (1 +

N0+IE(X)>

d
prE (t) = \e?

- z(¢)Clogy(e)
Ly xk(t)le(ak, a;)

More precisely, one can show that for a sequence of initial conditions {X ) (0)}x>1

X *)(0)
and sequence of numbers {2k }x>1 such that 2zx — 00 and 1im = 2(0) ,
» x(t) wo.c ie VYe>0 and VT € (0,00)

one has

%k

lim P inf sup 2 IXE () — f)] >e]l =0
k—00 <f€5(90(0))t€[0,T]| g (t) = F )

Need [(r) to be bounded

|dea borrowed from [Massoulié, 07]



Proof Sketch - Sufficient Condition

d
alﬂi (t) = )\62

B x;(t)C'log,(e)
Ly xk(t)le(ak, a;)
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« Understanding performance metrics (mean delay, steady-state density)
* Numerical studies through simulations.
e Analytical expressions at-least in some asymptotic ‘heavy-traffic’ regime.

* Enriching the model to allow for interaction of links through scheduling and physical
layer interference.

« Proof technique for ergodicity when S = R?



