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Complex Contagions
• Epidemics

• Influenza, measles, etc. across social networks

• Computer viruses across technological networks

• Social contagion

• Viral marketing, viral memes

• Music preference, voting, trends
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• Epidemics historically described by wave front propagation (WFP)

Epidemics: Then and Now

Black death
-Marvel et al (2014) arXiv 1310.2636
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Epidemics: Then and Now

Genoese traders

• Epidemics historically described by wave front propagation (WFP)

• but they have shortcuts as teleconnections

Black death
-Marvel et al (2014) arXiv 1310.2636
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http://en.wikipedia.org/wiki/Republic_of_Genoa


Epidemics: Then and Now

- Brockmann and Helbing (2013) Science

• Epidemics historically described by wave front propagation (WFP)

• but they have shortcuts as teleconnections

• Modern epidemics dominated by airline network

• leads to appearance of new clusters (ANC)
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contagion seed

Goal of our work
• Under which conditions does only WFP and no ANC occur?

• Can we use complex contagions to get insights into 
the underlying geometry/manifold?

WFP ANC
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Noisy ring lattices
(=Newman variant of Watts-Strogatz graph)
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 (a) (b) (c)Three given parameters 
• Number of nodes N 
• Geometric degree dG 

• Non-Geometric degree dNG 

- > Ratio of non-geometric to 
geometric edges, 𝞪 = dNG/dG 

N=20, dG =4, dNG =2, 𝞪 =1/2 
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Watts‘ model
• simple dynamic for information spread

• binary state (active/inactive)

• node gets activated if at least a fraction of T 
of its neighbors are active -> deterministic

• active nodes stay active

• in the beginning a random perturbation of 
seed node(s) 

Watts, Duncan J. "A simple model of global cascades on random networks." PNAS
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An example with T=0.3
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An example with T=0.3

1

2

3 6

5

4

Timestep 1

Node 1 2 3 4 5 6

Activation 
time t 0 1

Contagion dynamics for topological data analysis



An example with T=0.3
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An example with T=0.3
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Initial condition sensitive
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Activation 
time t ∞ ∞ ∞ ∞ 0 ∞

T=0.3

=> nothing happens
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Fig. 5. (a) Point clouds resulting from WTM maps that are constructed with (I) T = 0.05, (II) T = 0.2, (III) T = 0.3, and (IV) T = 0.45 for the noisy ring lattice

shown in panel (b) (which has N = 200 nodes, each with d(G) = 6 geometric and d(NG) = 2 non-geometric edges). The color of each node, or corresponding point,
denotes its activation time for one realization of contagion. Nodes in the contagion seed are dark blue and nodes that never adopt the contagion are gray. For visualization
purposes, we show the two-dimensional projections of the N -dimensional point clouds after applying principle component analysis [14, 52]. (c) We analyze point clouds
resulting from WTM maps with variable threshold T with respect to three criteria: geometry (top), dimensionality (center), and topology (bottom). We study the geometry
by considering node-to-node distances (in the metric of the embedding space, which in this case is the Euclidean norm) and computing the Pearson correlation coe�cient ⇢
between these distances for the WTM map, {yi} 2 RN , and the original node locations, {z(i)} 2 R2. We examine the dimensionality through its embedding dimension
P , which is calculated by studying the residual variance [14, 53]. We examine the topology by studying the persistent homology when applying a Vietoris-Rips filtration to
the point cloud [17, 29], where � denotes the di↵erence in lifespans for the two most persistent 1-cycles. Vertical dashed lines denote predicted shifts in contagion dynamics

given by Eqs. [ 1 ] and [ 2 ] [see Fig. 4(b)]. Note that there are infinite activation times and the WTM map is not well defined for T � T
(WFP)
0 = 3/8 (shaded region).

As expected for regime III, the geometry, topology, and dimensionality of the point cloud recovers that of the manifold M, as indicated by large correlation ⇢ ⇡ 1, an
estimated embedding dimension P = 2, and a single dominant 1-cycle (i.e., a ring) as indicated by large �. See the Methods section and the SI for further discussion of
these point-cloud analytics.

tion and the Sec. 3 of the SI Appendix for additional discussion of
these point cloud analytics.

