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	 Simplicial	complexes	are	characterizing	the	
interac3on	between	two	ore	more	nodes	and			

	 are		formed	by	nodes,	links,	triangles,	
tetrahedra	etc.	

d=2	simplicial	complex		 	 	 	 	 d=3	simplicial	complex	

Simplicial	Complexes	



A	simplex	of	dimension	d	is	a	set	of	d+1		nodes	

-it	indicates	the	interac3ons	between	the	nodes	

-it	admits	a	geometrical	interpreta3on			

0-simplex	 				1-simplex	 									2-simplex		 	 	 3-simplex				

Simplices	



A	face	of	a	d-dimensional	simplex	

is		a	δ-dimensional	simplex	(with	δ<d)		
formed	by	a	non-empty	subset	of	its	nodes	

-	
	 3-simplex				

Faces	of	a	simplex	

Faces	

4	0-simplices					 	 	 	6		1-simplices	 	 									4			2-simplices	



Simplicial	complex	

A	simplicial	complex	K	is	a	set	of	simplices	with	
the	following	condi3on:	

	 		 	 	 						 	 	 if	a	simplex	µ	belongs		

	 		 	 	 				 	 	 	 	to	K	every	face	of	µ		

	 		 	 	 						 	 	 must	belong	to	K	
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Clique	complex	

From	every	network	we	can	extract	a	simplicial	complex	
called		

clique	complex		
by	associa3ng	a	simplex	to	every	clique	

(fully	connected	subgraph)	



Clique	percolaAon	

Clique	percola3on		
reveals		overlapping		
communi3es	
by	characterizing		
how	cliques	
percolate	in	networks	

Palla	et	al.	Nature	(2005)	



World	associaAon	network	

Palla	et	al.		
Nature	(2005)	



From	a	simplicial	complex	to	a	
network	

From	every		simplicial	complex	
we	can	extract	a	network	
by	considering	exclusively		

	nodes	and	links		



(Gius3,	et	al	2016)	

Gius3	et	al	(2016)	

Brain	data	as	simplicial	complexes	



Protein	interacAon		

						networks	

•  Nodes:			proteins	

•  Simplices:		protein	complexes	

Wan	et	al.	Nature		2015	

Protein	interacAon	networks	
as	simplicial	complexes	



Actor	collabora3on	networks	

• Nodes:	Actors	
• Simplicies:	Co-actors	of	a	movie	

Scien3fic	collabora3on	networks	

• Nodes:	Scien3sts	
• Simplicies:	Co-authors	of	a	paper	

CollaboraAon	networks		
as	simplicial	complexes	



Quq	

Quantum	Space3me	



•  Causal-Dynamical-Triangula3ons	
•  Tensor	networks	
•  Group	Field	Theory	
•  Causal	sets	
•  Loop	Quantum	Gravity	
•  Spin-Foams	
•  …	

Quantum	gravity	approaches		
networks	and	simplicial	complexes	



SpaAal	networks:	infrastructures	

M.	Barthelemy		Phys.	Rep.	(2011)	



SpaAal	networks:	models	and	
numerical	methods	

Random	
Geometric		
Networks	

TesselaAons	

M.	Barthelemy		Phys.	Rep.	(2011)	



•  The	Apollonian	gasket	from	Apollonius	of	Perga	c.262-c.190	B.C.	is	formed	by	
triple	of	circle	each	one	tangent	to	the	other	two.	

•  The	Apollonian	network	is	generated	by	placing	a	node	to	each	center	of	the	
circles	and	connec3ng	nodes	corresponding	to	tangent	circles	

The	Apollonian	network	is	scale-free		
with	exponent		

€ 

γ = 1+
ln3
ln2

≈ 2.585

SpaAal	networks:	
Apollonian	network	





(1) GROWTH :                                                                 
At every timestep we add a new node with m edges 
(connected to the nodes already present in the system). 

(2) UNIFORM ATTACHMENT :                              
The probability Πi that a new node will be connected to 
node i is uniform  

Barabási & Albert, Physica A (1999) 

€ 

Πi =
1
N

ExponenAal	

Growth	by	uniform	aOachment	of	links	



(1) GROWTH :                                                                 
At every timestep we add a new node with m edges 
(connected to the nodes already present in the system). 

(2) PREFERENTIAL ATTACHMENT :                              
The probability Π(ki) that a new node will be connected 
to node i depends on the connectivity ki of that node 

Barabási et al. Science (1999) 
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Growth:				
– At		each	3me	a	new	node	and	m	links	are	added	to	the	network.	

