A Gillespie algorithm for simulating interacting non-Markovian point processes

Naoki Masuda

Department of Engineering Mathematics, University of Bristol

2nd Symposium on Spatial Networks. Oriel College, Oxford, 14 September 2017

Prediction/retrospective assessment of H1N1 influenza crisis in 2009

Model

Results

Also effects of vaccination predicted

Tizzoni et al., BMC Medicine (2012)

Thu, 11:00- 11:40

From http://www.sociopatterns.org/gallery/

Why does it matter?

temporal net

aggregate (i.e., static, traditional) net

 \checkmark node A \rightarrow node D (temporal path)

- node $D \rightarrow node A$

time stamp	ID1	ID2	duration
2009-01-01 14:13	1	3	1 min
2009-01-01 14:15	1	6	4 min
2009-01-01 14:15	5	26	1 min
2009-01-01 14:18	2	5	1 min
2009-01-01 14:19	1	13	4 min
2009-01-01 14:19	3	4	1 min
2009-01-01 14:24	1	22	1 min
2009-01-01 14:26	1	22	7 min
2009-01-01 14:26	3	6	1 min

(Takaguchi, Nakamura, Sato, Yano & Masuda, Physical Review X, 2011)

Temporal networks

- Kempe, Kleinberg & Kumar, Proc. STOC'00 (2000)
- Holme and Saramäki, Phys. Rep., 519, 97-125 (2012)
- Holme, Eur. Phys. J. B, 88, 234 (2015).
- Holme & Saramäki, Eds., Temporal networks, Springer (2013).
- Masuda and Holme, F1000Prime Reports, 5, 6 (2013): On epidemics
- Masuda & Lambiotte, A Guide to Temporal Networks, World Scientific (2016): On math and computational tools

1. Long-tailed distributions of inter-event times

(A) Original (activity of sex buyers)

(Karsai et al., Sci. Rep. 2012)

Less spreading on empirical temporal networks

- Deterministic SI
 - Mobile phone data with 4.5M nodes, 9M links, 31M contacts (phone calls), and two other data sets

- SIS
 - the activity driven network model

- Results depend on
 - data sets
 - disease dynamics models
 - parameters

Outstanding questions

- How does temporal information on networks change epidemic dynamics?
 - Data analysis
 - Theory
 - Numerical analysis
 - on empirical data (and their randomisations)
 - on models
- Can we make use of temporal information to better inform prediction and intervention methods?

Outstanding questions

 How does temporal information on networks change epidemic dynamics?

- Data analysis
- Theory
- Numerical analysis
 - on empirical data (and their randomisations)
 - on models
- Can we make use of temporal information to better inform prediction and intervention methods?

Outstanding questions

 How does temporal information on networks change epidemic dynamics?

- Data analysis
- Theory
- Numerical analysis
 - on empirical data (and their randomisations)
 - on models
- Can we make use of temporal information to better inform prediction and intervention methods?

SIR model

measles, HIV/ AIDS, SARS etc.

Rejection method

Rejection method

- Δt has to be small
- Should avoid multiple events to occur in a single time window
- Huge computation time, yet non-exact

Superposition of Poisson processes is a Poisson process

Gillespie algorithm (1976)

- total event rate = $5\beta + 2\mu$
- *T*: time to the next event
- pdf $\psi(\tau) = (5\beta + 2\mu)e^{-(5\beta + 2\mu)\tau} \rightarrow \tau = -\ln u/(5\beta + 2\mu)$
- Node 1 produced the event with prob $2\beta/(5\beta+2\mu)$ etc.