In Fig. 6, we analyze WTM maps with variable T applied
to noisy ring lattices with variable ↵ = d

(NG)
/d

(G) (shown for
N = 200, d(G) = 20 and variable d

(NG)). For each point cloud
we study (a) geometry through ⇢, (b) dimensionality through P , and
(c) topology through �. Transitions between the qualitatively dif-
ferent regimes of these properties closely resemble the bifurcation
structure given Eqs. [1] and [2] with k = 0, which are shown by the
solid and dashed curves, respectively. In particular, for the regime
exhibiting WFP and no ANC, the geometry, embedding dimension
and topology of the underlying manifold giving rise to the noisy ring
lattice is consistently identified in the WTM map. Also note that
for the regime exhibiting both WFP and ANC, the extent to which
the contagion adheres to the network’s underlying manifold depends
on ↵ and T , which can can also be studied through the point cloud
measures ⇢, P and �. We illustrate this result further in Fig. 6(d),
by fixing ↵ = 1/3 and plotting ⇢, P , and � for variable thresh-

old T . We show results for (d(G)
, d

(NG)) = (6, 2) (blue dashed
lines) and (d(G)

, d

(NG)) = (24, 8) (red solid lines). The shaded
region, T � T

(WFP)
0 = 3/8, denotes thresholds for which the con-

tagion does not saturate the network and the WTM map is not well
defined. As expected, the network’s underlying manifold appears to
be well-recovered for the regime predominantly exhibiting WFP and
not ANC. Note that increasing node degree smooths the transitions
between regimes of contagion dynamics. Interestingly, increasing
the number of nodes N has the opposite effect: increasing N in-
creases the contrast between the regime that exhibits WFP and the
other regimes (see Sec. 5.2 of the SI Appendix).

To offer perspective on the performance of WTM maps in iden-
tifying a noisy geometric network’s underlying manifold even in the
presence of many non-geometric edges, arrows in Fig. 6(d) indicate
⇢, P , and � values for a variant of the dimension reduction algorithm
Isomap [53], which is applied here to identify manifold structure in
an unweighted network. Specifically, nodes are mapped to vectors
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Fig. 6. Point cloud analytics applied to WTM maps with variable threshold T for noisy ring lattices with N = 200 nodes and variable ratio ↵ = d(NG)/d(G) (shown for

d(G) = 20 and variable d(NG)). For each point cloud we study (a) geometry through a Pearson correlation coe�cient ⇢, (b) dimensionality through the embedding dimension
P , and (c) topology through the di↵erence of life spans � (see Materials section). Note that the transitions between qualitatively di↵erent structure in the WTM maps (i.e.,
as seen through ⇢, P , and �) closely resembles the bifurcation structure from Eqs. [ 1 ] and [ 2 ], which are shown for k = 0 by solid and dashed curves, respectively. In

panel (d), we fix ↵ = 1/3 and plot (upper panel) ⇢, (center panel) P , and (lower panel) � as a function of threshold T . We show results for (d(G), d(NG)) = (6, 2)

(blue dashed lines) and (24, 8) (red solid lines). Note that there are infinite activation times for T � T
(WFP)
0 = 3/8 (shaded region). The arrows indicate ⇢, P , and �

values obtained for the embedding of nodes based on shortest paths, which may be thought of as a variant of the dimension reduction algorithm Isomap [53] (see text).
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Fig. 5. (a) Point clouds resulting from WTM maps that are constructed with (I) T = 0.05, (II) T = 0.2, (III) T = 0.3, and (IV) T = 0.45 for the noisy ring lattice