– To	each	node	i	we	assign	a	energy		εi		from	a	g(ε)	distribu3on	

Preferential attachment towards  
high degree low energy nodes: 

– Each	node	connects	to	the	rest		of	the	network	by	m	links	a_ached	preferen3ally	to	
well	connected,	low	energy	nodes.	

ε2	 ε3	

ε1	

ε4	ε5	

ε6	

€ 

Πi =
e−βε i ki
e−βε j k j

j
∑



	 	 Scale-Free			 	 	 	 	 Bose-Einstein		
	 Fit-get-rich	Phase	 			 	 		condensate	Phase	

€ 

β > βC

€ 

β < βC

Bose-Einstein	condensaAon		
in	complex	networks	

G.	Bianconi,	A.-L.	Barabási	2001	



Boguna,	Krioukov,	Claffy	
Nature	Physics	(2008)	

It	is	believed	that	most	complex	networks	have		
an	hidden	metric		

such	that	the	nodes	close	in	the	hidden	metric		
are	more	likely	to	be	linked	to	each	other.		



Hyperbolic	geometry	of	complex	
networks	could	contribute	to	
	improve		rouAng	algorithms	



Emergent	geometry	

In	the	framework	of	emergent	geometry		
	networks	with		hidden	geometry	

are	generated	

	by	equilibrium	or	non-equilibrium	dynamics	

that	makes	no	use	of	the		

hidden	geometry			



Saturated	and	Unsaturated	links	

•  ρij=1	if	the		link	is	unsaturated,	i.e.		less	than	m	
triangles	are	incident	on	it	

•  ρij=0	if	the	link	is	saturated,	i.e.	the	number	of	
incident	triangles	is	given	by	m	

m=2	

Saturated	link	
ρij=0		

Unsaturated	link	
ρij=1		



Growing	
Simplicial		
Complex	

Growing	
Geometrical	
Network	

	 	 	 Process	(a)	 	 	 	

We	choose	a	link	(i,j)	with	probability	

and	glue	a	new	triangle	the	link			

€ 

Πi, j
[1] =

aijρij
arsρrs

r,s
∑



Growing	
Simplicial		
Complex	

Growing	
Geometrical	
Network	

	 	 	 					Process	(b)	

We	choose	a	two	adjacent	unsaturated	links	and	we	add	the	
link	between	the	nodes	at	distance	2	and	all	triangles	that	this	

link	closes	as	long	that	this	is	allowed.	



The	model	

StarAng	from	an	iniAal	triangle,	
At	each	Ame	

•  process	(a)	takes	place	and	

•  process	(b)	takes	place	with	probability	p.	



Discrete	Manifolds	
	 A	discrete	manifold	of	
dimension	d=2	is	a	
simplicial	complex	
formed	by		triangles	such	
that	every	link	is	incident	
to	at	most	two	triangles.	

•  Therefore	the	emergent	
network	geometry	for	
our	model	with		m=2	is	a	
discrete	2d	manifold.	



Scale-free	networks		

In	the	case		
	a	scale-free	network	with	

high	clustering,	significant	

community	structure,	finite		

spectral	dimension	is	

generated.	

Planar	for	p=0.	

€ 

m = ∞



Degree	distribuAon	

•  For	m=2	and	p=0	we	can	calculate	the	degree	
distribu3on	given	by		

•  For													and	p=0	we	can	calculate	the	
degree	distribu3on	given	by			

€ 

m = ∞

€ 

P(k) =
1
2
2
3
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 
k−1

€ 

P(k) =
12

(k + 2)(k +1)k



Combinatorial	Curvature	
				The	combinatorial	curvature	

	for	a	node	i	of	a	planar	triangulaAon	is	

•  ki	is	the	degree	of	the	node	i,		

•  Ti	is	the	number	of	triangles	to	which	node	i	belongs	

	 	 		For	a	node	in	the	bulk	

	 	 For	a	node	at	the	surface		

€ 

Ri =1− ki
2

+
Ti
3

€ 

Ri =
6 − ki
6

€ 

Ri =
4 − ki
6



Emergent	network	geometry	
and	curvature	distribuAon	

ExponenAal	network	 												Broad	degree	distribuAon				 	 Scale-free	network		

€ 

R =
1
N

R =
1
N

R2 < ∞ R2 = ∞



Finite	spectral	dimension	

€ 

Lij = ki δ ij − aij
ρ(λ) ≈ λ( d / 2−1)

Pc (λ) ≈ λ
d / 2



ProperAes	of	emergent	network	
geometries	

• Small	world	

• Finite	clustering	
• High	modularity	

• Finite	spectral	dimension	

Which	are	proper.es	of	many	real	
network	datasets.	



