

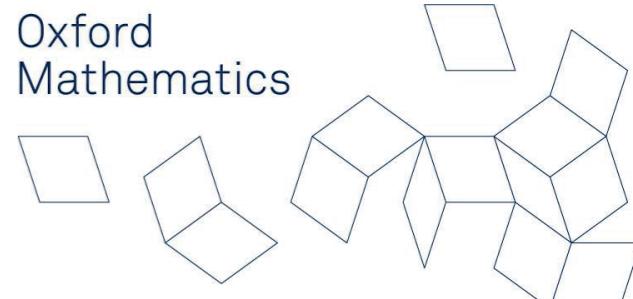
Contagion dynamics for topological data analysis

Florian Klimm
Oxford, September 14th, 2017

2nd Symposium on Spatial Networks

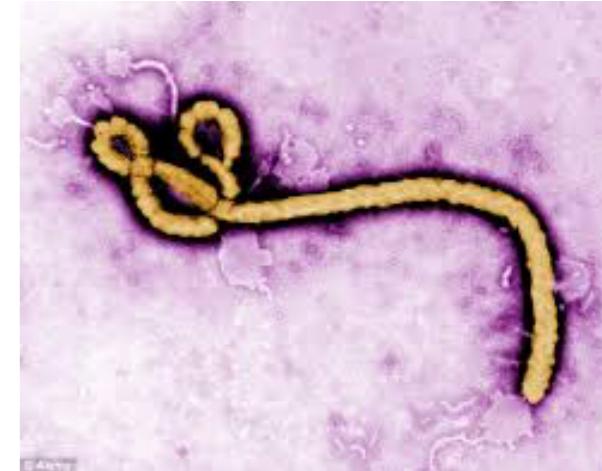
EPSRC and MRC Systems Approaches to
Biomedical Science CDT

Oxford
Mathematics



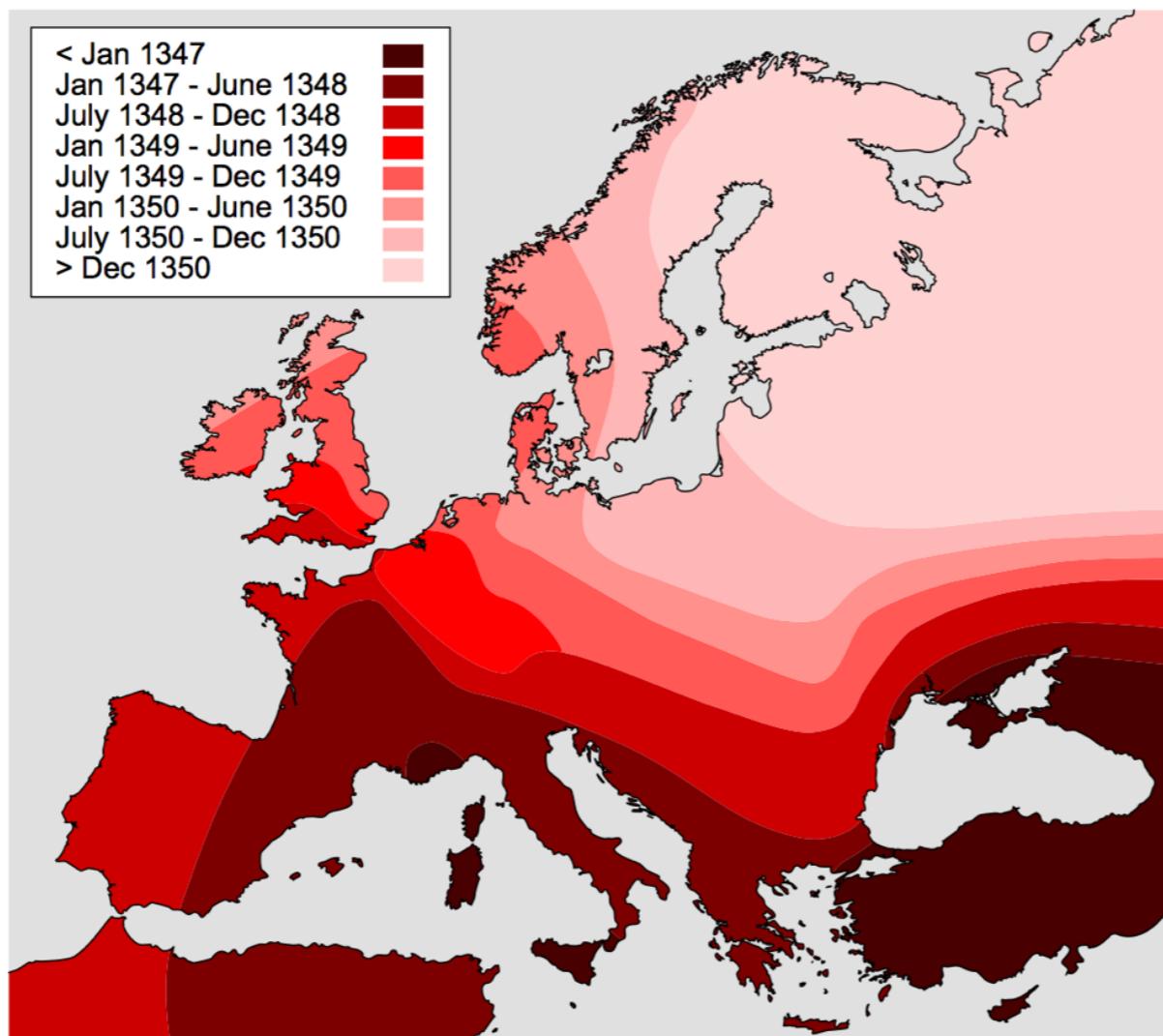
Complex Contagions

- **Epidemics**
 - Influenza, measles, etc. across social networks
 - Computer viruses across technological networks
- **Social contagion**
 - Viral marketing, viral memes
 - Music preference, voting, trends



Epidemics: Then and Now

- Epidemics historically described by wave front propagation (WFP)

