

Queen Mary
University of London

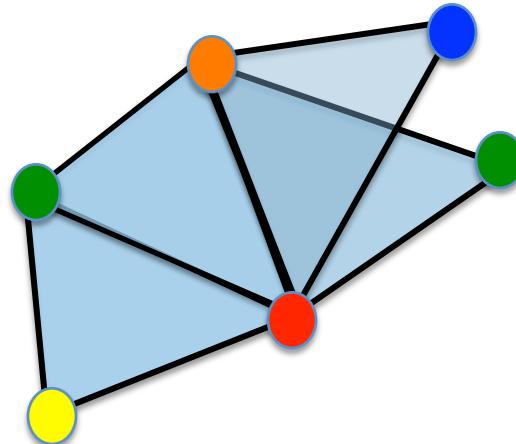
*2nd Symposium on Spatial Networks
13-14 September 2017*

***GROWING SIMPLICIAL COMPLEXES AND
EMERGENT NETWORK GEOMETRY
Ginestra Bianconi***

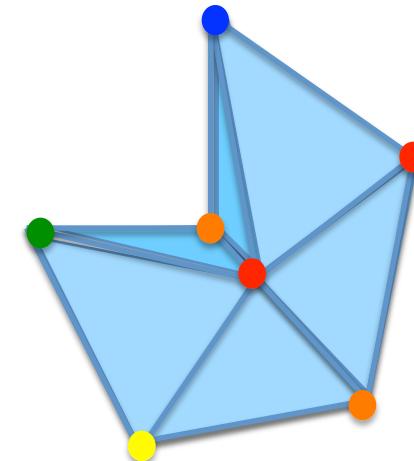
School of Mathematical Sciences, Queen Mary University of London, London, UK

Simplicial Complexes

Simplicial complexes are characterizing the interaction between two or more nodes and are formed by nodes, links, triangles, tetrahedra etc.

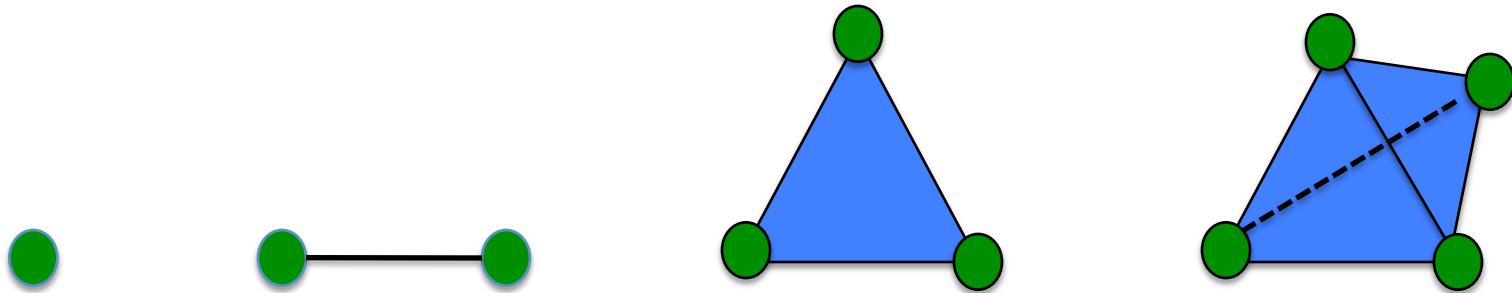


d=2 simplicial complex



d=3 simplicial complex

Simplices



0-simplex

1-simplex

2-simplex

3-simplex

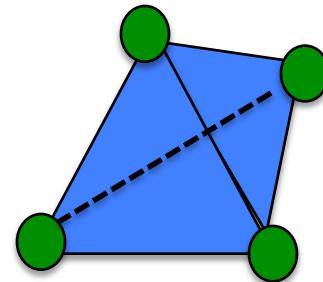
A simplex of dimension d is a set of $d+1$ nodes

-it indicates the interactions between the nodes

-it admits a geometrical interpretation

Faces of a simplex

A face of a d -dimensional simplex
is a δ -dimensional simplex (with $\delta < d$)
formed by a non-empty subset of its nodes

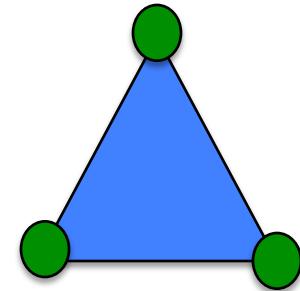


3-simplex

Faces

4 0-simplices

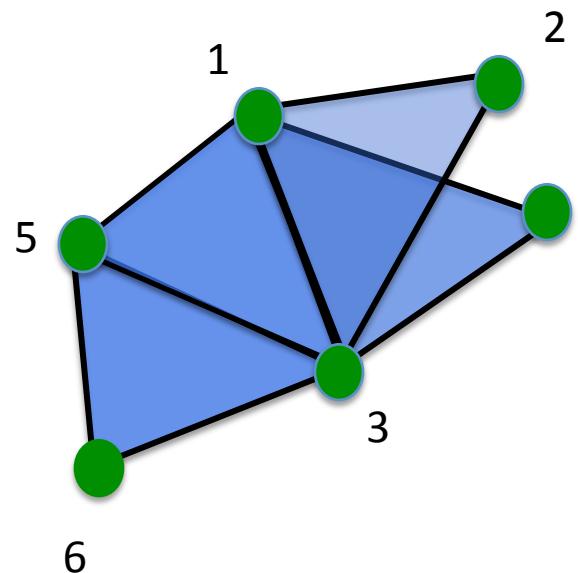
6 1-simplices



4 2-simplices

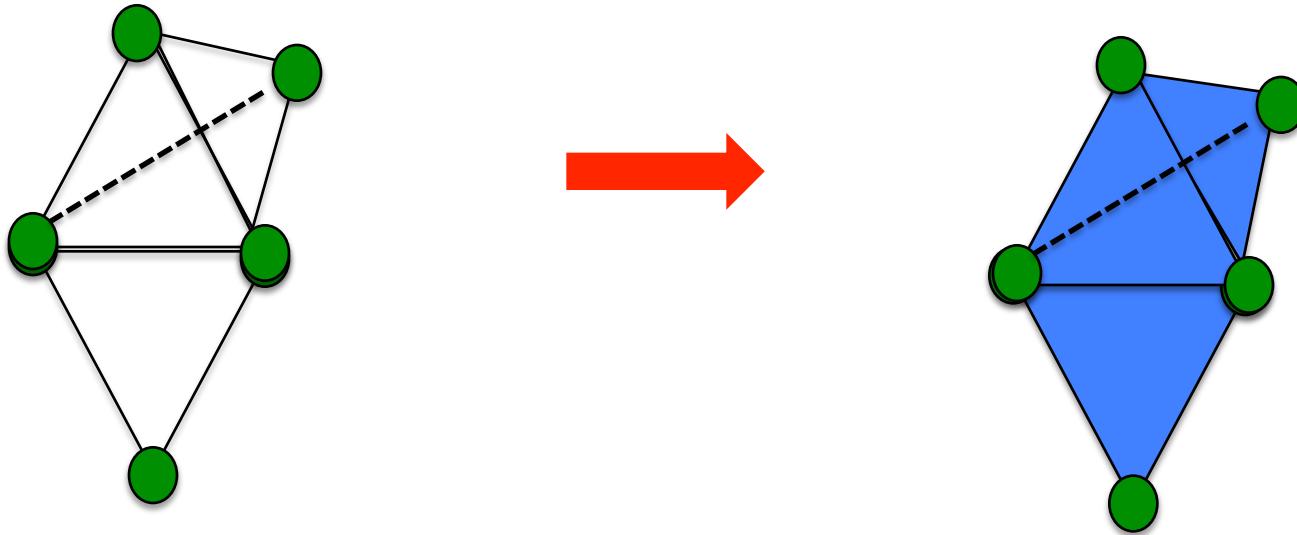
Simplicial complex

A simplicial complex K is a set of simplices with the following condition:



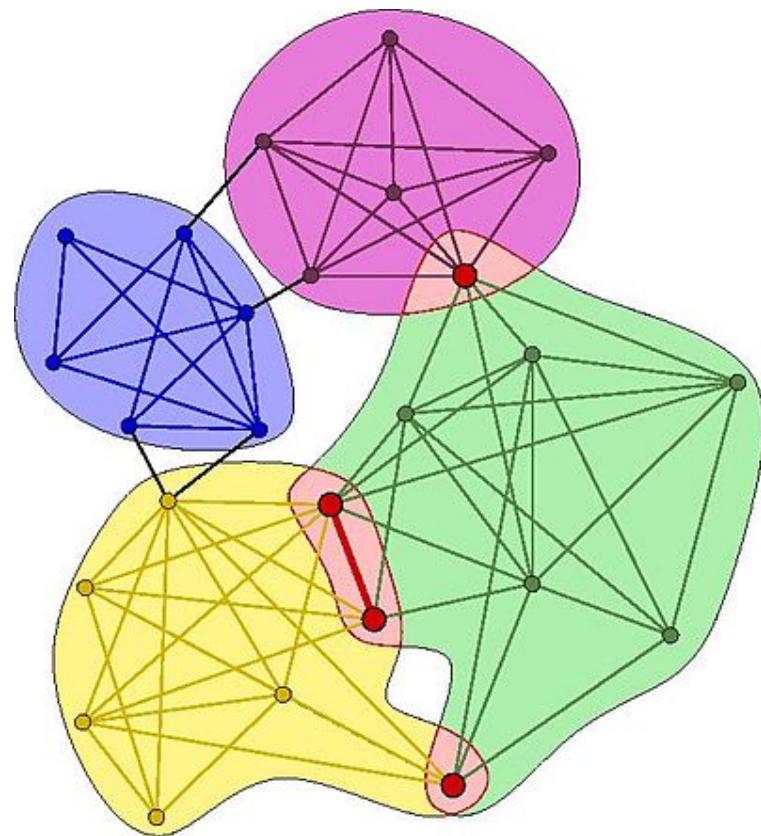
if a simplex μ belongs
to K every face of μ
must belong to K

Clique complex



From every network we can extract a simplicial complex
called
clique complex
by associating a simplex to every clique
(fully connected subgraph)

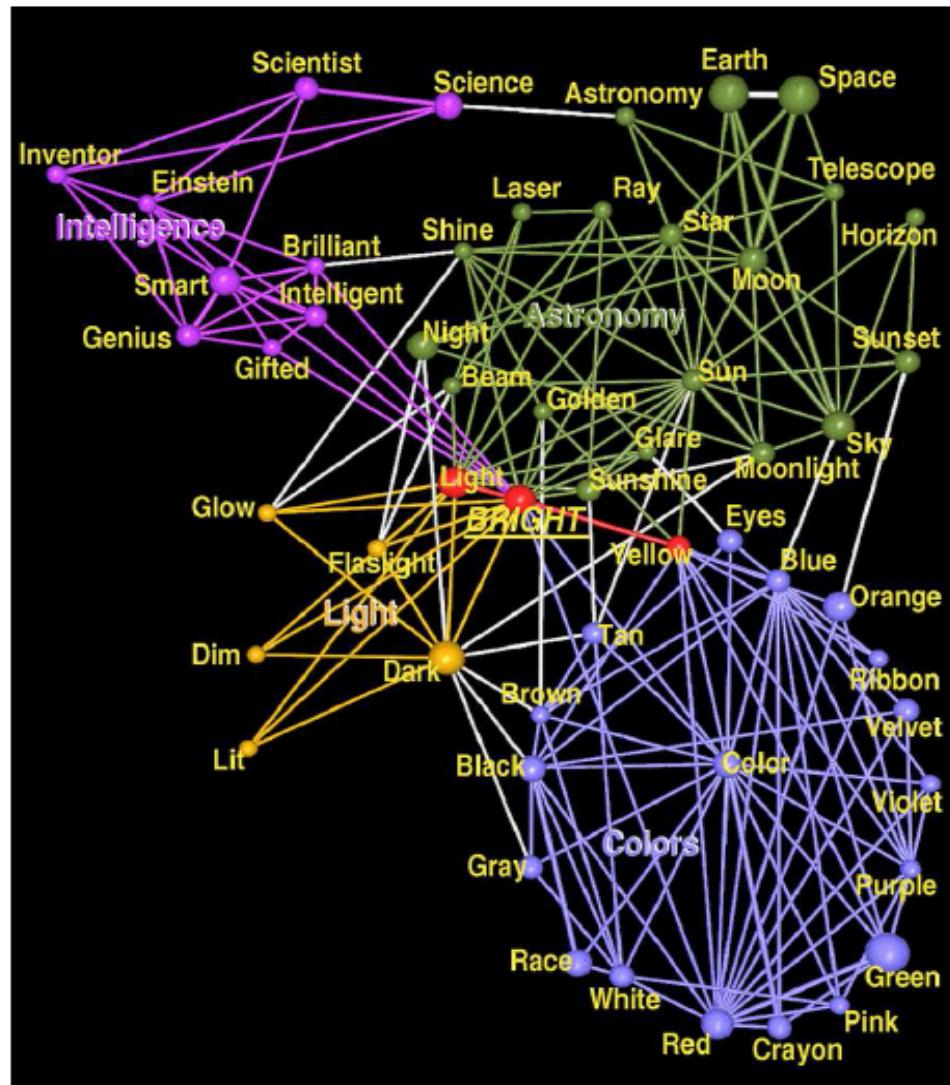
Clique percolation



Clique percolation
reveals **overlapping**
communities
by characterizing
how cliques
percolate in networks

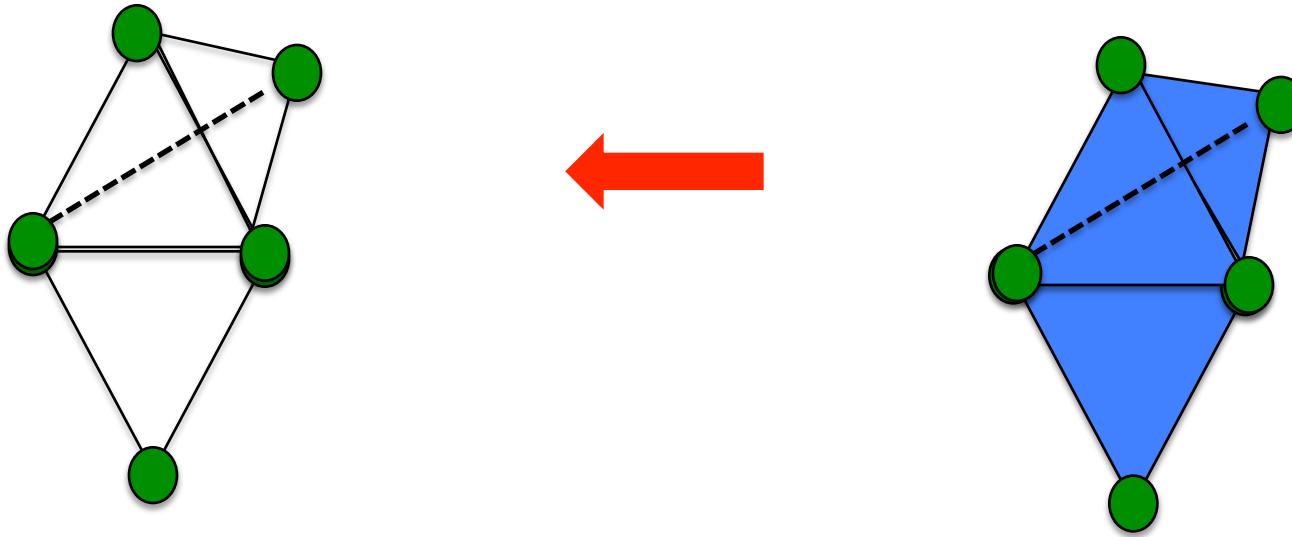
Palla et al. Nature (2005)

World association network



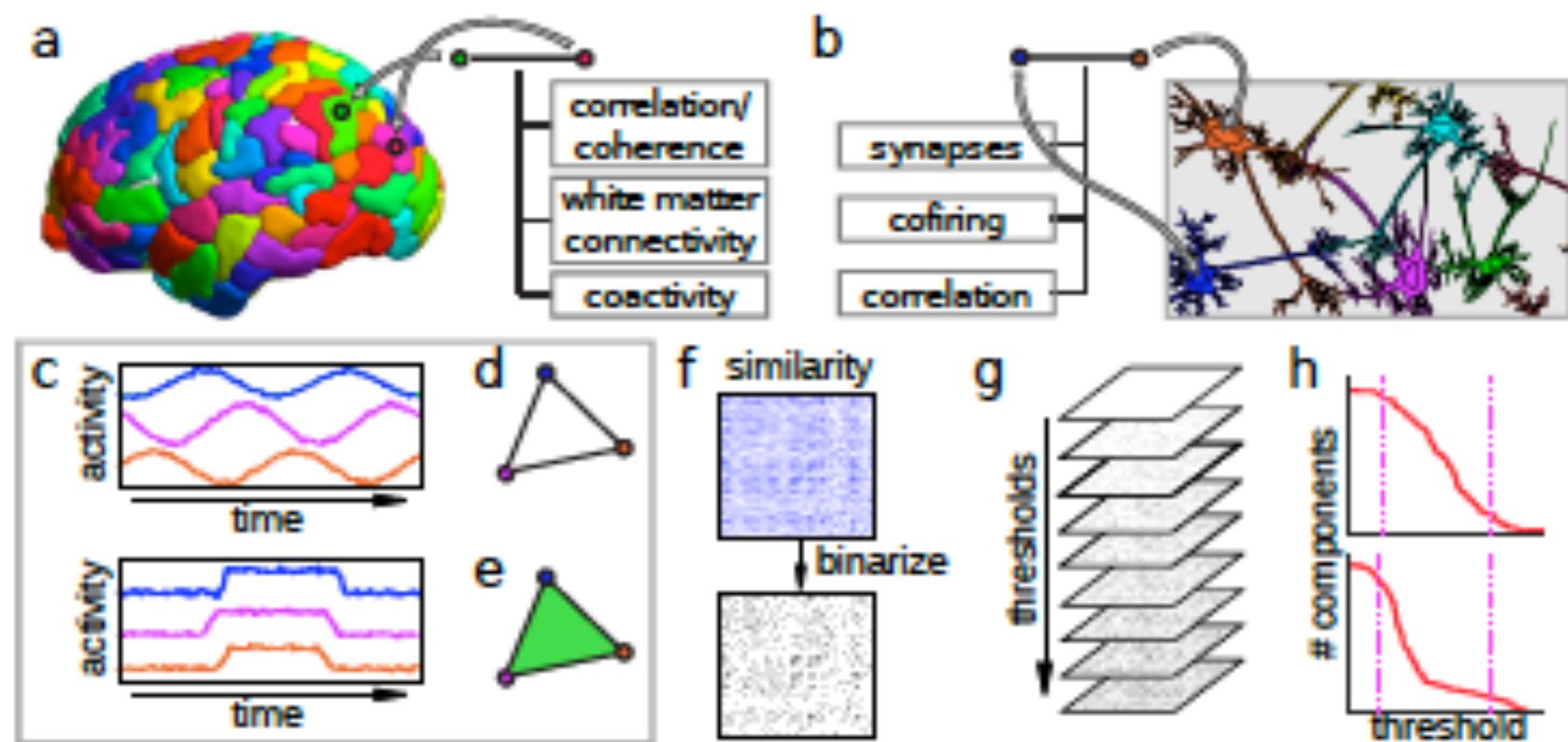
Palla et al.
Nature (2005)

From a simplicial complex to a network



From every simplicial complex
we can extract a network
by considering exclusively
nodes and links

Brain data as simplicial complexes

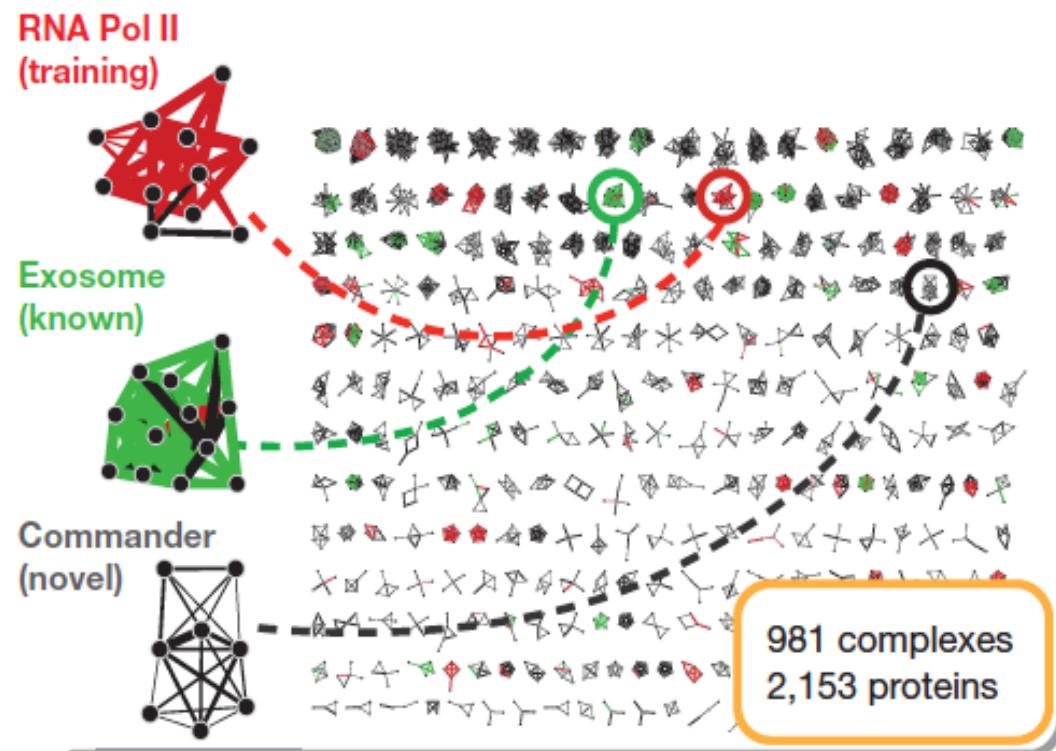


Giusti et al (2016)

