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Struture of the Leture

Background and Motivation

Methodology

Part 1
Birth and Death Wireless Queues
Joint work with A. Sankararaman and S. Foss

Part 2
Wireless Queues under Multihop Routing and Motion
Joint work with S. Rybko, S. Shlosman and S. Vladimirov
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Motivations in Wireless Networks

Lack of understanding and analysis of

Space-time interactions

– Static spatial setting well understood: Stochastic Geometry
[FB, Blaszczyszyn 01]

– Churn partly taken into account in flow-based queuing
[Bonald, Proutiere 06], [Shakkottai, De Veciana 07]

Contents of this lecture:

First models with such dynamics in stochastic geometry

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Methodology

Everything Should Be Made as Simple as Possible,
But Not Simpler

A. E.

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Setting

Infrastructureless Wireless Network:
Ad-hoc Networks, D2D Networks, IoT

Markov Models:
Poisson, Exponential

Mathematical tools:
Stochastic Geometry, Fluid, Mean-Field

Shot-Noise Spatial Birth and Death Processes✫ ✪
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I: Wireless Birth and Death

Problem Statement

Summary of Results

Proof Overview

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Shot-Noise Spatial Birth and Death Processes✫ ✪
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Stohasti Network Model

S = [−Q,Q]× [−Q,Q]: torus where the wireless links live

Links: (Tx-Rx pairs)

Links: arrive as a PPP on IR× S with intensity λ:
Prob. of a point arriving in space dx and time dt: λdxdt

Each Tx has an i.i.d. exponential file size
of mean L bits to transmit to its Rx

A point exits after the Tx finishes transmitting its file

Φt: set of locations of links present at time t:

Φt = {x1, . . . ,xNt}, xi ∈ S

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Interferene and Servie Rate

Interference seen at point x due to configuration Φ

I(x,Φ) =
∑

xi∈Φ6=x

l(||x− xi||)

– Distance on the torus

– l(·): IR+ → IR+: path loss function

The speed of file transfer by link at x in configuration Φ is

R(x,Φ) = B log2

(

1 +
1

N + I(x,Φ)

)

B,N Positive constants

Shot-Noise Spatial Birth and Death Processes✫ ✪
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B& D Master Equation

A point born at xp and time bp with file-size Lp dies at time

dp = inf











t > bp :

t
∫

u=bp

R(xp,Φu)du ≥ Lp











Spatial Birth-Death Process

– Arrivals from the Poisson Rain

– Departures happen at file transfer completion

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Properties of the Dynamis

The statistical assumptions imply that Φt is a Markov Pro-
cess on the set of simple counting measures on S

Euclidean extension of the flow-level models of
[Bonald, Proutiere 06], [Shakkottai, De Veciana 07]

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Questions

Existence and uniqueness of the stationary regimes of Φt

Characterization of the stationary regime(s) if existence

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Main Stability Results

a :=

∫

x∈S

l(||x||)dx

Theorem

– If λ > B
ln(2)La, then Φt admits no stationary regime.

– If λ < B
ln(2)La

, and r → l(r) bounded and monotone,

then Φt admits a unique stationary regime

Necessary condition by Palm calculus

Sufficient condition by fluid limit

Corollary
For the path-loss model l(r) = r−α, α ≥ 2, for all λ > 0, and all
mean file sizes, the process Φt admits no stationary-regime

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Main Qualitative Result

Φ stationary point-process on S with Palm distribution P
0

Clustering
Φ is clustered if for all bounded, positive, non-increasing
functions f(·) : R+ → R

+, the shot noise;

F(x,Φ) :=
∑

y∈Φ\{x}

f(||y − x||)

satisfies
E
0[F(0,Φ)] ≥ E[F(0,Φ)]

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Main Qualitative Result (continued)

Theorem
The steady-state point process, when it exists, is clustered

Follows from Palm calculus + the FKG inequality

Interpretation of the result
The steady-state interference measured at a uniformly ran-
domly chosen point of is larger in mean than that at an
uniformly random location of space.

Key Observation

– Dynamics Shapes Geometry

– Geometry Shapes Dynamics

Shot-Noise Spatial Birth and Death Processes✫ ✪
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A sample of Φ when λ = 0.99 and l(r) = (r + 1)−4.