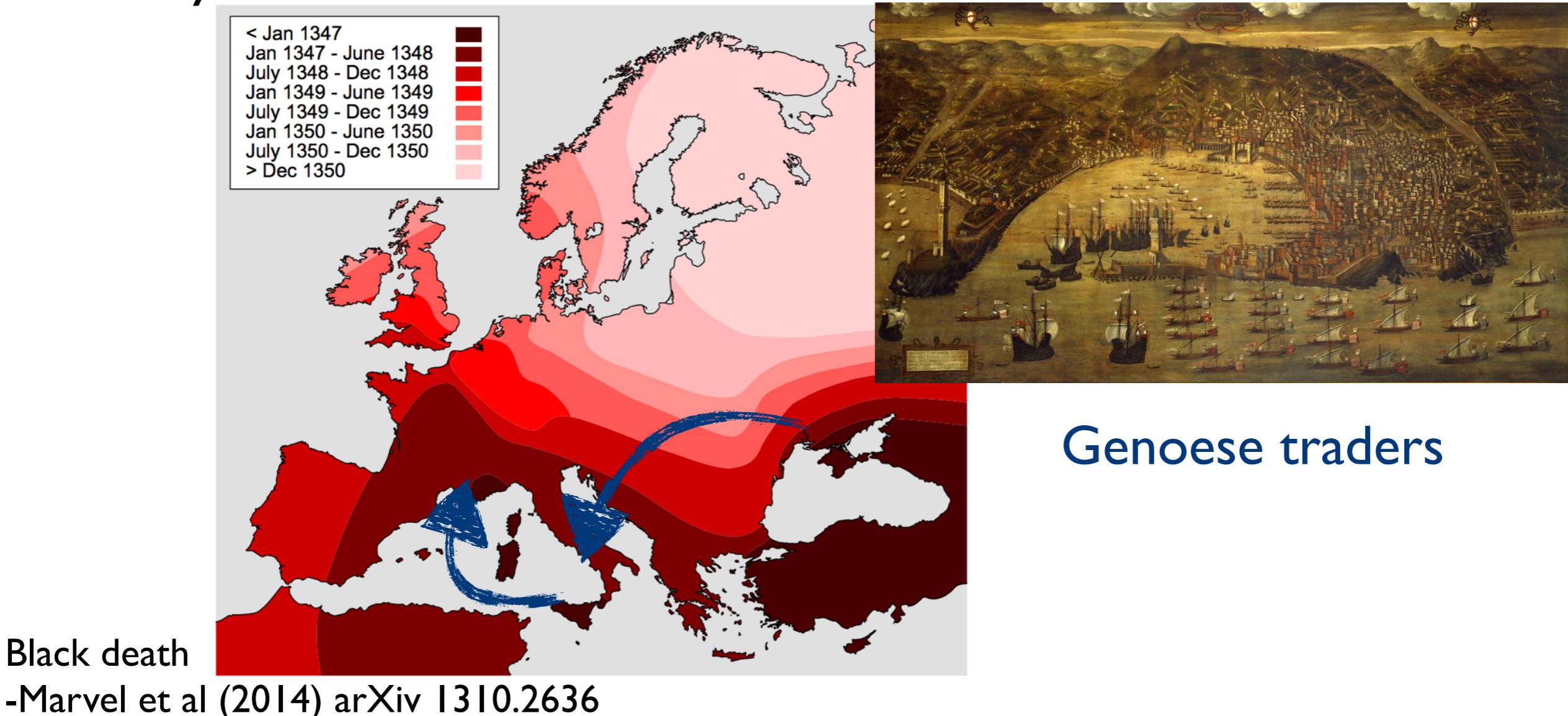


Black death

-Marvel et al (2014) arXiv 1310.2636

Epidemics: Then and Now

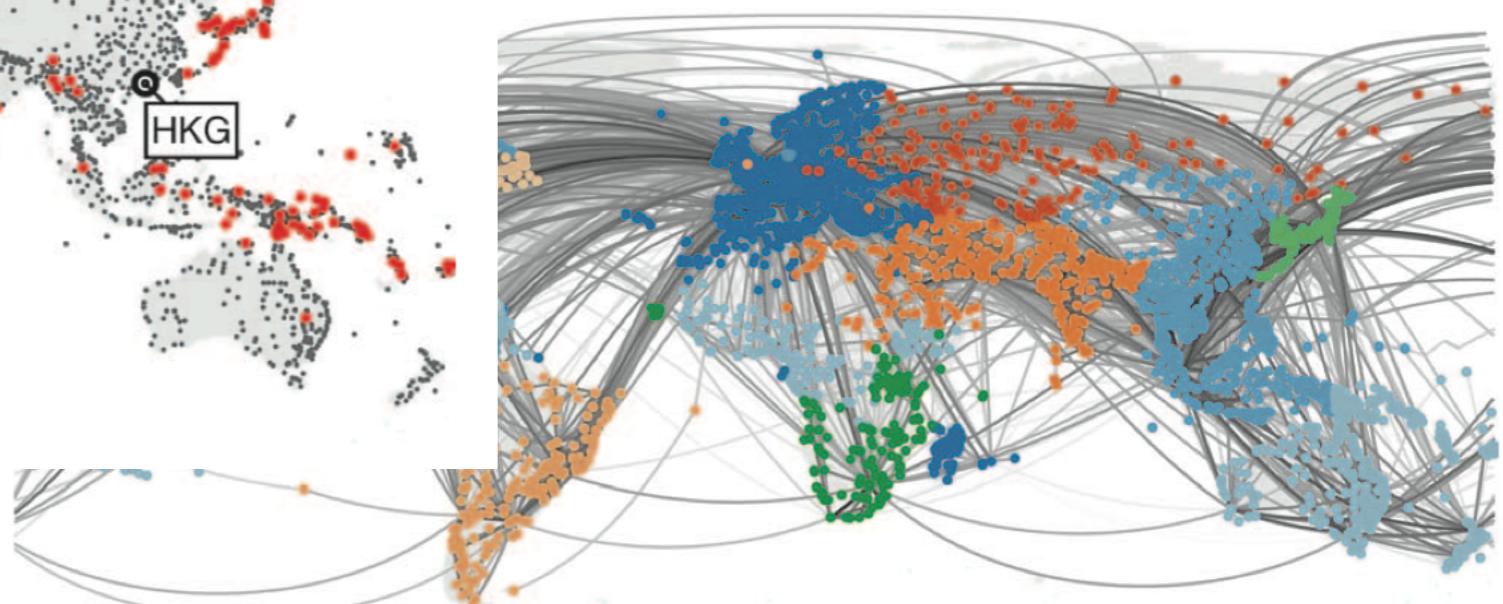
- Epidemics historically described by wave front propagation (WFP)
- but they have shortcuts as teleconnections



Epidemics: Then and Now

- Epidemics historically described by wave front propagation (WFP)
- but they have shortcuts as teleconnections
- Modern epidemics dominated by airline network
- leads to appearance of new clusters (ANC)

- Brockmann and Helbing (2013) Science

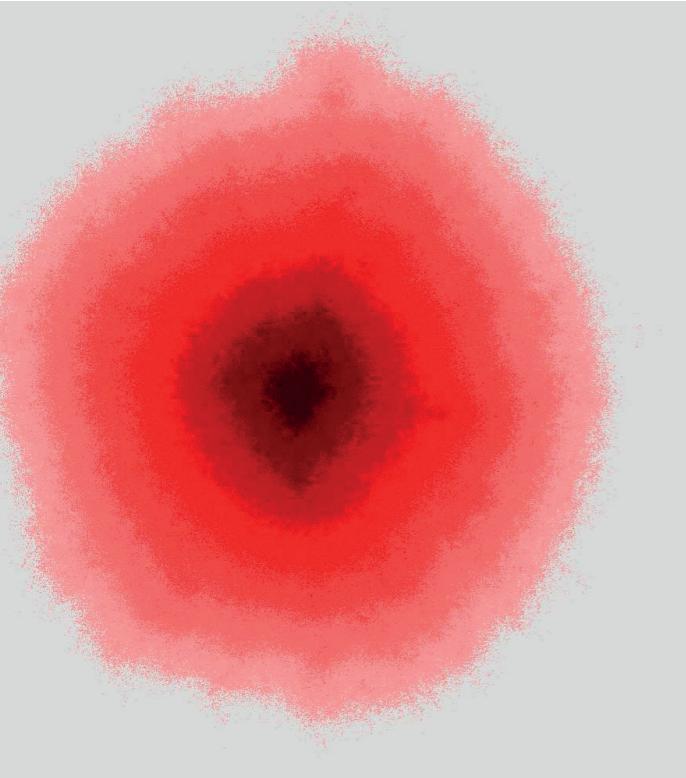
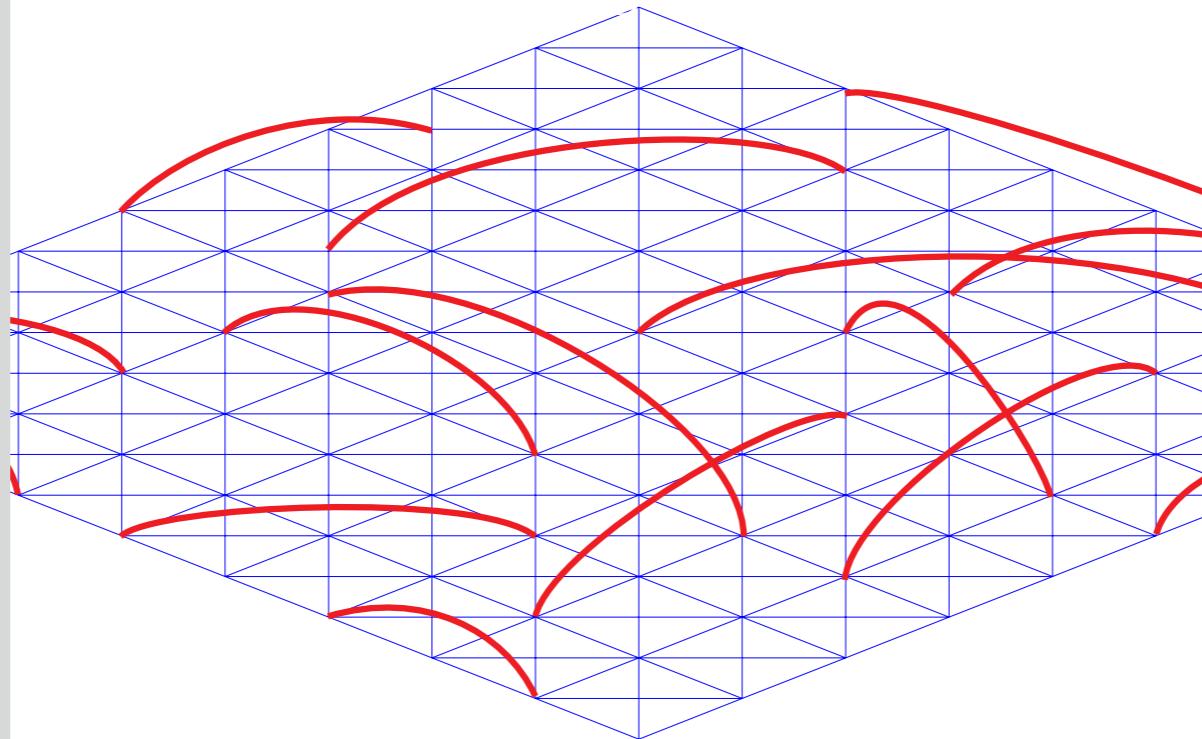


Contagion dynamics for topological data analysis

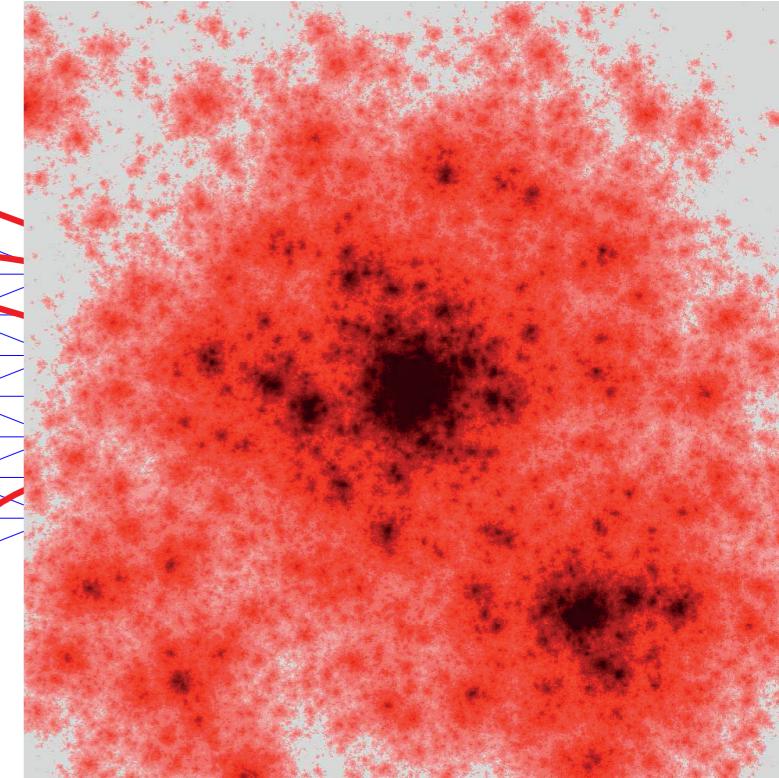
Goal of our work

- Under which conditions does only WFP and no ANC occur?
- **Can we use complex contagions to get insights into the underlying geometry/manifold?**

WFP



ANC



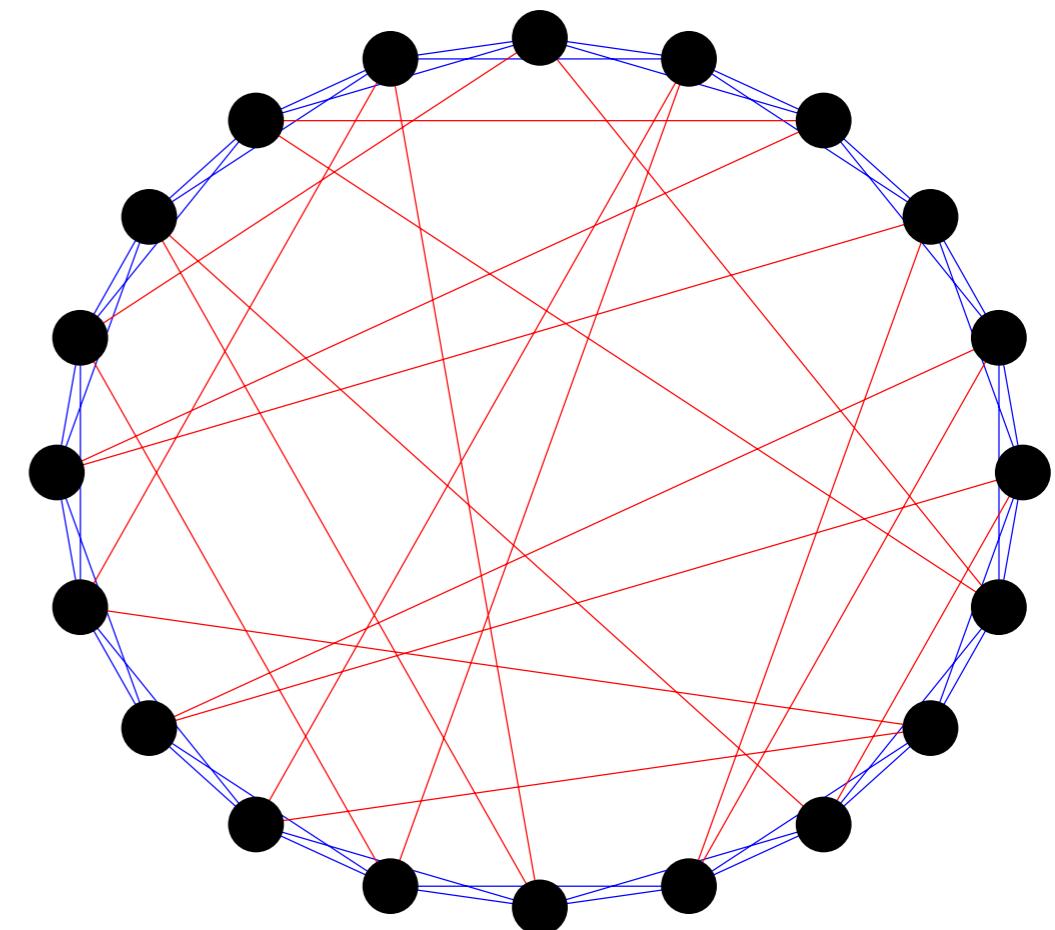
Noisy ring lattices

(=Newman variant of Watts-Strogatz graph)