Protein interaction networks as simplicial complexes

Protein interaction networks

- Nodes: proteins
- Simplices: protein complexes



Wan et al. Nature 2015

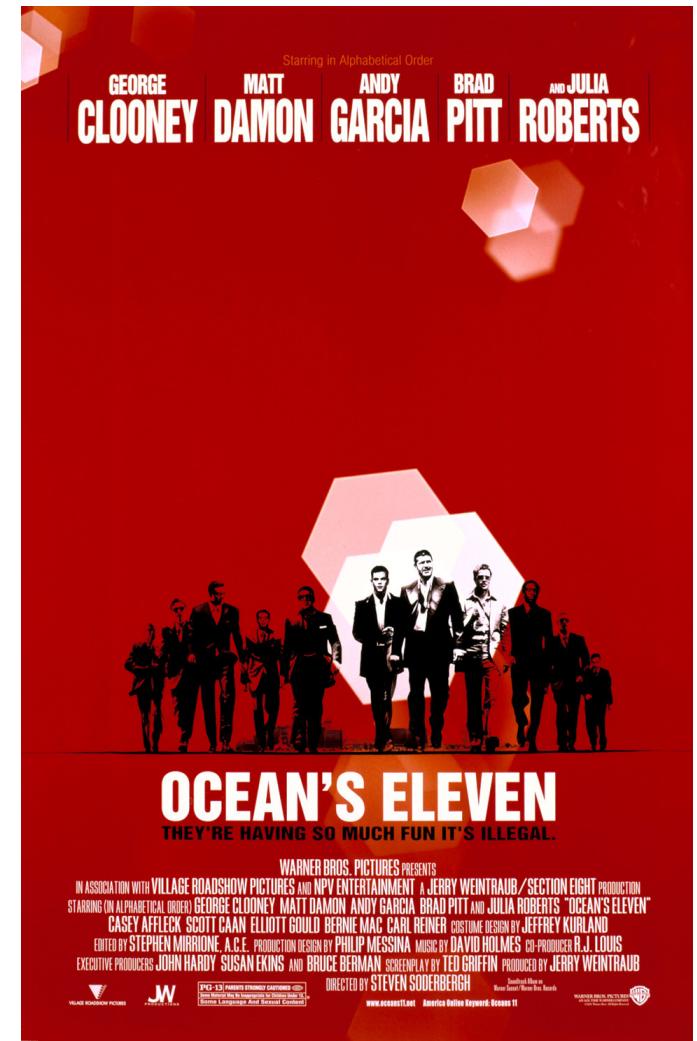
Collaboration networks as simplicial complexes

Actor collaboration networks

- **Nodes:** Actors
- **Simplices:** Co-actors of a movie

Scientific collaboration networks

- **Nodes:** Scientists
- **Simplices:** Co-authors



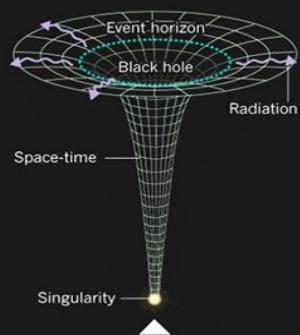
Quantum Spacetime

THE FABRIC OF REALITY ►

If space and time are not fundamental, then what is?
Theoretical physicists are exploring several possible answers.

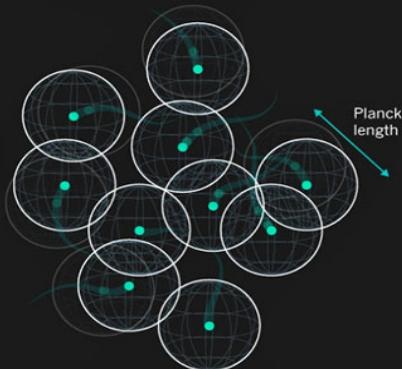
One clue

Quantum effects in the gravitational field of a black hole cause it to radiate energy as if it were hot, implying a deep connection between quantum theory, gravity and thermodynamics — the science of heat.



1. Gravity as thermodynamics

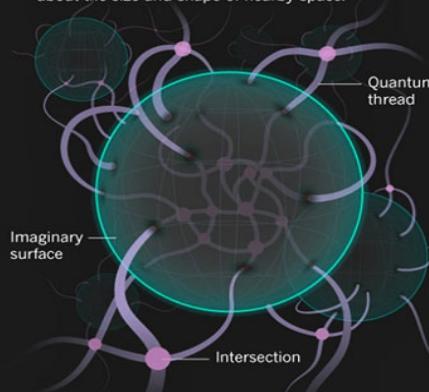
The equations of gravity can actually be derived from thermodynamics, without reference to space-time curvature.



This suggests that gravity on a macroscopic scale is just an average of the behaviour of some still-unknown 'atoms' of space-time.

2. Loop quantum gravity

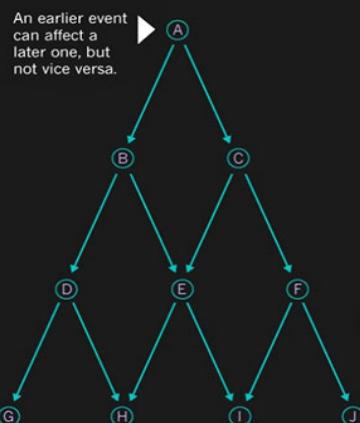
The Universe is a network of intersecting quantum threads, each of which carries quantum information about the size and shape of nearby space.



Imagine drawing a closed surface anywhere in the network. Its volume is determined by the intersections it encloses; its area by the number of threads that pierce it.

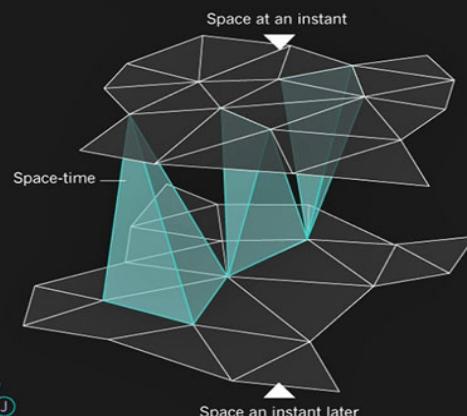
3. Causal sets

The building blocks of space-time are point-like 'events' that form an ever-expanding network linked by causality.



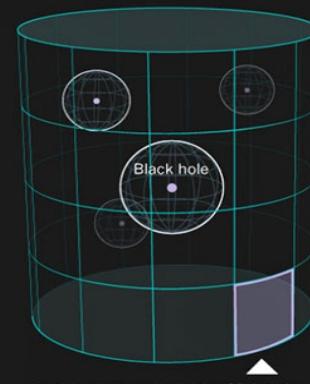
4. Causal dynamical triangulations

Computer simulations approximate the fundamental quantum reality as tiny polygonal shapes, which obey quantum rules as they spontaneously self-assemble into larger patches of space-time.



5. Holography

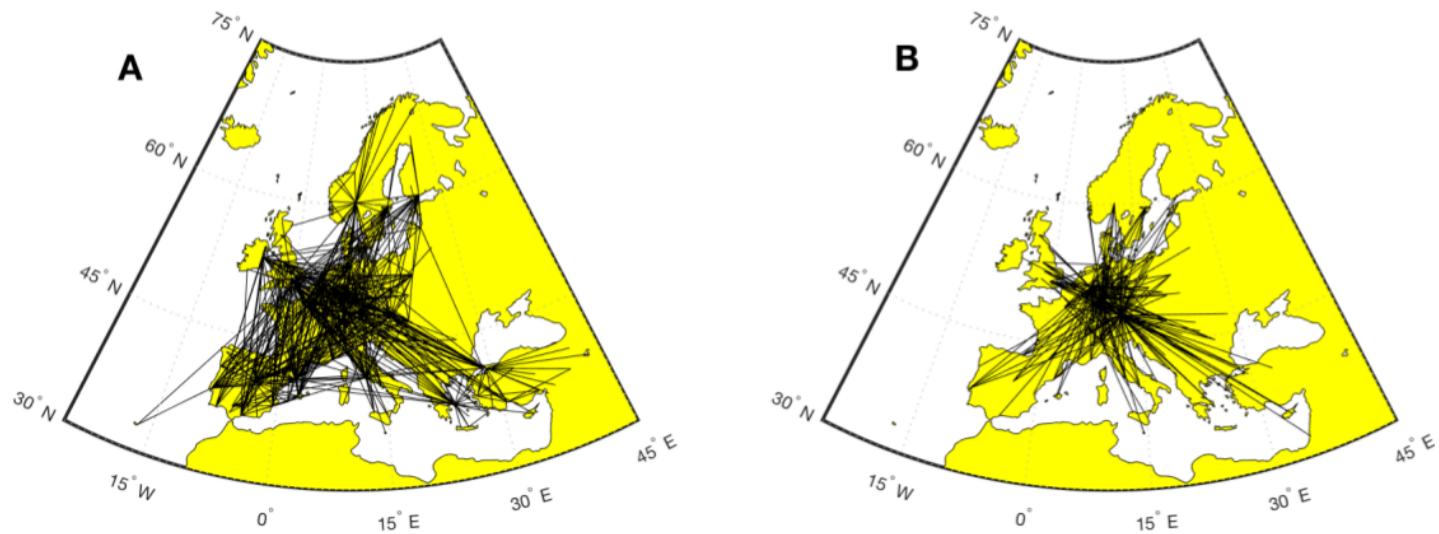
A three-dimensional (3D) universe contains black holes and strings governed solely by gravity, whereas its 2D boundary contains ordinary particles governed solely by standard quantum-field theory.



Quantum gravity approaches networks and simplicial complexes

- Causal-Dynamical-Triangulations
- Tensor networks
- Group Field Theory
- Causal sets
- Loop Quantum Gravity
- Spin-Foams
- ...

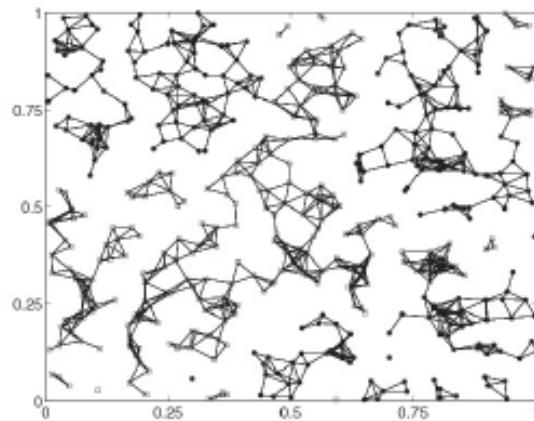
Spatial networks: infrastructures



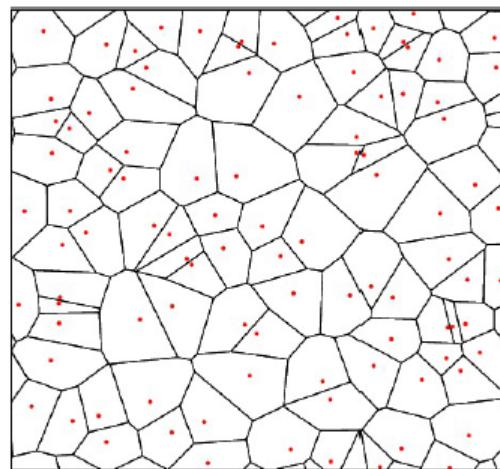
M. Barthelemy Phys. Rep. (2011)

Spatial networks: models and numerical methods

**Random
Geometric
Networks**



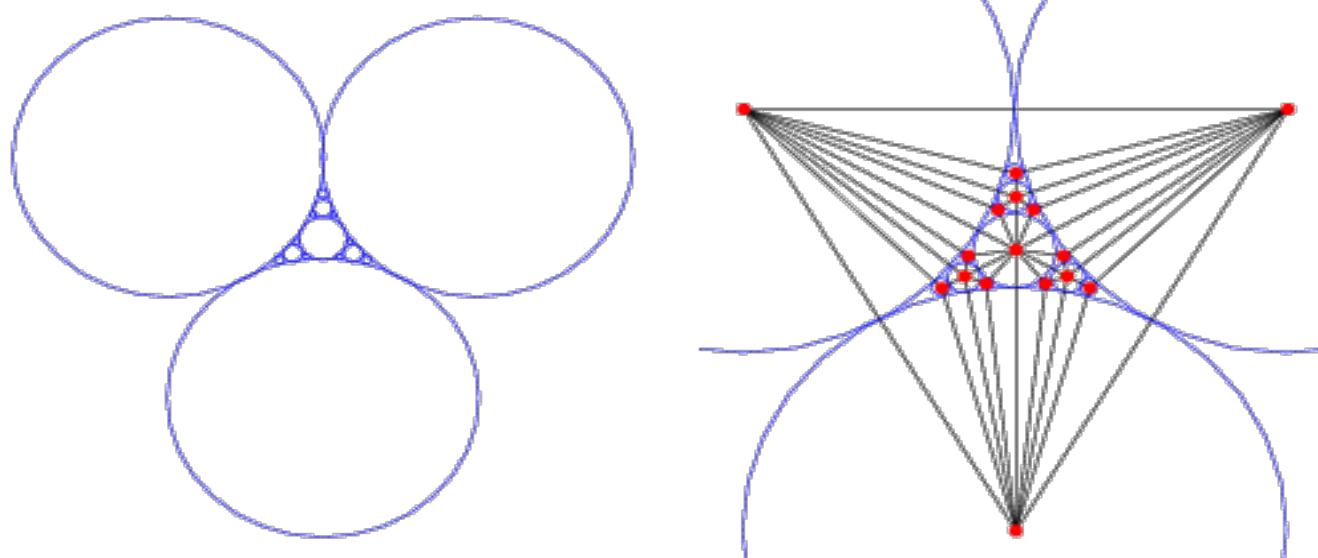
Tesselations



M. Barthelemy Phys. Rep. (2011)

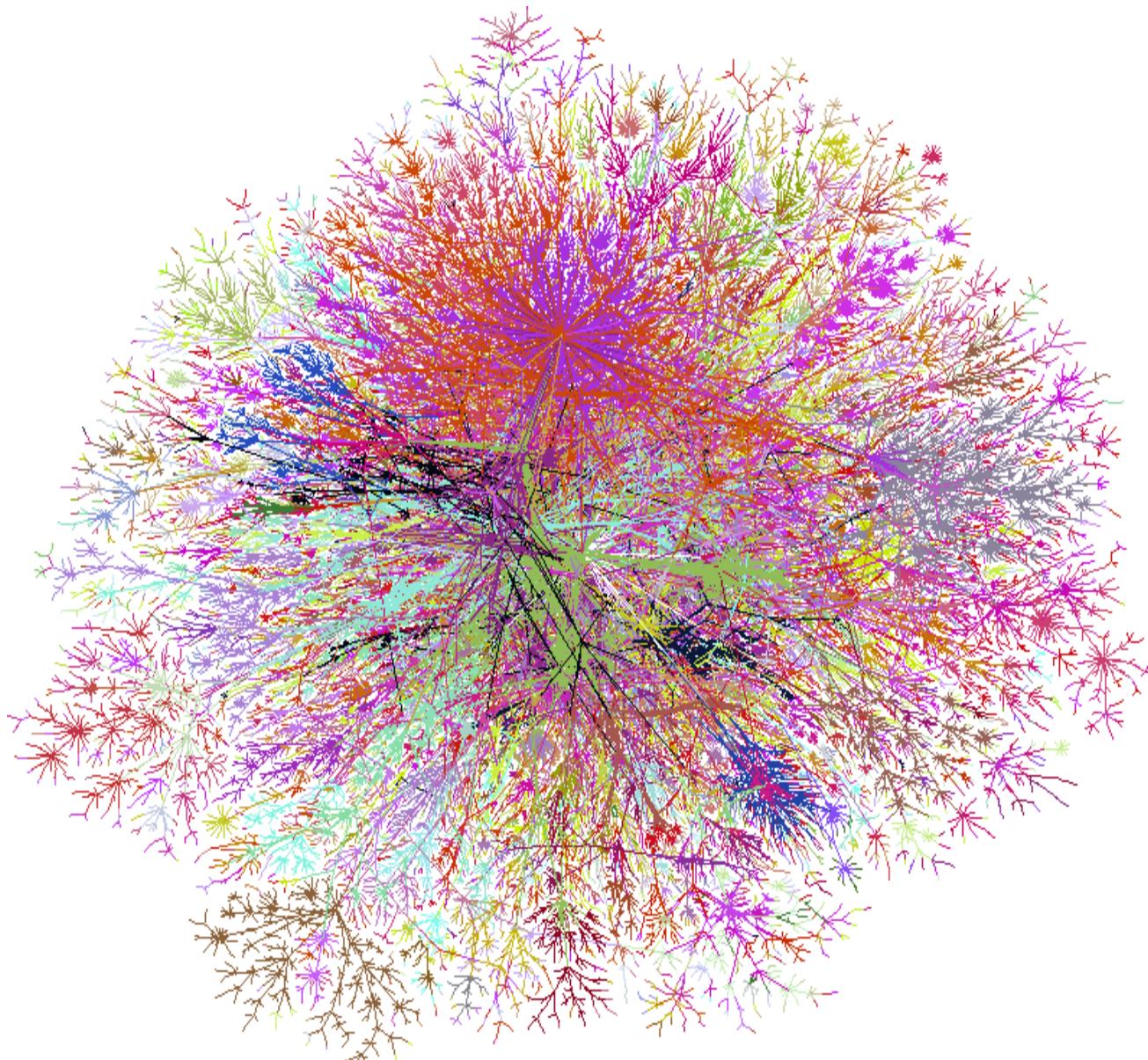
Spatial networks: Apollonian network

- The Apollonian gasket from Apollonius of Perga c.262-c.190 B.C. is formed by triple of circle each one tangent to the other two.
- The Apollonian network is generated by placing a node to each center of the circles and connecting nodes corresponding to tangent circles



The Apollonian network is scale-free
with exponent $\gamma = 1 + \frac{\ln 3}{\ln 2} \approx 2.585$

Scale-free networks



Technological networks

Internet

World-Wide Web

Biological networks

Metabolic networks,
Protein-interaction networks,
Transcription networks

Transportation networks

Airport networks

Social networks

Collaboration networks
Citation networks
Facebook

Economical networks

Networks of shareholders
The World Trade Web

Growth by uniform attachment of links

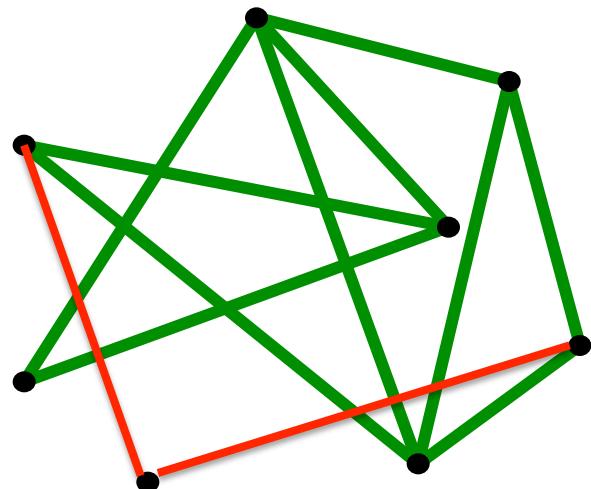
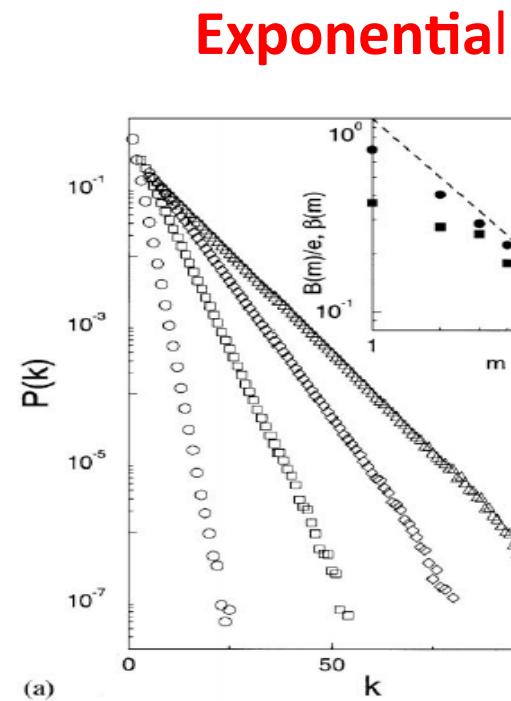
(1) GROWTH :

At every timestep we add a new node with m edges
(connected to the nodes already present in the system).