ProperAes	of	real	datasets	



The	generalized	degree	kd,δ(µ)	of	a	δ-face	µ		

in	a	d-dimensional	simplicial	complex	is	given	by	the	number	of		
d-dimensional	simplices	incident	to	the	δ-face	µ.	
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5	 4	
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€ 

k2,0 (µ)

k2,1(µ)

Number	of	triangles	
incident	to	the	node	
µ	

Number	of	triangle	
incident	to	the	link	µ		

Generalized	degree	



The	generalized	degree	kd,δ(µ)	of	a	δ-face	µ		

in	a	d-dimensional	simplicial	complex	is	given	by	the	number	of		
d-dimensional	simplices	incident	to	the	δ-face	µ.	
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€ 

i k2,0(i)
1 3
2 1
3 4
4 1
5 2
6 1

€ 

(i, j) k2,1 (i, j)
(1,2) 1
(1,3) 3
(1,4) 1
(1,5) 1
(2,3) 1
(3,4) 1
(3,5) 2
(3,6) 1
(5,6) 1

Generalized	degree	



Incidence	number	
To	each	(d-1)-face	µ we	associate	the		

incidence	number	

€ 

nµ =kd ,d −1(µ) − 1

1	
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€ 

(i, j) n( i, j )
(1,2) 0
(1,3) 2
(1,4) 0
(1,5) 0
(2,3) 0
(3,4) 0
(3,5) 1
(3,6) 0
(5,6) 0



If	nµ	takes	only	values	nµ=0,1	each	(d-1)-face	is	
incident	at	most	to	two	d-dimensional	simplices.		

In	this	case	the	simplicial	complex	is	a	discrete	
manifold.	
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NOT	A	MANIFOLD	 	 	 	 	 	 							MANIFOLD	

Manifolds	



Starting from a single d-dimensional simplex  

(1) GROWTH :                                                                  

At every timestep we add a new node  d simplex  

(formed by one new node and an existing (d-1)-face). 

(2) ATTACHMENT:                              

 The probability that a new node will be connected to a face α depends 
on the flavor s=-1,0,1 and is given by 	

€ 

Π µ
[ s] =

1+ snµ

(1+ snµ')
µ'
∑

Bianconi	&	Rahmede	(2016)	

1	

6	

5	 4	

2	

3	

Network	Geometry	with	Flavor	



€ 

Π µ
[ s] =

(1+ s nµ )
(1+ snµ')

µ'∈Qd ,d−1

∑
=

(1− nµ )
Z [−1]

, s = −1
1
Z [0 ]

, s = 0

kd ,d −1(µ)
Z [ 1]

, s = 1

⎧ 

⎨ 

⎪ 
⎪ ⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

					s=-1			Manifold				 	 	 	 	 	 	 	 	 nµ=0,1			
					s=0				Uniform	aOachment	 	   	 	 	 	 nµ=0,1,2,3,4…	
					s=1				PreferenAal	aOachment		 	 	 	 	 nµ=0,1,2,3,4…	 	

AOachment	probability	



Manifold	 	 				 Uniform	aOachment	 				PreferenAal	aOachment	

							Chain	 	 	 	 						ExponenAal	 	 Scale-free	BA	model	

Dimension	d=1	



ExponenAal		 	 	 	 Scale-free	 	 	 	 	 Scale-free	

Manifold	 	 				 Uniform	aOachment	 				PreferenAal	aOachment	

Dimension	d=2	



Scale-free			 	 	 Scale-free	 	 	 	 	 Scale-free	

Manifold	 	 				 Uniform	aOachment	 				PreferenAal	aOachment	

Dimension	d=3	



i	
i	

t=3		 	 	 	 	 	 	 	 	 				t=4	

Node	i	has	generalized	degree	3	 	 	 				Node	i	has	generalized	degree	4	

Node	i		is	incident	to	5	unsaturated	faces											Node	i	is	incident	to	6	unsaturated	faces	

EffecAve	preferenAal	aOachment	in	
d=3	



NGF	are	always	scale-free	for	d>1-s	

•  For	s=1	NGF	are	always	scale	free		
•  For	s=0	and	d>1	the	NGF	are	scale-free	
•  For	s=-1	and	d>2	the	NGF	are	scale-free	