Three given parameters

- Number of nodes N
- Geometric degree d^G
- Non-Geometric degree d^{NG}

-> Ratio of non-geometric to geometric edges, $\alpha = d^{NG}/d^G$



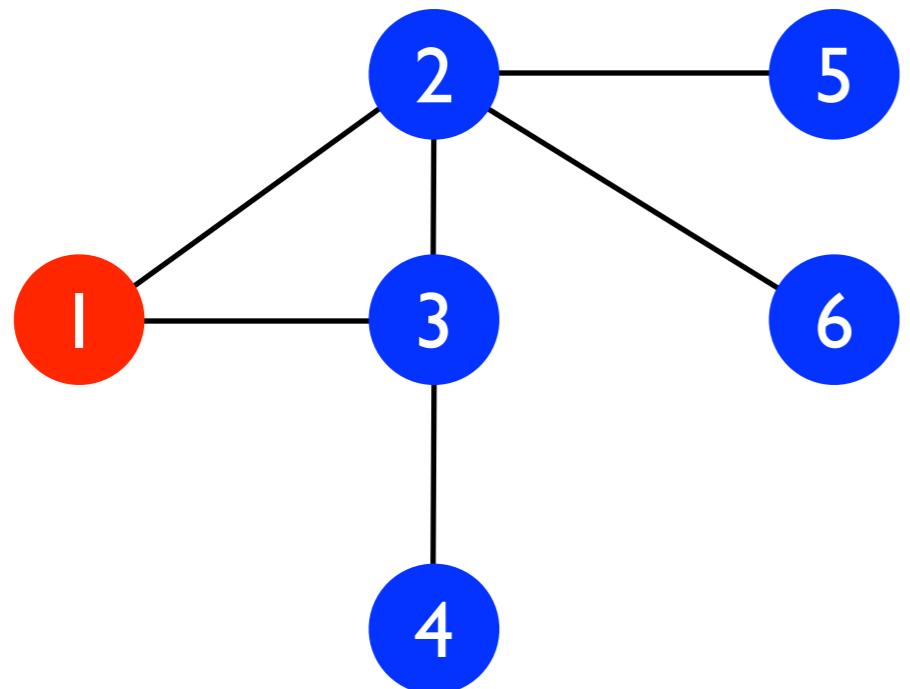
$N=20, d^G=4, d^{NG}=2, \alpha=1/2$

Watts' model

- simple dynamic for information spread
- binary state (**active/inactive**)
- node gets activated if at least a fraction of T of its neighbors are active -> deterministic
- active nodes stay active
- in the beginning a random perturbation of seed node(s)