(2) UNIFORM ATTACHMENT :

The probability Π_i that a new node will be connected to
node i is *uniform*

$$\Pi_i = \frac{1}{N}$$



Barabási & Albert, Physica A (1999)

BA scale-free model

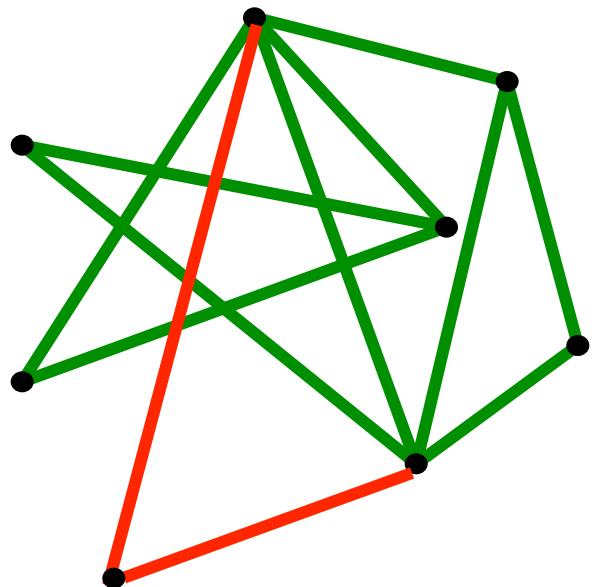
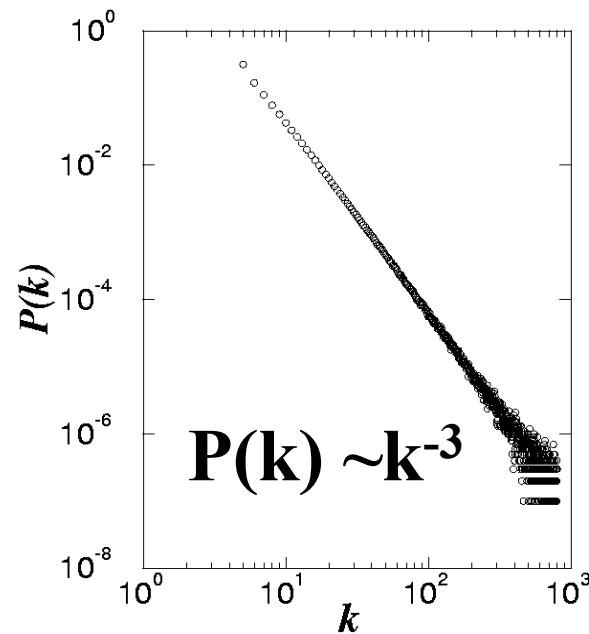
(1) GROWTH :

At every timestep we add a new node with m edges (connected to the nodes already present in the system).

(2) PREFERENTIAL ATTACHMENT :

The probability $\Pi(k_i)$ that a new node will be connected to node i depends on the connectivity k_i of that node

$$\Pi(k_i) = \frac{k_i}{\sum_j k_j}$$



Barabási et al. Science (1999)

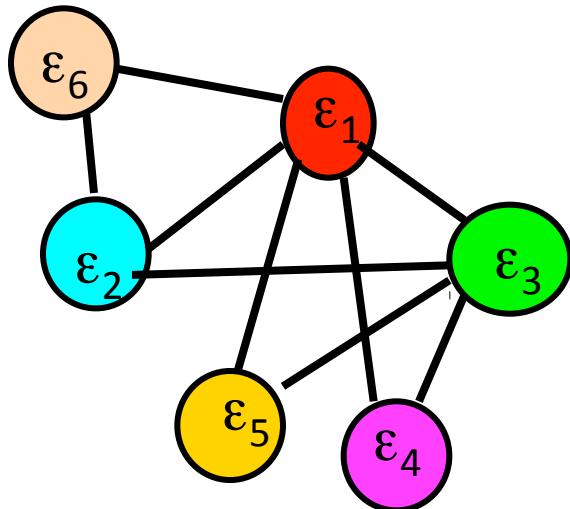
The Bianconi-Barabasi model

Growth:

- At each time a new node and m links are added to the network.
- To each node i we assign a energy ε_i from a $g(\varepsilon)$ distribution

Preferential attachment towards high degree low energy nodes:

- Each node connects to the rest of the network by m links attached preferentially to well connected, low energy nodes.



$$\Pi_i = \frac{e^{-\beta \varepsilon_i} k_i}{\sum_j e^{-\beta \varepsilon_j} k_j}$$

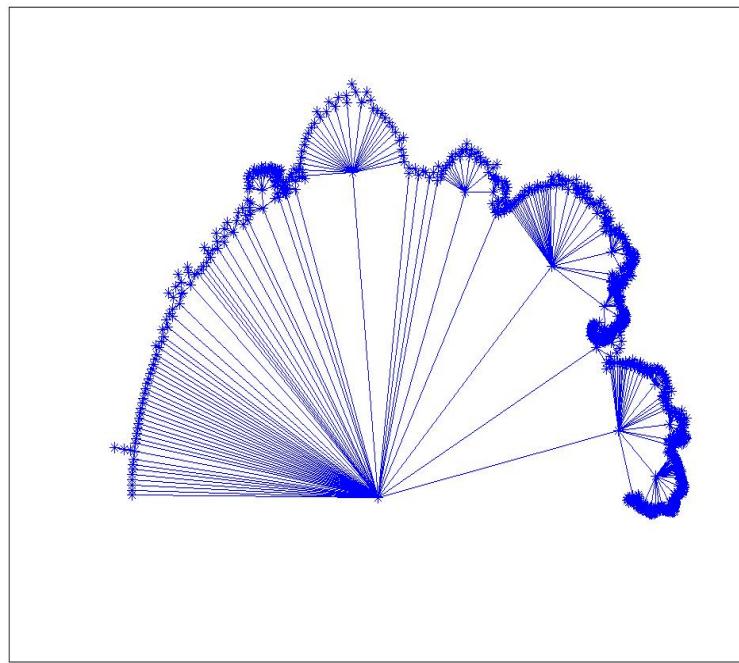
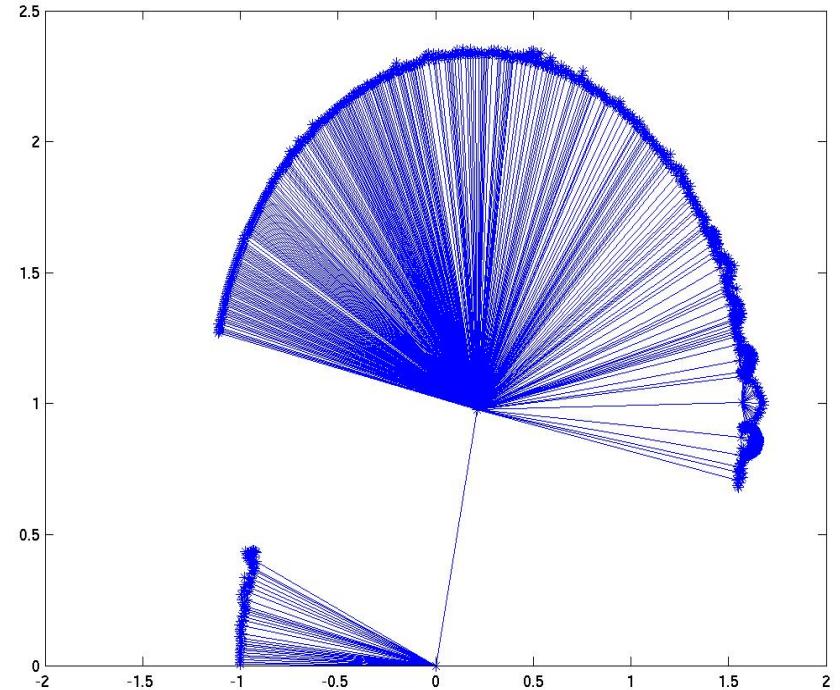
Bose-Einstein condensation in complex networks

Scale-Free
Fit-get-rich Phase

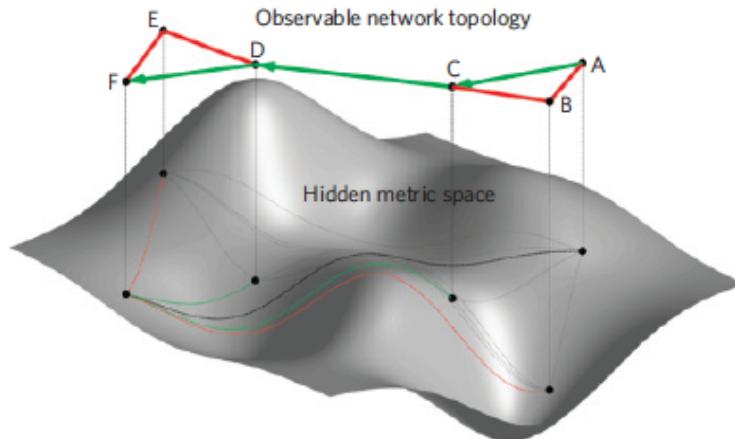
Bose-Einstein
condensate Phase

$$\beta < \beta_C$$

$$\beta > \beta_C$$



The hidden metric of complex networks



Boguna, Krioukov, Claffy
Nature Physics (2008)

It is believed that most complex networks have
an hidden metric
such that the nodes close in the hidden metric
are more likely to be linked to each other.

Hyperbolic geometry of complex networks could contribute to improve routing algorithms

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2007 proceedings.

Geographic Routing Using Hyperbolic Space

Robert Kleinberg*

Department of Computer Science

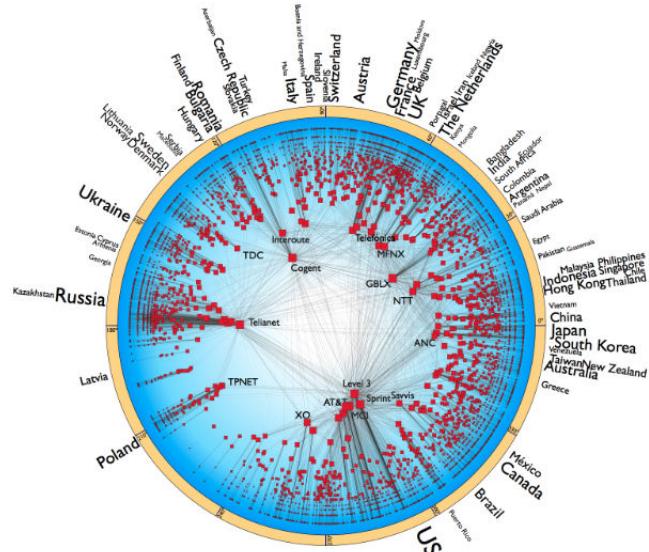
Cornell University

Ithaca, NY 14853

Email: rdk@cs.cornell.edu

*Supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship.

Portions of this work were completed while the author was a postdoctoral fellow at UC Berkeley.



ARTICLE

Received 6 Apr 2010 | Accepted 6 Aug 2010 | Published 7 Sep 2010

DOI: [10.1038/ncomms1063](https://doi.org/10.1038/ncomms1063)

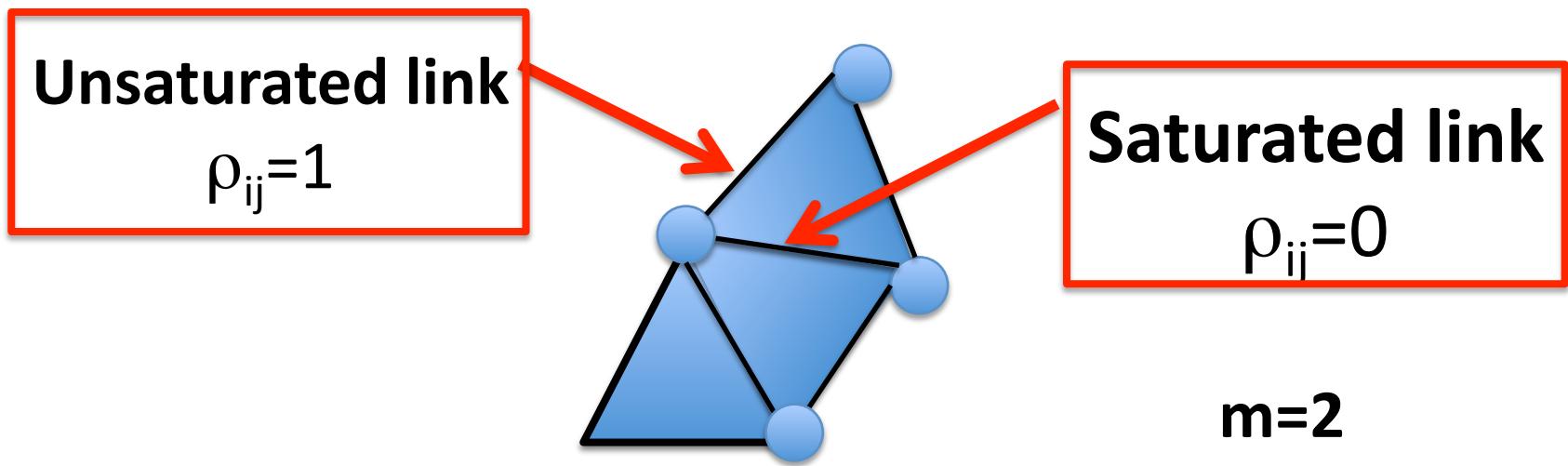
Sustaining the Internet with hyperbolic mapping

Marián Boguñá¹, Fragkiskos Papadopoulos² & Dmitri Krioukov³

Emergent geometry

In the framework of emergent geometry
networks with hidden geometry
are generated
by equilibrium or non-equilibrium dynamics
that makes no use of the
hidden geometry

Saturated and Unsaturated links



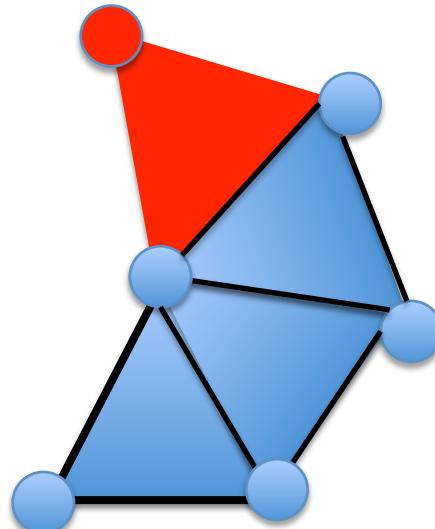
- $\rho_{ij}=1$ if the link is unsaturated, i.e. less than m triangles are incident on it
- $\rho_{ij}=0$ if the link is saturated, i.e. the number of incident triangles is given by m

Process (a)

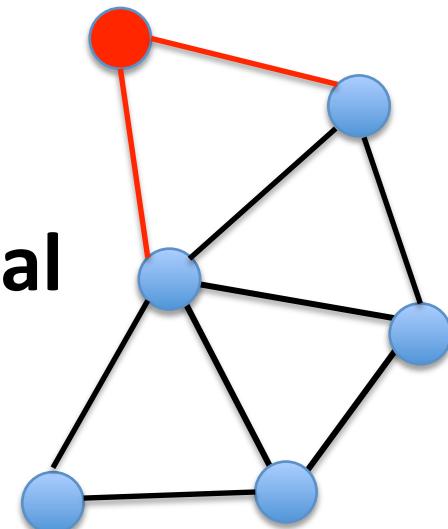
We choose a link (i,j) with probability
and glue a new triangle the link

$$\Pi_{i,j}^{[1]} = \frac{a_{ij}\rho_{ij}}{\sum_{r,s} a_{rs}\rho_{rs}}$$

Growing
Simplicial
Complex



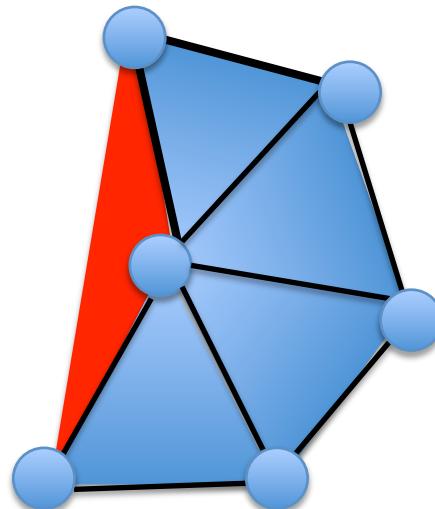
Growing
Geometrical
Network



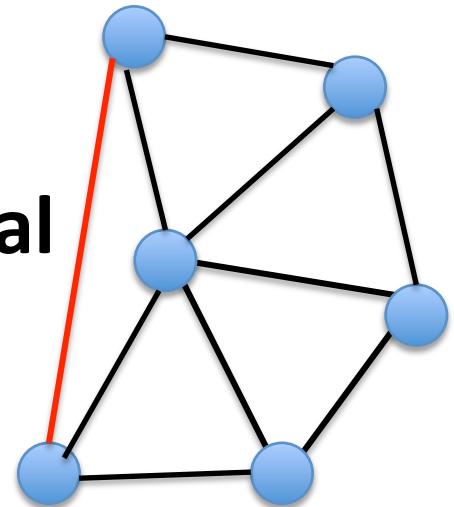
Process (b)

We choose a two adjacent unsaturated links and we add the link between the nodes at distance 2 and all triangles that this link closes as long that this is allowed.

**Growing
Simplicial
Complex**



**Growing
Geometrical
Network**



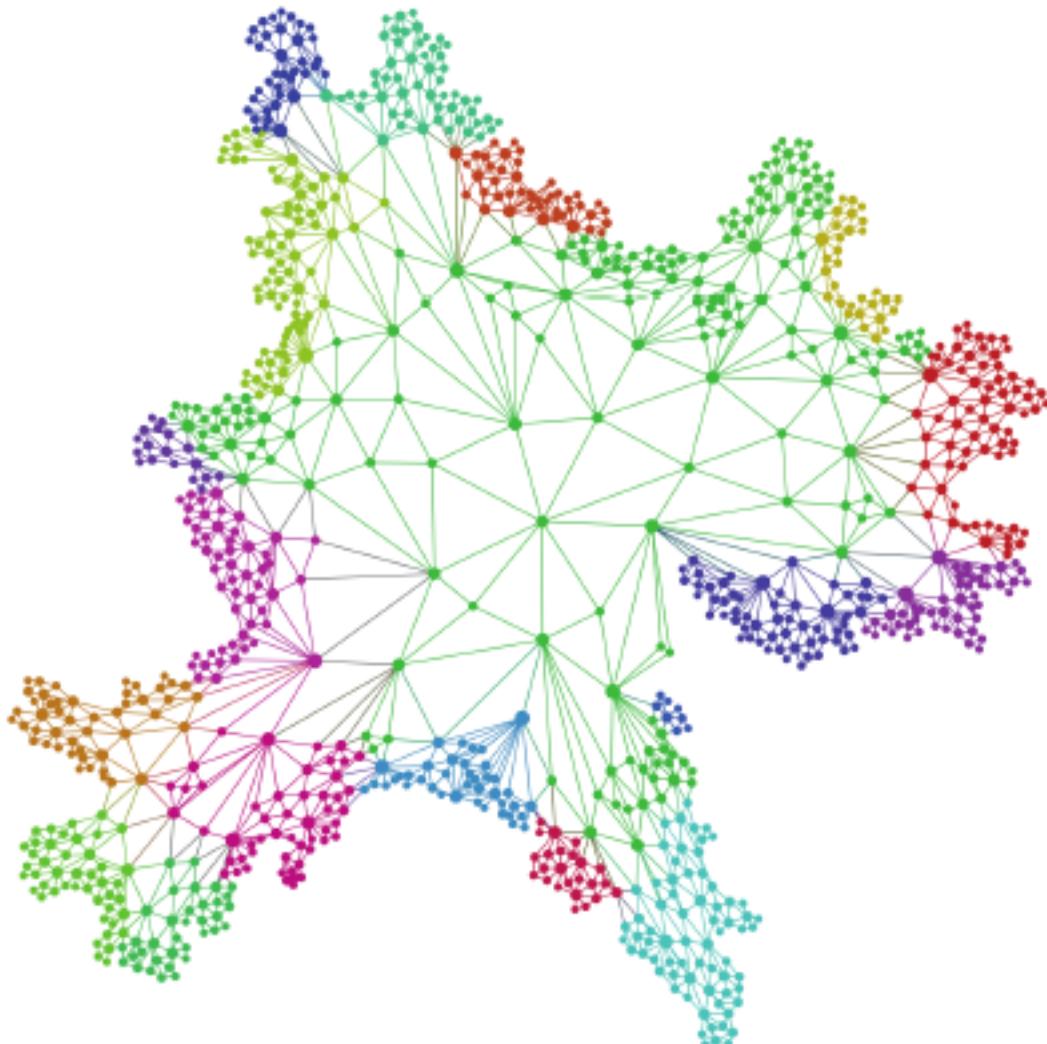
The model

Starting from an initial triangle,

At each time

- process (a) takes place and
- process (b) takes place with probability p .

