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Introduction: k-Hop Paths in the RCM

With Xλ(n) ⊂ [0, 1]d a homogeneous Poisson point process of intensity

λ(n)dx , dx Lesbegue measure on Rd , we consider the length in hops of
paths running between two vertices x , y ∈ Xn in the random geometric graph

G
(
Xλ(n), {(x , y) ∈ Xλ(n) ×Xλ(n) : 1{u||x−y || < H (||x − y ||)} > 0}

)
with independent u||x−y || ∈ U[0, 1], H : R+ → [0, 1] a connection function
and ||x − y || distance according to some norm.
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Motivation

Either counting the length k of paths, or the number σk(||x − y ||) of
k-hop paths, is interesting for a number of reasons.

Firstly, understanding the realtion between dEuc(||x − y ||) and
dGraph(||x − y ||) stems from the fact that one can then find upper
bounds for the diameter of G , denoted by diam(G ) (length in hops of
the longest shortest path in G ), that hold a.a.s., and the runtime
complexity of many algorithms can often be bounded from above in
terms of this diameter. Consider the problem of broadcasting
information, see ‘Diameter and Broadcast Time of Random
Geometric Graphs in Arbitrary Dimensions’ (Friedrich, Sauerwald, and
Stauffer 2011).
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Motivation

Either counting the length k of paths, or the number σk(||x − y ||) of
k-hop paths, is interesting for a number of reasons.

....the main result is that, in the random geometric graph with H (the
connection function) the indicator of a ball of radius r(n) centered
at the points of Xλ(n) ⊂ [0, 1]d of intensity λ(n)dx , then there exists
K > 0 such that

dGraph (||x − y ||) ≤ KdEuc (||x − y ||)
r (n)

whenever λ(n)dx →∞ with n, r = ω
(
λ−1/d(n) log1/d (n)

)
i.e. the

graph is in the connectivity regime r(n) > rc(n), and the Euclidean
distance ||x − y || = ω

(
log−1 (n)

)
i.e. for sufficiently large distances.

Importantly K = 1 + o(1) in this regime (D́ıaz et al. 2016).
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Motivation

Either counting the length k of paths, or the number σk(||x − y ||) of
k-hop paths, is interesting for a number of reasons.

Secondly, the number of paths σk(||x − y ||) running between two
vertices at displacement ||x − y || is related to the number of loops in
the graph which intersect both x and y . Two three hop paths
σ3 (||x − y ||) = 2 makes a loop of length six, for example. These
loops matter because the Erdős-Rényi random graph has no small
loops a.a.s, and so looks locally like a tree. The random c-regular
graph is similar. But the random geometric graph, as well as e.g.
scale free networks, are on the other hand not locally tree-like.
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Motivation

Either counting the length k of paths, or the number σk(||x − y ||) of
k-hop paths, is interesting for a number of reasons.

...This affects the validity of approximate models e.g.
Sherrington-Kirkpatrick model of spin glass (which is a weighted
subgraph of the complete graph without degree correlations), since
they do not account for the existence of small loops. The strong
interactions between spins are key features of these physical systems,
and follow from the underlying geometric structure. Also, with
frustration a result of odd-length loops, the loop counts are related to
the amount of glassiness present in the system at low temperature.

In general, the absence of a locally tree-like
strucuture is characteristic of an underlying

spatial point process of arbitrary density.
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Expectation of the number of paths

Theorem (Expected number of k-hop paths for the specific case of
Rayleigh fading)

Take the so-called Rayleigh fading connection function

H(r) = exp
(
−βr2

)
and define a new Poisson point process X ?λ which is Xλ conditioned on
containing two specific points x , y ∈ Rd at Euclidean distance ||x − y ||.
Consider those two vertices x , y in the vertex set of the random geometric
graph GH = (X ?λ ,E ), and set x = z0, y = zk . Then, in GH , the expected
number of distinct non-repeating sequences of k sequential edges starting
at x and terminating at y is

Eσk =
1

k

(
λπ

β

)k−1
exp

(
−β||x − y ||2

k

)
.
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Variance of the number of paths

Theorem (Variance of the number of three-hop paths for the specific
case of Rayleigh fading)