Watts, Duncan J. "A simple model of global cascades on random networks." PNAS

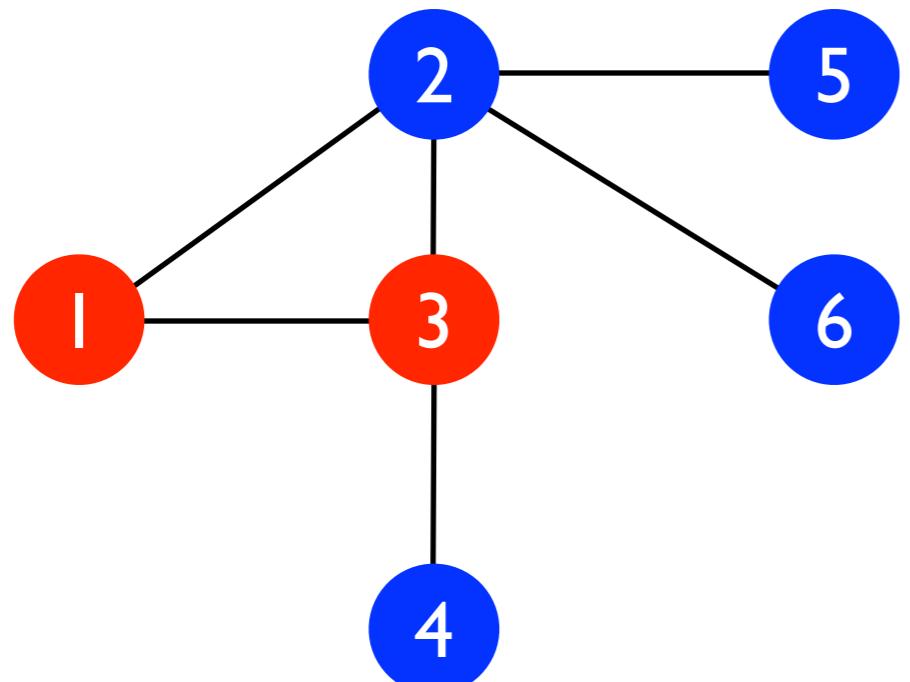
An example with $T=0.3$



Timestep 0

Node	1	2	3	4	5	6
Activation time t	0					

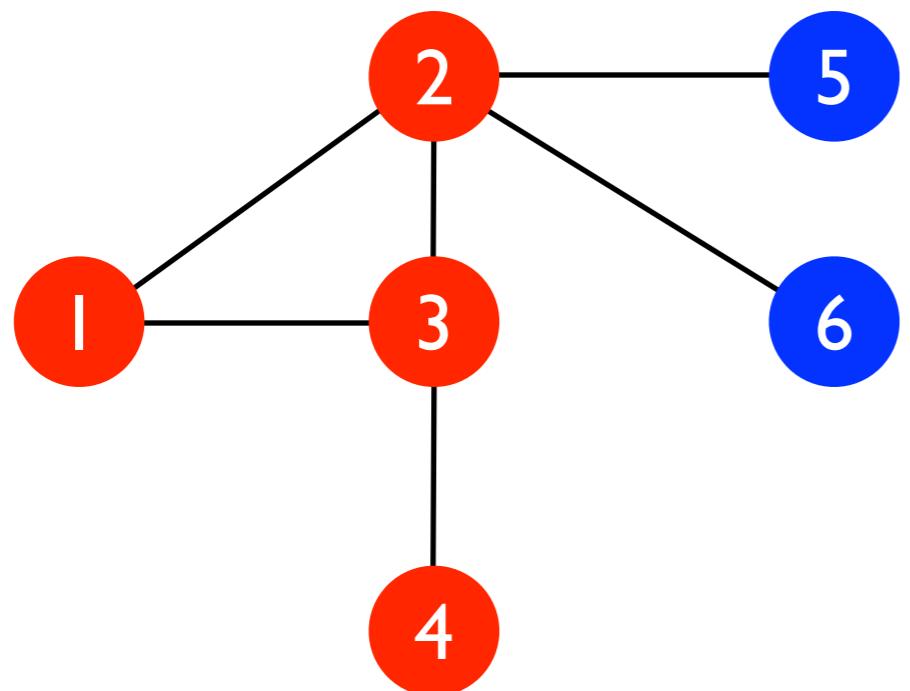
An example with $T=0.3$



Timestep 1

Node	1	2	3	4	5	6
Activation time t	0		1			

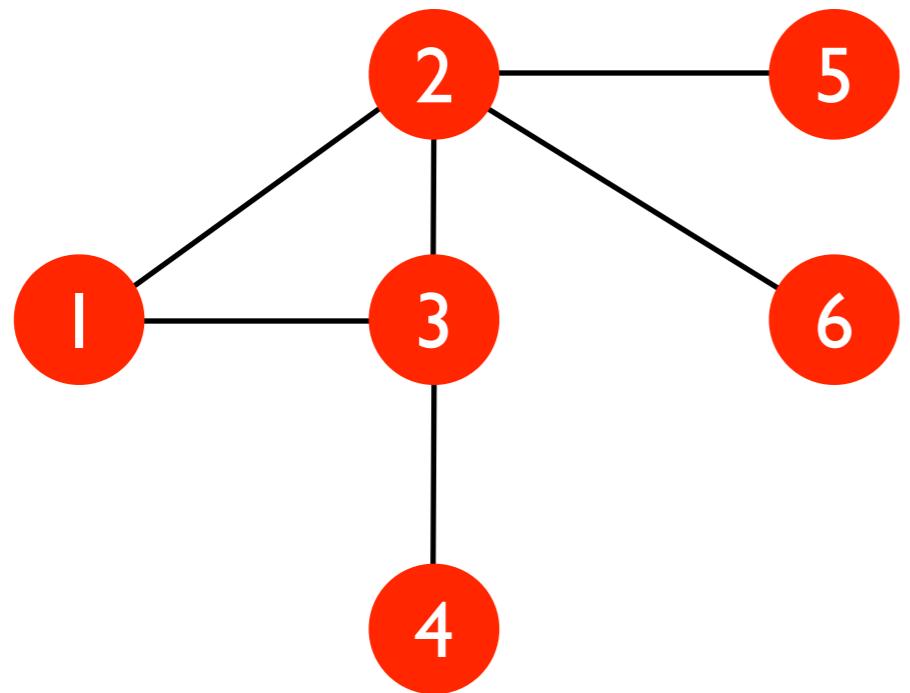
An example with $T=0.3$



Timestep 2

Node	1	2	3	4	5	6
Activation time t	0	2	1	2		

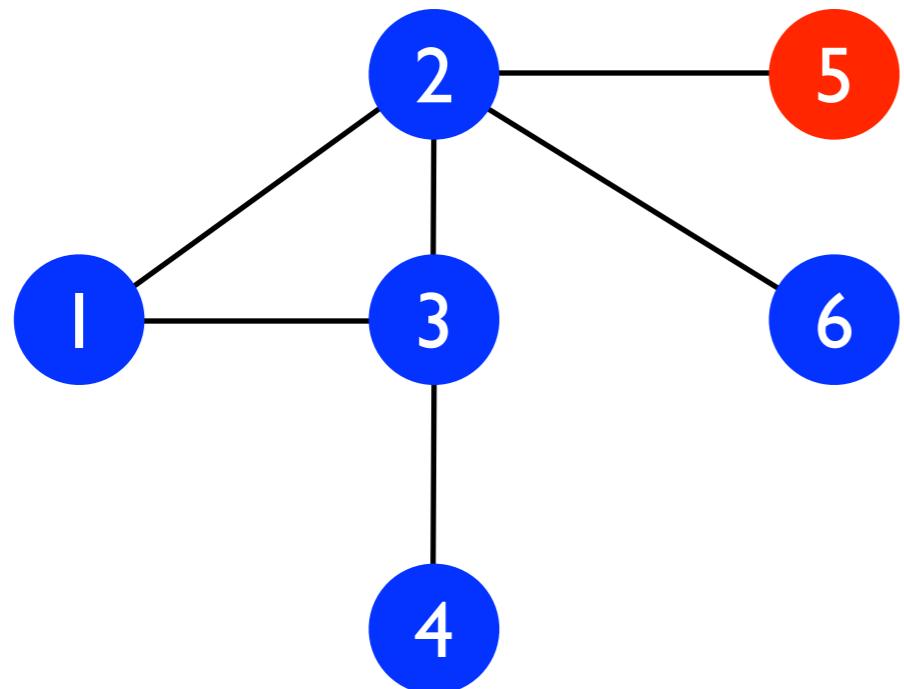
An example with $T=0.3$



Timestep 3

Node	1	2	3	4	5	6
Activation time t	0	2	1	2	3	3

Initial condition sensitive



$T=0.3$

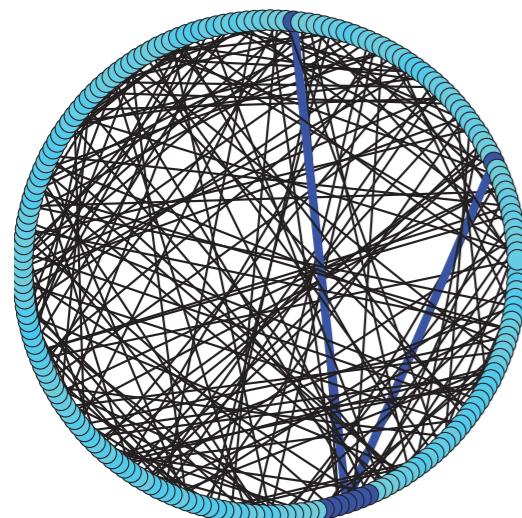
Timestep 0

=> nothing happens

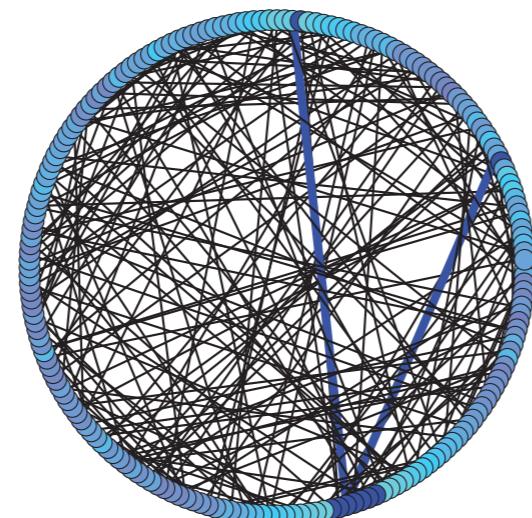
Node	1	2	3	4	5	6
Activation time t	∞	∞	∞	∞	0	∞

A single WTM realisation

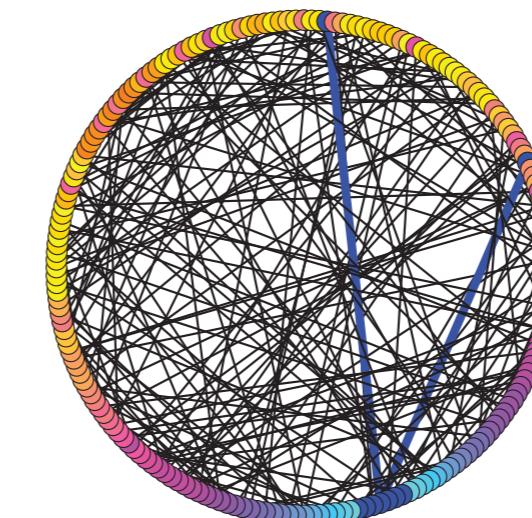
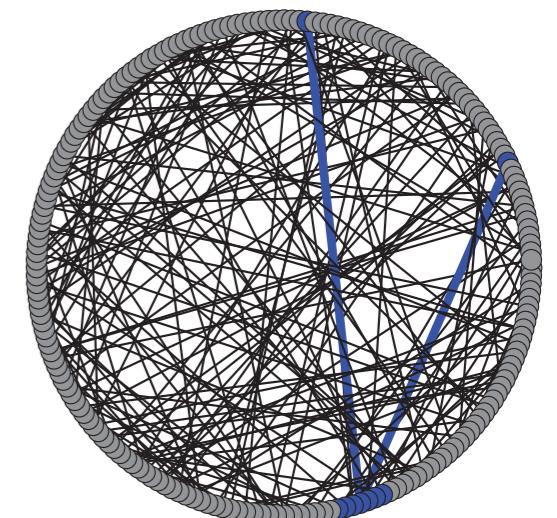
extremely fast
cascade