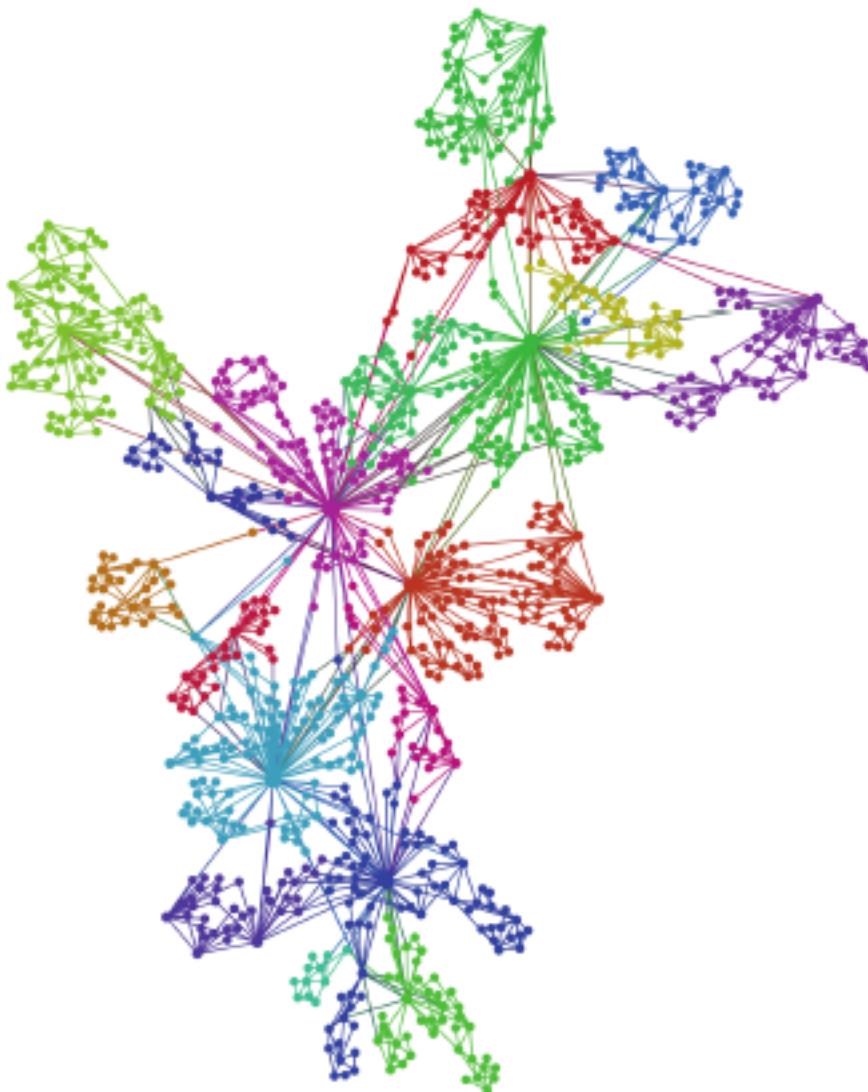
Discrete Manifolds



A discrete manifold of dimension $d=2$ is a simplicial complex formed by triangles such that every link is incident to at most two triangles.

Therefore the emergent network geometry for our model with $m=2$ is a discrete 2d manifold.

Scale-free networks



In the case $m = \infty$
a scale-free network with
high clustering, significant
community structure, finite
spectral dimension is
generated.
Planar for $p=0$.

Degree distribution

- For $m=2$ and $p=0$ we can calculate the degree distribution given by

$$P(k) = \frac{1}{2} \left(\frac{2}{3}\right)^{k-1}$$

- For $m = \infty$ and $p=0$ we can calculate the degree distribution given by

$$P(k) = \frac{12}{(k+2)(k+1)k}$$

Combinatorial Curvature

The combinatorial curvature
for a node i of a planar triangulation is

$$R_i = 1 - \frac{k_i}{2} + \frac{T_i}{3}$$

- k_i is the degree of the node i ,
- T_i is the number of triangles to which node i belongs

For a node in the bulk

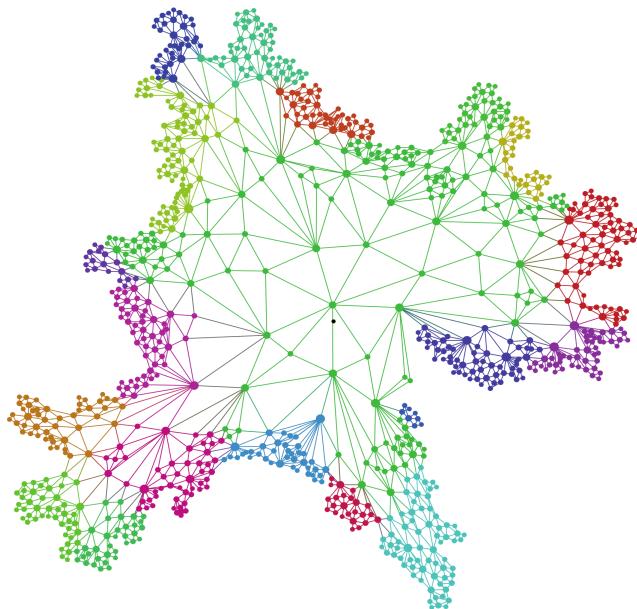
$$R_i = \frac{6 - k_i}{6}$$

For a node at the surface

$$R_i = \frac{4 - k_i}{6}$$

Emergent network geometry and curvature distribution

$m = 2$ $p = 0.9$

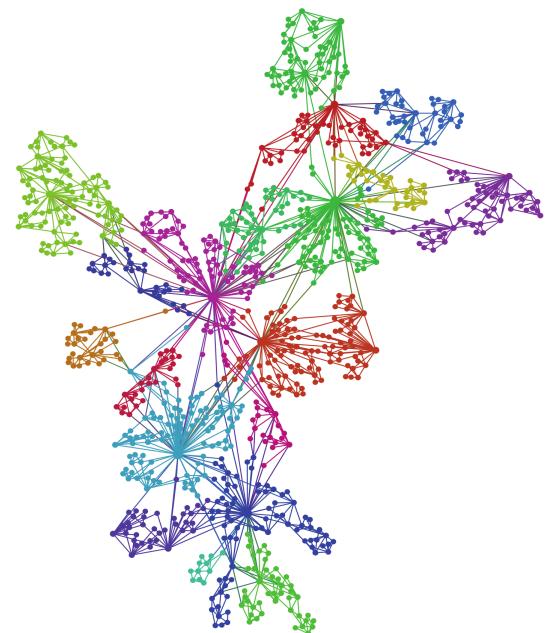


Exponential network

$m = 4$ $p = 0.9$

Broad degree distribution

$m = \infty$ $p = 0$



Scale-free network

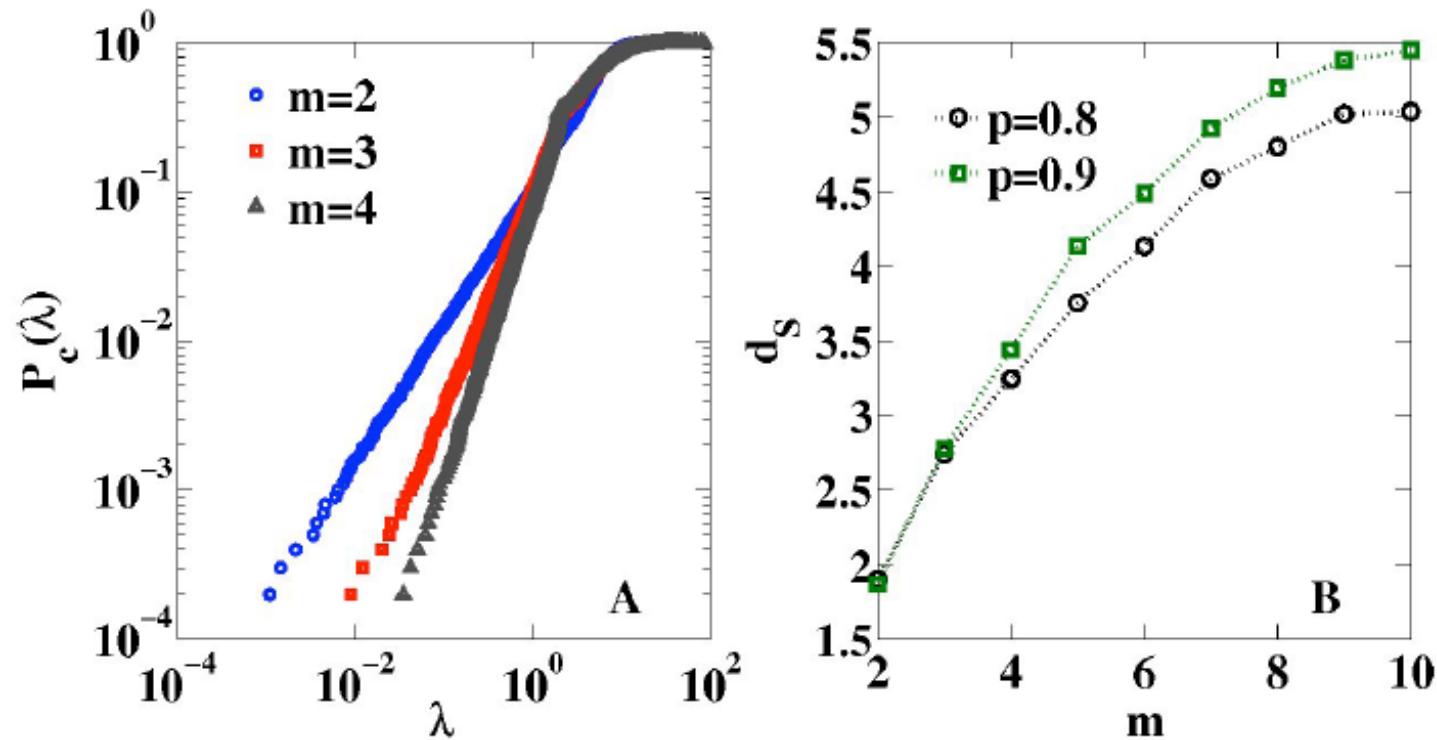
$$\langle R \rangle = \frac{1}{N}$$

$$\langle R^2 \rangle < \infty$$

$$\langle R \rangle = \frac{1}{N}$$

$$\langle R^2 \rangle = \infty$$

Finite spectral dimension



$$L_{ij} = k_i \delta_{ij} - a_{ij}$$

$$\rho(\lambda) \approx \lambda^{(d/2-1)}$$

$$P_c(\lambda) \approx \lambda^{d/2}$$

Properties of emergent network geometries

- Small world
- Finite clustering
- High modularity
- Finite spectral dimension

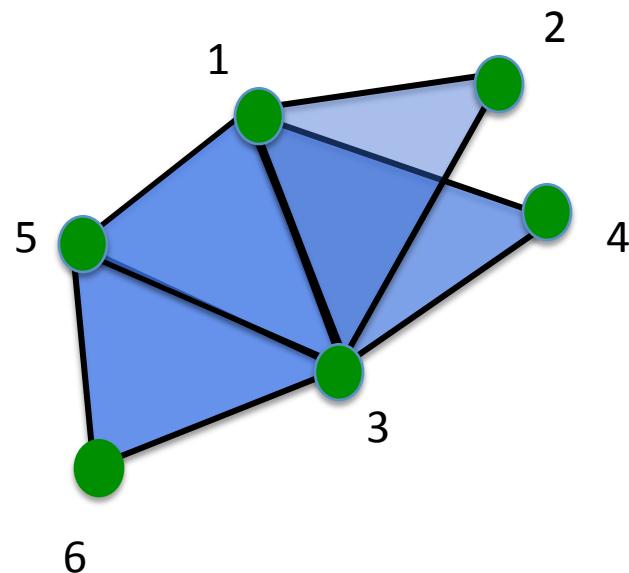
Which are properties of many real network datasets.

Properties of real datasets

Datasets	N	L	$\langle \ell \rangle$	C	M	d_S
1L8W (protein)	294	1608	5.09	0.52	0.643	1.95
1PHP (protein)	219	1095	4.31	0.54	0.638	2.02
1AOP chain A (protein)	265	1363	4.31	0.53	0.644	2.01
1AOP chain B (protein)	390	2100	4.94	0.54	0.685	2.03
Brain-(coactivation) ⁴⁵	638	18625	2.21	0.384	0.426	4.25
Internet ⁴⁶	22963	48436	3.8	0.35	0.652	5.083
Power-grid ³⁸	4941	6594	19	0.11	0.933	2.01
Add Health (school61) ⁴⁷	1743	4419	6	0.22	0.741	2.97

Generalized degree

The generalized degree $k_{d,\delta}(\mu)$ of a δ -face μ in a d -dimensional simplicial complex is given by the number of d -dimensional simplices incident to the δ -face μ .

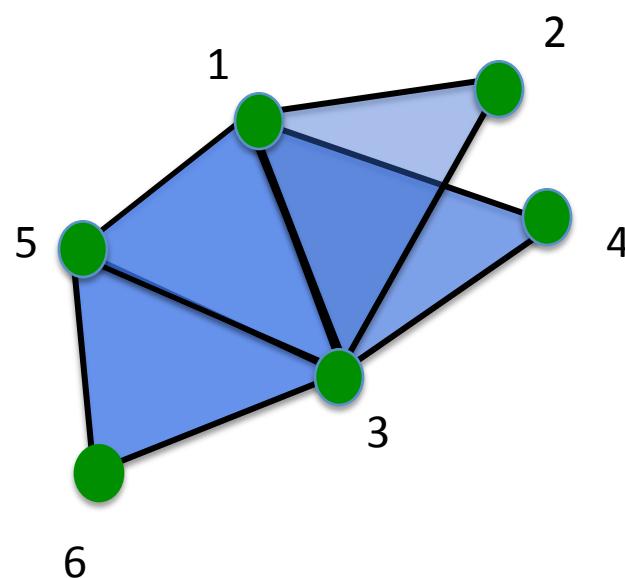


$k_{2,0}(\mu)$ Number of triangles incident to the node μ

$k_{2,1}(\mu)$ Number of triangle incident to the link μ

Generalized degree

The generalized degree $k_{d,\delta}(\mu)$ of a δ -face μ in a d -dimensional simplicial complex is given by the number of d -dimensional simplices incident to the δ -face μ .

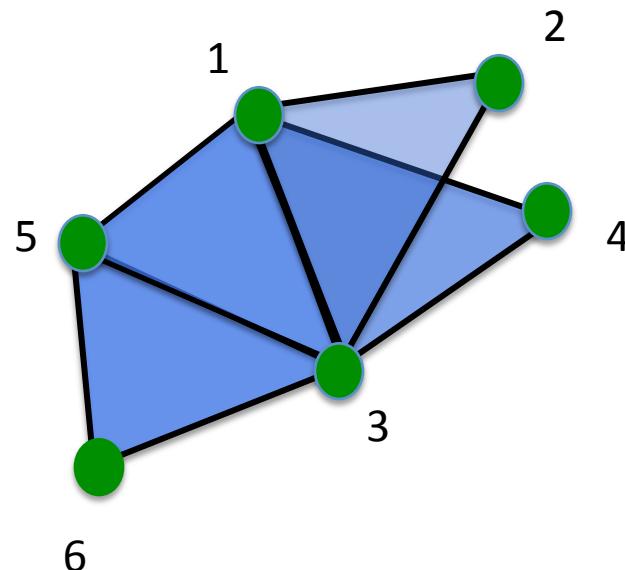


i	$k_{2,0}(i)$	(i,j)	$k_{2,1}(i,j)$
1	3	(1,2)	1
2	1	(1,3)	3
3	4	(1,4)	1
4	1	(1,5)	1
5	2	(2,3)	1
6	1	(3,4)	1
		(3,5)	2
		(3,6)	1
		(5,6)	1

Incidence number

To each $(d-1)$ -face μ we associate the incidence number

$$n_\mu = k_{d,d-1}(\mu) - 1$$

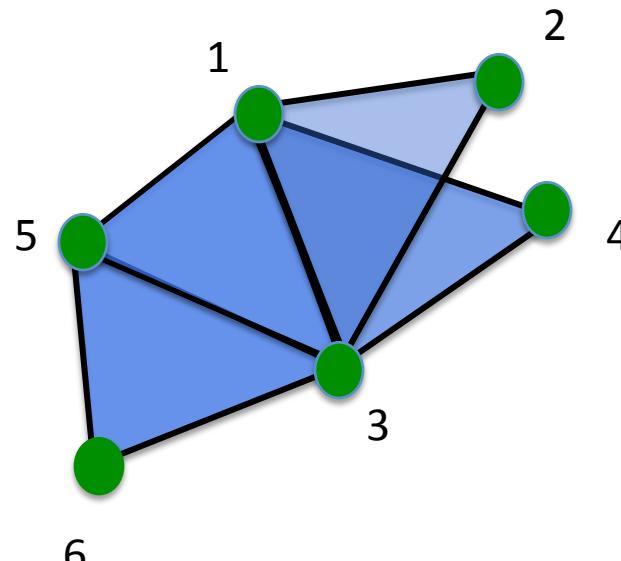
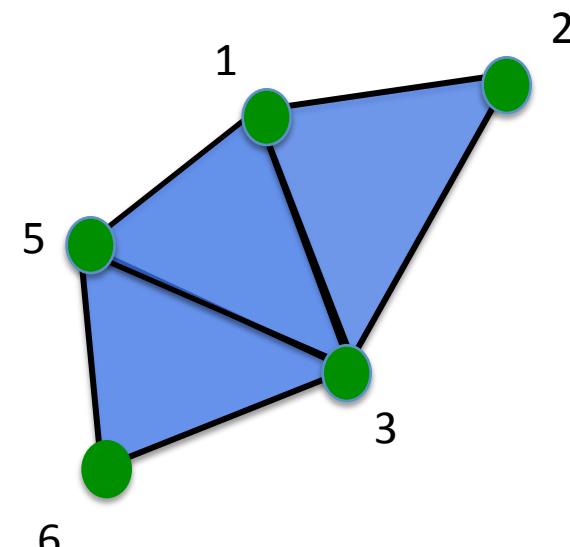


(i,j)	$n_{(i,j)}$
(1,2)	0
(1,3)	2
(1,4)	0
(1,5)	0
(2,3)	0
(3,4)	0
(3,5)	1
(3,6)	0
(5,6)	0

Manifolds

If n_μ takes only values $n_\mu=0,1$ each $(d-1)$ -face is incident at most to two d -dimensional simplices.

In this case the simplicial complex is a discrete manifold.



Network Geometry with Flavor

Starting from a single d-dimensional simplex

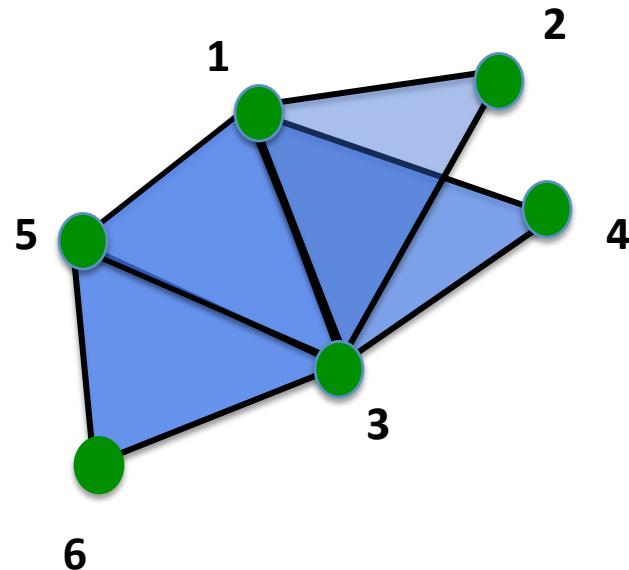
(1) GROWTH :

At every timestep we add a new node d simplex

(formed by one new node and an existing $(d-1)$ -face).