shown in panel (b) (which has N = 200 nodes, each with d(G) = 6 geometric and d(NG) = 2 non-geometric edges). The color of each node, or corresponding point,
denotes its activation time for one realization of contagion. Nodes in the contagion seed are dark blue and nodes that never adopt the contagion are gray. For visualization
purposes, we show the two-dimensional projections of the N -dimensional point clouds after applying principle component analysis [14, 52]. (c) We analyze point clouds
resulting from WTM maps with variable threshold T with respect to three criteria: geometry (top), dimensionality (center), and topology (bottom). We study the geometry
by considering node-to-node distances (in the metric of the embedding space, which in this case is the Euclidean norm) and computing the Pearson correlation coe�cient ⇢
between these distances for the WTM map, {yi} 2 RN , and the original node locations, {z(i)} 2 R2. We examine the dimensionality through its embedding dimension
P , which is calculated by studying the residual variance [14, 53]. We examine the topology by studying the persistent homology when applying a Vietoris-Rips filtration to
the point cloud [17, 29], where � denotes the di↵erence in lifespans for the two most persistent 1-cycles. Vertical dashed lines denote predicted shifts in contagion dynamics

given by Eqs. [ 1 ] and [ 2 ] [see Fig. 4(b)]. Note that there are infinite activation times and the WTM map is not well defined for T � T
(WFP)
0 = 3/8 (shaded region).

As expected for regime III, the geometry, topology, and dimensionality of the point cloud recovers that of the manifold M, as indicated by large correlation ⇢ ⇡ 1, an
estimated embedding dimension P = 2, and a single dominant 1-cycle (i.e., a ring) as indicated by large �. See the Methods section and the SI for further discussion of
these point-cloud analytics.
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Fig. 6. Point cloud analytics applied to WTM maps with variable threshold T for noisy ring lattices with N = 200 nodes and variable ratio ↵ = d(NG)/d(G) (shown for

d(G) = 20 and variable d(NG)). For each point cloud we study (a) geometry through a Pearson correlation coe�cient ⇢, (b) dimensionality through the embedding dimension
P , and (c) topology through the di↵erence of life spans � (see Materials section). Note that the transitions between qualitatively di↵erent structure in the WTM maps (i.e.,
as seen through ⇢, P , and �) closely resembles the bifurcation structure from Eqs. [ 1 ] and [ 2 ], which are shown for k = 0 by solid and dashed curves, respectively. In

panel (d), we fix ↵ = 1/3 and plot (upper panel) ⇢, (center panel) P , and (lower panel) � as a function of threshold T . We show results for (d(G), d(NG)) = (6, 2)

(blue dashed lines) and (24, 8) (red solid lines). Note that there are infinite activation times for T � T
(WFP)
0 = 3/8 (shaded region). The arrows indicate ⇢, P , and �

values obtained for the embedding of nodes based on shortest paths, which may be thought of as a variant of the dimension reduction algorithm Isomap [53] (see text).
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A single WTM realisation
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Fig. 5. (a) Point clouds resulting from WTM maps that are constructed with (I) T = 0.05, (II) T = 0.2, (III) T = 0.3, and (IV) T = 0.45 for the noisy ring lattice

shown in panel (b) (which has N = 200 nodes, each with d(G) = 6 geometric and d(NG) = 2 non-geometric edges). The color of each node, or corresponding point,
denotes its activation time for one realization of contagion. Nodes in the contagion seed are dark blue and nodes that never adopt the contagion are gray. For visualization
purposes, we show the two-dimensional projections of the N -dimensional point clouds after applying principle component analysis [14, 52]. (c) We analyze point clouds
resulting from WTM maps with variable threshold T with respect to three criteria: geometry (top), dimensionality (center), and topology (bottom). We study the geometry
by considering node-to-node distances (in the metric of the embedding space, which in this case is the Euclidean norm) and computing the Pearson correlation coe�cient ⇢
between these distances for the WTM map, {yi} 2 RN , and the original node locations, {z(i)} 2 R2. We examine the dimensionality through its embedding dimension
P , which is calculated by studying the residual variance [14, 53]. We examine the topology by studying the persistent homology when applying a Vietoris-Rips filtration to
the point cloud [17, 29], where � denotes the di↵erence in lifespans for the two most persistent 1-cycles. Vertical dashed lines denote predicted shifts in contagion dynamics

given by Eqs. [ 1 ] and [ 2 ] [see Fig. 4(b)]. Note that there are infinite activation times and the WTM map is not well defined for T � T
(WFP)
0 = 3/8 (shaded region).