Shot-Noise Spatial Birth and Death Processes✫ ✪
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First Quantitative Results

Mean-field approximations for the intensity of the steady-
state process

1. Poisson heuristic βf - derived by neglecting clustering and
assuming Poisson

2. Second-order heuristic βs based on a second-order cavity
approximation of the dynamics

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Poisson Heuristi

Exact Rate Conservation Law:

λL = βE0
Φ

[

log2

(

1 +
1

N + I(0)

)]

.

Poisson Heur.: Largest solution to the fixed point equation:

λL =
βf

ln(2)

∞
∫

z=0

e−Nz(1− e−z)

z
e−βf

∫

x∈S(1−e−zl(||x||))dxdz

Ignores the Palm effect and uses that if X,Y are non-negative
and independent,

E

[

ln

(

1 +
X

Y + a

)]

=

∞
∫

z=0

e−az

z
(1− E[e−zX])E[e−zY]dz.

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Seond Order Heuristi

The intensity βs is given by

βs =
λL

B log2

(

1 + 1
N+Is

)

where Is is the smallest solution of the fixed-point equation

Is = λL

∫

x∈S

l(||x||)

B log2

(

1 + 1
N+Is+l(||x||)

)dx

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Second Order Heuristic (continued)

Rationale based on ρ2(x,y): second moment measure of Φ

Rate Conservation for ρ2: when considering Is as a constant

ρ2(x,y)
1

L
B log2

(

1 +
1

N + Is + l(||x− y||)

)

= λβs

From the definition of second moment measure,

Is =

∫

x∈S

l(||x||)
ρ2(0,x)

βs
dx

which gives the fixed point equation for Is

The formula for βs follows from Rate Conservation for ρ1 = βs

Shot-Noise Spatial Birth and Death Processes✫ ✪



✬ ✩
20

0.4 0.5 0.6 0.7 0.8 0.9 1

0

5

10

15

20

25

30

λ / λ
c

β

 

 

Simulations

Second−Order Heuristic

Poisson Heuristic

95% confidence interval when l(r) = (r + 1)−4

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Tightness Results & Extensions

The Poisson heuristic is tight in heavy and light traffic

Recent Extensions obtained with S. Foss:

– Exact expression for the intensity β of Φ in the Low SINR
regime when replacing the death rate by

B

ln(2)L

S

N + I(x,Φ)

– Scalability result: extension to dynamics on R
2

using Coupling from the Past techniques.

Future: introduction of scheduling or multi-user IT

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Summary

A new basic representation of space time interactions in
wireless networks

A generative model for clustering as assumed in 3GPP sim-
ulation standards

A new dynamic notion of capacity involving both queuing
and IT

First analytical results in the Low SINR case and good
heuristics in general

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Struture of the Leture

Background and Motivation

Methodology

Part 1
Birth and Death of Wireless Queues
Joint work with A. Sankararaman and S. Foss

Part 2
Motion of Wireless Queues under Multihop Routing
Joint work with S. Rybko, S. Shlosman and S. Vladimirov

Shot-Noise Spatial Birth and Death Processes✫ ✪
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II: Motion and Multi-Hop Routing

Problem Statement

Summary of Results

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Problem Statement

Setting: Grossglauser & Tse 02 scaling law problem

– Multihop relaying

– Opportunistic geographic routing

– Motion of nodes

New SG+QT view of the problem

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Example of Geographi Routing

D

S
X

Nearest Neighbor Geographic Routing
The next hop on the route from S to D is
the nearest among the nodes which are
closer from D than X.

On a Poisson P.P., a.s.

