

Connectivity and rate with physical layer security over boundaries

Konstantinos Koufos and Carl P. Dettmann

1

Motivation

- Two deployment scenarios; Corner vs. Bulk
- Single eavesdropper fixed and known location
- When it becomes beneficial to hide the receiver at the corner?

Motivation

- At the corner the mean and variance are scaled by ¹⁄₄
- Impact of interferer's intensity in the bulk

- How the performance at the corner with intensity of interferers λ differs from the performance in the bulk with scaled intensity ($\lambda/4$) of interferers?
 - Interference at the receiver and the eavesdropper
 - Spatial correlation of interference

Spatial correlation of interference

• Spatial correlation of interference is independent of the user density

$$\rho_{\mathbf{x}}(u) = \frac{\lambda \xi \int_{0}^{\infty} \int_{0}^{\phi_{\mathbf{x}}} g(r) g\left(\|re^{j\phi} - u\|\right) r \mathrm{d}\phi \,\mathrm{d}r}{\sqrt{\mathbb{V}\mathrm{ar}\left\{\mathcal{I}_{\mathbf{x}}(u)\right\}} \sqrt{\mathbb{V}\mathrm{ar}\left\{\mathcal{I}_{\mathbf{x}}\right\}}}$$

 Spatial correlation of interference is higher when the receiver is located at the corner – trade off

Physical layer security

- Wyner encoding scheme
 - *R*_t is the rate of the transmitted codewords
 - *R_s* is the rate of confidential messages
 - $R_e = R_t R_s$ is the rate cost for securing the message against eavesdropping
- Unknown CSI
 - The rates R_t and R_s are kept fixed
 - SIR associated with the rates $\mu = 2^{R_t} 1$ $\sigma = 2^{R_e} 1$
 - Probability of secure connectivity $\mathbb{P}_{\mathbf{x}}^{\mathrm{sc}}(u) = \mathbb{P}(\gamma_{\mathbf{x},\mathbf{r}} > \mu, \gamma_{\mathbf{x},\mathbf{e}}(u) < \sigma)$
- Known CSI
 - AMC based on the instantaneous SIR
 - Average secrecy rate describes the performance

$$\overline{C}_{\mathbf{x}}^{\mathbf{sc}}(u) = \int_{0}^{\infty} \int_{0}^{\gamma_{\mathbf{x},\mathbf{r}}} \log_{2}\left(\frac{1+\gamma_{\mathbf{x},\mathbf{r}}}{1+\gamma_{\mathbf{x},\mathbf{e}}}\right) f_{\mathbf{r},\mathbf{e}}(\gamma_{\mathbf{x},\mathbf{r}},\gamma_{\mathbf{x},\mathbf{e}}) \,\mathrm{d}\gamma_{\mathbf{x},\mathbf{e}} \mathrm{d}\gamma_{\mathbf{x},\mathbf{r}}$$

bristol.ac.uk

Probability of secure connectivity – unknown CSI

• Probability of secure connectivity with correlated interference

 $\mathbb{P}_{\mathbf{x}}^{\mathrm{sc}}(u) = \mathbb{P}\left(\gamma_{\mathrm{x},\mathrm{r}} > \mu, \gamma_{\mathrm{x},\mathrm{e}}(u) < \sigma\right)$ $= \mathbb{E}\left\{e^{-s\mathcal{I}_{\mathbf{X},\mathbf{r}}}\left(1 - e^{-s_e\mathcal{I}_{\mathbf{X},\mathbf{e}}(u)}\right)\right\} = \mathbb{P}_{\mathbf{X},\mathbf{r}}^{\mathsf{c}} - \mathcal{J}_{\mathbf{X}}(u)$ $\mathcal{J}_{\mathbf{X}}(u) = \mathbb{E}\left\{e^{-s\mathcal{I}_{\mathbf{X},\mathbf{f}}-s_e\mathcal{I}_{\mathbf{X},\mathbf{e}}(u)}\right\}$ $= \int_{0}^{\frac{\pi}{2}} \exp\left(-\lambda \int_{\Theta} \left(1 - \frac{1}{1 + sg\left(r\right)} \frac{1}{1 + s_{e}g\left(d\right)}\right) \mathrm{d}S\right) f_{\Theta} \mathrm{d}\theta$ $= \int \exp\left(-\lambda \int \left(1 - \frac{1}{1 + \mu g(r) + \sigma z^{-1} g(d)}\right) dS\right) f_Z dz$

Bulk vs. Corner at low transmission rates R_t

- Expanding the probability of secure connectivity for low μ , σ
- Connection probability

$$\begin{aligned} \mathbb{P}_{\mathbf{x},\mathbf{r}}^{\mathbf{c}} &= \exp\left(-\lambda \int_{0}^{\infty} \int_{0}^{\phi_{\mathbf{x}}} \frac{sg(r)}{1+sg(r)} r \mathrm{d}\phi \,\mathrm{d}r\right) \\ &\approx \exp\left(-\lambda \left(\int_{S_{\mathbf{x}}} \left(\mu g(r) - \mu^{2}g^{2}(r)\right) \,\mathrm{d}S\right)\right) \\ &= \exp\left(-\mu \mathbb{E}\{\mathcal{I}_{\mathbf{x},\mathbf{r}}\} + \frac{\mu^{2}}{2} \mathbb{V}\mathrm{ar}(\mathcal{I}_{\mathbf{x},\mathbf{r}})\right) \\ &\approx 1 - \mu \mathbb{E}\{\mathcal{I}_{\mathbf{x},\mathbf{r}}\} + \frac{\mu^{2}}{2} \left(\mathbb{V}\mathrm{ar}(\mathcal{I}_{\mathbf{x},\mathbf{r}}) + \mathbb{E}\{\mathcal{I}_{\mathbf{x},\mathbf{r}}\}^{2}\right) \end{aligned}$$

- Similarly we can expand $\mathcal{J}_{\mathbf{x}}(u)$
- Probability of secure connectivity at low-rate transmissions is proportional to the mean interference at the eavesdropper

Bulk vs. Corner at low transmission rates R_t

- 1. Mean interference along the boundary is always less than mean interference in the bulk \rightarrow Bulk is preferable for low rate transmissions
- 2. The impact of interference correlation vanishes at low rates

Bulk vs. Corner at high transmission rates R_t

- 3. For large distance separation u between the receiver and the eavesdropper, placing the receiver at the corner is preferable at high transmission rates R_t
 - Assume independent interference and expand for high μ, σ

Bulk vs. Corner at high transmission rates R_t

4. For small distance separation *u* between the receiver and the eavesdropper, placing the receiver at the corner is still preferable

Average secrecy rate – known CSI

• Physical layer security reduces the average rate by a quantity that depends on the joint connection probability of receiver and eavesdropper for $\mu = \sigma = \gamma$

$$\overline{C}_{\mathbf{x}}^{\mathrm{sc}}(u) = \overline{C}_{\mathbf{x}} - \frac{1}{\log(2)} \int_{0}^{\infty} \frac{\mathcal{J}_{\mathbf{x}}(u,\gamma)}{1+\gamma} \mathrm{d}\gamma$$

5. The average secrecy rate at the corner is higher than in the bulk even if the density of interferers over there is 4 times higher than in the bulk

Future work

- Point Process for the eavesdroppers
- Interference correlation in more complex geometries
- Performance of secrecy enhancement techniques