As expected for regime III, the geometry, topology, and dimensionality of the point cloud recovers that of the manifold M, as indicated by large correlation ⇢ ⇡ 1, an
estimated embedding dimension P = 2, and a single dominant 1-cycle (i.e., a ring) as indicated by large �. See the Methods section and the SI for further discussion of
these point-cloud analytics.
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Fig. 6. Point cloud analytics applied to WTM maps with variable threshold T for noisy ring lattices with N = 200 nodes and variable ratio ↵ = d(NG)/d(G) (shown for

d(G) = 20 and variable d(NG)). For each point cloud we study (a) geometry through a Pearson correlation coe�cient ⇢, (b) dimensionality through the embedding dimension
P , and (c) topology through the di↵erence of life spans � (see Materials section). Note that the transitions between qualitatively di↵erent structure in the WTM maps (i.e.,
as seen through ⇢, P , and �) closely resembles the bifurcation structure from Eqs. [ 1 ] and [ 2 ], which are shown for k = 0 by solid and dashed curves, respectively. In

panel (d), we fix ↵ = 1/3 and plot (upper panel) ⇢, (center panel) P , and (lower panel) � as a function of threshold T . We show results for (d(G), d(NG)) = (6, 2)

(blue dashed lines) and (24, 8) (red solid lines). Note that there are infinite activation times for T � T
(WFP)
0 = 3/8 (shaded region). The arrows indicate ⇢, P , and �

values obtained for the embedding of nodes based on shortest paths, which may be thought of as a variant of the dimension reduction algorithm Isomap [53] (see text).
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Fig. 5. (a) Point clouds resulting from WTM maps that are constructed with (I) T = 0.05, (II) T = 0.2, (III) T = 0.3, and (IV) T = 0.45 for the noisy ring lattice

shown in panel (b) (which has N = 200 nodes, each with d(G) = 6 geometric and d(NG) = 2 non-geometric edges). The color of each node, or corresponding point,
denotes its activation time for one realization of contagion. Nodes in the contagion seed are dark blue and nodes that never adopt the contagion are gray. For visualization
purposes, we show the two-dimensional projections of the N -dimensional point clouds after applying principle component analysis [14, 52]. (c) We analyze point clouds
resulting from WTM maps with variable threshold T with respect to three criteria: geometry (top), dimensionality (center), and topology (bottom). We study the geometry
by considering node-to-node distances (in the metric of the embedding space, which in this case is the Euclidean norm) and computing the Pearson correlation coe�cient ⇢
between these distances for the WTM map, {yi} 2 RN , and the original node locations, {z(i)} 2 R2. We examine the dimensionality through its embedding dimension
P , which is calculated by studying the residual variance [14, 53]. We examine the topology by studying the persistent homology when applying a Vietoris-Rips filtration to
the point cloud [17, 29], where � denotes the di↵erence in lifespans for the two most persistent 1-cycles. Vertical dashed lines denote predicted shifts in contagion dynamics

given by Eqs. [ 1 ] and [ 2 ] [see Fig. 4(b)]. Note that there are infinite activation times and the WTM map is not well defined for T � T
(WFP)
0 = 3/8 (shaded region).

As expected for regime III, the geometry, topology, and dimensionality of the point cloud recovers that of the manifold M, as indicated by large correlation ⇢ ⇡ 1, an
estimated embedding dimension P = 2, and a single dominant 1-cycle (i.e., a ring) as indicated by large �. See the Methods section and the SI for further discussion of
these point-cloud analytics.
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between regimes of contagion dynamics. Interestingly, increasing
the number of nodes N has the opposite effect: increasing N in-
creases the contrast between the regime that exhibits WFP and the
other regimes (see Sec. 5.2 of the SI Appendix).