(2) ATTACHMENT:

The probability that a new node will be connected to a face α depends on the flavor $s=-1,0,1$ and is given by



$$\Pi_{\mu}^{[s]} = \frac{1 + sn_{\mu}}{\sum_{\mu'} (1 + sn_{\mu'})}$$

Bianconi & Rahmede (2016)

Attachment probability

$$\Pi_{\mu}^{[s]} = \frac{(1 + s n_{\mu})}{\sum_{\mu' \in Q_{d,d-1}} (1 + s n_{\mu'})} = \begin{cases} \frac{(1 - n_{\mu})}{Z^{[-1]}}, & s = -1 \\ \frac{1}{Z^{[0]}}, & s = 0 \\ \frac{k_{d,d-1}(\mu)}{Z^{[1]}}, & s = 1 \end{cases}$$

s=-1 Manifold

$n_{\mu} = 0, 1$

s=0 Uniform attachment

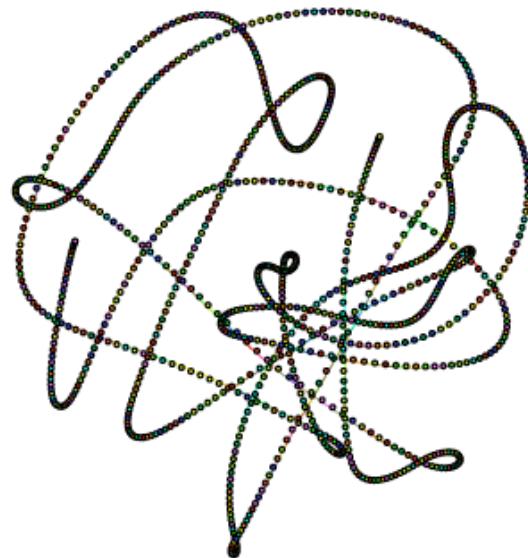
$n_{\mu} = 0, 1, 2, 3, 4, \dots$

s=1 Preferential attachment

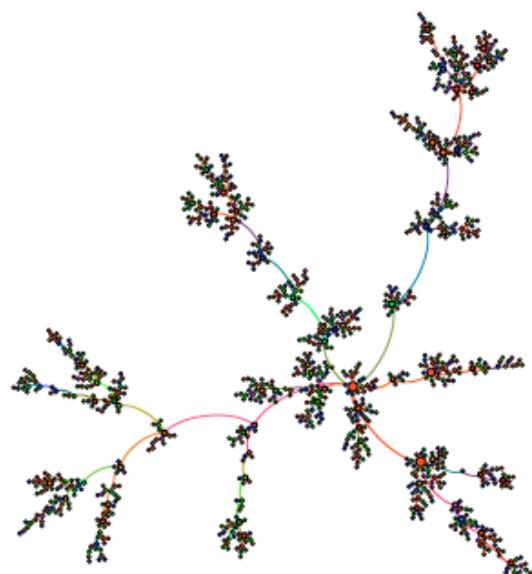
$n_{\mu} = 0, 1, 2, 3, 4, \dots$

Dimension d=1

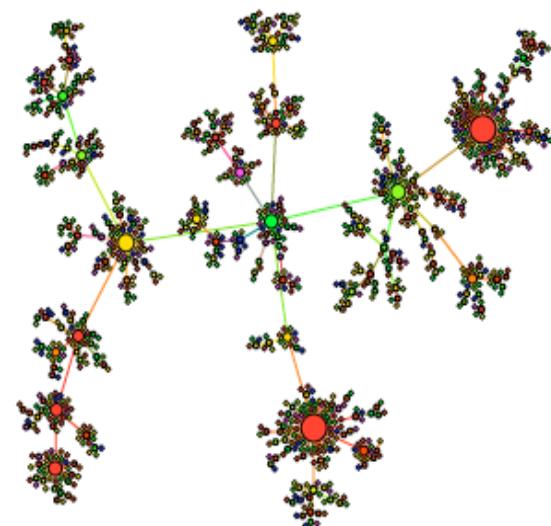
Manifold



Uniform attachment



Preferential attachment



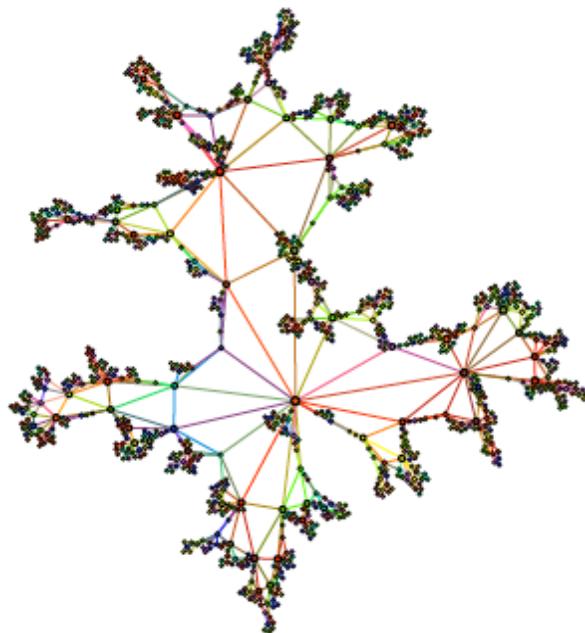
Chain

Exponential

Scale-free BA model

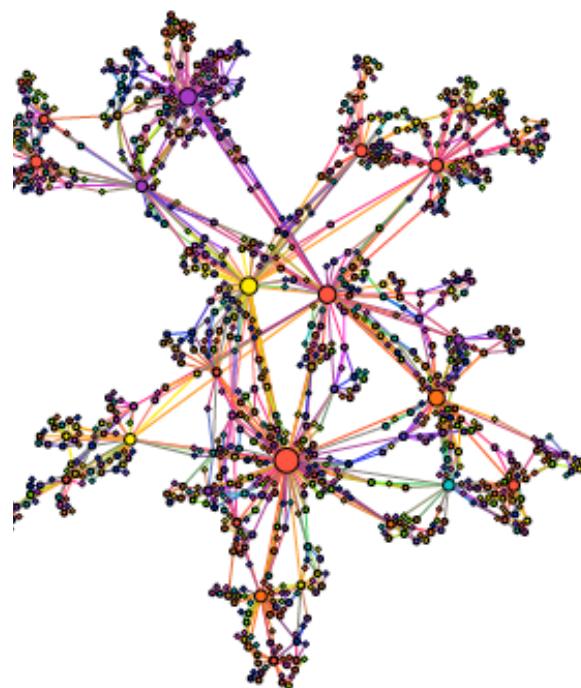
Dimension d=2

Manifold



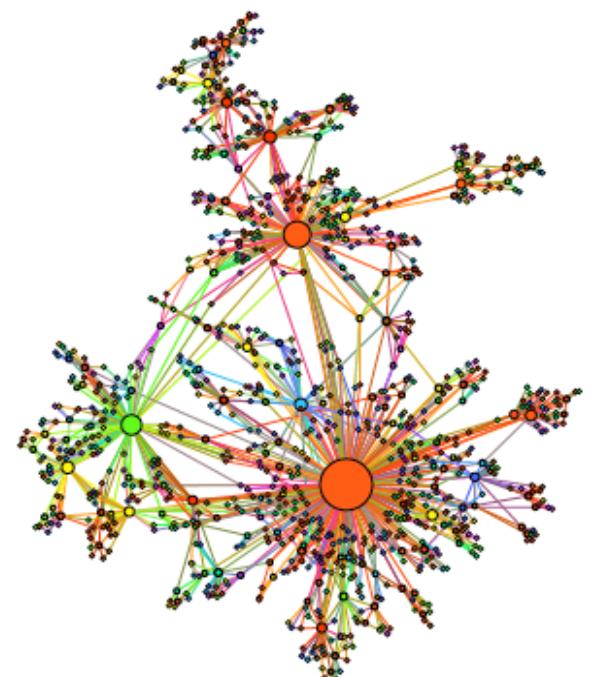
Exponential

Uniform attachment



Scale-free

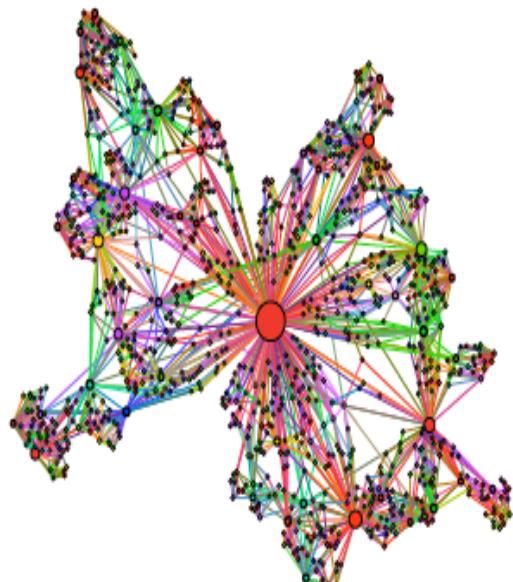
Preferential attachment



Scale-free

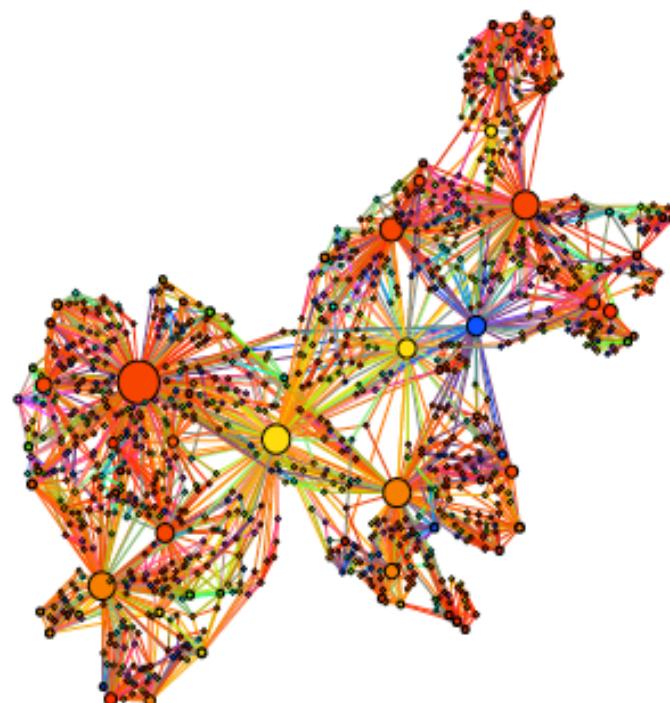
Dimension d=3

Manifold



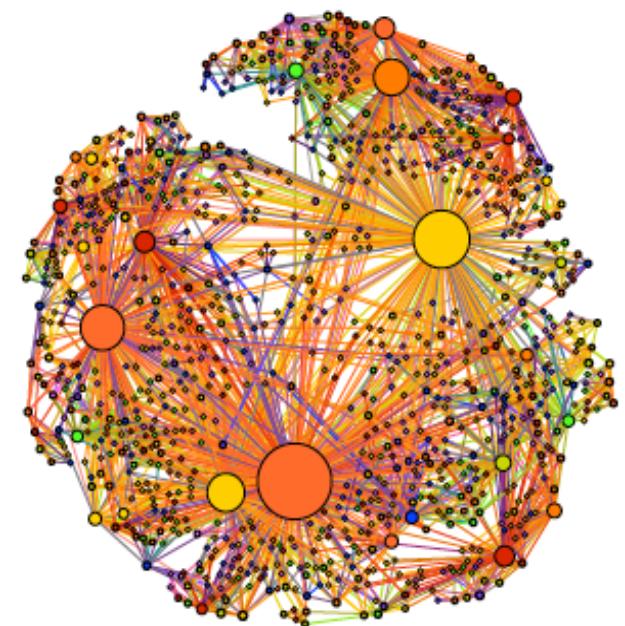
Scale-free

Uniform attachment



Scale-free

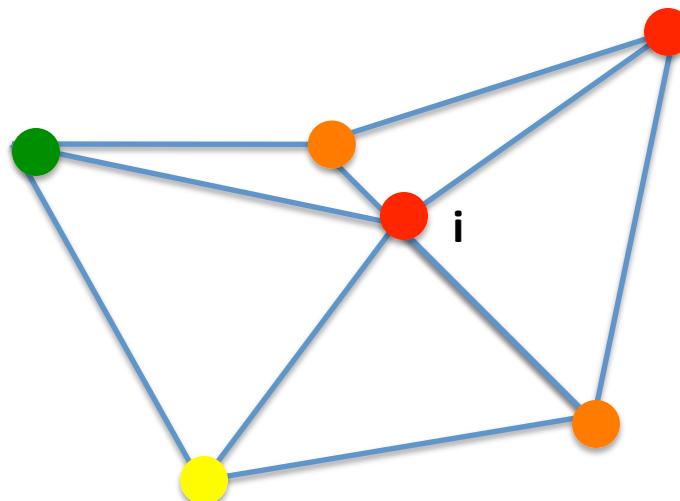
Preferential attachment



Scale-free

Effective preferential attachment in $d=3$

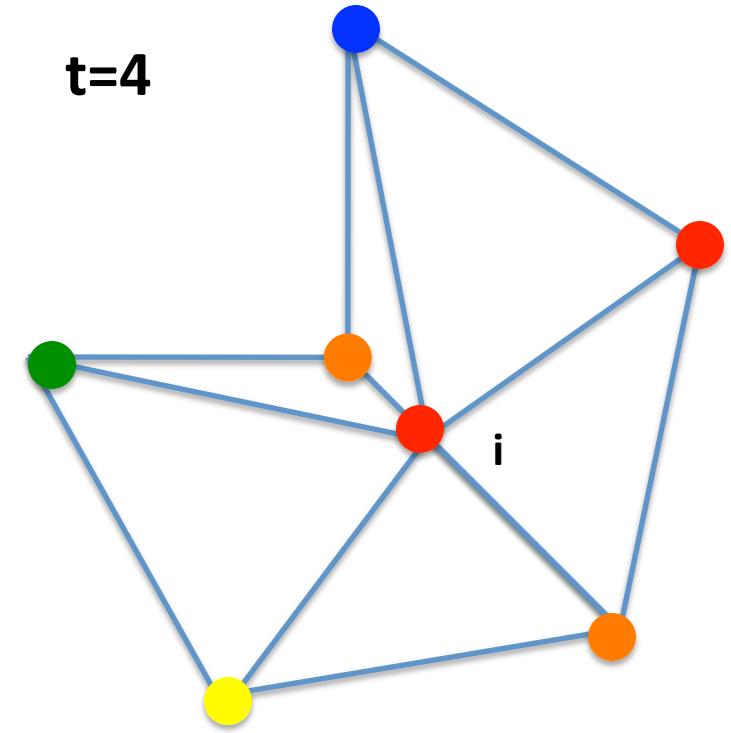
$t=3$



Node i has generalized degree 3

Node i is incident to 5 unsaturated faces

$t=4$



Node i has generalized degree 4

Node i is incident to 6 unsaturated faces

Degree distribution

For $d+s=1$

$$P_d(k) = \left(\frac{d}{d+1} \right)^{k-d} \frac{1}{d+1}$$

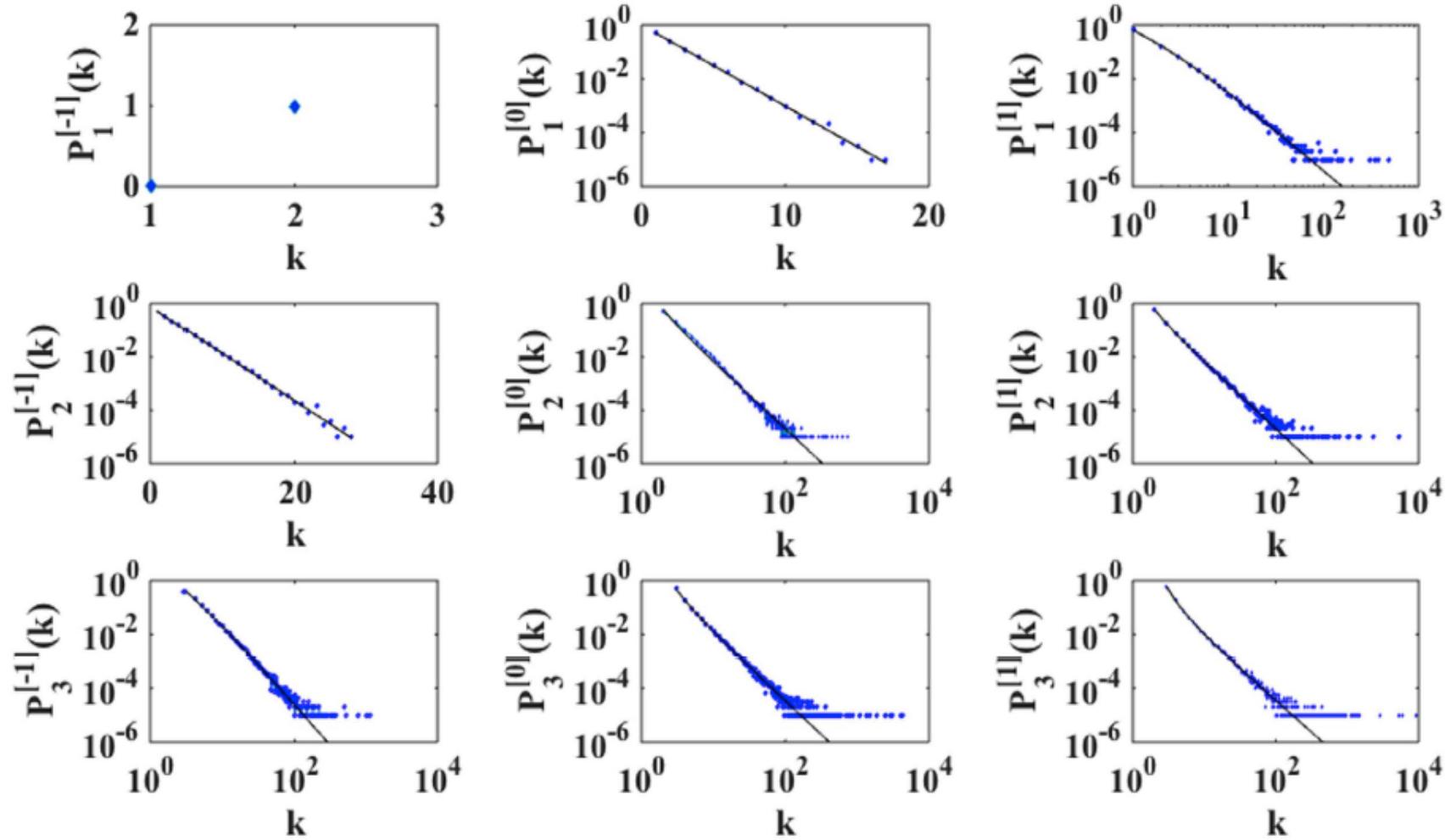
For $d+s>1$

$$P_d(k) = \frac{d+s}{2d+s} \frac{\Gamma(1+(2s+d)(d+s-I))}{\Gamma(d/(d+s-I))} \frac{\Gamma(k-d+d/(d+s-I))}{\Gamma(k-d+(2d+s)(d+s-I))}$$

NGF are always scale-free for $d>1-s$

- For $s=1$ NGF are always scale free
- For $s=0$ and $d>1$ the NGF are scale-free
- For $s=-1$ and $d>2$ the NGF are scale-free

Degree distribution of NGF



Modularity and Clustering coefficient of NGF

M	s= - 1	s= 0	s= 1	C	s= - 1	s= 0	s= 1
$d=2$	0.97	0.94	0.90	$d=2$	0.65	0.74	0.79
$d=3$	0.91	0.85	0.80	$d=3$	0.77	0.81	0.84

Master equation approach

A master equation can be written

for the number of δ faces $N_{d,\delta}^t(k)$

that have generalized degree k at time t

$$N_{d,\delta}^{t+1}(k) = \begin{cases} N_{d,\delta}^t(k) + m_{d,\delta}(k-1)N_{d,\gamma}^t(k-1) - m_{d,\delta}(k)N_{d,\delta}^t(k) & \text{for } k \neq m \\ N_{d,\delta}^t(k) - m_{d,\delta}(k)N_{d,\delta}^r(k) + 1 & \text{for } k = m \end{cases}$$

with

$$m_{d,\delta}(k) = \frac{(1-s) + (d+s-\delta-1)k}{(d+s)t}$$

indicating the probability that a δ face increases its generalized degree at time t

Generalized degree distributions

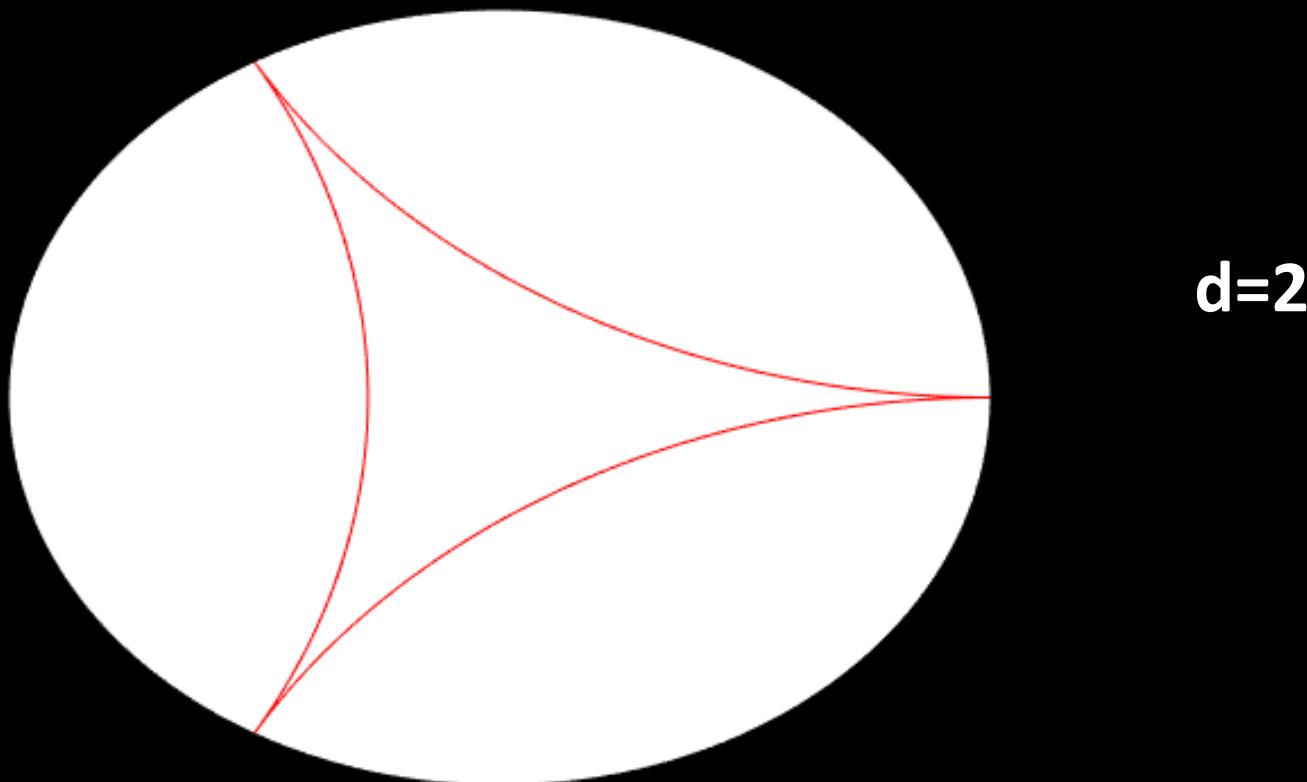
flavor	$s = -1$	$s = 0$	$s = 1$
$\delta = d - 1$	Bimodal	Exponential	Power-law
$\delta = d - 2$	Exponential	Power-law	Power-law
$\delta \leq d - 3$	Power-law	Power-law	Power-law