(Karsai et al., Sci. Rep. 2012)

Simulations with renewal processes

- Consider a renewal process where inter-event times (IETs) are distributed according to $\psi_i(\tau)$ for the *i*th process.
- Poisson processes if $\psi_i(\tau)$ is exponential
- Independence between different IETs assumed
- Not just for epidemic processes:
 - Interacting earthquakes
 - Neuronal networks
 - Financial transactions
 - Crimes

Aim $\tau (\sim \psi_1(\tau))$ process 1 _____ process 2 _____ process 3 _____ | | ____ | | ____ process 4 _____

non-Markovian Gillespie algorithm (Boguñá et al. PRE 2014)

Waiting-time distribution for an isolated renewal process:

$$\psi_i^{\rm w}(\tau|t_i) = \frac{\psi_i(t_i + \tau)}{\Psi_i(t_i)} \equiv \frac{\psi_i(t_i + \tau)}{\int_{t_i}^{\infty} \psi_i(\tau') d\tau'} \text{ survival probability}$$

PDF with which the *i*th process fires after Δt : $\phi(\Delta t, i|\{t_j\}) = \psi_i^{w}(\Delta t|t_i) \prod_{j=1; j \neq i}^{N} \Psi_j(\Delta t|t_j) = \frac{\psi_i(t_i + \Delta t)}{\Psi_i(t_i + \Delta t)} \prod_{j=1}^{N} \frac{\Psi_j(t_j + \Delta t)}{\Psi_j(t_j)}$

event rate no event for Δt $\equiv \lambda_i (t_i + \Delta t)$

So, an extended Gillespie algorithm consists in:

1. Draw
$$\Delta t$$
 by solving $\prod_{j=1}^{N} \frac{\Psi_j(t_j + \Delta t)}{\Psi_j(t_j)} = u$
2. Select *i* with prob $\Pi_i = \frac{\lambda_i(t_i + \Delta t)}{\sum_{j=1}^{N} \lambda_j(t_j + \Delta t)}$

So, an extended Gillespie algorithm consists in:

1. Draw
$$\Delta t$$
 by solving $\prod_{j=1}^{N} \frac{\Psi_j(t_j + \Delta t)}{\Psi_j(t_j)} = u$
2. Select *i* with prob $\Pi_i = \frac{\lambda_i(t_i + \Delta t)}{\sum_{j=1}^{N} \lambda_j(t_j + \Delta t)}$

So, an extended Gillespie algorithm consists in:

nMGA

- Exact for large *N*
- Still time-consuming to update the instantaneous event rate upon each event

Idea

Laplace Gillespie algorithm

- 1. Given $\psi_i(\tau)$, determine the distribution of the Poisson rate $p_i(\lambda_i)$
- 2. Pick the Poisson rate λ_i from $p_i(\lambda_i)$
- 3. Draw the time to the next event $\Delta t = -\ln u / \sum_{j=1}^{N} \lambda_j$
- 4. Select *i* with probability $\Pi_i = \frac{\lambda_i}{\sum_{i=1}^N \lambda_i}$
- 5. Draw a new rate λ_i according to $p_i(\lambda_i)$. Also update other p_j and λ_j as necessary
- 6. Repeat steps 3-5

Advantages

- Exact for any *N*.
 - Important for stochastic processes in a population/network because the number of active processes is often small near the beginning/end of dynamics.
- Faster computation
 - No need to recalculate the instantaneous rate of each process.

Theory

Distribution of inter-event times:

$$\psi(\tau) = \int_0^\infty p(\lambda)\lambda e^{-\lambda\tau} \mathrm{d}\lambda$$

Survival probability:

$$\Psi(\tau) = \int_{\tau}^{\infty} \psi(\tau') \mathrm{d}\tau' = \int_{0}^{\infty} p(\lambda) e^{-\lambda\tau} \mathrm{d}\lambda$$

Laplace transform!

