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© Motivation
@ Random Geometric Graphs
@ When is Knowing Node Locations Useful?
@ The Algebraic Connectivity

© Large Fluctuations in the Algebraic Connectivity

© Why? - Correlations between the Algebraic Connectivity and Other
Network Properties

Matthew Garrod

Large Fluctuations in the Algebraic Connectivity of Gaussian Random Geometric




Random Geometric Graphs

We construct a random geometric graph (RGG) as follows:
© Draw a vector of random positions X = (X1, X, ..., Xjy) from some
distribution P(X).
© Connect nodes i and j if their Euclidean distance is less than R ie.
X~ Xj| <R
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Random Geometric Graphs

(a) Uniform distribution in [0, 1]? (b) 2D Gaussian distribution in R?

Figure: Examples of RGGs with different node distributions.
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Random Geometric Graphs

@ Node Locations need not represent positions in physical space. They
may represent any continuous (or perhaps discrete) node attributes.

@ e.g in social networks they might represent the ‘social coordinates’
of individuals. Different dimensions might represent characteristics
such as age, income, social background etc..

@ Spatial networks/Random Geometric Graphs provide a framework for
modeling networks which show assortative mixing (ie. nodes with
similar characteristics more likely to share connections).

— > Motivation to consider spaces with d > 2!
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Randomness in RGGs

Ensemble of RGGs

/ \ 1) Multiple samples drawn
from the same RGG

ensemble.

G1 G2 G3
2) Computation of some
network property, q.

P(q)
3) Estimation of the
distribution of q across
the ensemble.

q(G1) q(G2) a(G3)
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When is Knowledge of Node Locations Useful?

X = (X1, Xy,... Xy) HEEEE)) %

]P) X X X Estimates of Mean Shortest Path
Length, Mean Degree, Dynamical
( Ly A2y eeey N) - Properties etc..
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When is Knowledge of Node Locations Useful?

Case 1 P(q)

Network Properties are
similar for most ensemble

members Knowing the distribution of

locations is sufficient to estimate
network properties!

Case 2

Network Properties vary
widely across the
ensemble. P(q)

High Variance: knowing
node locations allows
us to narrow down the
possible values of q!
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The Coefficient of Variation

The Coefficient of Variation can be used to measure the size of
fluctuations in a property, g, relative to its mean. It is defined as the
standard deviation divided by the mean:

cv(e) = 2L (1)

e.g if CV = 0.1 then we have fluctuations of the order 10% the size of the
mean.

o If we want to estimate some q precisely for a large graph then
fluctuations greater than 5 — 10% the size of the mean might be
considered as large fluctuations.
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The Algebraic Connectivity

Laplacian Matrix
Li; = ZA'L']' — Ajj
J
Has Eigenvalues:

pr < p2 <. <un
Is zero! / Linear Diffusion
Algebraic Connectivity timescale
Consensus Time

Q: What is the distribution of Algebraic

Connectivity values across RGG ensembles? Synchonization of
Coupled
Oscillators

Note: we consider /,LQ for the largest connected component of the network.

Matthew Garrod EPSR o Maﬁfé‘ 1atics

Large Fluctuations in the Algebraic Connectivity of Gaussian Random Geometric




Methodology

We consider three distinct RGG ensembles:

@ Periodic Boundaries: Uniform distribution in [0,1]? with toroidal
boundary conditions. We refer to these networks as PRGGs

@ Solid Boundaries: Uniform distribution in [0, 1]¢ with solid
boundaries. We refer to these as SRGGs
© Gaussian Node Positions: Node locations drawn from multivariate
(X7 +...4+x5)
gaussian density f(x1,...,xq) = ( l)de 2 on RY. We will
27 2
refer to networks of this class as GRGGs.
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Methodology

(a) Uniform distribution in [0, 1]? (b) 2D Gaussian distribution in R?

Figure
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Methodology

2. Draw a set of random
(] o o o connections between the points
0 O ©
o o
o o O

1. Draw a set of N random

positions X ~ f
J 4. Output the sampled
values.

3.Calculate the
Algebraic Connectivity
of the Network.

Figure: Graphic illustrating the method used to sample from P(u,) for RGGs.

@ We also extract the largest connected component of the network before
computing pp and other network properties.

@ We will use k to refer to the mean degree of ensembles:
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The value of CV/(uy) can be relatively large (> 0.1) even
for networks of size N = 10°.
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(a) Periodic and Solid (b) Gaussian

Figure: Plots showing estimates of CV/(u2) as a function of the dimension for the three
different RGG ensembles. Shown for the case of mean degree, x = 20.0 for network
ensembles of sizes N = 10* and 10°. Also shown is the CV/(u2) for the ER random

graph model.
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© Why? - Correlations between the Algebraic Connectivity and Other
Network Properties
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Large fluctuations in the uy of GRGGs are associated with the presence of weakly

connected subgraphs.