Degree	distribuAon	

€ 

Pd (k) =
d + s
2d + s

Γ(1+ (2s+ s)(d + s − 1))
Γ(d /(d + s − 1))

Γ(k − d + d /(d + s − 1))
Γ(k − d + (2d + s)(d + s − 1))

€ 

Pd (k) =
d

d + 1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
k−d 1

d + 1

For	d+s=1	

For	d+s>1	



Degree	distribu3on	of	NGF	



Modularity		
and		

Clustering	coefficient		
of	NGF	



Master	equaAon	approach	
	 A	master	equa3on	can	be	wri_en		

	 for	the	number	of	δ	faces								
that	have	generalized	degree	k	at	3me	t	

with		

indica.ng	the	probability	that	a	δ	face	increases	its	
generalized	degree	at	.me	t	

€ 

Nd ,δ
t (k)

€ 

md ,δ (k) =
(1− s) + (d + s −δ − 1)k

(d + s) t

€ 

Nd ,δ
t+1(k) =

Nd ,δ
t (k) +md ,δ (k − 1)Nd ,γ

t (k − 1) −md ,δ (k)Nd ,δ
t (k) for k ≠ m

Nd ,δ
t (k) −md ,δ (k)Nd ,δ

r (k) + 1 for k = m

⎧ 
⎨ 
⎩ 



The	power-law		
generalized	degree	distribu3on		

are	scale-free	for	

€ 

d ≥ dc
[δ ,s] = 2(δ +1) + s

Generalized	degree	distribuAons	



The	emergent	hidden	geometry	is	the	hyperbolic	Hd	space		
Here	all	the	links	have	equal	length	

d=2	

Emergent	Hyperbolic	geometry	



Emergent	hyperbolic	geometry	

d=3	



The	pseudo-fractal	geometry	of		
the	surface	of	the		

3d	manifold		
(random	Apollonian	network)	

ConnecAon	with	the	Apollonian	network	



NGF	and	Apollonian	networks	

Network	Geometry	with	Flavor(NGF)	 	 Apollonian	random	network	

	 	 	 	 s=-1				d=3	 	 	 	 						Planar	projecAon	of	the	NGF	

i	



Spectral	dimensions	of		
NGF	with	s=-1	

€ 

Lij = ki δ ij − aij
ρ(λ) ≈ λ−(ds / 2−1)

Pc (λ) ≈ λ
−ds / 2

€ 

Lij = δ ij − aij /ki
ρ(λ) ≈ λ−(ds / 2−1)

Pc (λ) ≈ λ
−ds / 2



ε5	

Not	all	the	nodes	are	the	
same!	

Let	assign	to	each	node	i		

an	energy	ε	from	a	 	

g(ε) distribution 	

ε1	

ε2	ε3	

ε4	

ε5	
ε6	



Energy	of	the	δ-faces	
Every	δ-face	α	is	associated	to	an	energy	

which	is	the	sum	of	the	energy	of	the	nodes		
belonging	to α	

For	example,	in	d=3	

	 	 the	energy	of	a	link	 	 	 	 	 	 is		

	 	

				the	energy	of	a	face		 	 	 	 	 	 	is	 	 	 	 	

€ 

εα = ε i
i⊂α
∑

ε1	 ε2	

ε2	ε1	

ε3	

ε1+ε2	

ε1+ε2+ε3	



Starting from a single d-dimensional simplex  

(1) GROWTH :                                                                  

At every timestep we add a new node  d simplex 

(formed by one new node and an existing (d-1)-face). 

The new node has energy ε drawn from the distribution g(ε)  

(2) ATTACHMENT:                              

 The probability that a new node will be connected to a face α depends 
on the flavor s=-1,0,1 and is given by 	

€ 

Πµ
[ s] =

e−βε µ (1+ snµ )

e−βε µ' (1+ snµ')
µ'
∑

Bianconi	&	Rahmede	(2016)	
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Network	Geometry	with	Flavor	



NGF		

with	flavor	s=-1		

Manifolds	



Manifolds	in	d=3	

In	NGF	with	s=-1	and	d=3	
also	called		

Complex	Quantum	Network	Manifolds	
the	average	of	the	generalized	degree	follow		

	the	Fermi-Dirac,	Boltzmann	and	Bose-Einstein	
distribu.on		

respec.vely	for	
	triangular	faces,	links	and	nodes			



The	average	of	the	generalized	degree	
of	the	NGF	over	δ-faces	of	energy	ε 

follows	
a	regular	paOern	

€ 

kd ,δ −1[ ]ε



Emergent	geometry		
at		high	temperature			

d=2 
β=0.01	



Emergent	geometry	at		
low	temperature	

d=2	
β=5	



Emergent	geometry		
at		high	temperature			

d=3 
β=0.01	



Emergent	geometry	at		
low	temperature	

d=3 
β=5	



Conclusions	

Emergent	complex	network	geometries			

•  Show	small	world	behavior,	finite	clustering	coefficient,	high	modularity,	
finite	spectral	dimension	which	are	proper.es	of	many	real	network	
datasets	