The power-law
generalized degree distribution
are scale-free for

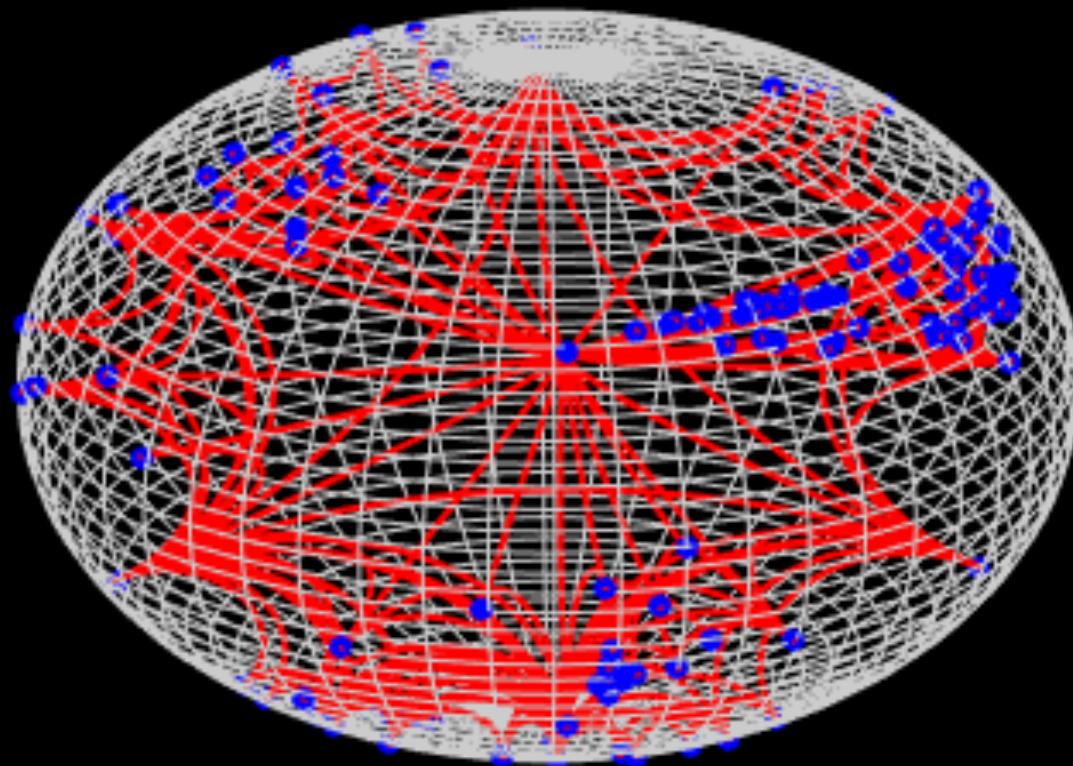
$$d \geq d_c^{[\delta, s]} = 2(\delta + 1) + s$$

Emergent Hyperbolic geometry

The emergent hidden geometry is the hyperbolic H^d space
Here all the links have equal length



Emergent hyperbolic geometry



$d=3$

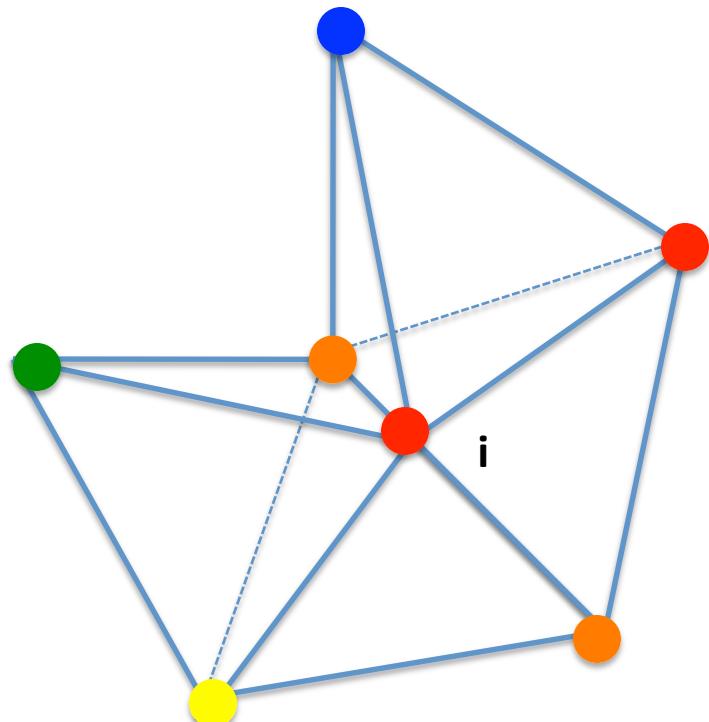
Connection with the Apollonian network



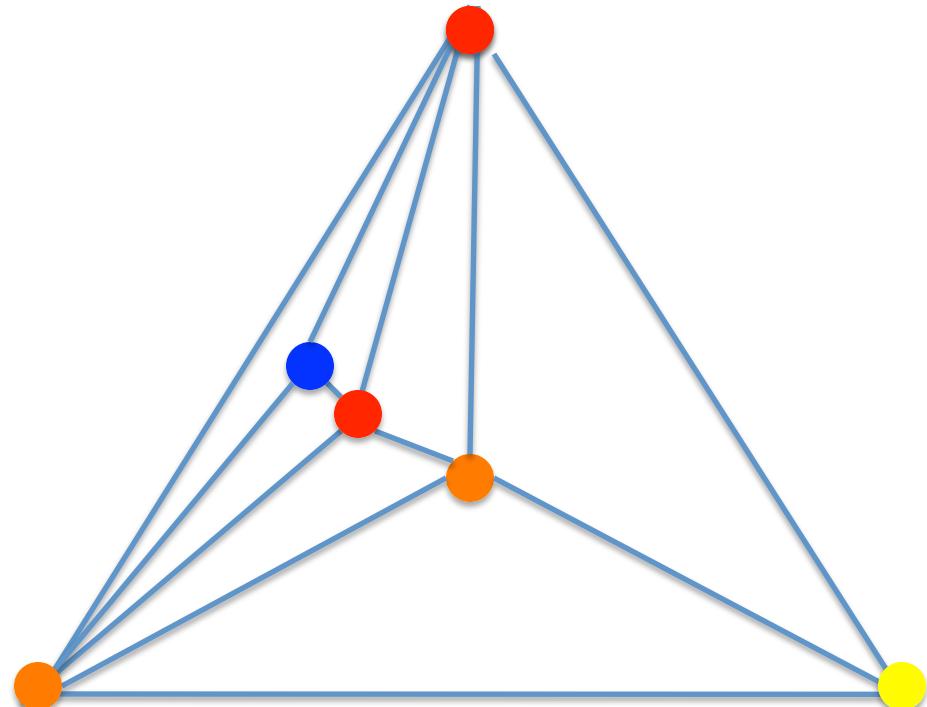
NGF and Apollonian networks

Network Geometry with Flavor(NGF)

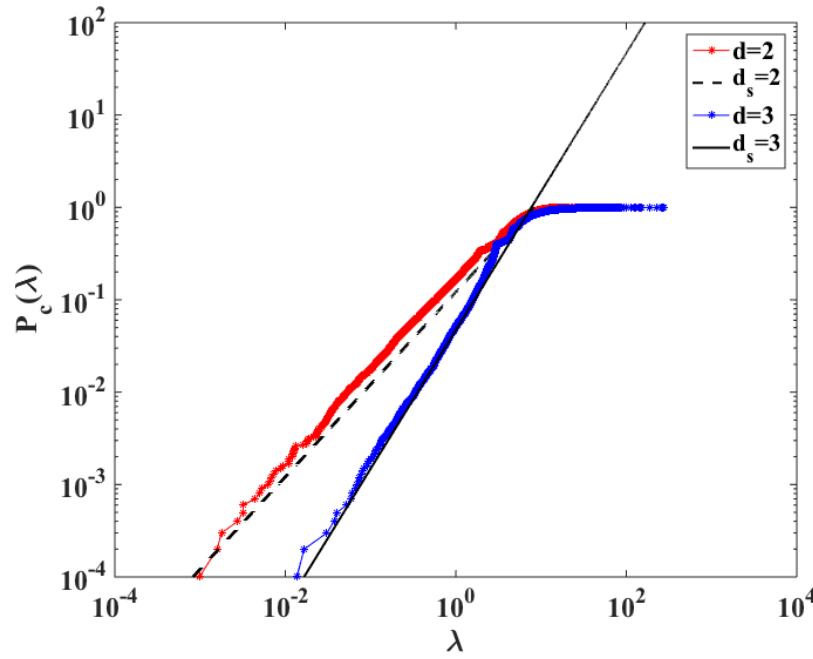
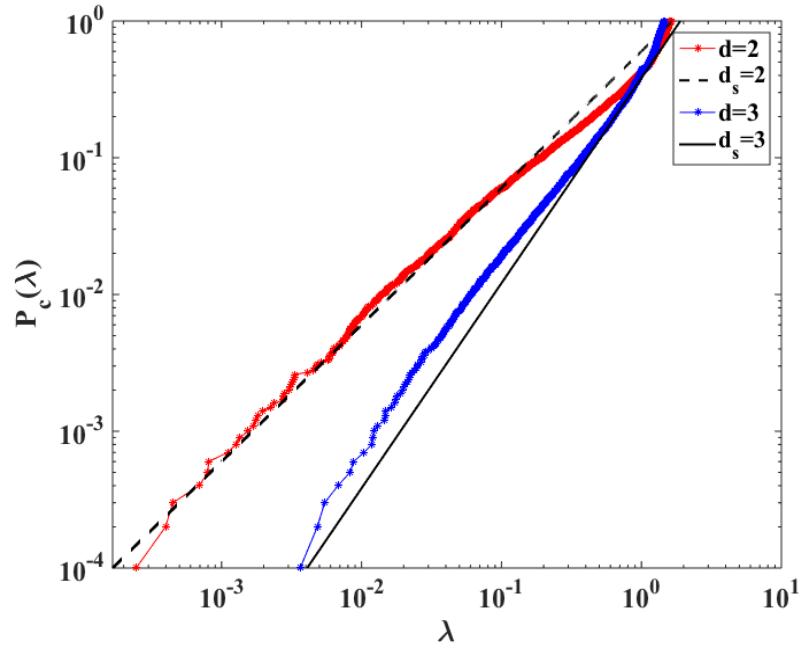
$s=-1$ $d=3$



Apollonian random network
Planar projection of the NGF



Spectral dimensions of NGF with $s=-1$



$$L_{ij} = k_i \delta_{ij} - \alpha_{ij}$$

$$\rho(\lambda) \approx \lambda^{-(d_s/2-1)}$$

$$P_c(\lambda) \approx \lambda^{-d_s/2}$$

$$L_{ij} = \delta_{ij} - \alpha_{ij}/k_i$$

$$\rho(\lambda) \approx \lambda^{-(d_s/2-1)}$$

$$P_c(\lambda) \approx \lambda^{-d_s/2}$$

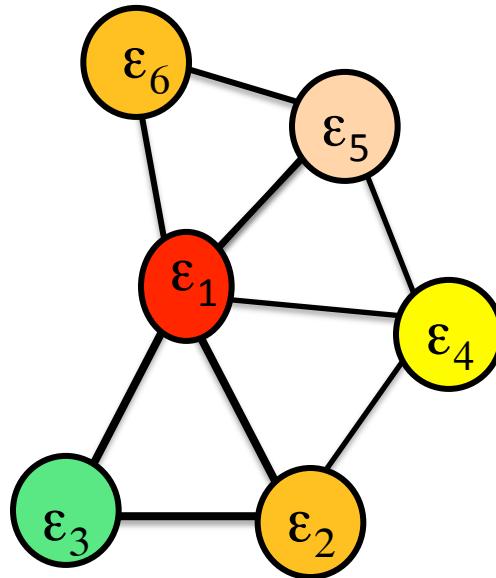
Energies of the nodes

Not all the nodes are the
same!

Let assign to each node i

an energy ε from a

$g(\varepsilon)$ distribution



Energy of the δ -faces

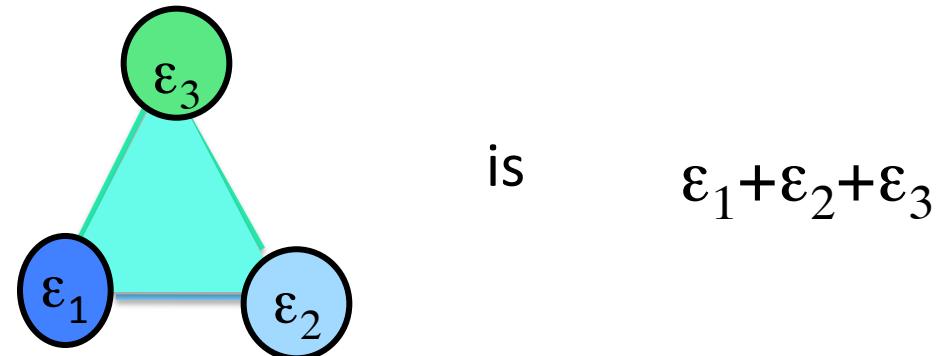
Every δ -face α is associated to an energy which is the sum of the energy of the nodes belonging to α

$$\varepsilon_\alpha = \sum_{i \in \alpha} \varepsilon_i$$

For example, in $d=3$

the energy of a link

the energy of a face



Network Geometry with Flavor

Starting from a single d-dimensional simplex

(1) GROWTH :

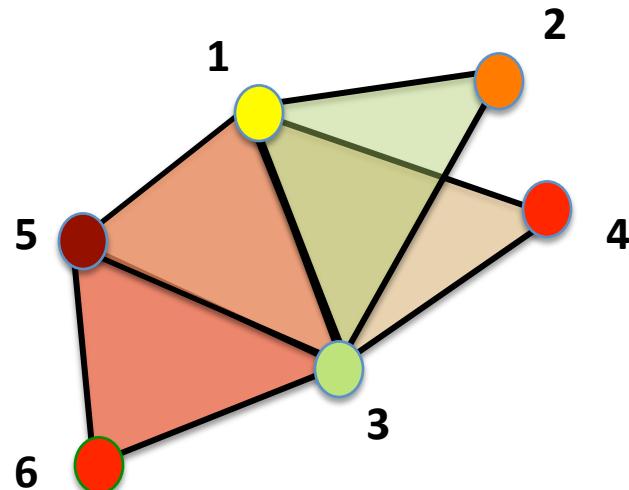
At every timestep we add a new node d simplex

(formed by one new node and an existing $(d-1)$ -face).

The new node has energy ε drawn from the distribution $g(\varepsilon)$

(2) ATTACHMENT :

The probability that a new node will be connected to a face α depends on the flavor $s=-1,0,1$ and is given by



$$\Pi_{\mu}^{[s]} = \frac{e^{-\beta \varepsilon_{\mu}} (1 + s n_{\mu})}{\sum_{\mu'} e^{-\beta \varepsilon_{\mu'}} (1 + s n_{\mu'})}$$

Bianconi & Rahmede (2016)

NGF
with flavor $s=-1$
Manifolds

Manifolds in d=3

*In NGF with $s=-1$ and $d=3$
also called*

*Complex Quantum Network Manifolds
the average of the generalized degree follow
the **Fermi-Dirac, Boltzmann and Bose-Einstein**
distribution
respectively for
triangular faces, links and nodes*

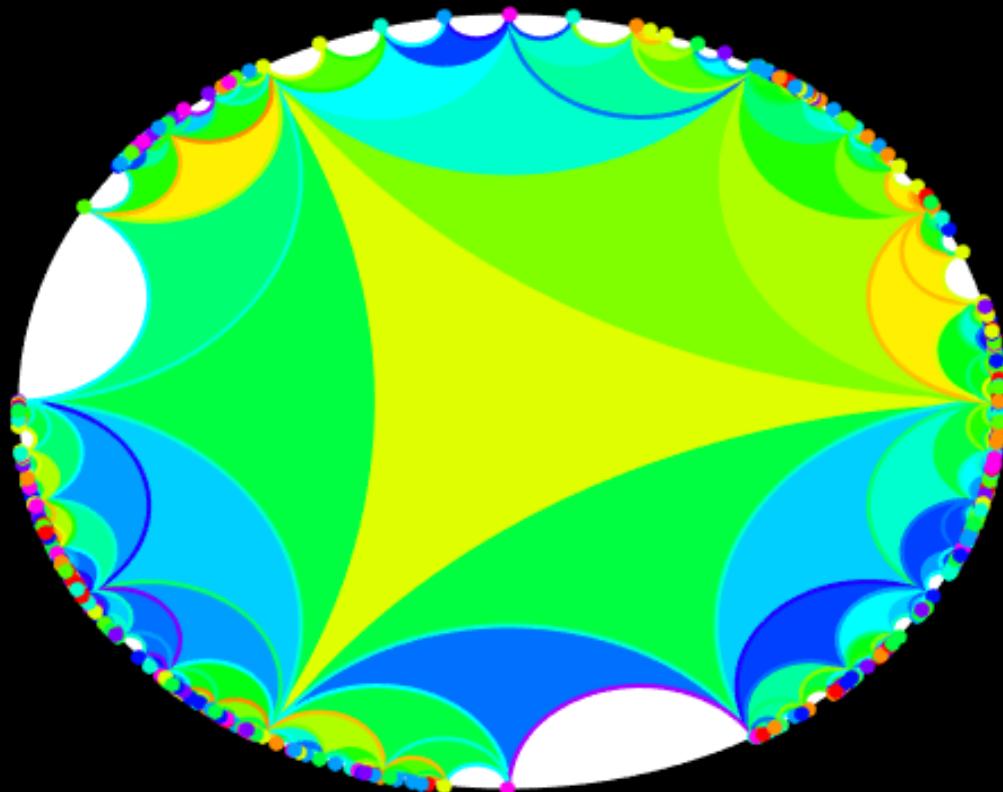
The average of the generalized degree of the NGF over δ -faces of energy ε

$$\left\langle \left[k_{d,\delta} - 1 \right] \middle| \varepsilon \right\rangle$$

follows
a regular pattern

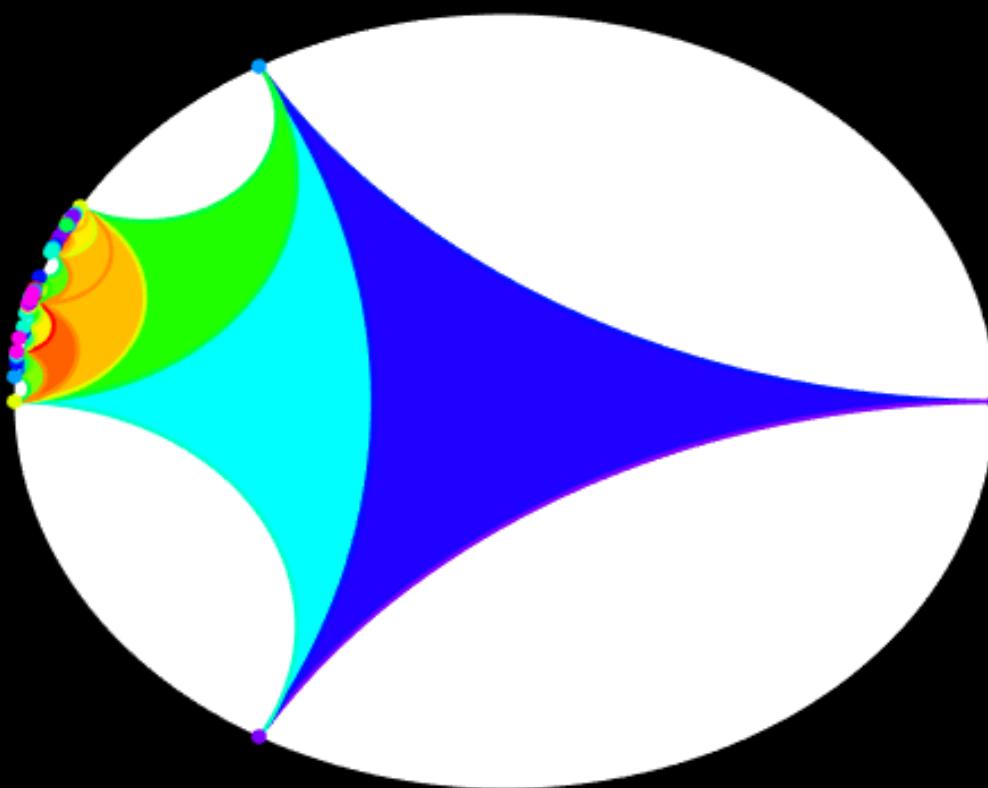
flavor	$s = -1$	$s = 0$	$s = 1$
$\delta = d - 1$	Fermi-Dirac	Boltzmann	Bose-Einstein
$\delta = d - 2$	Boltzmann	Bose-Einstein	Bose-Einstein
$\delta \leq d - 3$	Bose-Einstein	Bose-Einstein	Bose-Einstein

Emergent geometry at high temperature



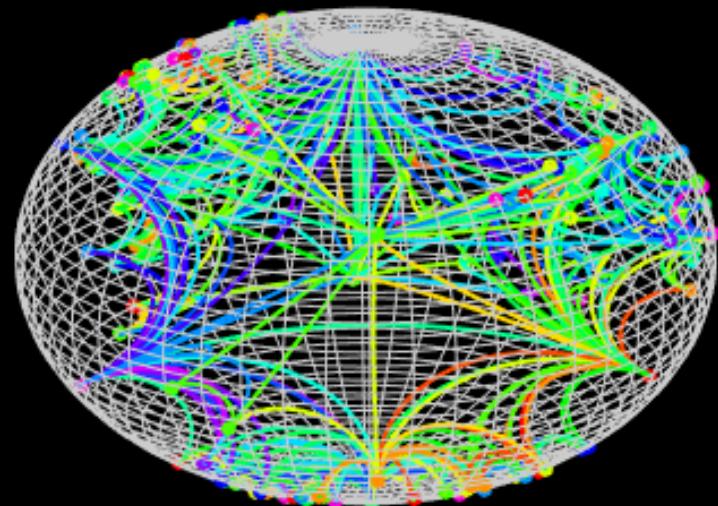
$d=2$
 $\beta=0.01$

Emergent geometry at low temperature



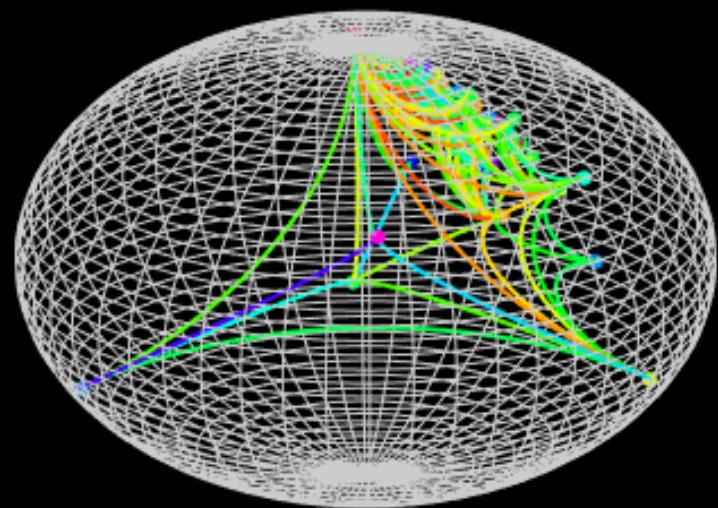
$d=2$
 $\beta=5$

Emergent geometry at high temperature



$d=3$
 $\beta=0.01$

Emergent geometry at low temperature



$d=3$
 $\beta=5$

Conclusions

Emergent complex network geometries

- Show small world behavior, finite clustering coefficient, high modularity, finite spectral dimension which are properties of many real network datasets
- display a distribution of the local curvature that can be exponential or scale-free
- for $m=2$ they generate random manifolds

Network Geometry with Flavor

- are scale-free for $d>1$ also when they do not include an explicit preferential attachment. The dimension $d=3$ is the lowest dimension for obtaining scale-free manifold.
- They have generalized degrees displaying Fermi-Dirac, Boltzmann or Bose-Einstein distribution depending on the dimensionality of the δ -face and on the flavours s .