(a) p2 = 0.01, Fp = 0.03 (b) pip = 0.07, Fp = 0.13 (c) po = 0.16, Fp = 0.46

Figure: Plots showing networks drawn from the ensemble of GRGGs with
N =1000,d = 2 and k = 20.0. Nodes are colored according to partition
corresponding to the eigenvector associated with p». Fp is the fraction of nodes

in the smaller partition.
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Large Fluctuations in the p, of SRGGs are associated with the presence a small

number of weakly connected nodes.

(a) M2 = 023, Fp =0.02 (b) H2 = 035, FP =0.04 (C) M2 = 1.7, Fp = 0.47

Figure: Plots showing networks drawn from the ensemble of SRGGs with
N =1000,d =5 and k = 20.0. Nodes are colored according to partition
corresponding to the eigenvector associated with p». Fp is the fraction of nodes

in the smaller partition.
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Different factors influence pu, for RGGs in different

Algebraic Connectivity
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Figure: Scatter plot showing the joint distribution of u, and average shortest path
length, L, for RGGs with N = 1000. Shown for x = 20.0 with solid boundaries.

Points are colored according to the minimum degree of corresponding network

ensemble member.
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Different factors influence pu, for RGGs in different
dimensions (Periodic BCs)
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Figure: Scatter plot showing the joint distribution of uy and average shortest path
length, L, for RGGs with N = 1000. Shown for x = 20.0 with periodic

boundaries. Points are colored according to the minimum degree of corresponding

network ensemble member.
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The relationship between i, and other network properties within a network

ensemble is dependent on both the ensemble type and the spatial dimension
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Figure: Plot showing Spearmans rank correlation coefficient, p between py and
other network properties as a function of dimension. Shown for N = 1000,

% = 20.0. Error bars show 95% confidence intervals on p estimated via
bootsrapping.
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Is Knowing Node Locations Useful? (Revisited)

@ In RGGs with uniform node distributions i is strongly influenced
by microscopic properties ie. the minimum degree
@ In RGGs with Gaussian node distributions (i, is influenced by the
presence of mesoscopic structures.
In case 1) we might need exact knowledge of node locations in order to
make predictions. In case 2) we may be able to make more gains without
knowing all node locations precisely.

@ Real situations may be modeled more realistically by Soft Random
Geometric Graphs where the probability of two nodes being
connected decays as a function of their separation distance.

@ We expect our results to generalize to some choices of connection

function.
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Conclusions

@ The presence of boundaries and heterogeneity in the distribution of
nodes are important factors for driving fluctuations in the algebraic
connectivity of RGGs.

@ We have observed these large fluctuations in various large but finite
sized RGG ensembles.

@ The covariation of the algebraic connectivity and network properties is
dependent both on the class of RGG ensemble and the dimensionality
of the space.

@ Knowledge of node locations in RGGs allows us to exactly specify the
network structure and compute the algebraic connectivity.

@ — > in the cases where CV/(u2) is large, knowledge of node locations
in RGGs gives us a predictive advantage over only having knowledge
of the distribution of node locations.
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Future Directions

@ Extension to Soft RGGs - How much do network properties vary
when we condition on knowledge of the node locations?

e Analytic approaches - can we use techniques from random matrix
theory to derive distributional properties of uy or other network

properties?
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Thanks for listening!!
Any Questions?
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Mathematical Properties of RGGs

@ Many properties of RGGs are hard to compute analytically

@ For example, there is no closed form expression for the probability of
a given ensemble member.

@ However, we can estimate some of the important properties such as
the mean degree

o= / 7(Ix — y|)dxdy )
D

The above equation works best as N — oo with periodic boundary

conditions
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Generation of RGGs with Specified Degree

For the case where the domain of interest is of unit volume the probability
of some node j falling within the connection radius of a node /i is given by
the volume of the ball of radius R in d dimensions. Multiplying by this
quantity by the number of remaining nodes in the network gives us an

expression for the mean degree of the form:
d

d+2
r<°)
Inverting this formula allows us to obtain an expression for the connection

radius required to generate RGGs with mean degree x in d dimensions for
a network with N nodes:

R

k=(N-1) RY. (3)

This approach works well in practice for RGGs with periodic boundary
conditions. However, for RGGs generated in [0, 1] with solid boundaries
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