– No ties

– Converges in finite number of steps

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Wireless Geographi Routing
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Relay

Transmitter

Receiver
of tagged transmitter

Potential

of tagged transmitter

Receiver

Transmitter
Tagged

Each node uses Aloha to split
the Poisson p.p. into transmit-
ters and potential receivers

Potential relays of a trans-
mitters: receivers with a large
enough SINR

Geographic Routing: next
hop:= potential relay nearest
to destination

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Tra� and Relaying

DTN type assumptions:

– Wireless nodes move

– Each moving node generates packets

– Each generated packet has a destination, e.g. another node
at finite distance

– Multihop relaying: each node transmits

∗ its own packets

∗ those of other nodes on their route to destination

– Contention: on each node, packets are queued FIFO and
are served as above (SINR condition)

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Redution (as per Methodology :)

Wireless nodes move randomly on a grid or a graph G
(e.g. Z or Z/KZ, Z2, d-regular graph)

Traffic:

– Each moving node generates packets at rate λ

– Each generated packet has a destination
(e.g. a point of the grid, vertex of the graph)

Contention: on each node packets are queued FIFO

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Reduction (as per Methodology :) (continued)

Motion: neighbor nodes swap their positions with rate β

Wireless: communication to neighbors only

Opportunistic multihop routing:
upon service at a node, a packet:

– is routed to the neighbor the closest to its destination

– leaves the system if the destination is distance 1 or 0

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Finite Network Markovization

Assumptions

– Poisson arrivals with intensity λ

– exponential service times with mean 1

– finite connected graph with K nodes

Markov representation with discrete non compact state:

– Permutation on [1, . . . , K]
(locations of wireless nodes)

– Ordered queue at each node
(finite ordered list of destinations)

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Finite Network Instability Result

Maximal degree in the graph: d

Motion rate β

Theorem
For all β > 0, this Markov process is transient when

K > K∗ =
d + 1

λ

For all load factors, a finite network is unstable when the
diameter of the network is large enough!

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Finite Network Instability Result (continued)

Sketch of Proof in the d-regular case

– nodes mix to the uniform distribution on [1, . . . ,K]

– the proportion of time the server harboring a packet is a
neighbor of its destination vertex is order d+1

K .

– if λ > d+1
K , drift inside orthant is positive on all coordinates

– supermartingale argument

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Repliated Version

N-Replica version of the network on G

New graph GN with

– VN = V × {1, . . . ,N}

– edge between (u, i) and (v, j) if (u,v) edge in G

Routing

– destination is any replica of the destination vertex in G

– routing to one of the N replicas closest to destination at
random

Swaping: between a replica and any neighboring replica at
random

Shot-Noise Spatial Birth and Death Processes✫ ✪
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The 3-Replia Version of Z/KZ

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Instability of the N-Replia Version of a Finite Network

Same instability result for GN as for G for fixed N

Example The N-replica version of the network on Z

KZ
is un-

stable under the same condition as the network on Z

KZ
namely

if K > 3/λ

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Mean-Field Version

Mean-Field version of the network on G:
weak limit of the latter when N tends to infinity.

Notation: network on G∞

Existence: tightness arguments

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Mean Field Networks on Z

Non Linear Markov Process roughly, dynamical system on
probability measures µ on queue states

µ(q) = µ(n1, . . . ,nl), nk : relative location of dest(ck)

Functional equation for fixed points µ(q) of this dynamical
system

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Mean Field Networks on Z (continued)

Theorem For all 0 < η < 1, there exists
a unique 0 < λ = λη < 1
a unique probability distribution µ = µη on the queue state
such that, for the exogenous arrival λ,

– µ is solution of the functional equation and

– the total rate in a node under µ is η

Sketch of Proof
Special case where the destination is the vertex of birth

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Shot-Noise Spatial Birth and Death Processes✫ ✪
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Existene of Multiple Solutions

Theorem For the mean-field version of the network on Z,
there exists a λ∗ such that for all λ < λ∗, there are at least
two different values η = η−(λ) and η = η+(λ) s.t.