Take the so-called Rayleigh fading connection function H(r) = exp
(
−βr2

)
and define a new Poisson point process X ?λ which is Xλ conditioned on
containing two specific points x , y ∈ Rd at Euclidean distance ||x − y ||.
Consider those two vertices x , y in the vertex set of the random geometric
graph GH = (X ?λ ,E ), and set x = z0, y = zk . Then, in GH , the expected
number of distinct non-repeating sequences of k sequential edges starting
at x and terminating at y is

Var (σ3) = Eσ3 +
π3λ3

β3

(
1

4
exp

(
−β‖x − y‖2

2

)

+
1

6
exp

(
−3β‖x − y‖2

4

))
+
π2λ2

8β2
exp

(
−β‖x − y‖2

)
.
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Counting small subgraphs with indicator functions

Theorem (Slivnyak-Mecke Formula)

Let t ∈ N. For any measurable real valued function f defined on the
product of (Rd)t × G, where G is the space of all graphs on finite subsets
of [0, 1]d , given a connection function H, the following relation holds

E
6=∑

X1,...,Xt∈Y
f (X1, . . . ,Xt ,GH (Y \ {X1, . . . ,Xt}))

= nt
∫
[0,1]d

dx1· · ·
∫
[0,1]d

dxtEf (x1, . . . , xt ,GH (Y)) (1)

where Y ⊂ [0, 1]d , E‖Y‖ = n, and
∑6= means the sum over all ordered

t-tuples of distinct points in Y.

This is little more than E [A + B + . . . ] = EA + EB + . . . .
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Example: Counting two hop paths

Define the path-existence function g to be the following product

g (z1, . . . , zk−1,GH (Y?)) =
k−1∏
i=0

1{zi ↔ zi+1} (2)

The expected value of this function is then just the product of the
connection probabilities H of the inter-point distance along the sequence
z0, . . . , zk , i.e.

Eg(z1, . . . , zk−1,GH (Y?)) =
k−1∏
i=0

H (‖zi − zi+1‖) (3)
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Example: Counting two hop paths
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Example: Counting two hop paths

For example, for two-hop paths we have

g (z1,GH (Y?)) =
1∏

i=0

1{zi ↔ zi+1}

= 1{z0 ↔ z1}1{z1 ↔ z2}

(two edges), and the expected value of this function is then just the
product of the connection probabilities H of the inter-point distance along
the sequence z0 → z1 → z2, i.e. Eg (z1,GH (Y?)) =

∏1
i=0H (‖zi − zi+1‖)

and so

E
6=∑

X1∈Y?

{g (X1,GH (Y?)) = λ

∫
R2

Eg (z1,GH (Y?))dz1

= λ

∫
R2

H (‖z0 − z1‖)H (‖z1 − z2‖)dz1
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Example: Counting two hop paths

And with the Rayleigh fading connection function

H(r) = exp
(
−βr2

)
this integral is

λ

∫
R2

H (‖z0 − z1‖)H (‖z1 − z2‖)dz1 =
λπ

2β
exp

(
−β||x − y ||2

2

)
and for three hop paths

λ2
∫
R2

H (‖z0 − z1‖)H (‖z1 − z2‖)H (‖z2 − z3‖) dz1dz2

=
λ2π2

3β2
exp

(
−β||x − y ||2

3

)
and so on for each k . These are expected numbers of k-hop paths.
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t-tuples of paths

The k = 2 hop paths are Poisson:

σ2(||x − y ||) = Poisson

(
λπ

2β
exp

(
−β||x − y ||2

2

))
but the k = 3 hop paths are not Poisson. So calculate the variance using:

σ23 (||x − y ||) = Σ0 + Σ1 + Σ2

where for i = 0, 1, 2 the integer Σi denotes the number of ordered pairs of
three hop paths with i vertices in common. This breaks down σt into
t-tuples of paths, classed into catagories.
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Substructures

For example, Σ0 counts 2-tuples which do not intersect (not shown), while
Σ1(1) and Σ1(2) count paths which intersect at a single vertex:

Σ2 (right picture) counts 2-tuples which intersect at all vertices.