•  display	a	distribuPon	of	the	local	curvature	that	can	be		exponenPal	or	
scale-free	

•  for	m=2	they		generate	random	manifolds	

Network	Geometry		with	Flavor	

•  are	scale-free	for	d>1	also	when	they	do	not	include	an	explicit	
preferenPal	aVachment.	The	dimension	d=3	is	the	lowest	dimension	for	
obtaining	scale-free	manifold.			

•  They	have	generalized	degrees	displaying	Fermi-Dirac,	Boltzmann	or		

					Bose-Einstein	distribuPon		depending	on	the	dimensionality	of	the	δ-face	
and	on	the	flavour	s.	
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A	primer	on		

Network	Theory	



describe	

	the	interacAons	between	the	elements	of	large	complex		

Biological,	Social	and	Technological	systems.	

Complex	Networks	



									LATTICES						 	 																		COMPLEX	NETWORKS	 																						RANDOM	GRAPHS	
	 	 	 		

Regular	networks	
Symmetric	

Scale	free	networks	
Small	world	

With	communi3es		
ENCODING	INFORMATION	IN	

THEIR	STRUCTURE	

Totally	random	
Binomial	degree	
	distribu3on	

Complexity:	between	randomness	and	order	



Scale-free	networks	

€ 

P(k)∝ k −γ γ ∈ (2,3]

k	

	Actor	networks	 												WWW	 	 	 																											Internet	

∞→2k

finitek

k	
Faloutsos,	Faloutsos	and	Faloutsos	1999	Barabasi-Albert	1999	





(1) GROWTH :                                                                 
At every timestep we add a new node with m edges 
(connected to the nodes already present in the system). 

(2) PREFERENTIAL ATTACHMENT :                              
The probability Π(ki) that a new node will be connected 
to node i depends on the connectivity ki of that node 

Barabási et al. Science (1999) 
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(1) GROWTH :                                                                 
At every timestep we add a new node with m edges 
(connected to the nodes already present in the system). 

(2) UNIFORM ATTACHMENT :                              
The probability Πi that a new node will be connected to 
node i is uniform  

Barabási & Albert, Physica A (1999) 

€ 

Πi =
1
N

ExponenAal	

Growth	by	uniform	aOachment	of	links	



Growing	networks	

and	quantum	staAsAcs	



The	unitary	cell	of	growing	networks	

Consider	the	following	“unitary	cell”	of	a	network	

To	grow	a	network	need	to	a_ach	the	unitary	cell	to	
the	exi3ng	network.	We	have	two	op3ons		



The	unitary	cell	of	growing	networks	

Consider	the	following	“unitary	cell”	of	a	network	

To	grow	a	network	need	to	a_ach	the	unitary	cell	to	
the	exi3ng	network.	We	have	two	op3ons		

An	old	node	
	is	aOached		
to		m	new	nodes	t	



The	unitary	cell	of	growing	networks	

Consider	the	following	“unitary	cell”	of	a	network	

To	grow	a	network	need	to	a_ach	the	unitary	cell	to	
the	exi3ng	network.	We	have	two	op3ons		

An	old	node	
	is	aOached		
to		m	new		
nodes	

A	new	node	is		
aOached	to				
m	old	nodes	t	

t	



ε2	 ε3	
ε1	

ε4	ε5	

ε6	Not	all	the	nodes	are	the	
same!	

