Connectivity and rate with physical layer security over boundaries

Konstantinos Koufos and Carl P. Dettmann

Motivation

- Two deployment scenarios; Corner vs. Bulk
- Single eavesdropper - fixed and known location
- When it becomes beneficial to hide the receiver at the corner?

Motivation

- At the corner the mean and variance are scaled by $1 / 4$
- Impact of interferer's intensity in the bulk

- How the performance at the corner with intensity of interferers λ differs from the performance in the bulk with scaled intensity $(\lambda / 4)$ of interferers?
- Interference at the receiver and the eavesdropper
- Spatial correlation of interference

Spatial correlation of interference

- Spatial correlation of interference is independent of the user density

$$
\rho_{\mathbf{x}}(u)=\frac{\lambda \xi \int_{0}^{\infty} \int_{0}^{\phi_{\mathbf{x}}} g(r) g\left(\left\|r e^{j \phi}-u\right\|\right) r \mathrm{~d} \phi \mathrm{~d} r}{\sqrt{\operatorname{Var}\left\{\mathcal{I}_{\mathbf{x}}(u)\right\}} \sqrt{\operatorname{Var}\left\{\mathcal{I}_{\mathbf{x}}\right\}}}
$$

- Spatial correlation of interference is higher when the receiver is located at the corner - trade off

Physical layer security

- Wyner encoding scheme
- R_{t} is the rate of the transmitted codewords
- R_{s} is the rate of confidential messages
- $R_{e}=R_{t}-R_{s}$ is the rate cost for securing the message against eavesdropping
- Unknown CSI
- The rates R_{t} and R_{s} are kept fixed
- SIR associated with the rates $\mu=2^{R_{t}}-1 \quad \sigma=2^{R_{e}}-1$
- Probability of secure connectivity $\mathbb{P}_{\mathrm{x}}^{\text {sc }}(u)=\mathbb{P}\left(\gamma_{\mathrm{x}, \mathrm{r}}>\mu, \gamma_{\mathrm{x}, \mathrm{e}}(u)<\sigma\right)$
- Known CSI
- AMC based on the instantaneous SIR
- Average secrecy rate describes the performance

$$
\bar{C}_{\mathrm{x}}^{\mathrm{sc}}(u)=\int_{0}^{\infty} \int_{0}^{\gamma_{\mathrm{x}, \mathrm{r}}} \log _{2}\left(\frac{1+\gamma_{\mathrm{x}, \mathrm{r}}}{1+\gamma_{\mathrm{x}, \mathrm{e}}}\right) f_{\mathrm{r}, \mathrm{e}}\left(\gamma_{\mathrm{x}, \mathrm{r}}, \gamma_{\mathrm{x}, \mathrm{e}}\right) \mathrm{d} \gamma_{\mathrm{x}, \mathrm{e}} \mathrm{~d} \gamma_{\mathrm{x}, \mathrm{r}}
$$

Probability of secure connectivity - unknown CSI

- Probability of secure connectivity with correlated interference

$$
\begin{aligned}
\mathbb{P}_{\mathrm{x}}^{\mathrm{sc}}(u) & =\mathbb{P}\left(\gamma_{\mathrm{x}, \mathrm{r}}>\mu, \gamma_{\mathrm{x}, \mathrm{e}}(u)<\sigma\right) \\
& =\mathbb{E}\left\{e^{-s \mathcal{I}_{\mathrm{x}, \mathrm{r}}}\left(1-e^{-s_{e} \mathcal{I}_{\mathrm{x}, \mathrm{e}}(u)}\right)\right\}=\mathbb{P}_{\mathrm{x}, \mathrm{r}}^{\mathrm{c}}-\mathcal{J}_{\mathrm{x}}(u) \\
\mathcal{J}_{\mathrm{x}}(u) & =\mathbb{E}\left\{e^{-s \mathcal{I}_{\mathrm{x}, \mathrm{f}}-s_{e} \mathcal{I}_{\mathrm{x}, \mathrm{e}}(u)}\right\} \\
& =\int_{0}^{\frac{\pi}{2}} \exp \left(-\lambda \int_{S_{\mathrm{x}}}\left(1-\frac{1}{1+s g(r)} \frac{1}{1+s_{e} g(d)}\right) \mathrm{d} S\right) f_{\Theta} \mathrm{d} \theta \\
& =\int_{Z} \exp \left(-\lambda \int_{S_{\mathrm{x}}}\left(1-\frac{1}{1+\mu g(r) 1+\sigma z^{-1} g(d)}\right) \mathrm{d} S\right) f_{Z} \mathrm{~d} z
\end{aligned}
$$

Bulk vs. Corner at low transmission rates R_{t}

- Expanding the probability of secure connectivity for low μ, σ
- Connection probability

$$
\begin{aligned}
\mathbb{P}_{\mathrm{x}, \mathrm{r}}^{\mathrm{c}} & =\exp \left(-\lambda \int_{0}^{\infty} \int_{0}^{\phi_{\mathrm{x}}} \frac{s g(r)}{1+s g(r)} r \mathrm{~d} \phi \mathrm{~d} r\right) \\
& \approx \exp \left(-\lambda\left(\int_{S_{\mathrm{x}}}\left(\mu g(r)-\mu^{2} g^{2}(r)\right) \mathrm{d} S\right)\right) \\
& =\exp \left(-\mu \mathbb{E}\left\{\mathcal{I}_{\mathrm{x}, \mathrm{r}}\right\}+\frac{\mu^{2}}{2} \operatorname{Var}\left(\mathcal{I}_{\mathrm{x}, \mathrm{r}}\right)\right) \\
& \approx 1-\mu \mathbb{E}\left\{\mathcal{I}_{\mathrm{x}, \mathrm{r}}\right\}+\frac{\mu^{2}}{2}\left(\mathbb{V a r}\left(\mathcal{I}_{\mathrm{x}, \mathrm{r}}\right)+\mathbb{E}\left\{\mathcal{I}_{\mathrm{x}, \mathrm{r}}\right\}^{2}\right)
\end{aligned}
$$

- Similarly we can expand $\mathcal{J}_{\mathrm{x}}(u)$
- Probability of secure connectivity at low-rate transmissions is proportional to the mean interference at the eavesdropper

Bulk vs. Corner at low transmission rates R_{t}

1. Mean interference along the boundary is always less than mean interference in the bulk \rightarrow Bulk is preferable for low rate transmissions
2. The impact of interference correlation vanishes at low rates

Bulk vs. Corner at high transmission rates R_{t}

3. For large distance separation u between the receiver and the eavesdropper, placing the receiver at the corner is preferable at high transmission rates R_{t}

- Assume independent interference and expand for high μ, σ

Bulk vs. Corner at high transmission rates R_{t}

4. For small distance separation u between the receiver and the eavesdropper, placing the receiver at the corner is still preferable

Average secrecy rate - known CSI

- Physical layer security reduces the average rate by a quantity that depends on the joint connection probability of receiver and eavesdropper for $\mu=\sigma=\gamma$

$$
\bar{C}_{\mathrm{x}}^{\mathrm{s}}(u)=\bar{C}_{\mathrm{x}}-\frac{1}{\log (2)} \int_{0}^{\infty} \frac{\mathcal{J}_{\mathrm{x}}(u, \gamma)}{1+\gamma} \mathrm{d} \gamma
$$

5. The average secrecy rate at the corner is higher than in the bulk even if the density of interferers over there is 4 times higher than in the bulk

Future work

- Point Process for the eavesdroppers
- Interference correlation in more complex geometries
- Performance of secrecy enhancement techniques