– λ(η) = λ

– η−(λ) → 0 as λ → 0

– η+(λ) → 1 as λ → 0

Sketch of Proof

– When η tends to 0, λ(η) = λq0 tends to 0 by M/M/1

– When η tends to 1, λ(η) = λq0 tends to 0 by M/M/1 as well

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Illustration

MC of the distance to destination:

p(n,n + 1) = β, p(n,n− 1) = β + γ,

with γ = 1− η,

p(1,2) = β, p(1,0) = β, p(1, ∗) = γ

and

p(0,1) = 2β, p(0, ∗) = γ,

where ∗ is absorbing

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Illustration (continued)

Mean # nodes visited by a customer till absorption:

E[N] = 1 +
2β2

γ(3β + γ)

Flow equation:

η = 1− γ = λ

(

1 +
2β2

γ(3β + γ)

)

When β is large, there are two roots

η− = λ +
1− λ−

√

(1− λ)2 − 8
3λβ

2

η+ = λ +
1− λ +

√

(1− λ)2 − 8
3λβ

2
with

0 < η− < η+ < 1, ν− → 0, ν+ → 1, when λ → 0

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Generalization

The multiple fixed point result can be extended to the
Cayley graph of any group G s.t.

– G has a finite generating set

– G is infinite

– the arrival rate, swap rate, swap rule, destination rule are
G-invariant

Example: the network of (Z)∞ has at least to fixed points
stationary regimes for every λ < λ∗ with λ∗ > 0.

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Meta-Stability

Finitely many replicas–Infinitely many replicas stability dif-
ference.

No contradiction with the fact that, for N < ∞, the network
of (Z)N has no stationary regimes
the time - replica diagram does not commute here!

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Current and Future Extensions

Wireless primitives: (SINR, MAC) to assess transmission
between nearby nodes

Motion primitives: Brownian, random waypoint

Queuing primitives: beyond Poisson arrivals and exponen-
tial service times

Scheduling: beyond FIFO: needed to see why motion in-
creases capacity

Shot-Noise Spatial Birth and Death Processes✫ ✪
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Summary

Way to go but first step of a mean-field representation of
mutihop routing in wireless networks beyond scaling laws

Meta-stability is encouraging news

When fully interconnected with SG, new analytical handle
for optimization in this class of problems.

Shot-Noise Spatial Birth and Death Processes✫ ✪



✬ ✩
48

Referenes

Part 1

– with A. Sankararaman,
Spatial birth-death wireless networks,
ArXiv 1604.07884, IEEE Tr. IT, 63(6) 2017

– with S. Foss and A. Sankararaman,
Infinite spatial birth-death wireless networks,
in preparation

Part 2

– with S. Rybko, S. Shlosman and S. Vladimirov,
Metastability of Queuing Networks with Mobile Servers,
ArXiv 1704.02521, submitted

Shot-Noise Spatial Birth and Death Processes✫ ✪



Proof Sketch - Necessary Condition

Assume stability and write down ‘Rate Conservation Equations’.  

Then find a contradiction.

N

Y (t)

Both process are stationary

Y (t) = Y (0) +

∫
t

s=0

D(s)ds+

∫
t

s=0

(Y (s)− Y (s−))N(ds)

Implies

If

E[D(0)] + λNE
0

N
[Y (0)− Y (0−)] = 0



Proof Sketch - Necessary Condition

φt(S)

Red - Epochs of Death 

Black - Epochs of Arrivals

RCL implies

Total bits left in the network i.e. remaining ‘workload’

RCL implies

λ|S| = λd

λ|S|L = E





∑

x∈φ0

R(x,φ0)







Handle               through Papangelou’s Stochastic Intensity formula

Proof Sketch - Necessary Condition

Red   - Epochs of Death 
Black - Epochs of Arrivals

Sum of interference seen at all points

Y (t) =
∑

x∈φt

I(x,φt)

λ|S|E0

B
[I] = λdE

0

D
[D]RCL implies

PASTA and RCL for φt(S) E[I] = E
0

D
[D]

Campbell’s Theorem E[I] = 2
E[φ0(S)]

|S|

∫
x∈S

l(||x||)dx

E
0

D
[D]



Proof Sketch - Necessary Condition

We have E[I] = E
0

D
[D] = 2

E[φ0(S)]

|S|

∫
x∈S

l(||x||)dx

The Death Point process admits as stochastic intensity - Rt =
∑

x∈φt

R(x,φt)

with respect to the filtration Ft = σ(φs : s ≤ t)

Papangelou’s theorem implies
dP

0

D

dP
|F

0−
=

R0

E[R0]

This gives

E
0

D
[D] = E

[

R0

E[R0]
D

]

