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Simplicial Complexes

Simplicial complexes are characterizing the
interaction between two ore more nodes and

are formed by nodes, links, triangles,
tetrahedra etc.

/

d=2 simplicial complex d=3 simplicial complex



Simplices

L. A X

O-simplex  1-simplex 2-simplex 3-simplex

A simplex of dimension d is a set of d+1 nodes

-it indicates the interactions between the nodes

-it admits a geometrical interpretation



Faces of a simplex

A face of a d-dimensional simplex
is a O-dimensional simplex (with d<d)
formed by a non-empty subset of its nodes

3-simplex

Faces

© o—0

4 0-simplices 6 1-simplices 4 2-simplices



Simplicial complex

A simplicial complex K is a set of simplices with
the following condition:

2

if a simplex u belongs
, to Kevery face of u
must belong to K




Clique complex

A

From every network we can extract a simplicial complex
called
cliqgue complex
by associating a simplex to every clique
(fully connected subgraph)



Clique percolation

Clique percolation
reveals overlapping
communities

by characterizing
how cliques

percolate in networks

Palla et al. Nature (2005)



World association network

Scie_ntist Earth

- f\\SCIence Astronomy (8 ==
- - ——

Space
=% »

* N gOrange

/]
W

k
%
‘\ foon
gdla ‘-‘AA.

Palla et al.
Nature (2005)




From a simplicial complex to a
network

A
V.

From every simplicial complex
we can extract a network
by considering exclusively

nodes and links



Brain data as simplicial complexes

Giusti et al (2016)



Protein interaction networks
as simplicial complexes

Protein interaction
networks

Nodes: proteins
Simplices: protein complexes

RNA Pol Il
(training)

Exosome
(known)
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Collaboration networks
as simplicial complexes

Actor collaboration networks

*Nodes: Actors
*Simplicies: Co-actors of a movie

Scientific collaboration networks

*Nodes: Scientists
*Simplicies: Co-authors
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Quantum Spacetime

THE FABRIC OF REALITY D rfrcitsl hyeicite are sxploring several possible answers

One clue

Quantum effects in the gravitational field of
a black hole cause it to radiate energy as if
it were hot, implying a deep connection
between quantum theory, gravity and
thermodynamics — the science of heat.

Radiation

Space-time — it

Singularity

A

The black hole’s mass is
concentrated at a singularity
of infinite curvature.

3. Causal sets

The building blocks of space-time are point-like
‘events’ that form an ever-expanding network
linked by causality.

An earlier event
can affect a
later one, but
not vice versa.

1. Gravity as thermodynamics

The equations of gravity can actually be derived
from thermodynamics, without reference to
space-time curvature.

Planck

This suggests that gravity on a macroscopic
scale is just an average of the behaviour of
some still-unknown ‘atoms’ of space-time.

4. Causal dynamical triangulations

Computer simulations approximate the fundamental
quantum reality as tiny polygonal shapes, which
obey quantum rules as they spontaneously
self-assemble into larger patches of space-time.

Space at an instant

Space an instant later

2. Loop quantum gravity

The Universe is a network of intersecting quantum
threads, each of which carries quantum information
about the size and shape of nearby space.

Quantum
thread

Imaginary
surface

"- Intersection

Imagine drawing a closed surface anywhere in
the network. Its volume is determined by the
intersections it encloses; its area by the number
of threads that pierce it

5. Holograpy

A three-dimensional (3D) universe contains black
holes and strings governed solely by gravity,
whereas its 2D boundary contains ordinary particles
governed solely by standard quantum-field theory.

A7
\vipy

Black hole
°

A
Anything happening in the 3D interior
can be described as a process on the
2D boundary, and vice versa.




Quantum gravity approaches
networks and simplicial complexes

Causal-Dynamical-Triangulations
Tensor networks

Group Field Theory

Causal sets

Loop Quantum Gravity
Spin-Foams



Spatial networks: infrastructures

M. Barthelemy Phys. Rep. (2011)




Spatial networks: models and

Random
Geometric
Networks

Tesselations

numerical m

i

-

ethods

M. Barthelemy Phys. Rep. (2011)



Spatial networks:
Apollonian network

The Apollonian gasket from Apollonius of Perga c.262-c.190 B.C. is formed by
triple of circle each one tangent to the other two.

