
Large Fluctuations in the Algebraic Connectivity of
Gaussian Random Geometric Graphs

Matthew Garrod

EPSRC Centre for Doctoral Training in the Mathematics of Planet Earth

Imperial College London

Supervisor: Nick Jones

September 11, 2017

Matthew Garrod
Large Fluctuations in the Algebraic Connectivity of Gaussian Random Geometric Graphs



1 Motivation
Random Geometric Graphs
When is Knowing Node Locations Useful?
The Algebraic Connectivity

2 Large Fluctuations in the Algebraic Connectivity

3 Why? - Correlations between the Algebraic Connectivity and Other
Network Properties

Matthew Garrod
Large Fluctuations in the Algebraic Connectivity of Gaussian Random Geometric Graphs



Random Geometric Graphs

We construct a random geometric graph (RGG) as follows:
1 Draw a vector of random positions X = (X1,X2, ...,XN) from some

distribution P(X ).
2 Connect nodes i and j if their Euclidean distance is less than R ie.
|Xi − Xj | < R.

R

Figure: Illustrating the rule used to generate RGGs
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Random Geometric Graphs

(a) Uniform distribution in [0, 1]2 (b) 2D Gaussian distribution in R2

Figure: Examples of RGGs with different node distributions.
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Random Geometric Graphs

Node Locations need not represent positions in physical space. They
may represent any continuous (or perhaps discrete) node attributes.

e.g in social networks they might represent the ‘social coordinates’
of individuals. Different dimensions might represent characteristics
such as age, income, social background etc..

Spatial networks/Random Geometric Graphs provide a framework for
modeling networks which show assortative mixing (ie. nodes with
similar characteristics more likely to share connections).

− > Motivation to consider spaces with d ≥ 2!
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Randomness in RGGs

Ensemble of RGGs

1) Multiple samples drawn 
from the same RGG 
ensemble.

3) Estimation of the 
distribution of q across 
the ensemble. 

q

P(q)

q(G1)

2) Computation of some 
network property, q.

q(G2) q(G3)

G1 G2 G3

Figure: Individuals are more likely to interact with those with similar “social
coordinates”
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When is Knowledge of Node Locations Useful?

Estimates of Mean Shortest Path 
Length, Mean Degree, Dynamical 
Properties etc..?
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When is Knowledge of Node Locations Useful?

Case 1

Network Properties are 
similar for most ensemble 
members

q

P(q)

Case 2 

Network Properties vary 
widely across the 
ensemble.

q

P(q)

Knowing the distribution of 
locations is sufficient to estimate  
network properties!

High Variance: knowing 
node locations allows 
us to narrow down the 
possible values of q!
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The Coefficient of Variation

The Coefficient of Variation can be used to measure the size of
fluctuations in a property, q, relative to its mean. It is defined as the
standard deviation divided by the mean:

CV (q) =
σ(q)

< q >
(1)

e.g if CV = 0.1 then we have fluctuations of the order 10% the size of the
mean.

If we want to estimate some q precisely for a large graph then
fluctuations greater than 5− 10% the size of the mean might be
considered as large fluctuations.
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The Algebraic Connectivity

Note: we consider           for the largest connected component of the network.

Laplacian Matrix

Has Eigenvalues:

Is zero!
Algebraic Connectivity

Q: What is the distribution of Algebraic 
Connectivity values across RGG ensembles?

Linear Diffusion 
timescale

Consensus Time

Synchonization of 
Coupled 
Oscillators
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Methodology

We consider three distinct RGG ensembles:

1 Periodic Boundaries: Uniform distribution in [0, 1]d with toroidal
boundary conditions. We refer to these networks as PRGGs

2 Solid Boundaries: Uniform distribution in [0, 1]d with solid
boundaries. We refer to these as SRGGs

3 Gaussian Node Positions: Node locations drawn from multivariate

gaussian density f (x1, ..., xd) = 1(
2π
) d

2
e−

(x21+...+x2d )

2 on Rd . We will

refer to networks of this class as GRGGs.
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Methodology

(a) Uniform distribution in [0, 1]2 (b) 2D Gaussian distribution in R2

Figure
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Methodology

Figure: Graphic illustrating the method used to sample from P(µ2) for RGGs.

We also extract the largest connected component of the network before
computing µ2 and other network properties.

We will use κ to refer to the mean degree of ensembles.
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The value of CV (µ2) can be relatively large (> 0.1) even
for networks of size N = 105.

(a) Periodic and Solid (b) Gaussian

Figure: Plots showing estimates of CV (µ2) as a function of the dimension for the three
different RGG ensembles. Shown for the case of mean degree, κ = 20.0 for network
ensembles of sizes N = 104 and 105. Also shown is the CV (µ2) for the ER random
graph model.
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Large fluctuations in the µ2 of GRGGs are associated with the presence of weakly

connected subgraphs.