To offer perspective on the performance of WTM maps in iden-
tifying a noisy geometric network’s underlying manifold even in the
presence of many non-geometric edges, arrows in Fig. 6(d) indicate
⇢, P , and � values for a variant of the dimension reduction algorithm
Isomap [53], which is applied here to identify manifold structure in
an unweighted network. Specifically, nodes are mapped to vectors
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Fig. 6. Point cloud analytics applied to WTM maps with variable threshold T for noisy ring lattices with N = 200 nodes and variable ratio ↵ = d(NG)/d(G) (shown for

d(G) = 20 and variable d(NG)). For each point cloud we study (a) geometry through a Pearson correlation coe�cient ⇢, (b) dimensionality through the embedding dimension
P , and (c) topology through the di↵erence of life spans � (see Materials section). Note that the transitions between qualitatively di↵erent structure in the WTM maps (i.e.,
as seen through ⇢, P , and �) closely resembles the bifurcation structure from Eqs. [ 1 ] and [ 2 ], which are shown for k = 0 by solid and dashed curves, respectively. In

panel (d), we fix ↵ = 1/3 and plot (upper panel) ⇢, (center panel) P , and (lower panel) � as a function of threshold T . We show results for (d(G), d(NG)) = (6, 2)

(blue dashed lines) and (24, 8) (red solid lines). Note that there are infinite activation times for T � T
(WFP)
0 = 3/8 (shaded region). The arrows indicate ⇢, P , and �

values obtained for the embedding of nodes based on shortest paths, which may be thought of as a variant of the dimension reduction algorithm Isomap [53] (see text).
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Fig. 5. (a) Point clouds resulting from WTM maps that are constructed with (I) T = 0.05, (II) T = 0.2, (III) T = 0.3, and (IV) T = 0.45 for the noisy ring lattice

shown in panel (b) (which has N = 200 nodes, each with d(G) = 6 geometric and d(NG) = 2 non-geometric edges). The color of each node, or corresponding point,
denotes its activation time for one realization of contagion. Nodes in the contagion seed are dark blue and nodes that never adopt the contagion are gray. For visualization
purposes, we show the two-dimensional projections of the N -dimensional point clouds after applying principle component analysis [14, 52]. (c) We analyze point clouds
resulting from WTM maps with variable threshold T with respect to three criteria: geometry (top), dimensionality (center), and topology (bottom). We study the geometry
by considering node-to-node distances (in the metric of the embedding space, which in this case is the Euclidean norm) and computing the Pearson correlation coe�cient ⇢
between these distances for the WTM map, {yi} 2 RN , and the original node locations, {z(i)} 2 R2. We examine the dimensionality through its embedding dimension
P , which is calculated by studying the residual variance [14, 53]. We examine the topology by studying the persistent homology when applying a Vietoris-Rips filtration to
the point cloud [17, 29], where � denotes the di↵erence in lifespans for the two most persistent 1-cycles. Vertical dashed lines denote predicted shifts in contagion dynamics

given by Eqs. [ 1 ] and [ 2 ] [see Fig. 4(b)]. Note that there are infinite activation times and the WTM map is not well defined for T � T
(WFP)
0 = 3/8 (shaded region).

As expected for regime III, the geometry, topology, and dimensionality of the point cloud recovers that of the manifold M, as indicated by large correlation ⇢ ⇡ 1, an
estimated embedding dimension P = 2, and a single dominant 1-cycle (i.e., a ring) as indicated by large �. See the Methods section and the SI for further discussion of
these point-cloud analytics.
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we study (a) geometry through ⇢, (b) dimensionality through P , and
(c) topology through �. Transitions between the qualitatively dif-
ferent regimes of these properties closely resemble the bifurcation
structure given Eqs. [1] and [2] with k = 0, which are shown by the
solid and dashed curves, respectively. In particular, for the regime
exhibiting WFP and no ANC, the geometry, embedding dimension
and topology of the underlying manifold giving rise to the noisy ring
lattice is consistently identified in the WTM map. Also note that
for the regime exhibiting both WFP and ANC, the extent to which
the contagion adheres to the network’s underlying manifold depends
on ↵ and T , which can can also be studied through the point cloud
measures ⇢, P and �. We illustrate this result further in Fig. 6(d),
by fixing ↵ = 1/3 and plotting ⇢, P , and � for variable thresh-