The Apollonian network is generated by placing a node to each center of the
circles and connecting nodes corresponding to tangent circles

The Apollonian network is scale-free

. In3
with exponent y= I+ =2.585



Scale-free networks

Technological networks
Internet
World-Wide Web

Biological networks
Metabolic networks,
'rotein-interaction networks,

Transcription networks

Transportation networks
Airport networks

Social networks
Collaboration networks
Citation networks
Facebook

Economical networks

Networks of shareholders
The World Trade Web



Growth by uniform attachment of links
(1) GROWTH

At every timestep we add a new node with m edges
(connected to the nodes already present in the system).

(2) UNIFORM ATTACHMENT

The probability II, that a new node will be connected to I1. I
node i is uniform N

Exponential
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Barabasi & Albert, Physica A (1999)



BA scale-free model
(1) GROWTH

At every timestep we add a new node with m edges
(connected to the nodes already present in the system).

(2) PREFERENTIAL ATTACHMENT k
The probability II(k;) that a new node will be connected H(kl.) =1
to node / depends on the connectivity k; of that node Ejkj
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Barabasi et al. Science (1999)




The Bianconi-Barabasi

model
Growth:

—At each time a new node and m links are added to the network.
—To each node i we assign a energy ¢; from a g(¢) distribution

Preferential attachment towards
high degree low energy nodes:

—Each node connects to the rest of the network by m links attached preferentially to
well connected, low energy nodes.




Bose-Einstein condensation
in complex networks

Scale-Free Bose-Einstein
Fit-get-rich Phase condensate Phase

G. Bianconi, A.-L. Barabdsi 2001



The hidden metric

of complex networks

E Observable network topology

Boguna, Krioukov, Claffy
Nature Physics (2008)

It is believed that most complex networks have
an hidden metric
such that the nodes close in the hidden metric
are more likely to be linked to each other.



Hyperbolic geometry of complex
networks could contribute to
improve routing algorithms
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Emergent geometry

In the framework of emergent geometry
networks with hidden geometry
are generated
by equilibrium or non-equilibrium dynamics
that makes no use of the
hidden geometry



Saturated and Unsaturated links

Saturated link

Unsaturated link
P;=1

* p;=1if the link is unsaturated, i.e. less than m
triangles are incident on it

* p;=0 if the link is saturated, i.e. the number of
incident triangles is given by m



Process (a)

a..p..
We choose a link (i,j) with probability Tt = iPy
i
Earslors
and glue a new triangle the link s

Growing Growing
Simplicial Geometrical
Complex Network




Process (b)

We choose a two adjacent unsaturated links and we add the
link between the nodes at distance 2 and all triangles that this
link closes as long that this is allowed.

Growing Growing al
simplicial Geometrica
Network

Complex




The model

Starting from an initial triangle,
At each time

e process (a) takes place and

e process (b) takes place with probability p.



Discrete Manifolds

s A discrete manifold of

ke dimension d=2 is a
e, \1 = .,.i’.:.-_.. . . .

ATy simplicial complex

3 CWTHE A K . formed by triangles such
K] ¥, that every link s incident

Bl LT #% to at most two triangles.

Therefore the emergent
network geometry for
our model with m=2isa
discrete 2d manifold.




Scale-free networks

A In the case m = ®
;/f a scale-free network with

, .ﬂg high clustering, significant
b/ W@“ community structure, finite
spectral dimension is
generated.

Planar for p=0.



Degree distribution

* For m=2 and p=0 we can calculate the degree
distribution given by

{2\
P}

e For m=% and p=0 we can calculate the
degree distribution given by

) 12
C(k+2)(k+ 1Dk

P(k)




Combinatorial Curvature

The combinatorial curvature
for a node i of a planar triangulation is

k. T
R =1-—+—
2 3

k. is the degree of the node i,

e T.isthe number of triangles to which node i belongs

6 - k,
6

4 -k

For a node at the surface R _ !

For a node in the bulk Ri =

| 6



Emergent network geometry
and curvature distribution

m=4 p=0.9

m=2 p:O9 m = oo p=0
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Finite spectral dimension
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Properties of emergent network
geometries

 Small world
* Finite clustering
* High modularity
* Finite spectral dimension

Which are properties of many real
network datasets.