= 2E





R0

E[R0]

∑

x∈φ0

R(x,φ0)

R0

I(x,φ0)







Proof Sketch - Necessary Condition

We have E[I] = E
0

D
[D] = 2

E[φ0(S)]

|S|

∫
x∈S

l(||x||)dx

and

E
0

D
[D] = E

[

R0

E[R0]
D

]

= 2E





R0

E[R0]

∑

x∈φ0

R(x,φ0)

R0

I(x,φ0)





2
E[φ0(S)]

|S|

∫
x∈S

l(||x||)dx = 2
E
0

φ0
[R(0,φ0)I(φ0)]E[φ0(S)]

λL|S|

Noticing that yields the necessary condition !R(x,φ)I(x,φ) ≤ C log
2
(e)

Algebra -

∫
x∈S

l(||x||)dx =
E
0

φ0
[R(0,φ0)I(0,φ0)]

λL



“Clustering” in Steady State

∫
x∈S

l(||x||)dx =
E
0

φ0
[R(0,φ0)I(0,φ0)]

λL

From RCL arguments

Negative Association yields

λ|S|L = E





∑

x∈φ0

R(x,φ0)



 = E
0

φ0
[R(0,φ0)]β|S|

Assuming there is a stationary regime, 

E
0

φ0
[R(0,φ0)I(0,φ0)] ≤ E

0

φ0
[R(0,φ0)]E

0

φ0
[I(0,φ0)]

Putting the above together E[I(0,φ0)] ≤ E
0

φ0
[I(0,φ0)]

Implies Clustering if path-loss is non-increasing and implies repulsion if path-loss is non-

decreasing
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Proof Sketch - Sufficient Condition

Arrivals - PPP on             with intensity   R× S λ

IID exponential File Sizes of mean L

Xi(t) = φǫ

t
(Ai)

 as a Markov Chain onN
NǫWant

and want to work out a natural coupling with φt

X(t)

ǫ

ǫ

Ai
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lǫ(x, y) -  The path-loss function  is such that 

lǫ(x, y) = l(ai, aj) for all x ∈ Ai y ∈ Aj,

implies           is a Markov Chain X(t)

For a simple coupling argument, want

lǫ(x, y) ≥ l(x, y)∀x, y ∈ S

lǫ(ai, bj) = sup{l(||bi − bj ||) : ||ai − bi|| ∈ {0, ǫ}, ||aj − bj || ∈ {0, ǫ}}

Need monotonicity of          !! l(r)
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t
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One can show that if λL

∫
x∈S

lǫ(x, 0)dx < log
2
(e)

then         is stable and hence so is     .φǫ

t
φt

Obtaining the best possible bound (by optimizing over    ) gives that  ǫ

as the stability region of φtlim inf
ǫ↓0

λL

∫
x∈S

lǫ(x, 0)dx < log
2
(e)
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Analyze this evolution through Fluid Limit techniques of [Dai 95], [Massoulié 07].

J.G. Dai , “On Positive Harris Recurrence of Multi-class Queuing Networks: A Unified Approach through Fluid Limit Models” 

L. Massoulie´, “Structural Properties of Proportional Fairness: Stability and Insensitivity“
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with the derivative of the interference satisfying Ḋi(t) =
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I
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k
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Or equivalently

The fluid model arises as a result of  appropriate space-time scaling

d
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xi(t) = λǫ
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dt
xi(t) = λǫ
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−

xi(t)C log
2
(e)

L
∑

k
xk(t)lǫ(ak, ai)

lim
k→∞

P

(

inf
f∈S(x(0))

sup
t∈[0,T ]

|z−1
k X(k)(zkt)− f(t)| > ǫ

)

= 0

More precisely, one can show that for a sequence of initial conditions          {X(k)(0)}k≥1

and sequence of numbers                such that                   and                                 ,  {zk}k≥1 zk → ∞ lim
k→∞

X
(k)(0)

zk
= x(0)

X
(k)(zkt)

zk

P
−→ x(t) u.o.cone has ∀ǫ > 0 ∀T ∈ (0,∞)i.e and

Need         to be boundedl(r)

[Massoulié, 07]Idea borrowed from
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