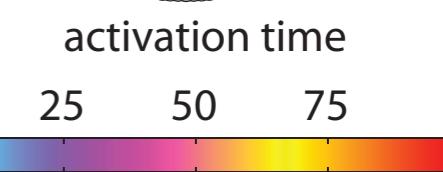
slow cascade



no global
cascade



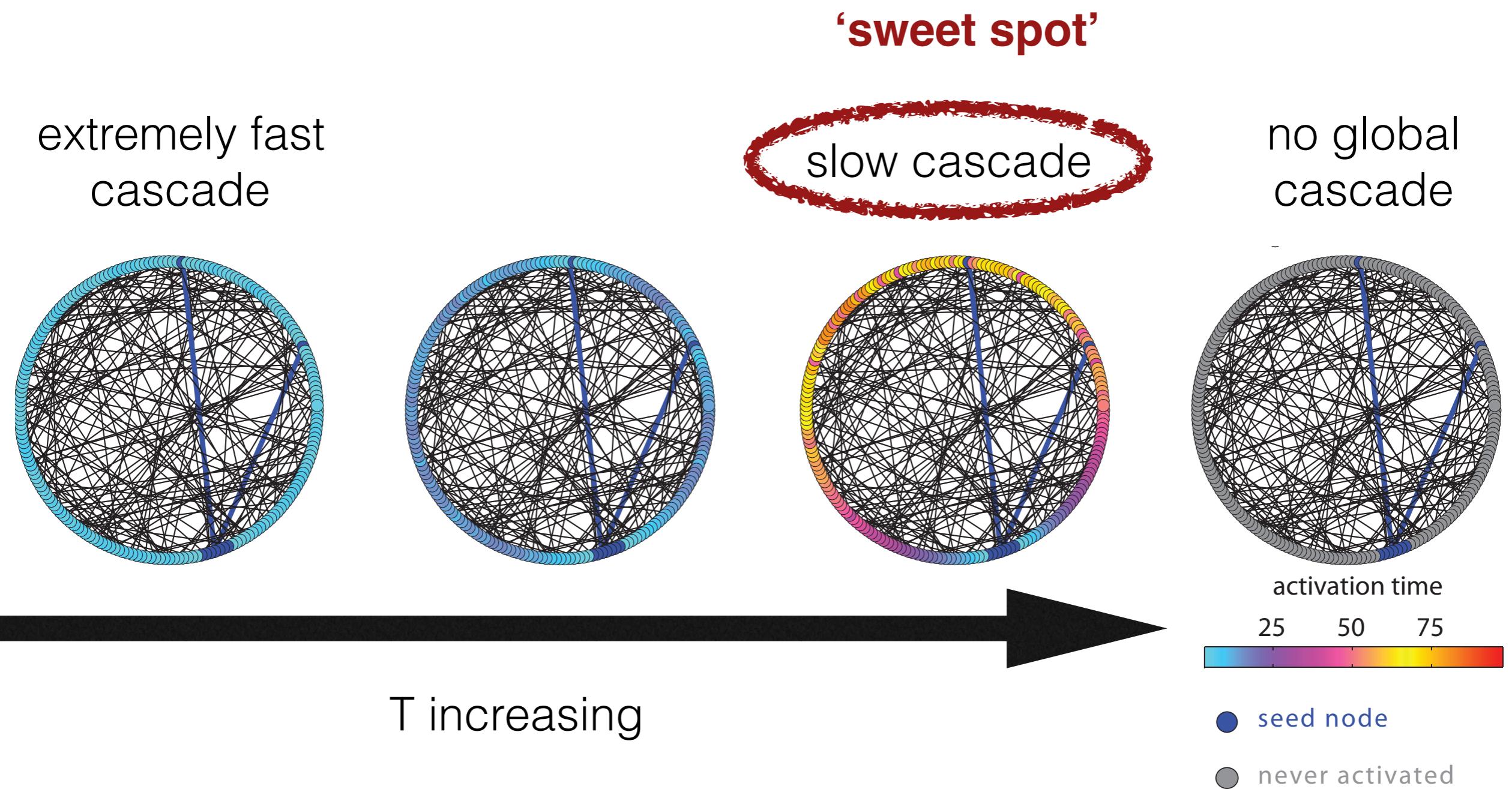
T increasing



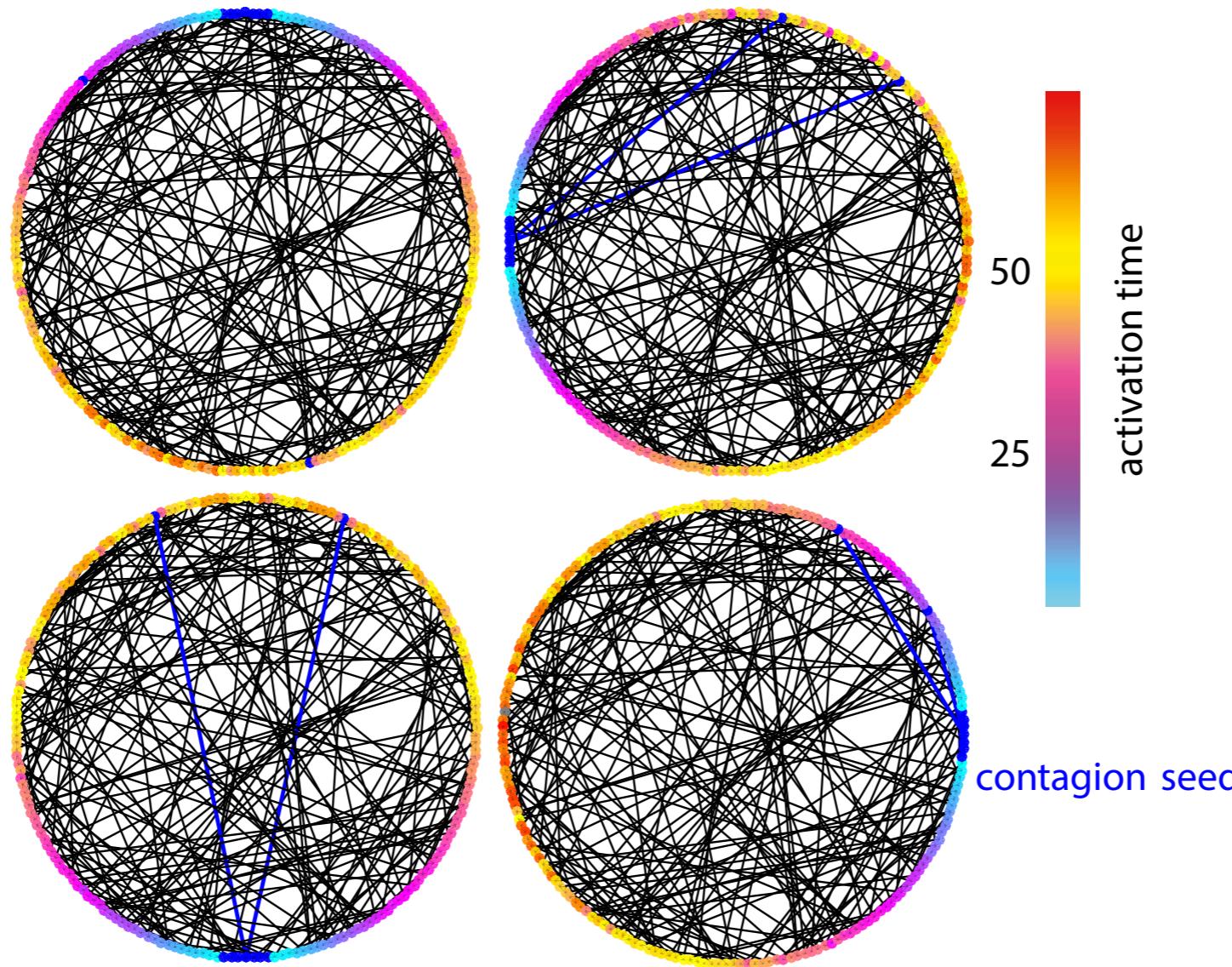
seed node

never activated

A single WTM realisation



Multiple contagions with fixed threshold T



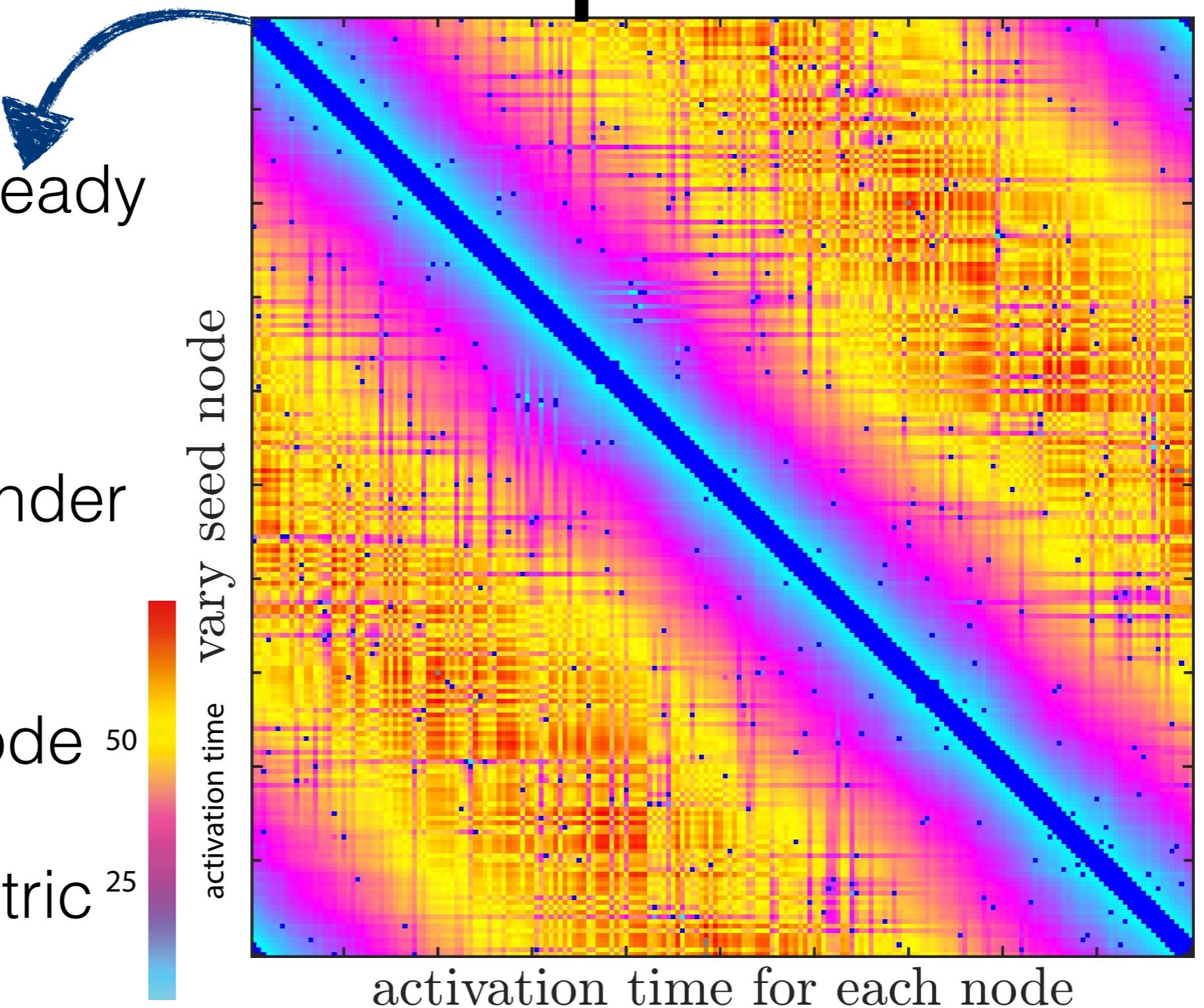
- each one starting from different seeds nodes -> N possibilities

WTM maps

ring structure already
observable

for each node
activation time under
each possible
contagion with
different seed node

NxN non-symmetric
matrix



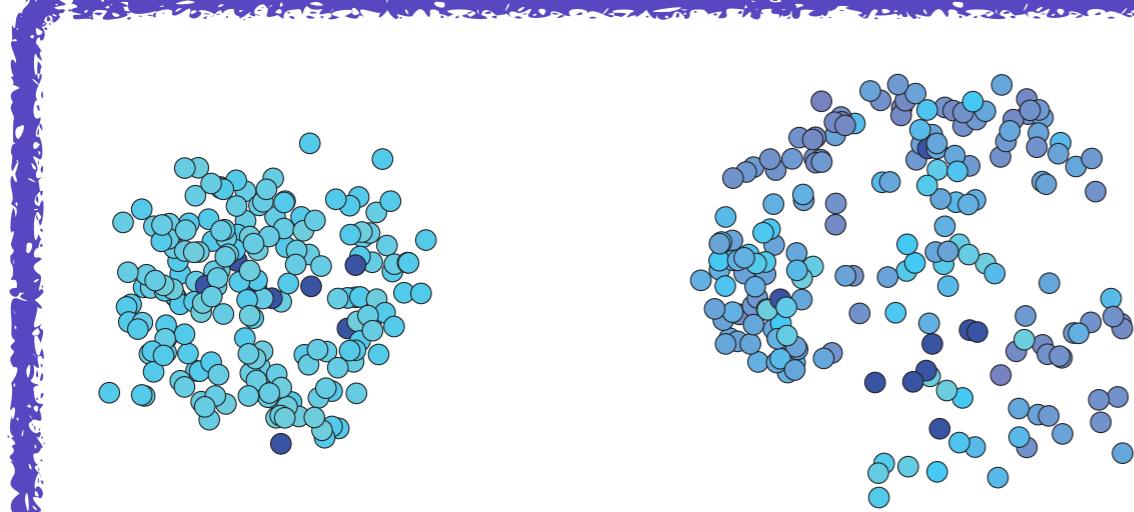
extremely fast
cascade

slow cascade

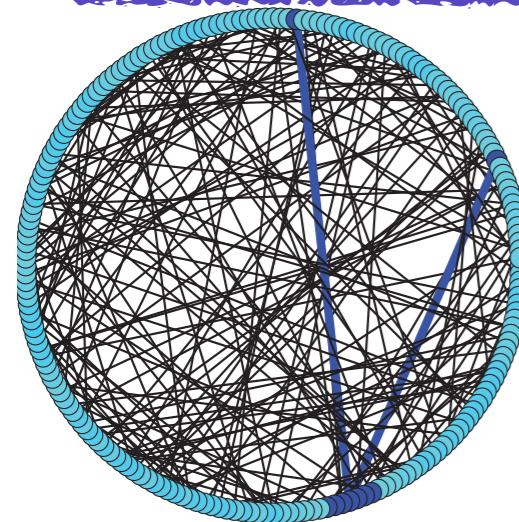
no global
cascade

N dimensional WTM projected onto \mathbb{R}^2

(a)



(b)