(a) µ2 = 0.01,FP = 0.03 (b) µ2 = 0.07,FP = 0.13 (c) µ2 = 0.16,FP = 0.46

Figure: Plots showing networks drawn from the ensemble of GRGGs with
N = 1000, d = 2 and κ = 20.0. Nodes are colored according to partition
corresponding to the eigenvector associated with µ2. FP is the fraction of nodes
in the smaller partition.
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Large Fluctuations in the µ2 of SRGGs are associated with the presence a small

number of weakly connected nodes.

(a) µ2 = 0.23,FP = 0.02 (b) µ2 = 0.35,FP = 0.04 (c) µ2 = 1.7,FP = 0.47

Figure: Plots showing networks drawn from the ensemble of SRGGs with
N = 1000, d = 5 and κ = 20.0. Nodes are colored according to partition
corresponding to the eigenvector associated with µ2. FP is the fraction of nodes
in the smaller partition.

Matthew Garrod
Large Fluctuations in the Algebraic Connectivity of Gaussian Random Geometric Graphs



Different factors influence µ2 for RGGs in different
dimensions (Solid BCs)

(a) d = 2,S (b) d = 5,S (c) d = 10,S

Figure: Scatter plot showing the joint distribution of µ2 and average shortest path
length, L, for RGGs with N = 1000. Shown for κ = 20.0 with solid boundaries.
Points are colored according to the minimum degree of corresponding network
ensemble member.
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Different factors influence µ2 for RGGs in different
dimensions (Periodic BCs)

(a) d = 2,P (b) d = 5,P (c) d = 10,P

Figure: Scatter plot showing the joint distribution of µ2 and average shortest path
length, L, for RGGs with N = 1000. Shown for κ = 20.0 with periodic
boundaries. Points are colored according to the minimum degree of corresponding
network ensemble member.
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The relationship between µ2 and other network properties within a network

ensemble is dependent on both the ensemble type and the spatial dimension

(a) Corr(µ2, L) (b) Corr(µ2,D) (c) Corr(µ2, κMin).

Figure: Plot showing Spearmans rank correlation coefficient, ρ between µ2 and
other network properties as a function of dimension. Shown for N = 1000,
κ = 20.0. Error bars show 95% confidence intervals on ρ estimated via
bootsrapping.
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Is Knowing Node Locations Useful? (Revisited)

1 In RGGs with uniform node distributions µ2 is strongly influenced
by microscopic properties ie. the minimum degree

2 In RGGs with Gaussian node distributions µ2 is influenced by the
presence of mesoscopic structures.

In case 1) we might need exact knowledge of node locations in order to
make predictions. In case 2) we may be able to make more gains without
knowing all node locations precisely.

Real situations may be modeled more realistically by Soft Random
Geometric Graphs where the probability of two nodes being
connected decays as a function of their separation distance.

We expect our results to generalize to some choices of connection
function.
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Conclusions

The presence of boundaries and heterogeneity in the distribution of
nodes are important factors for driving fluctuations in the algebraic
connectivity of RGGs.

We have observed these large fluctuations in various large but finite
sized RGG ensembles.

The covariation of the algebraic connectivity and network properties is
dependent both on the class of RGG ensemble and the dimensionality
of the space.

Knowledge of node locations in RGGs allows us to exactly specify the
network structure and compute the algebraic connectivity.

− > in the cases where CV (µ2) is large, knowledge of node locations
in RGGs gives us a predictive advantage over only having knowledge
of the distribution of node locations.
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Future Directions

Extension to Soft RGGs - How much do network properties vary
when we condition on knowledge of the node locations?

Analytic approaches - can we use techniques from random matrix
theory to derive distributional properties of µ2 or other network
properties?
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Thanks for listening!!
Any Questions?
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Mathematical Properties of RGGs

Many properties of RGGs are hard to compute analytically

For example, there is no closed form expression for the probability of
a given ensemble member.

However, we can estimate some of the important properties such as
the mean degree

κ =

∫
D
γ(|x − y |)dxdy (2)

The above equation works best as N →∞ with periodic boundary
conditions
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Generation of RGGs with Specified Degree

For the case where the domain of interest is of unit volume the probability
of some node j falling within the connection radius of a node i is given by
the volume of the ball of radius R in d dimensions. Multiplying by this
quantity by the number of remaining nodes in the network gives us an
expression for the mean degree of the form:

κ = (N − 1)
π

d
2

Γ(d+2
2 )

Rd . (3)

Inverting this formula allows us to obtain an expression for the connection
radius required to generate RGGs with mean degree κ in d dimensions for
a network with N nodes:

R =
1√
π

(
κ

N − 1
Γ

(
d + 2

2

)) 1
d

. (4)

This approach works well in practice for RGGs with periodic boundary
conditions. However, for RGGs generated in [0, 1]d with solid boundaries
the empirically observed mean degree of the ensemble, κEMP , will in
general be lower than the value of κ due to the presence of isolated nodes
at the boundaries.
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