old T . We show results for (d(G)
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(NG)) = (6, 2) (blue dashed
lines) and (d(G)
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(NG)) = (24, 8) (red solid lines). The shaded
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0 = 3/8, denotes thresholds for which the con-

tagion does not saturate the network and the WTM map is not well
defined. As expected, the network’s underlying manifold appears to
be well-recovered for the regime predominantly exhibiting WFP and
not ANC. Note that increasing node degree smooths the transitions
between regimes of contagion dynamics. Interestingly, increasing
the number of nodes N has the opposite effect: increasing N in-
creases the contrast between the regime that exhibits WFP and the
other regimes (see Sec. 5.2 of the SI Appendix).

To offer perspective on the performance of WTM maps in iden-
tifying a noisy geometric network’s underlying manifold even in the
presence of many non-geometric edges, arrows in Fig. 6(d) indicate
⇢, P , and � values for a variant of the dimension reduction algorithm
Isomap [53], which is applied here to identify manifold structure in
an unweighted network. Specifically, nodes are mapped to vectors
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Fig. 6. Point cloud analytics applied to WTM maps with variable threshold T for noisy ring lattices with N = 200 nodes and variable ratio ↵ = d(NG)/d(G) (shown for

d(G) = 20 and variable d(NG)). For each point cloud we study (a) geometry through a Pearson correlation coe�cient ⇢, (b) dimensionality through the embedding dimension
P , and (c) topology through the di↵erence of life spans � (see Materials section). Note that the transitions between qualitatively di↵erent structure in the WTM maps (i.e.,
as seen through ⇢, P , and �) closely resembles the bifurcation structure from Eqs. [ 1 ] and [ 2 ], which are shown for k = 0 by solid and dashed curves, respectively. In

panel (d), we fix ↵ = 1/3 and plot (upper panel) ⇢, (center panel) P , and (lower panel) � as a function of threshold T . We show results for (d(G), d(NG)) = (6, 2)

(blue dashed lines) and (24, 8) (red solid lines). Note that there are infinite activation times for T � T
(WFP)
0 = 3/8 (shaded region). The arrows indicate ⇢, P , and �

values obtained for the embedding of nodes based on shortest paths, which may be thought of as a variant of the dimension reduction algorithm Isomap [53] (see text).
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Fig. 5. (a) Point clouds resulting from WTM maps that are constructed with (I) T = 0.05, (II) T = 0.2, (III) T = 0.3, and (IV) T = 0.45 for the noisy ring lattice

shown in panel (b) (which has N = 200 nodes, each with d(G) = 6 geometric and d(NG) = 2 non-geometric edges). The color of each node, or corresponding point,
denotes its activation time for one realization of contagion. Nodes in the contagion seed are dark blue and nodes that never adopt the contagion are gray. For visualization
purposes, we show the two-dimensional projections of the N -dimensional point clouds after applying principle component analysis [14, 52]. (c) We analyze point clouds
resulting from WTM maps with variable threshold T with respect to three criteria: geometry (top), dimensionality (center), and topology (bottom). We study the geometry
by considering node-to-node distances (in the metric of the embedding space, which in this case is the Euclidean norm) and computing the Pearson correlation coe�cient ⇢
between these distances for the WTM map, {yi} 2 RN , and the original node locations, {z(i)} 2 R2. We examine the dimensionality through its embedding dimension
P , which is calculated by studying the residual variance [14, 53]. We examine the topology by studying the persistent homology when applying a Vietoris-Rips filtration to
the point cloud [17, 29], where � denotes the di↵erence in lifespans for the two most persistent 1-cycles. Vertical dashed lines denote predicted shifts in contagion dynamics

given by Eqs. [ 1 ] and [ 2 ] [see Fig. 4(b)]. Note that there are infinite activation times and the WTM map is not well defined for T � T
(WFP)
0 = 3/8 (shaded region).