T increasing

activation time
25 50 75

seed node
never activated

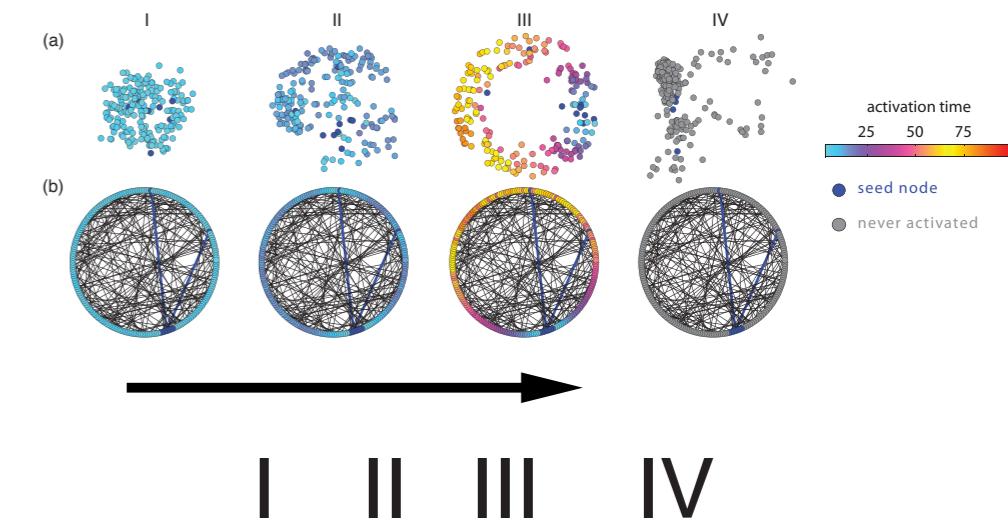
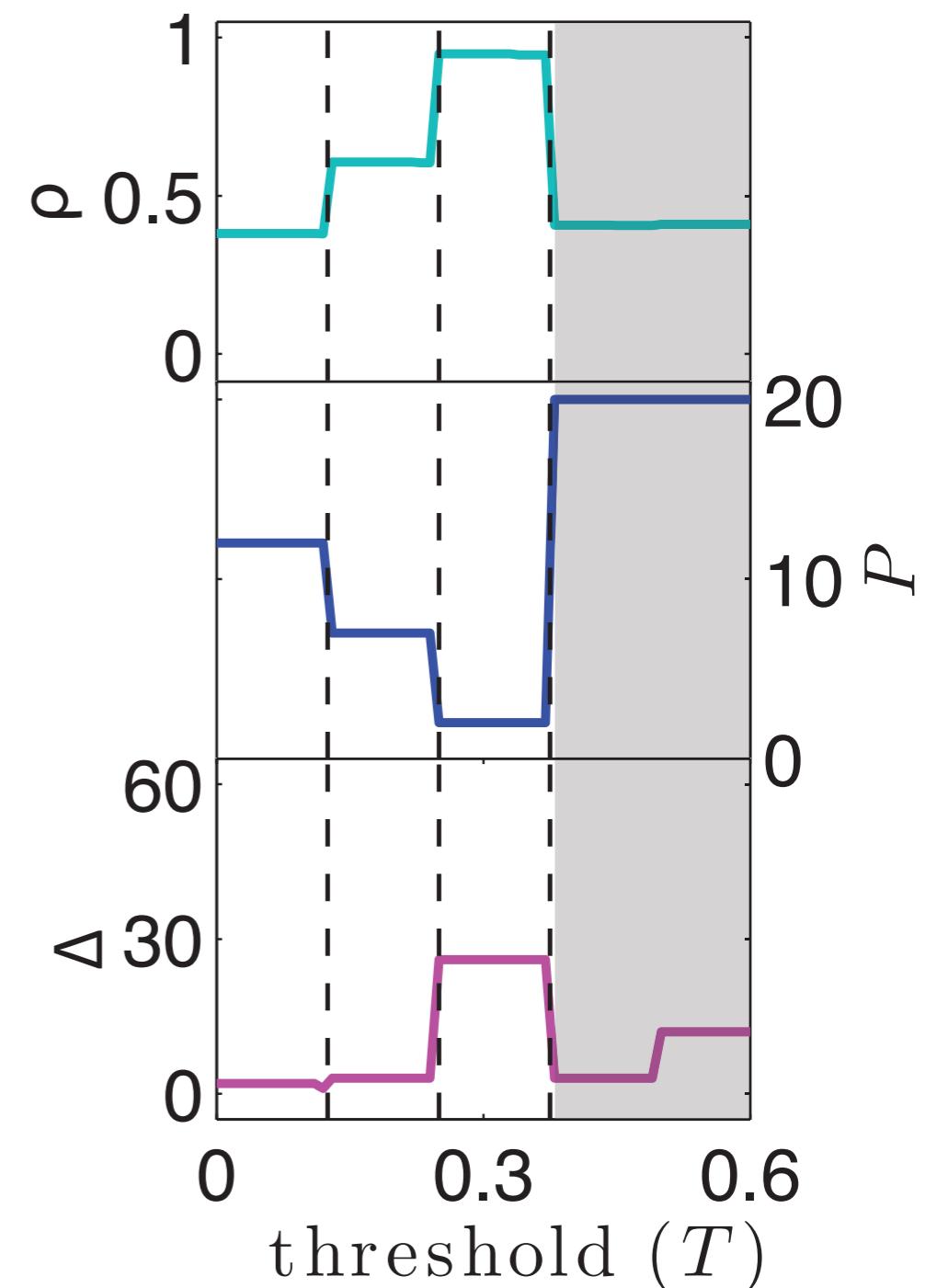
Contagion dynamics for topological data analysis

Validate the WTM

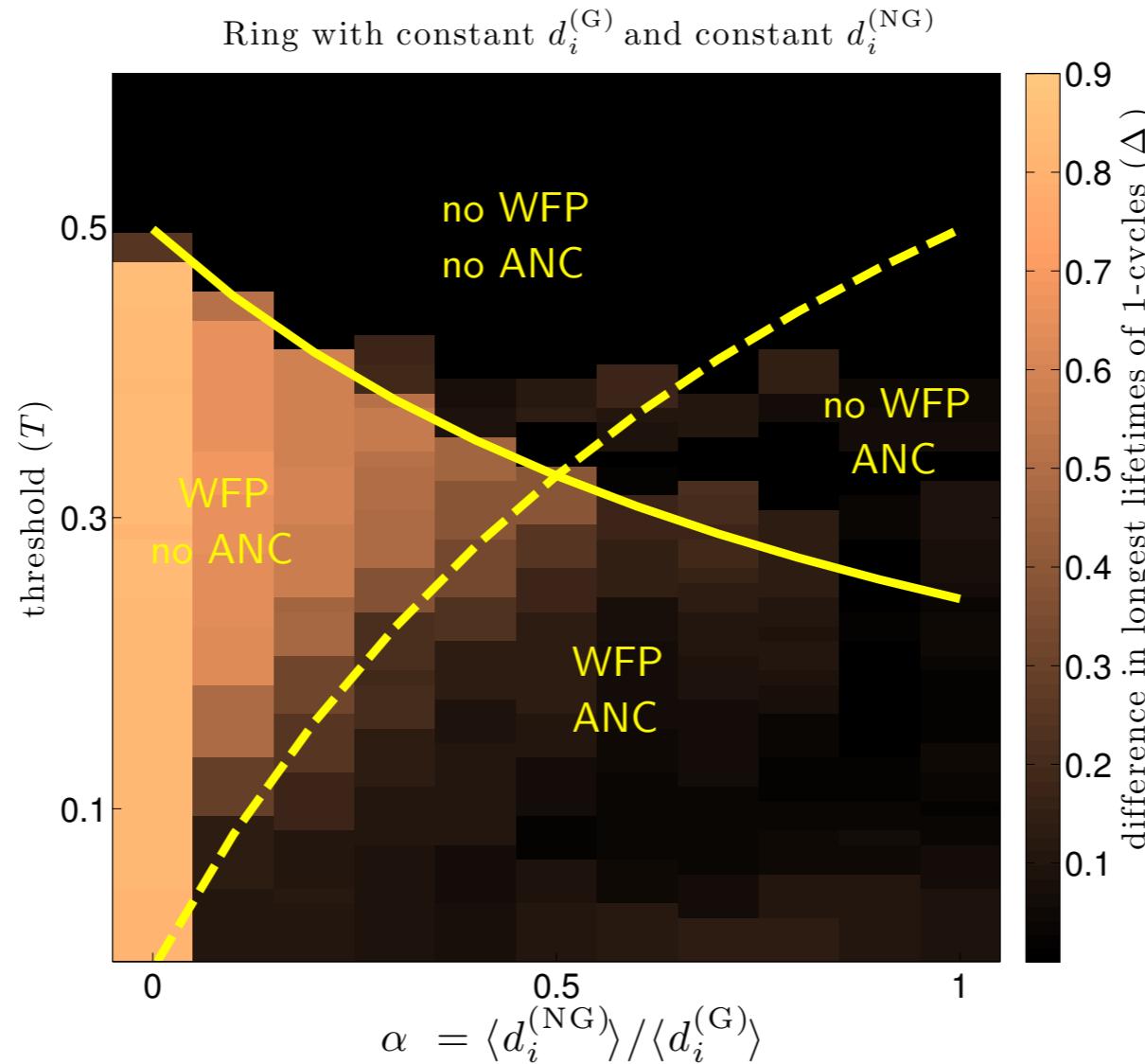
geometry: correlation between real node-to-node-distance and WTM node-to-node-distance

dimensionality: smallest dimension needed to explain 95 % of variance of the WTM

topology: strength of a single ring structure in the high-dimensional WTM (use of persistence homology)



WTM on noisy rings



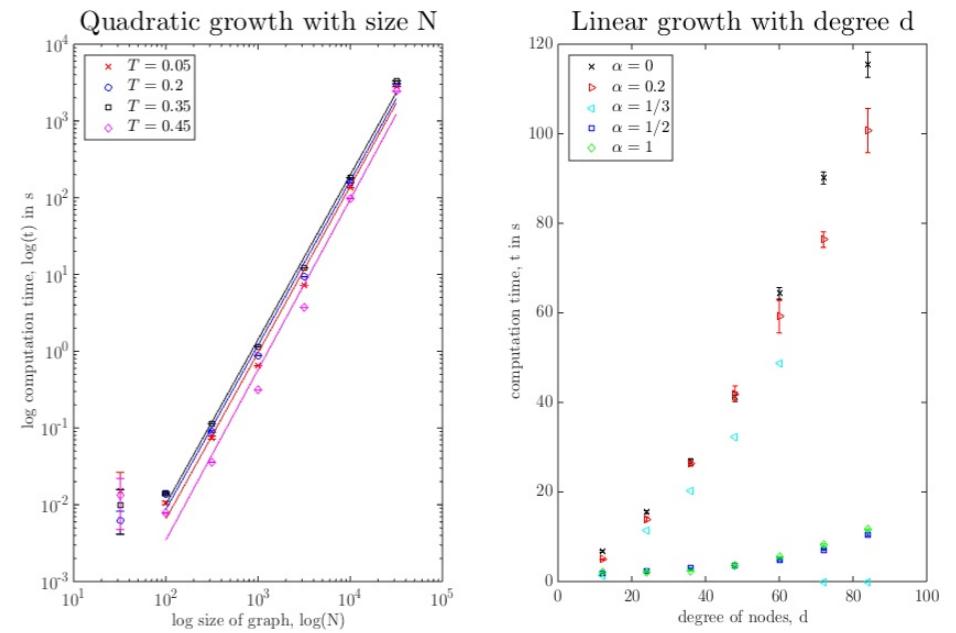
even for high noise levels WFP dominates for well-chosen T
Watts' threshold model allows analytic bifurcation analysis