Collaborators and References

Emergent network geometry

G. Bianconi C. Rahmede Network geometry with flavor PRE 93, 032315 (2016)

G. Bianconi and C. Rahmede Scientific Reports 5, 13979 (2015)

G. Bianconi and C. Rahmede Scientific Reports 7, 41974 (2017)

Z. Wu, G. Menichetti, C. Rahmede and G. Bianconi Scientific Reports 5, 10073 (2015).

O. T. Courtney and G. Bianconi PRE 95, 062301(2017)

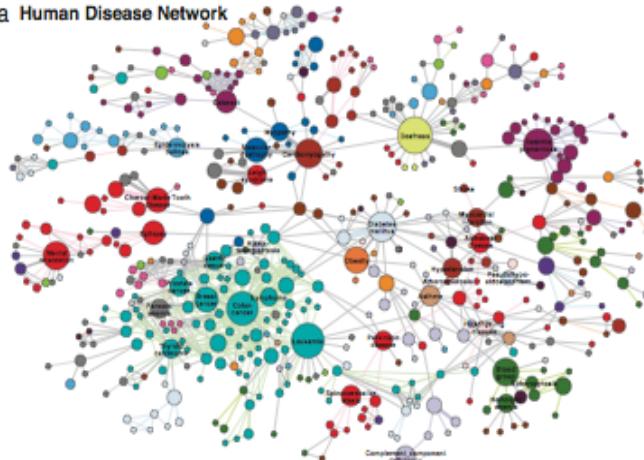
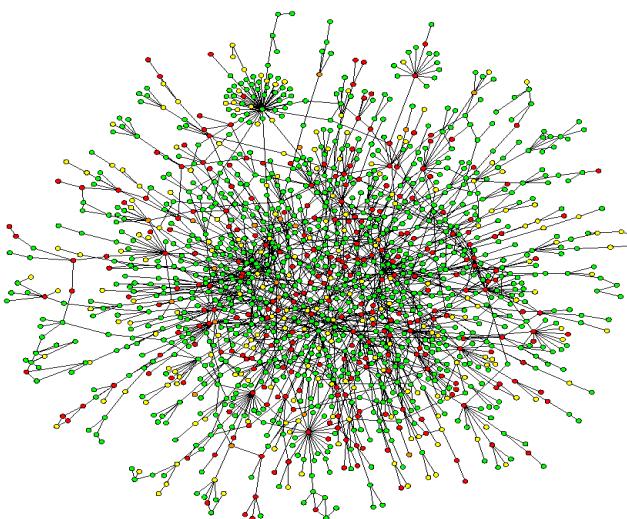
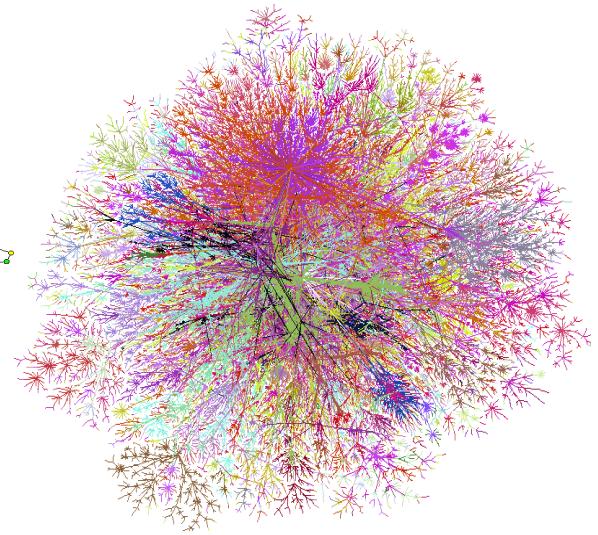
Ensembles of simplicial complexes

O. T. Courtney and G. Bianconi PRE 93, 062311 (2016)

A primer on Network Theory

Complex Networks

a Human Disease Network



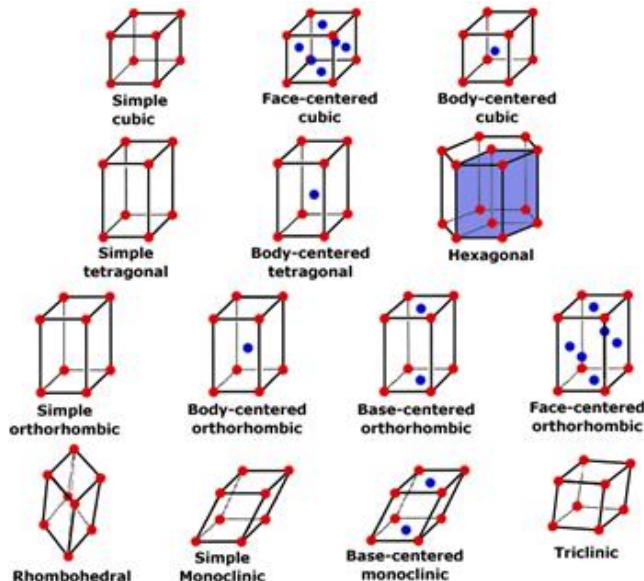
describe

the interactions between the elements of large complex

Biological, Social and Technological systems.

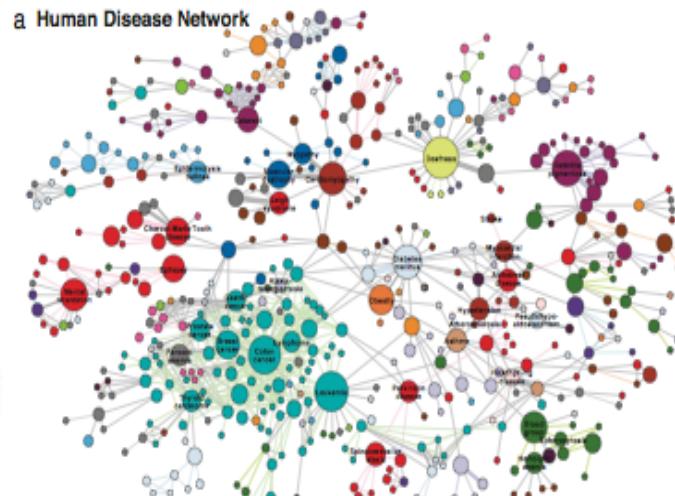
Complexity: between randomness and order

LATTICES



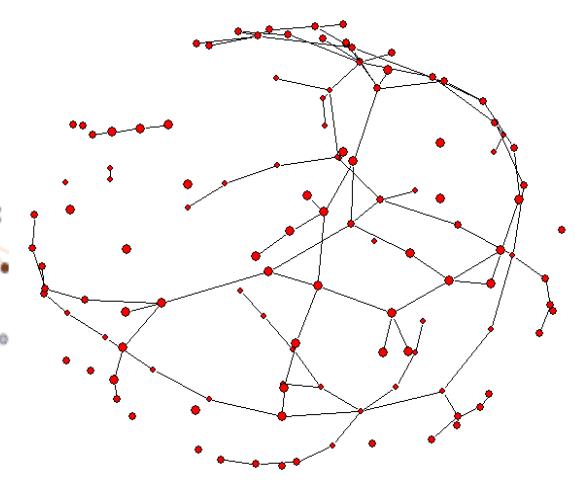
Regular networks
Symmetric

COMPLEX NETWORKS



Scale free networks
Small world
With communities
ENCODING INFORMATION IN
THEIR STRUCTURE

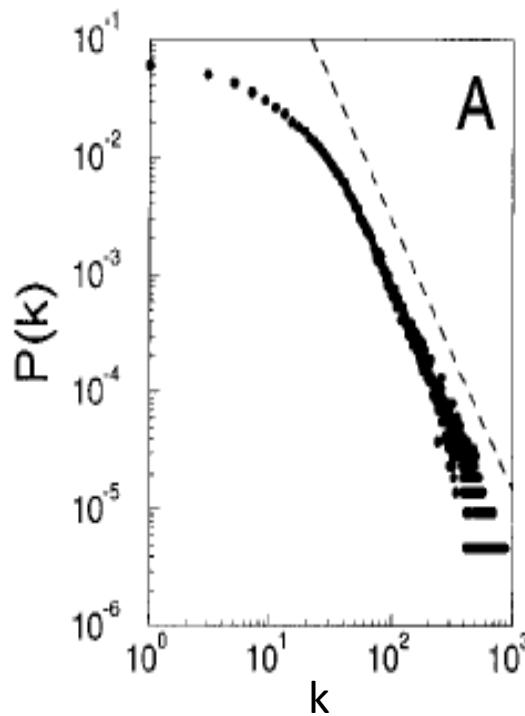
RANDOM GRAPHS



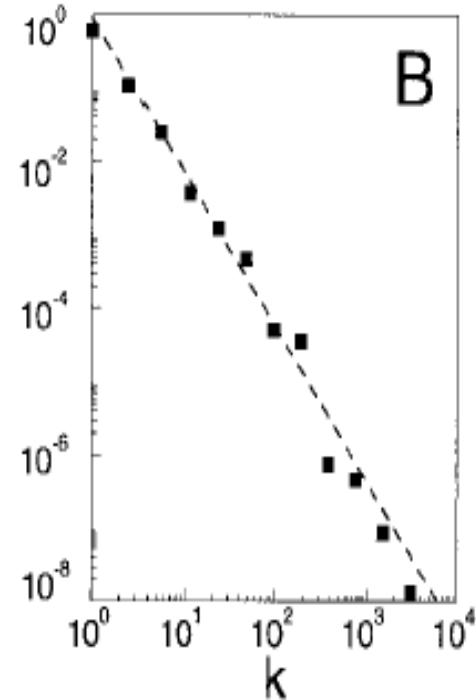
Totally random
Binomial degree
distribution

Scale-free networks

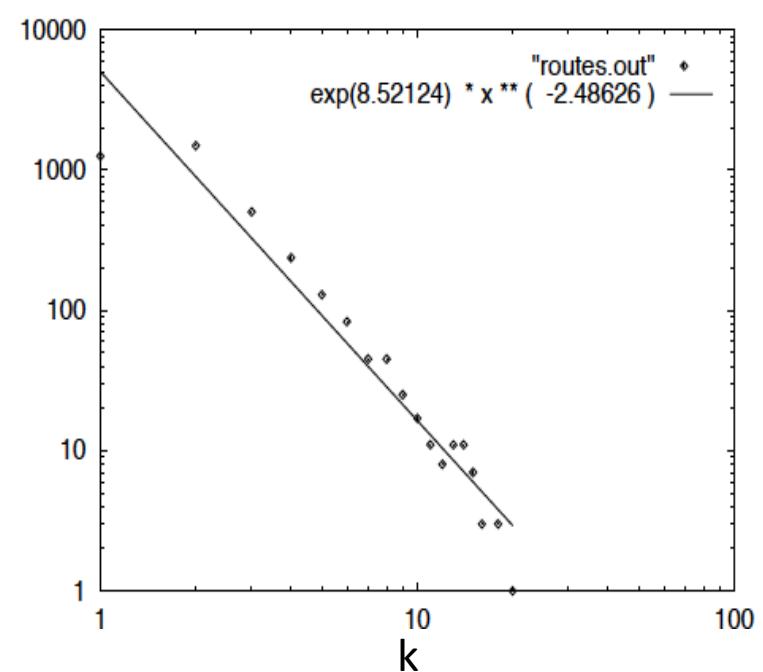
Actor networks



WWW



Internet

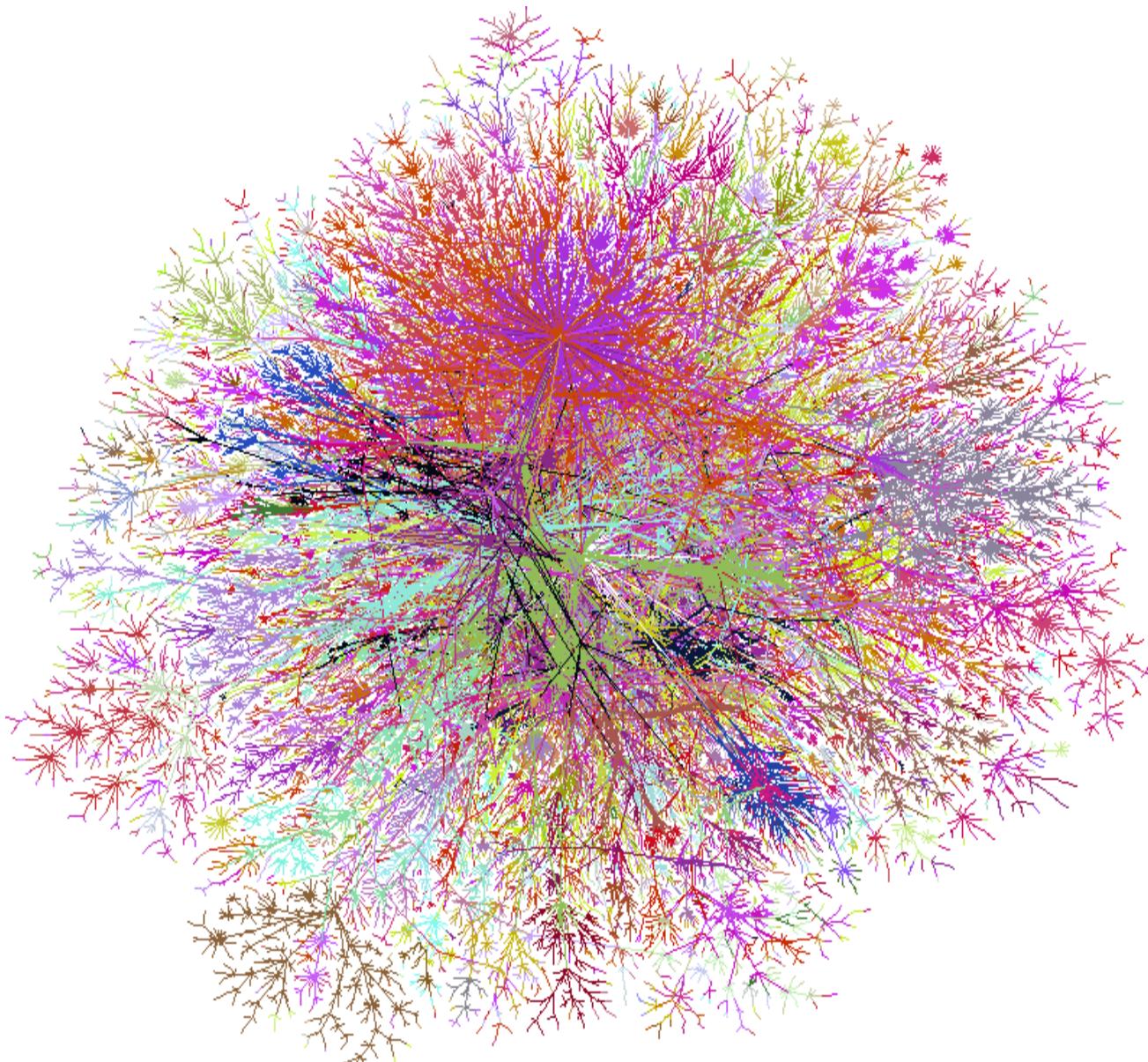


Faloutsos, Faloutsos and Faloutsos 1999

$$P(k) \propto k^{-\gamma} \quad \gamma \in (2,3]$$

$\langle k \rangle$ finite
 $\langle k^2 \rangle \rightarrow \infty$

Scale-free networks



Technological networks

Internet

World-Wide Web

Biological networks

Metabolic networks,

Protein-interaction networks,

Transcription networks

Transportation networks

Airport networks

Social networks

Collaboration networks

Citation networks

Facebook

Economical networks

Networks of shareholders

The World Trade Web

BA scale-free model

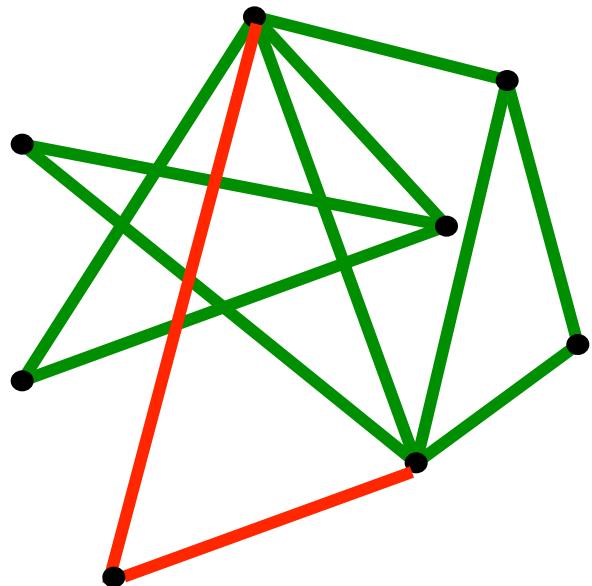
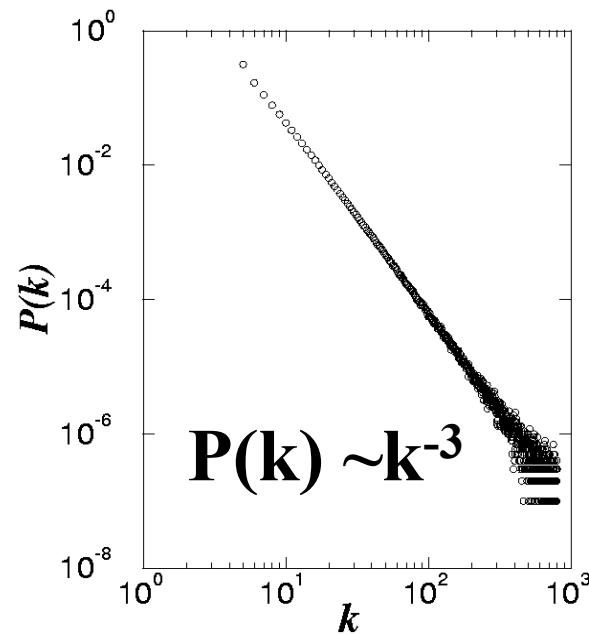
(1) GROWTH :

At every timestep we add a new node with m edges (connected to the nodes already present in the system).

(2) PREFERENTIAL ATTACHMENT :

The probability $\Pi(k_i)$ that a new node will be connected to node i depends on the connectivity k_i of that node

$$\Pi(k_i) = \frac{k_i}{\sum_j k_j}$$



Barabási et al. Science (1999)

Growth by uniform attachment of links

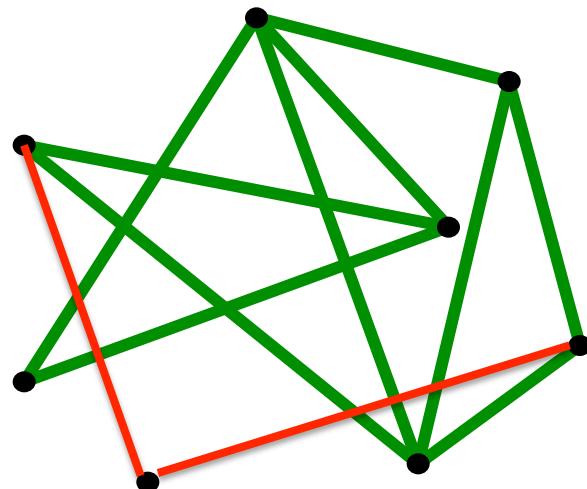
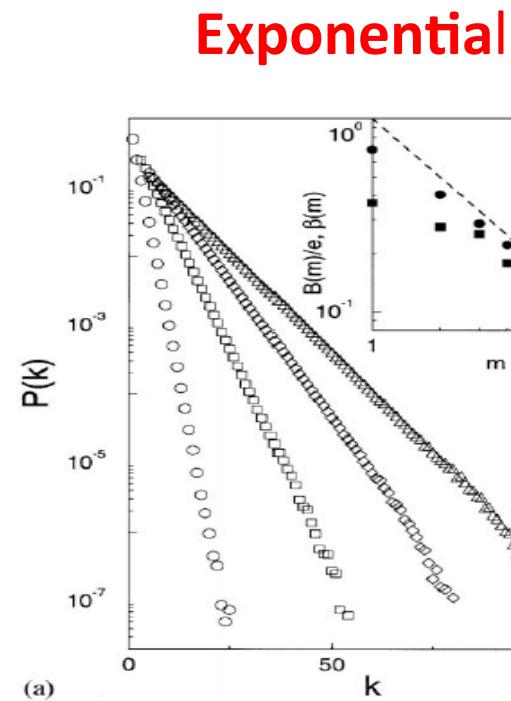
(1) GROWTH :

At every timestep we add a new node with m edges
(connected to the nodes already present in the system).