As expected for regime III, the geometry, topology, and dimensionality of the point cloud recovers that of the manifold M, as indicated by large correlation ⇢ ⇡ 1, an
estimated embedding dimension P = 2, and a single dominant 1-cycle (i.e., a ring) as indicated by large �. See the Methods section and the SI for further discussion of
these point-cloud analytics.
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for the regime exhibiting both WFP and ANC, the extent to which
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defined. As expected, the network’s underlying manifold appears to
be well-recovered for the regime predominantly exhibiting WFP and
not ANC. Note that increasing node degree smooths the transitions
between regimes of contagion dynamics. Interestingly, increasing
the number of nodes N has the opposite effect: increasing N in-
creases the contrast between the regime that exhibits WFP and the
other regimes (see Sec. 5.2 of the SI Appendix).

To offer perspective on the performance of WTM maps in iden-
tifying a noisy geometric network’s underlying manifold even in the
presence of many non-geometric edges, arrows in Fig. 6(d) indicate
⇢, P , and � values for a variant of the dimension reduction algorithm
Isomap [53], which is applied here to identify manifold structure in
an unweighted network. Specifically, nodes are mapped to vectors
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Fig. 6. Point cloud analytics applied to WTM maps with variable threshold T for noisy ring lattices with N = 200 nodes and variable ratio ↵ = d(NG)/d(G) (shown for

d(G) = 20 and variable d(NG)). For each point cloud we study (a) geometry through a Pearson correlation coe�cient ⇢, (b) dimensionality through the embedding dimension
P , and (c) topology through the di↵erence of life spans � (see Materials section). Note that the transitions between qualitatively di↵erent structure in the WTM maps (i.e.,
as seen through ⇢, P , and �) closely resembles the bifurcation structure from Eqs. [ 1 ] and [ 2 ], which are shown for k = 0 by solid and dashed curves, respectively. In

panel (d), we fix ↵ = 1/3 and plot (upper panel) ⇢, (center panel) P , and (lower panel) � as a function of threshold T . We show results for (d(G), d(NG)) = (6, 2)

(blue dashed lines) and (24, 8) (red solid lines). Note that there are infinite activation times for T � T
(WFP)
0 = 3/8 (shaded region). The arrows indicate ⇢, P , and �

values obtained for the embedding of nodes based on shortest paths, which may be thought of as a variant of the dimension reduction algorithm Isomap [53] (see text).
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Fig. 5. (a) Point clouds resulting from WTM maps that are constructed with (I) T = 0.05, (II) T = 0.2, (III) T = 0.3, and (IV) T = 0.45 for the noisy ring lattice

shown in panel (b) (which has N = 200 nodes, each with d(G) = 6 geometric and d(NG) = 2 non-geometric edges). The color of each node, or corresponding point,
denotes its activation time for one realization of contagion. Nodes in the contagion seed are dark blue and nodes that never adopt the contagion are gray. For visualization
purposes, we show the two-dimensional projections of the N -dimensional point clouds after applying principle component analysis [14, 52]. (c) We analyze point clouds
resulting from WTM maps with variable threshold T with respect to three criteria: geometry (top), dimensionality (center), and topology (bottom). We study the geometry
by considering node-to-node distances (in the metric of the embedding space, which in this case is the Euclidean norm) and computing the Pearson correlation coe�cient ⇢
between these distances for the WTM map, {yi} 2 RN , and the original node locations, {z(i)} 2 R2. We examine the dimensionality through its embedding dimension
P , which is calculated by studying the residual variance [14, 53]. We examine the topology by studying the persistent homology when applying a Vietoris-Rips filtration to
the point cloud [17, 29], where � denotes the di↵erence in lifespans for the two most persistent 1-cycles. Vertical dashed lines denote predicted shifts in contagion dynamics

given by Eqs. [ 1 ] and [ 2 ] [see Fig. 4(b)]. Note that there are infinite activation times and the WTM map is not well defined for T � T
(WFP)
0 = 3/8 (shaded region).