Conclusions

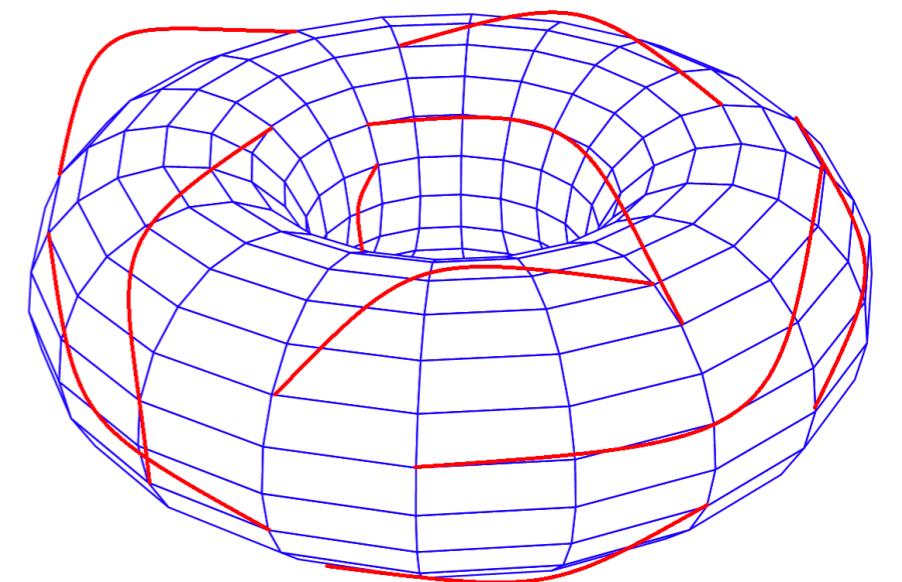
- Wave-Front Propagation (WFP) and Appearance of New Clusters (ANC) often coexist in complex contagions on noisy networks
- Watts' threshold mapping (WTM) uses multiple contagions to create a high-dimensional map
- if the contagions are largely dominated by WFP the mapping gives us insights on the underlying manifold

Outlook

speed: can we improve the complexity $\mathcal{O}(dN^2)$ of the contagion maps?



manifolds: does the mapping generalise to other, more complex, structures



<http://arxiv.org/abs/1408.1168>

Taylor, D., Klimm, F., Harrington, H. A., Kramár, M., Mischaikow, K., Porter, M. A., & Mucha, P. J. (2015). Topological data analysis of contagion maps for examining spreading processes on networks. *Nature Communications*, 6, 7723.

Thank you!

florian.klimm@dtc.ox.ac.uk

Collaborative work with:

Dane Taylor, University of North Carolina at Chapel Hill

Heather A. Harrington, University of Oxford

Miroslav Kramár, Rutgers University

Konstantin Mischaikow, Rutgers University

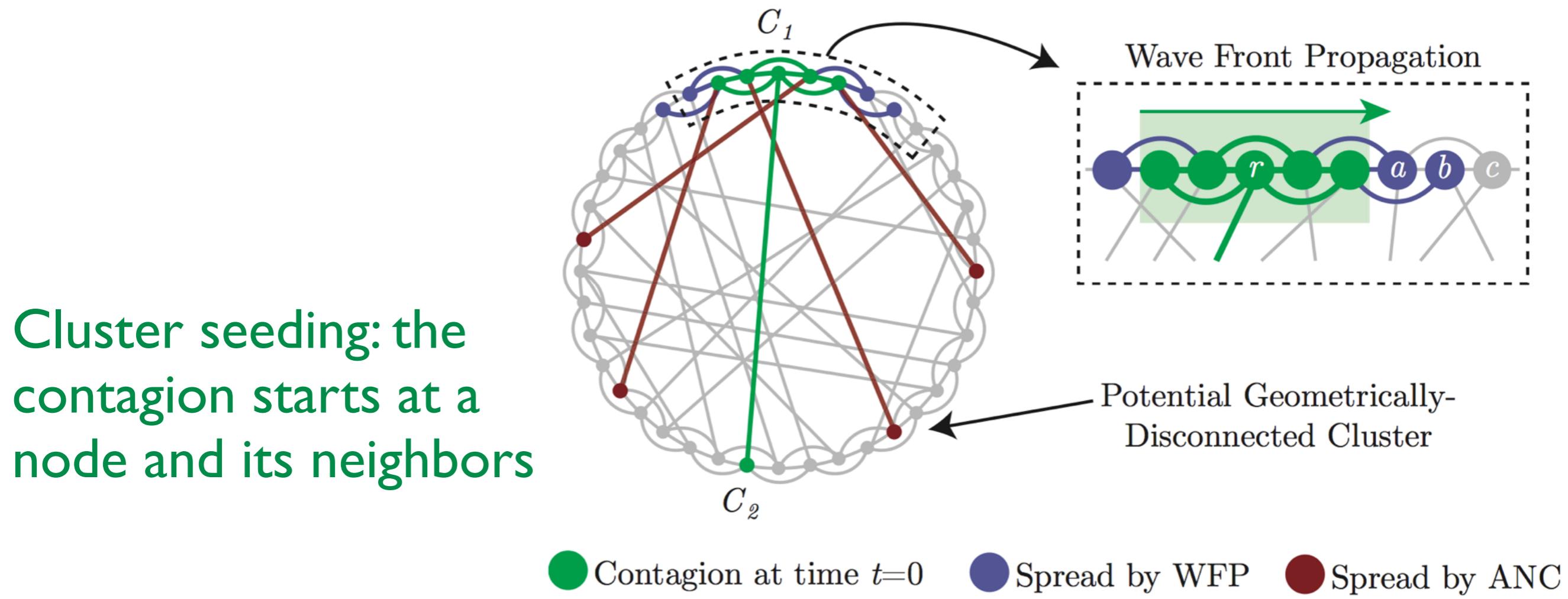
Mason A. Porter, University of Oxford

Peter J. Mucha, University of North Carolina at Chapel Hill

Barbara Mahler, University of Oxford

Contagion Phenomena

- Wave front propagation (WFP)
- Geometrically distant clusters and the appearance of new clusters (ANC)



Wave Front Propagation

- Spreading across geometric edges
- Wave front propagation travels with rate k nodes per time step when $T_{k+1}^{WFP} \leq T < T_k^{WFP}$
- There is no wave front propagation if $T \geq T_0^{WFP}$
- Critical thresholds:

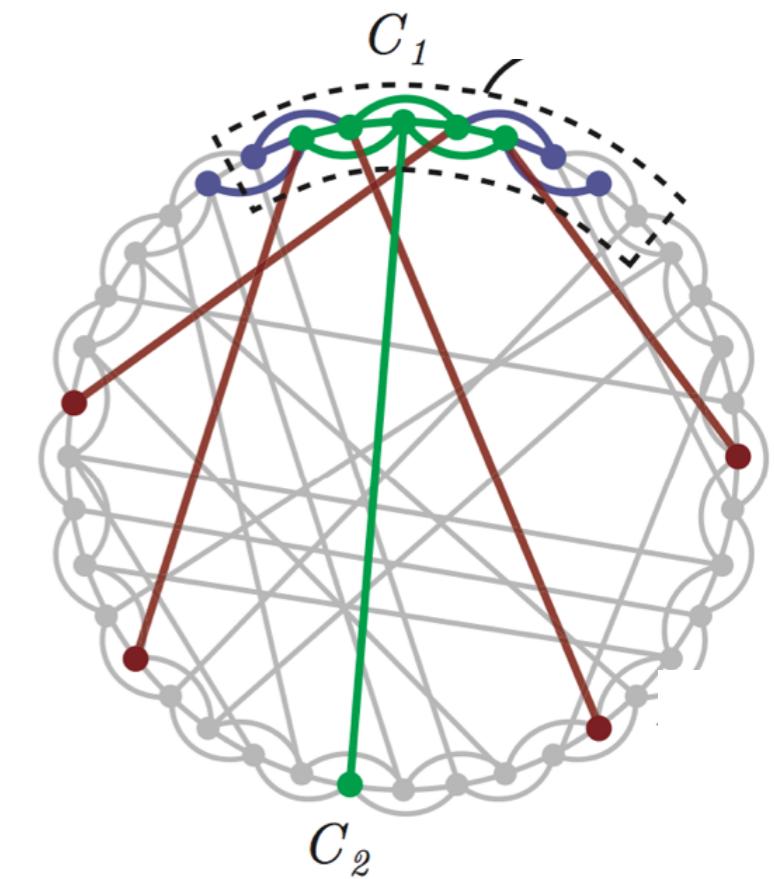
$$T_k^{WFP} = \frac{d^G/2 - k}{d^G + d^{NG}} \quad k = 0, 1, \dots, d^G/2$$



Appearance of New Clusters

- Spreading across a non-geometric edges
- If $T_{k+1}^{ANC} \leq T < T_k^{ANC}$ then a node must have at least $d^{NG} - k$ non-geometric neighbors that are adopters to adopt
- Critical thresholds:

$$T_k^{ANC} = \frac{d^{NG} - k}{d^G + d^{NG}} \quad k = 0, 1, \dots, d^{NG}$$



Bifurcation Analysis

- We first examine the regions of similar contagion dynamics, i.e., the absence/presence of wave front propagation (WFP) and the appearance of new clusters (ANC)
- Given critical thresholds