Alexander Kartun-Giles (QMUL) k-Hop Paths in the RCM SEN 2017, Oriel College 19 / 28



Outline

1 Introduction to k-Hop Paths
Introduction

2 Two-hop paths
Example case derivation of Poisson distribution

3 Variance of Number of k-Hop Paths
Introduction
Mathematical details

4 Conclusions

Alexander Kartun-Giles (QMUL) k-Hop Paths in the RCM SEN 2017, Oriel College 20 / 28



Paths which don’t intersect

We can quickly evaluate the term Σ0, which is the following sum over
ordered 4-tuples of points in Y?,

Σ0 =

6=∑
V ,W ,X ,Y∈Y?

g (V ,W ) g (X ,Y )

The Mecke formula implies that

EΣ0 = ρ4
∫
R8

E (g (z1, z2) g (z3, z4))dz1dz2dz3dz4

= (Eσ3)2

which cancels with a term in the definition of the variance

Var(σ3) = E(σ23)− (E(σ3))2

so now Var(σ3) = EΣ1 + EΣ2.
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Paths which intersect

We break Σ1 down into two separate
contributions. The first is depicted
on the left. This refers to the term:

∑
U∈Y?

6=∑
W ,Z∈Y?\{U}

g (U,W ) g (U,Z )

so count all 2-tuples of paths from U → x to get

EΣ1(1) = 2ρ

∫
R2

H (‖y − U‖)E

 ∑
X∈Y?\{U}

g (X )


2

dU

where the factor of two is due to symmetry.
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Paths which do intersect

We break Σ1 down into two separate
contributions. The first is depicted
on the left. This refers to the term:

∑
U∈Y?

6=∑
W ,Z∈Y?\{U}

g (U,W ) g (U,Z )

EΣ1(1) = 2ρ

∫
R2

H (‖y − U‖)E

 ∑
X∈Y?\{U}

g (X )


2

dU

= 2ρ3
∫
R2

H (‖y − U‖)×
(∫

R2

H (‖x − z‖)H (‖z − U‖) dz
)2

dU
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Paths which intersect

And now, notice how the next term
is a slightly different sum where
2-tuples intersect at a single vertex,
but in a different way:

Σ1(2) =
∑
U∈Y?

∑
Z∈Y?\{W }

g (Z ,U)
∑

W∈Y?\{Z}

g (U,W )
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Paths which do intersect

The two inner sums are in fact just counting the number of two hop paths
between x and U, and U and y , then pairing them with each other

EΣ1(2) = ρ

∫
R2

H (‖x − U‖)H (‖U − y‖)

× E

 ∑
Z∈Y?\{W }

g (Z ,U)
∑

W∈Y?\{Z}

g (U,W )

dU

which simplifies to

EΣ1(2) = ρ3
∫
R2

H (‖x − U‖)H (‖U − y‖)

×
(∫

R2

H (‖x − z‖)H (‖z − U‖)dz
)

×
(∫

R2

H (‖U − z‖)H (‖z − y‖) dz
)
dU
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Paths which do intersect

Since the terms are just integrals of products of the connection function
over the whole plane, they can be evaluated exactly, with the two we’ve
just calculated

EΣ1(1) =
π3λ3

4β3
exp

(
−β‖x − y‖2

2

)

EΣ1(2) =
π3λ3

6β3
exp

(
−3β‖x − y‖2

4

)
and the final term

EΣ2 =
π2λ2

8β3
exp

(
−β‖x − y‖2

)
calculated in a similar manner. This provides the variance, since

Var(σ3) = (EΣ1 (1) + EΣ1 (2)) + EΣ2
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Higher moments

What we really want is factorial moments, since:

P(σk = t) =
1

t!

∑
i≥0

(−1)i

i !
Eσ(σ − 1) . . . (σ − t − i + 1)

for example, the path existence probability

P(σk > 0) = 1−
∑
i≥0

(−1)i

i !
E [(σk)i ]

where (σk)i is the i th factorial moment, with the zeroth moment equal to
unity. Also, the partial sums upper and lower bound this path existence
probability in turn.
With our results, we have these factorial moments for i = 0, 1, 2, but not
higher. At least this provides a bound on the path existence probability
which does not use a “mean field” model, where spatial dependence is
ignored.
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Conclusions

Conclusions:

1 We can use the Slyviniak-Mecke formula to count tuples k-hop paths,
and deduce some factorial moments.

2 This leads to bounds on the path existence probability, which improve
as you calculate more factorial moments.

Outlook: Can someone find a recursion/general theory of these moments?

What do they tell us about the relation between graph distance and
Euclidean distance in the random connection model?

Also, can we count the expected number of loops of length L?

Thank you.
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