Properties of real datasets

Datasets N L (0) C M ds
1L8W (protein) 294 1608 | 5.09 | 0.52 | 0.643 | 1.95
1PHP (protein) 219 1095 [ 4.31 | 0.54 | 0.638 | 2.02
1AOP chain A (protein) | 265 1363 | 4.31 | 0.53 | 0.644 | 2.01
1AOP chain B (protein) | 390 | 2100 | 4.94 | 0.54 | 0.685 | 2.03
Brain-(coactivation) 4° 638 | 18625 | 2.21 | 0.384 | 0.426 | 4.25
Internet 46 22963 | 48436 | 3.8 | 0.35 | 0.652 | 5.083
Power-grid®® 4941 | 6594 19 | 0.11 | 0.933 | 2.01
Add Health (school61)4” | 1743 | 4419 6 0.22 | 0.741 | 2.97




Generalized degree

The generalized degree k; s(u) of a 6-face u
in a d-dimensional simplicial complex is given by the number of
d-dimensional simplices incident to the o-face u.

Number of triangles
kz 0 ( /,L) incident to the node

W

Number of triangle
kz,](;u) incident to the link w




Generalized degree

The generalized degree k; s(u) of a 0-face u

in a d-dimensional simplicial complex is given by the number of

d-dimensional simplices incident to the o-face u.

K, ()

I
QA Nt A W DN =

—_— N = N = W

(1,))

k,,(,))

(1,2)
(1,3)
1,4)
(1,5)
(2,3)
3,4
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Incidence number

To each (d-1)-face u we associate the

incidence number

n, =kd,d_](u) —/

(1,j)

~_~

iy )

2

(1,2)
1,3)
(1,4)
(1,5)
2,3)
3,4)
3,5
(3,6)
(5,6)

S o = O O O NSO



Manifolds

If n, takes only values n,=0,1 each (d-1)-face is
incident at most to two d-dimensional simplices.

In this case the simplicial complex is a discrete
manifold.

6 6
NOT A MANIFOLD MANIFOLD



Network Geometry with Flavor

Starting from a single d-dimensional simplex

(1)GROWTH

At every timestep we add a new node d simplex

(formed by one new node and an existing (d-1)-face).

(2) ATTACHMENT :

The probability that a new node will be connected to a face a depends

on the flavor s=-1,0,1 and is given by

2
1

]+Snu

H[S] _
u
¢ E(]+ ST.,,))
‘Ll/'

Bianconi & Rahmede (2016)



Attachment probability

U-n,) s=-1
Z[—I] ’
i _ (]+Snu) _. 1 -y
C T S rsny) | 27
u
WEQ, 4 kd,d-z(ﬂ) _ 7
Z[l] ) o
s=-1 Manifold n,=0,1
s=0 Uniform attachment n,=0,1,2,3,4...

s=1 Preferential attachment nM=0,1,2,3,4...



Dimension d=1

Manifold Uniform attachment Preferential attachment
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Chain Exponential Scale-free BA model



Dimension d=2

Manifold Uniform attachment Preferential attachment

Exponential Scale-free Scale-free



Dimension d=3

Manifold Uniform attachment Preferential attachment

Scale-free Scale-free Scale-free



Effective preferential attachment in
d=3

t=3 t=4

Node i has generalized degree 3 Node i has generalized degree 4

Node i is incident to 5 unsaturated faces Node i is incident to 6 unsaturated faces



Degree distribution

For d+s=1

d )k“’ ]

P, (k) =
4 (k) (d+1 d+1

For d+s>1

d+s I'([+(2s+s)(d+s-1) I(k-d+d/I(d+s-1))

f) = des T Tad+s-1) T(k-d+2d+sd+s-1)

NGF are always scale-free for d>1-s

-~or s=1 NGF are always scale free
~or s=0 and d>1 the NGF are scale-free
~or s=-1 and d>2 the NGF are scale-free




Degree distribution of NGF
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0.97

Modularity
and
Clustering coefficient

0.94

0.90

of NGF

2

0.65

0.74

d=

0.79

0.91

0.85

0.80

d=3

0.77

0.81

0.84




Master equation approach

A master equation can be written
for the number of  faces N’ , (k)
that have generalized degree k at time t

N’y (k) +myy (k= DNY (k=1 =m ,(k)N', (k) fork=m
Ny s (k) —m, s (K)N} 5 (k) +1 for k=m

with

N;J,ral(k) = {

(I-5)+(d+s-0-Dk
(d+s)t

m, s (k) =

indicating the probability that a O face increases its
generalized degree at time t