$$T_k^{WFP} = \frac{d^G/2 - k}{d^G + d^{NG}}$$

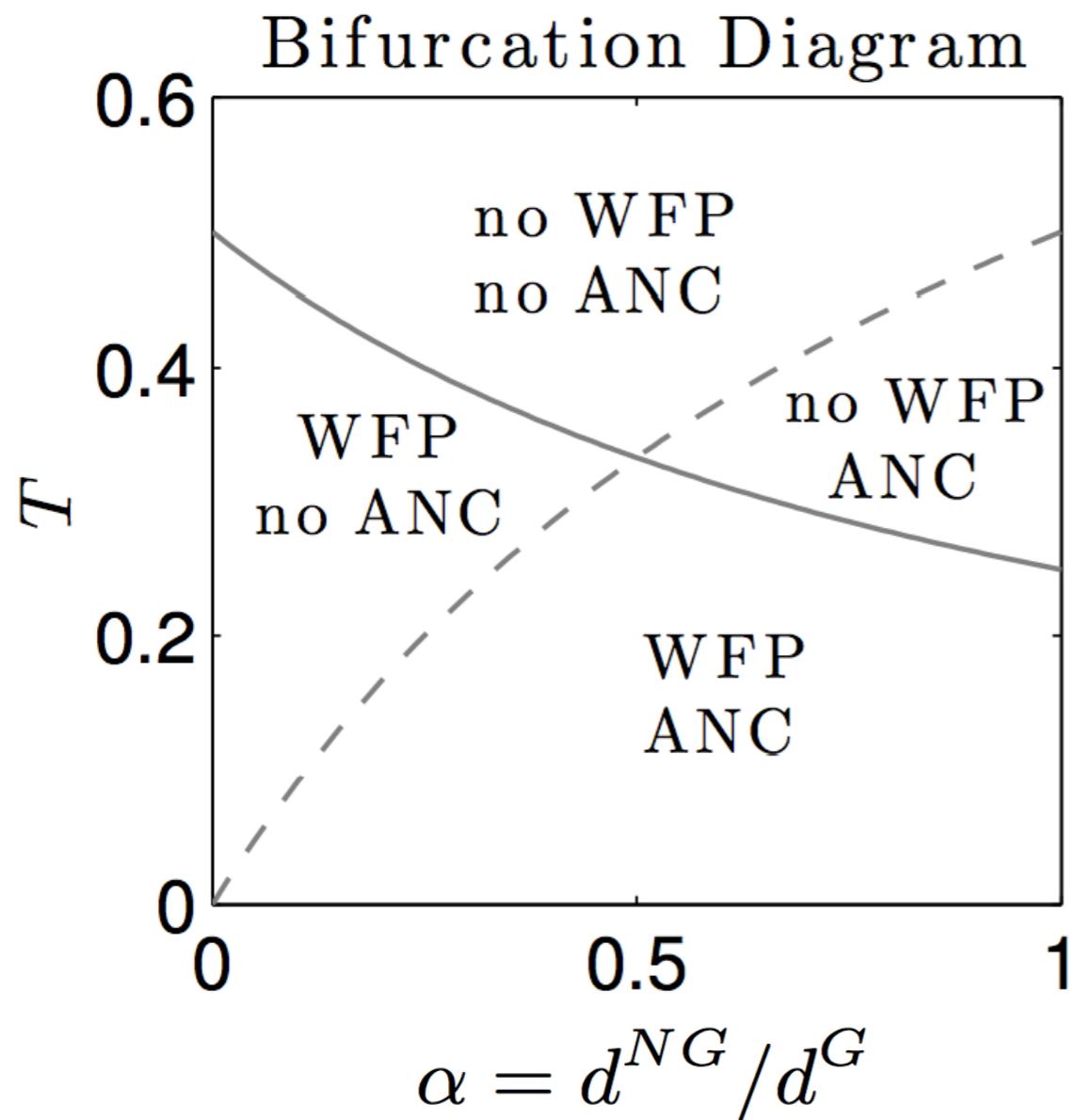
$$T_k^{ANC} = \frac{d^{NG} - k}{d^G + d^{NG}}$$

- We examine $k = 0$ and express results based on the ratio of non-geometric versus geometric edges, $\alpha = d^{NG}/d^G$

$$T_0^{WFP} = \frac{1}{2 + 2\alpha}$$

$$T_0^{ANC} = \frac{\alpha}{\alpha + 1}$$

Bifurcation Analysis



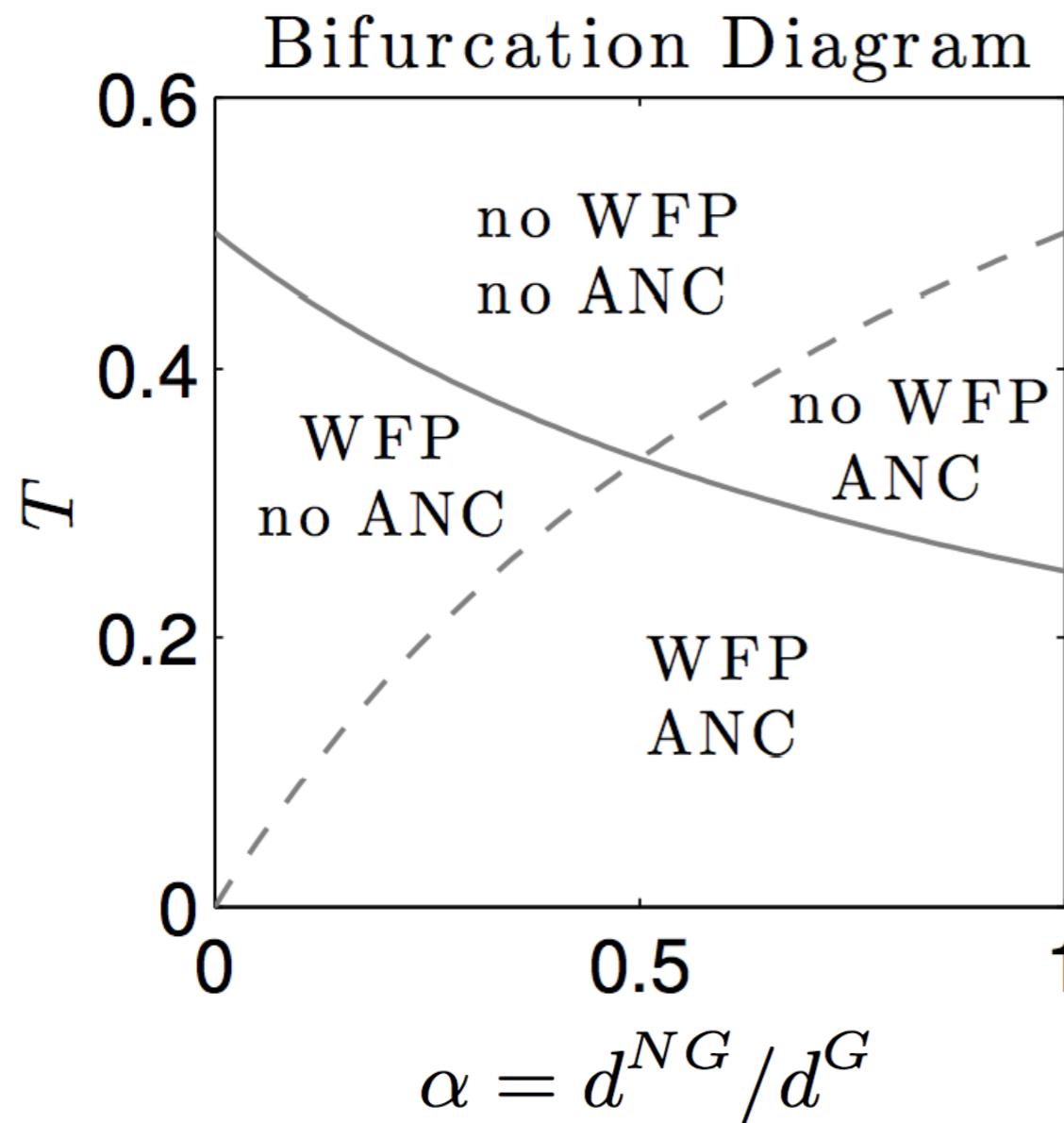
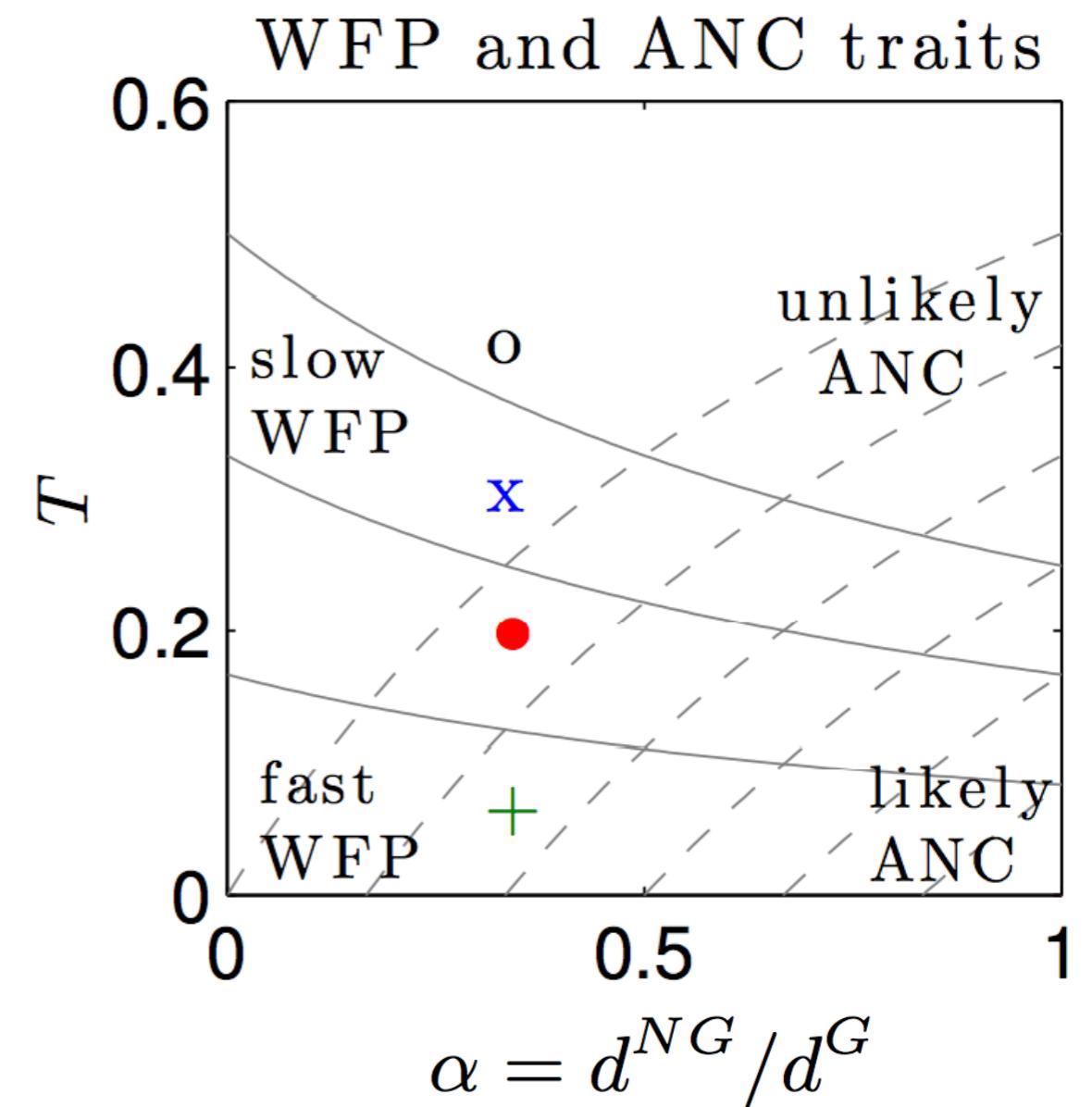
— $T_0^{WFP} = \frac{1}{2 + 2\alpha}$

--- $T_0^{ANC} = \frac{\alpha}{\alpha + 1}$

Intersection at

$$(\alpha, T) = \left(\frac{1}{2}, \frac{1}{3}\right)$$

Bifurcation Analysis



- results shown for $d^G = 6$