As expected for regime III, the geometry, topology, and dimensionality of the point cloud recovers that of the manifold M, as indicated by large correlation ⇢ ⇡ 1, an
estimated embedding dimension P = 2, and a single dominant 1-cycle (i.e., a ring) as indicated by large �. See the Methods section and the SI for further discussion of
these point-cloud analytics.
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ferent regimes of these properties closely resemble the bifurcation
structure given Eqs. [1] and [2] with k = 0, which are shown by the
solid and dashed curves, respectively. In particular, for the regime
exhibiting WFP and no ANC, the geometry, embedding dimension
and topology of the underlying manifold giving rise to the noisy ring
lattice is consistently identified in the WTM map. Also note that
for the regime exhibiting both WFP and ANC, the extent to which
the contagion adheres to the network’s underlying manifold depends
on ↵ and T , which can can also be studied through the point cloud
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not ANC. Note that increasing node degree smooths the transitions
between regimes of contagion dynamics. Interestingly, increasing
the number of nodes N has the opposite effect: increasing N in-
creases the contrast between the regime that exhibits WFP and the
other regimes (see Sec. 5.2 of the SI Appendix).
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tifying a noisy geometric network’s underlying manifold even in the
presence of many non-geometric edges, arrows in Fig. 6(d) indicate
⇢, P , and � values for a variant of the dimension reduction algorithm
Isomap [53], which is applied here to identify manifold structure in
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Fig. 6. Point cloud analytics applied to WTM maps with variable threshold T for noisy ring lattices with N = 200 nodes and variable ratio ↵ = d(NG)/d(G) (shown for

d(G) = 20 and variable d(NG)). For each point cloud we study (a) geometry through a Pearson correlation coe�cient ⇢, (b) dimensionality through the embedding dimension
P , and (c) topology through the di↵erence of life spans � (see Materials section). Note that the transitions between qualitatively di↵erent structure in the WTM maps (i.e.,
as seen through ⇢, P , and �) closely resembles the bifurcation structure from Eqs. [ 1 ] and [ 2 ], which are shown for k = 0 by solid and dashed curves, respectively. In

panel (d), we fix ↵ = 1/3 and plot (upper panel) ⇢, (center panel) P , and (lower panel) � as a function of threshold T . We show results for (d(G), d(NG)) = (6, 2)

(blue dashed lines) and (24, 8) (red solid lines). Note that there are infinite activation times for T � T
(WFP)
0 = 3/8 (shaded region). The arrows indicate ⇢, P , and �

values obtained for the embedding of nodes based on shortest paths, which may be thought of as a variant of the dimension reduction algorithm Isomap [53] (see text).
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Conclusions

• Wave-Front Propagation (WFP) and Appearance 
of New Clusters (ANC) often coexist in 
complex contagions on noisy networks

• Watts’ threshold mapping (WTM) uses multiple 
contagions to create a high-dimensional map

• if the contagions are largely dominated by WFP 
the mapping gives us insights on the underlying 
manifold

Contagion dynamics for topological data analysis



Outlook

Contagion dynamics for topological data analysis

speed: can we improve the 
complexity               of the contagion 

maps?

manifolds: does the mapping 
generalise to other, more complex, 

structures  
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Contagion Phenomena
• Wave front propagation (WFP)

• Geometrically distant clusters and the appearance 
of new clusters (ANC)

Cluster seeding: the 
contagion starts at a 
node and its neighbors
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• Spreading across geometric edges

• Wave front propagation travels with rate    nodes per 
time step when                                

• There is no wave front propagation if

• Critical thresholds:

Wave Front Propagation 
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Appearance of New Clusters

• Spreading across a non-geometric edges

• If                              then a node must 
have at least               non-geometric 
neighbors that are adopters to adopt

• Critical thresholds:
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• We first examine the regions of similar contagion dynamics, 
i.e., the absence/presence of wave front propagation (WFP) 
and the appearance of new clusters (ANC)

• Given critical thresholds

• We examine           and express results based on the ratio of 
non-geometric versus geometric edges,

Bifurcation Analysis
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Intersection at

Bifurcation Analysis

Contagion dynamics for topological data analysis



- results shown for

Bifurcation Analysis
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