Generalized degree distributions

flavor s = —1 s =10 s =1

0 =d— 1 Bimodal Exponential Power-law

0 = d — 2 Exponential Power-law  Power-law

0 < d— 3 Power-law Power-law Power-law

The power-law
generalized degree distribution
are scale-free for

d=d°" =28+ +s










Connection with the Apollonian network




NGF and Apollonian networks

Network Geometry with Flavor(NGF) Apollonian random network
s=-1 d=3 Planar projection of the NGF




PN

Spectral dimensions of
NGF with s=-1

——d=2
__ds=2
10' —+d=3 |;
—d=3
10°}
10}
1072}
107
4
1010“1 10*
L, =k, 0, —a,; L, =06,—a;/k,
_ _ __ —(d, /2-1)
O(A) = A s /27D P(A) = A

PC()\.)z)\._ds/z PC()L)z)\'—ds/Z



Energies
of the nodes

Not all the nodes are the
samel!

Let assign to each node i

an energy € from a

g(e) distribution



Energy of the o0-faces

Every d-face o is associated to an energy
which is the sum of the energy of the nodes E = 2 E.

(04
belonging to o iCa

For example, in d=3

the energy of a link ‘ @ is €1+€,

the energy of a face is €,+E,+€,

® ©



Network Geometry with Flavor

Starting from a single d-dimensional simplex

(1)GROWTH

At every timestep we add a new node d simplex
(formed by one new node and an existing (d-1)-face).

The new node has energy ¢ drawn from the distribution g(¢)

(2) ATTACHMENT :

The probability that a new node will be connected to a face o depends

on the flavor s=-1,0,1 and is given by

2 _
1 e /38“(]+Snu)

[s] _

HM =

5 4 Ee_ﬁg “'(]+Snu.)
M'

3 Bianconi & Rahmede (2016)



NGF
with flavor s=-1
Manifolds



Manifolds in d=3

In NGF with s=-1 and d=3
also called
Complex Quantum Network Manifolds
the average of the generalized degree follow
the Fermi-Dirac, Boltzmann and Bose-Einstein
distribution
respectively for
triangular faces, links and nodes



The average of the generalized degree
of the NGF over d-faces of energy ¢

<[kdﬁ - 1]‘8>

follows
a regular pattern

flavor s=—1 s=10 s=1

0 =d—1 Fermi-Dirac Boltzmann  Bose-Einstein

d =d— 2 Boltzmann  Bose-Einstein Bose-Einstein

d < d — 3 Bose-Einstein Bose-Einstein Bose-Einstein
















Conclusions

Emergent complex network geometries

* Show small world behavior, finite clustering coefficient, high modularity,
finite spectral dimension which are properties of many real network
datasets

» display a distribution of the local curvature that can be exponential or
scale-free

* for m=2 they generate random manifolds

Network Geometry with Flavor

» are scale-free for d>1 also when they do not include an explicit
preferential attachment. The dimension d=3 is the lowest dimension for
obtaining scale-free manifold.

* They have generalized degrees displaying Fermi-Dirac, Boltzmann or

Bose-Einstein distribution depending on the dimensionality of the J-face
and on the flavour s.
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A primer on
Network Theory



Complex Networks

describe

the interactions between the elements of large complex

Biological, Social and Technological systems.



Complexity: between randomness and order

LATTICES COMPLEX NETWORKS RANDOM GRAPHS
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Scale free networks
Small world
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Symmetric ENCODING INFORMATION IN
THEIR STRUCTURE

Totally random
Binomial degree
distribution



P(k)

Scale-free networks

Actor networks
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Scale-free networks

Technological networks
Internet
World-Wide Web

Biological networks
Metabolic networks,
'rotein-interaction networks,

Transcription networks

Transportation networks
Airport networks

Social networks
Collaboration networks
Citation networks
Facebook

Economical networks

Networks of shareholders
The World Trade Web



BA scale-free model
(1) GROWTH

At every timestep we add a new node with m edges
(connected to the nodes already present in the system).

(2) PREFERENTIAL ATTACHMENT k
The probability II(k;) that a new node will be connected H(kl.) =1
to node / depends on the connectivity k; of that node Ejkj
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Barabasi et al. Science (1999)




Growth by uniform attachment of links
(1) GROWTH

At every timestep we add a new node with m edges
(connected to the nodes already present in the system).