Bernstein's theorem (1929)

A function is the Laplace transform of a pdf (on $\lambda \ge 0$) iff

1. $\Psi(0) = 1 \leftarrow \text{trivially satisfied}$

and

2. Ψ is completely monotone, i.e., $(-1)^n \frac{\mathrm{d}^n \Psi(\tau)}{\mathrm{d}\tau^n} \ge 0 \quad (\tau \ge 0, n = 0, 1, \ldots)$ \leftarrow nontrivial for $n \ge 2$ $n = 0: \quad \Psi(\tau) \ge 0$ $n = 1: \quad \psi(\tau) \ge 0$ $n = 2: \quad \psi'(\tau) \le 0$

Examples

Exponential distribution (Poisson process)

$$\psi(\tau) = \lambda_0 e^{-\lambda_0 \tau}$$
$$p(\lambda) = \delta(\lambda - \lambda_0)$$

Power-law distributions

$$\psi(\tau) = \frac{\kappa}{(1+\kappa\tau)^{\alpha+1}}$$

$$p(\lambda) = \frac{\lambda^{\alpha - 1} e^{-\lambda/\kappa}}{\Gamma(\alpha) \kappa^{\alpha}}$$

exponential $p(\lambda)$ with $\alpha=1$

With an exponential tail

$$\psi(\tau) = \frac{e^{-\lambda_0 \tau}}{(1+\kappa\tau)^{\alpha}} \left(\lambda_0 + \frac{\kappa\alpha}{1+\kappa\tau}\right) \qquad \Psi(\tau) = \frac{e^{-\lambda_0 \tau}}{(1+\kappa\tau)^{\alpha}}$$

$$p(\lambda) = \begin{cases} \frac{(\lambda - \lambda_0)^{\alpha - 1} e^{-(\lambda - \lambda_0)/\kappa}}{\Gamma(\alpha)} & (\lambda \ge \lambda_0) \\ 0 & (0 < \lambda < \lambda_0) \end{cases}$$

Other examples

- Special cases of the Weibull distribution
- Mittag-Leffler distribution
- Survival function obtained as
 - integral of a valid survival function
 - product of survival functions

Limitations

- Complete monotoneness
 - Coefficient of Variation ≥ 1 only (Yannaros, Ann. Inst. Stat. Math. 1994)
 - Invalid examples: Pareto, one-sided Cauchy, two-peak distributions

Applications

- 1. IET sequences with positive correlations
- 2. A stochastic epidemic process model

Applications

1. IET sequences with positive correlations

2. A stochastic epidemic process model

memory coefficient: $M \equiv \frac{1}{n_{\tau} - 1} \sum_{i=1}^{n_{\tau} - 1} \frac{(\tau_i - m_1)(\tau_{i+1} - m_2)}{\sigma_1 \sigma_2}$,

(Goh & Barabási, EPL, 2008)

Laplace Gillespie algorithm

- 1. Given $\psi_i(\tau)$, determine the distribution of the Poisson rate $p_i(\lambda_i)$
- 2. Pick the Poisson rate λ_i from $p_i(\lambda_i)$
- 3. Draw the time to the next event $\Delta t = -\ln u / \sum_{j=1}^{N} \lambda_j$
- 4. Select *i* with probability $\Pi_i = \frac{\lambda_i}{\sum_{i=1}^N \lambda_i}$
- 5. Draw a new rate λ_i according to $p_i(\lambda_i)$ with probability 1-q. Also update other p_j and λ_j as necessary
- 6. Repeat steps 3-5

Applications

1. IET sequences with positive correlations

2. A stochastic epidemic process model

SIR model

An SIR model

- Poissonian recovery at rate 1
- Power-law renewal process on each node (same pdf)
- An activated node selects a neighbour with the uniform probability and infects it (when it can)
- Equilibrium renewal process

Observations:

- Power-law IET enhances the outbreak size
- Positive IET corr enhances the outbreak size

Conclusions

- Laplace Gillespie algorithm
 - Can treat renewal processes
 - Faster than previous algorithms
 - Can produce positive correlation
 - Completely monotonicity condition
 - Explicit expression for $p(\lambda)$ in various examples
 - No short-tail distributions, no Pareto
- Issues
 - Somehow treat short-tailed distributions (e.g., recovery events in epidemic processes)
 - Applications?
 - Probably not chemical reaction systems?
 - Other social processes, earthquakes, operations research?

Acknowledgments

Luis E. C. Rocha (Karolinska, Sweden & Namur, Belgium)

 Masuda and Rocha, SIAM Review, in press (2017). Preprint arxiv:1601.01490