(2) UNIFORM ATTACHMENT :

The probability Π_i that a new node will be connected to
node i is *uniform*

$$\Pi_i = \frac{1}{N}$$

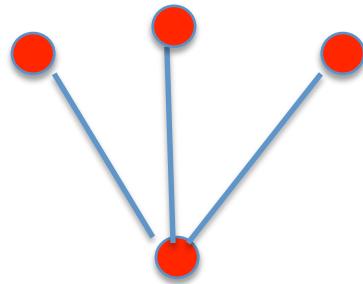


Barabási & Albert, Physica A (1999)

Growing networks and quantum statistics

The unitary cell of growing networks

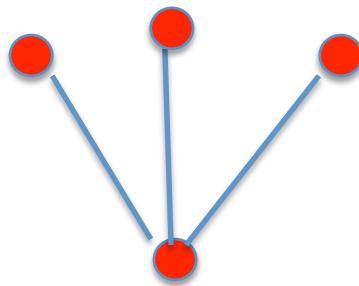
Consider the following “unitary cell” of a network



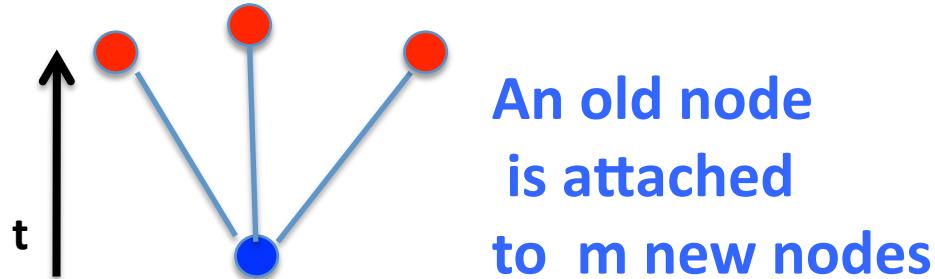
To grow a network need to attach the unitary cell to the exiting network. We have two options

The unitary cell of growing networks

Consider the following “unitary cell” of a network

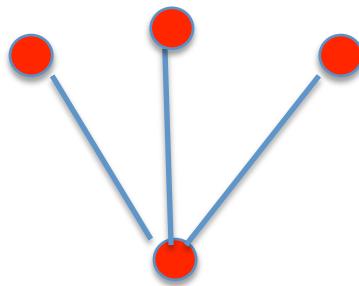


To grow a network need to attach the unitary cell to the exiting network. We have two options

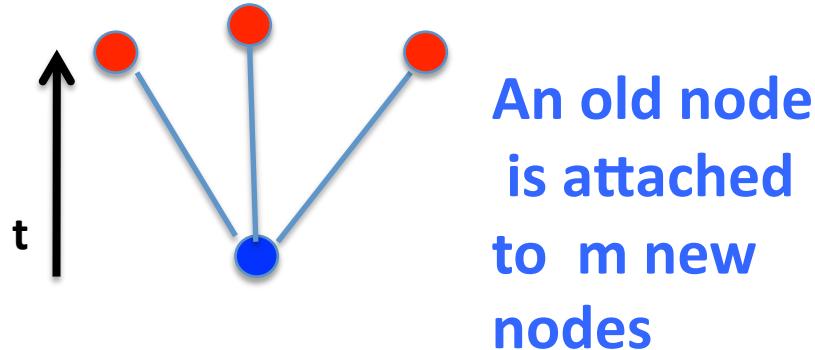


The unitary cell of growing networks

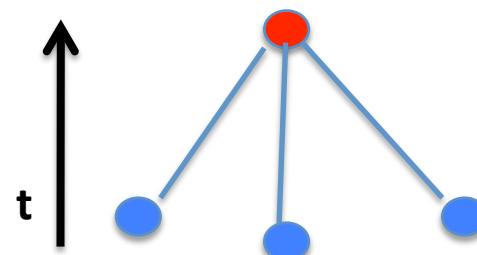
Consider the following “unitary cell” of a network



To grow a network need to attach the unitary cell to the exiting network. We have two options



An old node
is attached
to m new
nodes



A new node is
attached to
 m old nodes

Intrinsic properties of the nodes

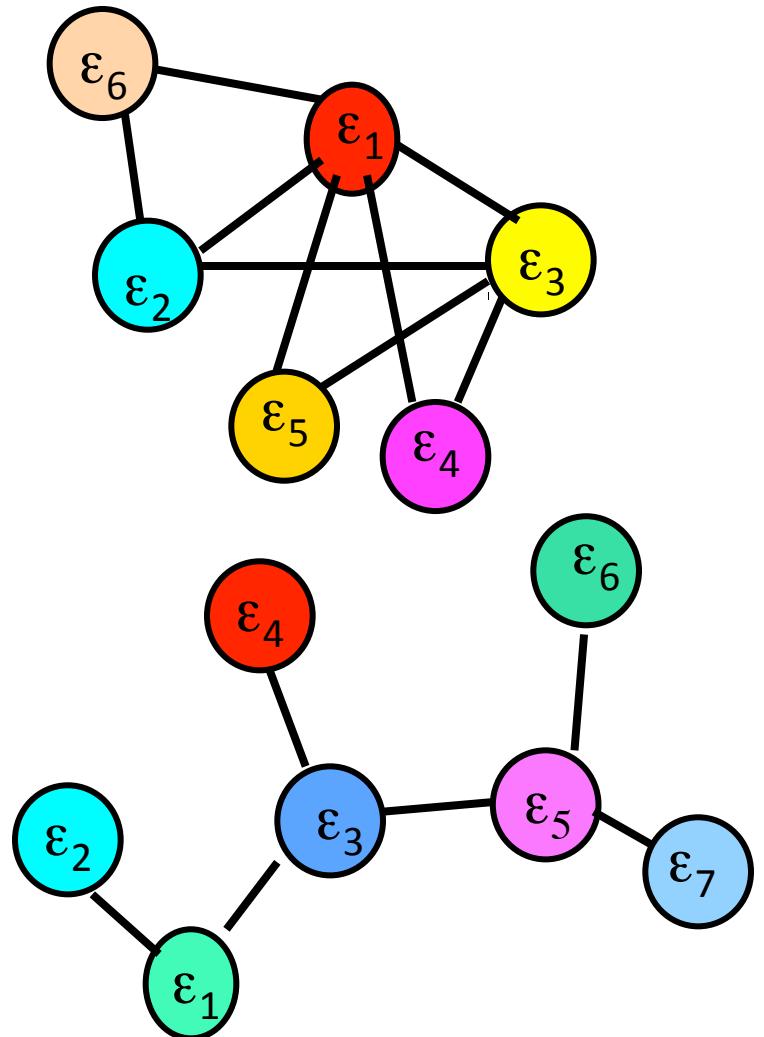
Not all the nodes are the same!

Let assign to each node

an energy ε from a

$g(\varepsilon)$ distribution

that describes an intrinsic quality of the node



Fitness

The fitness of a node i is given by

$$\eta_i = e^{-\beta \varepsilon_i}$$

where $\beta=1/T$ is the inverse temperature

If $\beta=0$ all the nodes have same fitness

If $\beta>>1$ small differences in energy have large impact on the fitness of the faces

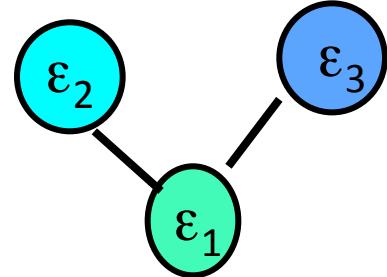
The Complex Growing Cayley tree model

Growth:

- At each time attach a old node with $\rho_i=1$ to m links are added to the network and then we set $\rho_i=0$.
- To each node i we assign a energy ε_i from a $g(\varepsilon)$ distribution

Attachment towards high energy nodes:

- The node i to which we attach the new “unitary cell” is chosen with probability



$$\Pi_i = \frac{e^{-\beta \varepsilon_i} \rho_i}{\sum_j e^{-\beta \varepsilon_j} \rho_j}$$

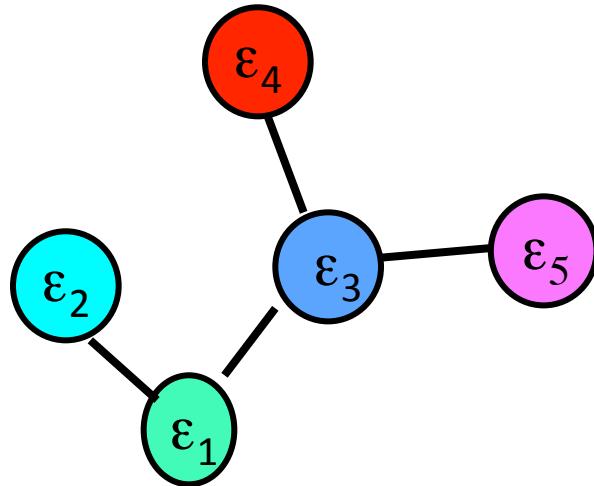
The Complex Growing Cayley tree model

Growth:

- At each time attach a old node with $\rho_i=1$ to m links are added to the network and then we set $\rho_i=0$.
- To each node i we assign a energy ε_i from a $g(\varepsilon)$ distribution

Attachment towards high energy nodes:

- The node i to which we attach the new “unitary cell” is chosen with probability



$$\Pi_i = \frac{e^{-\beta \varepsilon_i} \rho_i}{\sum_j e^{-\beta \varepsilon_j} \rho_j}$$

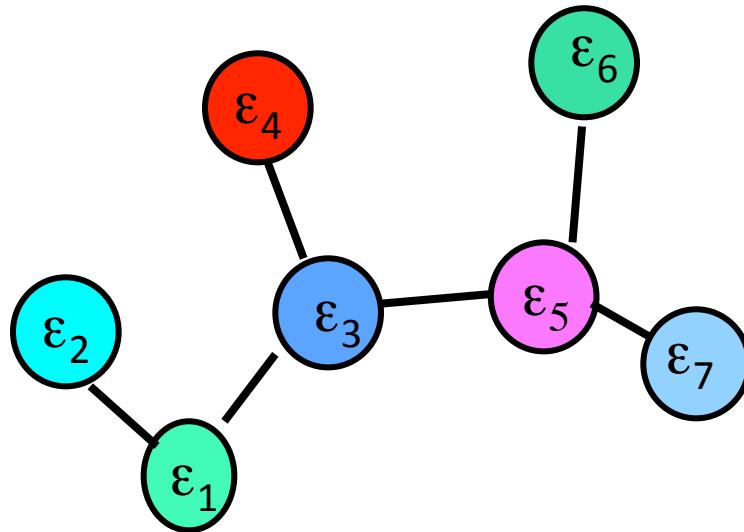
The Complex Growing Cayley tree model

Growth:

- At each time attach a old node with $\rho_i=1$ to m links are added to the network and then we set $\rho_i=0$.
- To each node i we assign a energy ε_i from a $g(\varepsilon)$ distribution

Attachment towards high energy nodes:

- The node i to which we attach the new “unitary cell” is chosen with probability



$$\Pi_i = \frac{e^{-\beta \varepsilon_i} \rho_i}{\sum_j e^{-\beta \varepsilon_j} \rho_j}$$

MF Equations for the growing scale-free network and the complex growing Cayley tree network

- Scale-free
Bianconi-Barabasi model

$$\frac{d\bar{k}_i(t)}{dt} = m \frac{e^{-\beta\varepsilon_i} \bar{k}_i}{\sum_j e^{-\beta\varepsilon_j} \bar{k}_j}$$

- Complex Growing
Cayley tree

$$\frac{d\bar{\rho}_i(t)}{dt} = - \frac{e^{-\beta\varepsilon_i} \bar{\rho}_i}{\sum_j e^{-\beta\varepsilon_j} \bar{\rho}_j}$$

Classical and quantum statistics

Classical particles

Boltzmann statistics-(s=0)

occupation number $n=0,1,2,\dots$

Quantum particles

-Fermi particles-(s=-1)

occupation number $n=0,1$

-Bose particles-(s=1)

occupation number $n=0,1,2\dots$

Average occupation number
Classical and quantum statistics

$$n(\varepsilon) = \frac{1}{e^{\beta(\varepsilon - \mu)} + s}$$

Solution of the Bianconi-Barabasi model

The average degree of node increases in time as a power-law with an exponent depending on its energy, β and a self-consistent constant μ_B

$$\bar{k}_i(t) = m \left(\frac{t}{t_i} \right)^{f_B(\varepsilon)} \quad f_B(\varepsilon) = e^{-\beta(\varepsilon - \mu_B)}$$

The self consistent constant μ_B is determined by the same equation fixing the chemical potential in a Bose gas!

$$1 = \int d\varepsilon \ g(\varepsilon) \frac{1}{e^{\beta(\varepsilon - \mu_B)} - 1}$$

Solution of the complex growing Cayley model

The average ρ of node (determining the probability that a node is at the interface) decreases in time as a power-law with an exponent depending on its energy, β and a self-consistent constant μ_F

$$\bar{\rho}_i(t) = m \left(\frac{t}{t_i} \right)^{-f_F(\varepsilon)} \quad f_F(\varepsilon) = e^{-\beta(\varepsilon - \mu_F)}$$

The self consistent constant μ_F is determined by the same equation fixing the chemical potential in a Fermi gas!

$$\frac{1}{m} = \int d\varepsilon g(\varepsilon) \frac{1}{e^{\beta(\varepsilon - \mu_F)} + 1}$$

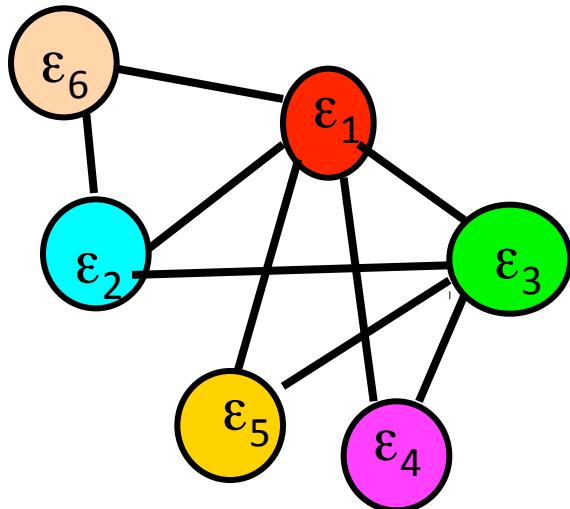
The Bianconi-Barabasi model

Growth:

- At each time a new node and m links are added to the network.
- To each node i we assign a energy ε_i from a $g(\varepsilon)$ distribution

Preferential attachment towards high degree low energy nodes:

- Each node connects to the rest of the network by m links attached preferentially to well connected, low energy nodes.



$$\Pi_i = \frac{e^{-\beta \varepsilon_i} k_i}{\sum_j e^{-\beta \varepsilon_j} k_j}$$

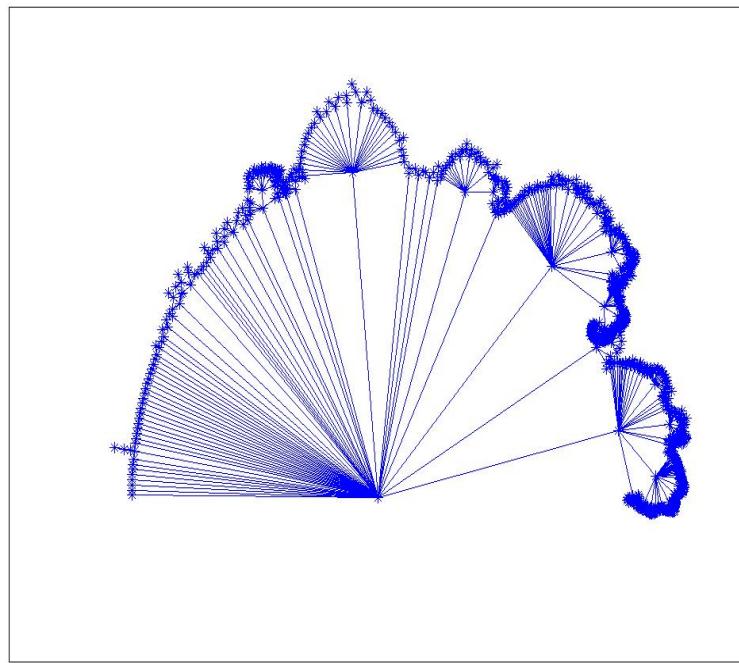
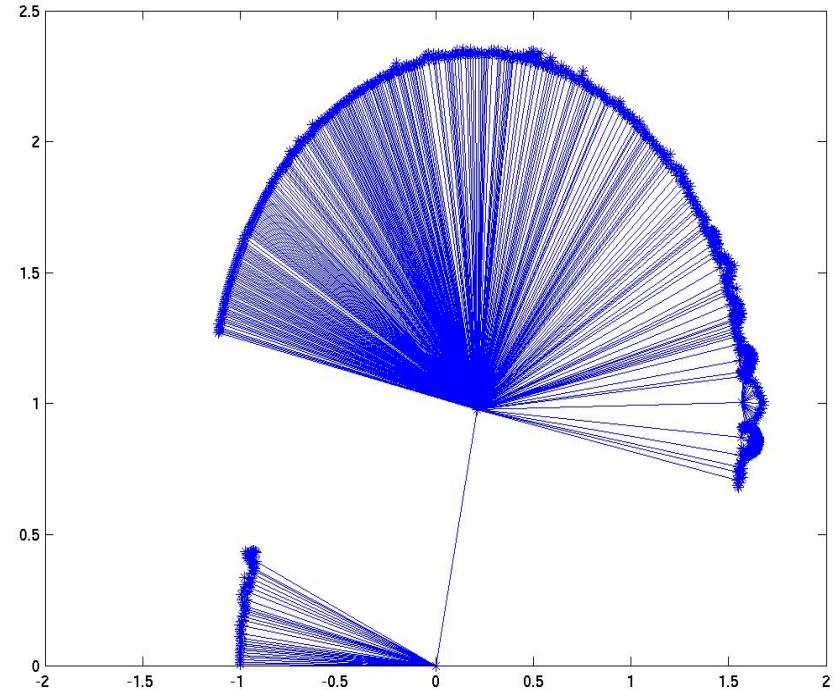
Bose-Einstein condensation in complex networks

Scale-Free
Fit-get-rich Phase

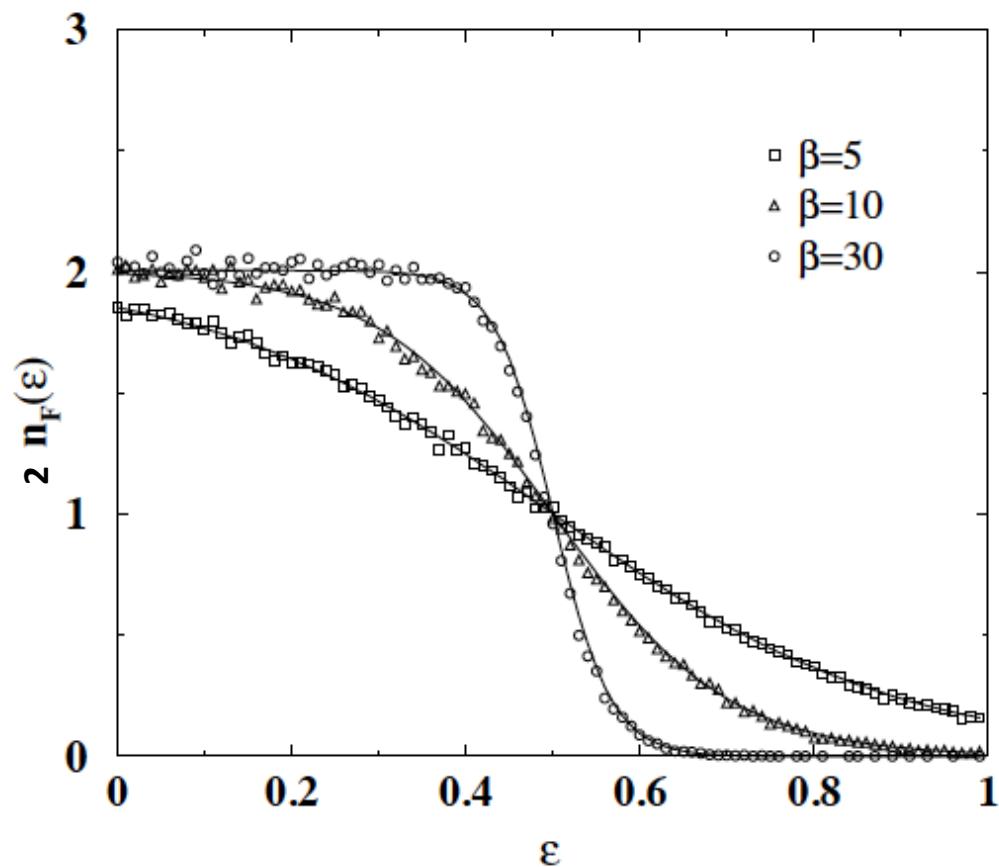
Bose-Einstein
condensate Phase

$$\beta < \beta_C$$

$$\beta > \beta_C$$



Energy distribution of the nodes at the bulk of the growing Cayley tree network



G. Bianconi (2002)