(2) UNIFORM ATTACHMENT

The probability II, that a new node will be connected to I1. I
node i is uniform N

Exponential
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Barabasi & Albert, Physica A (1999)



Growing networks
and quantum statistics



The unitary cell of growing networks

I”

Consider the following “unitary cell” of a network

\

To grow a network need to attach the unitary cell to
the exiting network. We have two options



The unitary cell of growing networks

III

Consider the following “unitary cell” of a network

\

To grow a network need to attach the unitary cell to
the exiting network. We have two options

AD

@
An old node
is attached
t

to m new nodes




The unitary cell of growing networks

Consider the following “unitary cel

\

III

of a network

To grow a network need to attach the unitary cell to
the exiting network. We have two options

AD

®
An old node
\ / is attached
t to m new
nodes

t

A

/N

A new node is
attached to
m old nodes



Intrinsic properties
of the nodes

Not all the nodes are the
samel!

Let assign to each node
an energy € from a

g(¢) distribution

that describes an intrinsic quality
of the node




Fithess

The fitness of a node i is given by

Tli — e_ﬁgi

where B=1/T is the inverse temperature

If p=0 all the nodes have same fithess

If p>>1 small differences in energy have large impact on
the fitness of the faces



The Complex Growing

Cayley tree model
Growth:

—At each time attach a old node with p;=1 to m links are added to the network
and then we set p,=0.

—To each node / we assign a energy ¢, from a g(e) distribution

Attachment towards high energy nodes:

—The node i to which we attach the new “unitary cell” is chosen with probability

- pe
o,

i
J

e
@\@/@ i 2 e P



The Complex Growing

Cayley tree model
Growth:

—At each time attach a old node with p;=1 to m links are added to the network
and then we set p,=0.

—To each node / we assign a energy ¢, from a g(e) distribution

Attachment towards high energy nodes:

—The node i to which we attach the new “unitary cell” is chosen with probability




The Complex Growing

Cayley tree model
Growth:

—At each time attach a old node with p;=1 to m links are added to the network
and then we set p,=0.

—To each node / we assign a energy ¢, from a g(e) distribution

Attachment towards high energy nodes:

—The node i to which we attach the new “unitary cell” is chosen with probability




MF Equations
for the growing scale-free network
and the complex growing Cayley tree

e Scale-free

Bianconi-Barabasi model

* Complex Growing
Cayley tree

network




Classical and quantum statistics

Classical particles
Boltzmann statitics-(s=0)
Average occupation number

occupation number n=0,1,2,... _ o
Classical and quantum statistics

Quantum particles

1

-Fermi particles-(s=-1) _
n(e) = pPle—1

occupation number n=0,1 + 9

-Bose particles-(s=1)
occupation number n=0,1,2...



Solution of the

Bianconi-Barabasi model

The average degree of node increases in time as a
power-law with an exponent depending on its energy,
P and a self-consistent constant pg

; Ip(€)
Igi(t) _ m(t_) fB (8) _ e—/J’(b‘—MB)

l

The self consistent constant |, is determined by the
same equation fixing the chemical potential in a Bose
gas!

|
= [ de 8(&) s

-1



Solution of the

complex growing Cayley model

The average p of node (determining the probability that
a node is at the interface) decreases in time as a power-
law with an exponent depending on its energy,

B and a self-consistent constant pg

- fr (€)
ﬁi(f) _ m(;) fF(g) — o Ple-ur)

The self consistent constant . is determined by the
same equation fixing the chemical potential in a Fermi

gas!
—= | de g(
f g ple-up) _|_]




The Bianconi-Barabasi

model
Growth:

—At each time a new node and m links are added to the network.
—To each node i we assign a energy ¢; from a g(¢) distribution

Preferential attachment towards
high degree low energy nodes:

—Each node connects to the rest of the network by m links attached preferentially to
well connected, low energy nodes.




Bose-Einstein condensation
in complex networks

Scale-Free Bose-Einstein
Fit-get-rich Phase condensate Phase

G. Bianconi, A.-L. Barabdsi 2001



Energy distribution of the nodes at
the bulk of the growing
Cayley tree network

G. Bianconi (2002)