Let	assign	to	each	node		

an	energy	ε	from	a	 	

g(ε) distribution 	

that	describes	an	intrinsic	quality	
of	the	node	

ε1	

ε2	 ε3	 ε5	

ε4	

ε7	

ε6	



Fitness	

The	fitness	of	a	node	i	is	given	by	

	 where	β=1/T	is	the	inverse	temperature	

If	β=0	all	the	nodes	have	same	fitness	
If β>>1	small	differences	in	energy	have	large	impact	on	

the	fitness	of	the	faces				
€ 

ηi = e−β ε i



Growth:    
– At  each time attach a old node with ρi=1 to  m links are added to the network 
and then we set ρi=0. 
– To each node i we assign a energy  εi  from a g(ε) distribution 

Attachment towards  high energy nodes: 
– The node i to which we attach the new “unitary cell” is chosen with probability 

€ 

Π i =
e−βε i ρi
e−βε j ρ j

j
∑

ε1	

ε2	 ε3	
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and then we set ρi=0. 
– To each node i we assign a energy  εi  from a g(ε) distribution 

Attachment towards  high energy nodes: 
– The node i to which we attach the new “unitary cell” is chosen with probability 
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Π i =
e−βε i ρi
e−βε j ρ j

j
∑

ε1	

ε2	 ε3	 ε5	

ε4	



Growth:    
– At  each time attach a old node with ρi=1 to  m links are added to the network 
and then we set ρi=0. 
– To each node i we assign a energy  εi  from a g(ε) distribution 

Attachment towards  high energy nodes: 
– The node i to which we attach the new “unitary cell” is chosen with probability 

€ 

Π i =
e−βε i ρi
e−βε j ρ j

j
∑

ε1	

ε2	 ε3	 ε5	

ε4	

ε7	

ε6	



MF	EquaAons		
for	the	growing	scale-free	network		
and	the	complex	growing	Cayley	tree	

network	
•  Scale-free		
Bianconi-Barabasi	model	

•  Complex	Growing		
				Cayley	tree	 € 

dk i(t)
dt

= m e−βε i k i
e−βε j k jj

∑

€ 

dρ i( t)
dt

= −
e−βε i ρ i
e−βε j ρ jj

∑



Classical	and	quantum	staAsAcs		

Classical	parAcles	

Boltzmann	staAAcs-(s=0)		
occupa3on	number	n=0,1,2,…	

Quantum	parAcles	

-Fermi	parAcles-(s=-1)		

occupa3on	number	n=0,1	
Exclusion	principle	

-Bose	parAcles-(s=1)	
	occupa3on	number	n=0,1,2…	

	Symmetric		wave	func3on	€ 

n(ε) =
1

eβ (ε −µ ) + s

Average	occupaAon	number	
Classical	and	quantum	staAsAcs		



SoluAon	of	the		
Bianconi-Barabasi	model	

€ 

k i(t) = m t
ti

⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

fB (ε )

fB (ε) = e−β (ε −µB )

€ 

1 = dε g(ε) 1
eβ (ε −µB ) −1∫

The	average	degree	of	node	increases	in	Ame	as	a	
power-law	with	an		exponent	depending	on	its	energy,		
β 	and	a	self-consistent	constant	µΒ	

The	self	consistent	constant	µB	is	determined	by	the	
same	equaAon	fixing	the	chemical	potenAal	in	a	Bose	
gas!	



SoluAon	of	the		
complex	growing	Cayley	model	

€ 

ρ i( t) = m t
ti

⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

− fF (ε )

fF (ε ) = e−β (ε −µF )

€ 

1
m

= dε g(ε) 1
eβ (ε −µF ) + 1∫

The	average	ρ	of	node	(determining	the	probability	that	
a	node	is	at	the	interface)	decreases	in	Ame	as	a	power-
law	with	an		exponent	depending	on	its	energy,		
β 	and	a	self-consistent	constant	µF 

The	self	consistent	constant	µF	is	determined	by	the	
same	equaAon	fixing	the	chemical	potenAal	in	a	Fermi	
gas!	



Growth:				
– At		each	3me	a	new	node	and	m	links	are	added	to	the	network.	

– To	each	node	i	we	assign	a	energy		εi		from	a	g(ε)	distribu3on	

Preferential attachment towards  
high degree low energy nodes: 

– Each	node	connects	to	the	rest		of	the	network	by	m	links	a_ached	preferen3ally	to	
well	connected,	low	energy	nodes.	

ε2	 ε3	

ε1	

ε4	ε5	

ε6	

€ 

Πi =
e−βε i ki
e−βε j k j

j
∑



	 	 Scale-Free			 	 	 	 	 Bose-Einstein		
	 Fit-get-rich	Phase	 			 	 		condensate	Phase	

€ 

β > βC

€ 

β < βC

Bose-Einstein	condensaAon		
in	complex	networks	

G.	Bianconi,	A.-L.	Barabási	2001	



Energy	distribuAon	of	the	nodes	at	
the	bulk	of	the	growing	
Cayley	tree	network		
2	

G.	Bianconi	(2002)	


