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Prediction/retrospective assessment 
of H1N1 influenza crisis in 2009

Tizzoni	et	al.,	BMC	Medicine	(2012)
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Why does it matter?
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temporal net aggregate (i.e., static, 
traditional) net

✓ node A → node D (temporal path) 
-   node D → node A



(Takaguchi, Nakamura, Sato, Yano & Masuda, Physical Review X, 2011) 



Temporal networks
• Kempe, Kleinberg & Kumar, Proc. STOC’00 (2000) 

• Holme and Saramäki, Phys. Rep., 519, 97-125 (2012) 

• Holme, Eur. Phys. J. B, 88, 234 (2015). 

• Holme & Saramäki, Eds., Temporal networks, Springer (2013). 

• Masuda and Holme, F1000Prime Reports, 5, 6 (2013): On epidemics 

• Masuda & Lambiotte, A Guide to Temporal Networks, World Scientific 
(2016): On math and computational tools



1. Long-tailed distributions of 
inter-event times

(Masuda & Holme, F1000Prime Rep. 2013)

(activity of sex buyers)

p(�) / ��� ⇒ non-Markovian



(Vázquez et al., PRE 2006)

(Karsai et al., Sci. Rep. 2012)

earthquake

neuron

phone call

(Barabási, Nature 2005)

e-mails sente-mails 
answered

(Eckmann et al., PNAS 2004)

visits to a 
web portal



Less spreading on empirical 
temporal networks

• Deterministic SI 

• Mobile phone data 
with 4.5M nodes, 
9M links, 31M 
contacts (phone 
calls), and two 
other data sets 

• SIS 

• the activity driven 
network model

%I @ stationarity

β/μ

(Karsai et al., PRE 2011)

(Perra et al., Sci. Rep. 2012)



• Results depend on 

• data sets 

• disease dynamics models 

• parameters



Outstanding questions
• How does temporal information on networks 

change epidemic dynamics? 

• Data analysis 

• Theory 

• Numerical analysis 

• on empirical data (and their 
randomisations) 

• on models 

• Can we make use of temporal information to better 
inform prediction and intervention methods?
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Stochas;c	SIR	dynamics
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Rejection method
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Rejection method

• Δt has to be small 

• Should avoid multiple events to occur in a single time window 

• Huge computation time, yet non-exact

2βΔt

2βΔt

βΔt

μΔt

μΔt

0

event  
probability



Superposition of Poisson 
processes is a Poisson process

λ1 = 2

λ2 = 1

�1 + �2 = 3



Gillespie algorithm (1976)

2β
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β

μ

μ

0

event rate

• total event rate = 5β + 2µ 
• τ: time to the next event 
• pdf 
• Node 1 produced the event with prob 2β/(5β+2µ) etc.

 (⌧) = (5� + 2µ)e�(5�+2µ)⌧ ! ⌧ = � lnu/(5� + 2µ)



(Vázquez et al., PRE 2006)

(Karsai et al., Sci. Rep. 2012)
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Simulations with renewal 
processes

• Consider a renewal process where inter-event 
times (IETs) are distributed according to ψi(τ) for 
the ith process. 

• Poisson processes if ψi(τ) is exponential 

• Independence between different IETs assumed 

• Not just for epidemic processes: 

• Interacting earthquakes 

• Neuronal networks 

• Financial transactions 

• Crimes



Aim

process 1

process 2

process 3

process 4

(∼ ψ1(τ))τ



Aim

process 1

process 2

process 3

process 4

(∼ ψ1(τ))τ



Aim

process 1

process 2

process 3

process 4

(∼ ψ1(τ))τ



non-Markovian Gillespie algorithm 
(Boguñá et al. PRE 2014)

Waiting-time distribution for an isolated renewal process:

 w
i (⌧ |ti) =

 i(ti + ⌧)

 i(ti)
⌘  i(ti + ⌧)R1

ti
 i(⌧ 0)d⌧ 0 survival probability

τ or Δtti

event rate

PDF with which the ith process fires after Δt:

tj

i

j
past future

�(�t, i|{tj}) =  w
i (�t|ti)

NY

j=1;j 6=i

 j(�t|tj) =
 i(ti +�t)

 i(ti +�t)

NY

j=1

 j(tj +�t)

 j(tj)

⌘ �i(ti +�t)

no event for Δt 



So, an extended Gillespie algorithm consists in: 

1. Draw Δt by solving 

2. Select i with prob

τ or Δtti
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PN
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So, an extended Gillespie algorithm consists in: 

1. Draw Δt by solving 

2. Select i with prob

Taylor expansion:

where �({tj}) =
PN

j=1 �j(tj)

N
=

1

N

NX
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 j(tj)

 j(tj)

�t = � lnu/N�({tj})Use
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⇡ exp
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nMGA

• Exact for large N 

• Still time-consuming to update the 
instantaneous event rate upon each 
event



Idea
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Laplace Gillespie algorithm

1. Given ψi(τ), determine the distribution of 
the Poisson rate pi(λi) 

2. Pick the Poisson rate λi from pi(λi) 

3. Draw the time to the next event 

4. Select i with probability 

5. Draw a new rate λi according to pi(λi). Also 
update other pj and λj as necessary 

6. Repeat steps 3-5

⇧i =
�iPN
j=1 �j

�t = � lnu/
PN

j=1 �j



Advantages
• Exact for any N. 

• Important for stochastic processes in 
a population/network because the 
number of active processes is often 
small near the beginning/end of 
dynamics. 

• Faster computation 

• No need to recalculate the 
instantaneous rate of each process.
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Theory
Distribution of inter-event times:

 (⌧) =

Z 1

0
p(�)�e��⌧d�

Survival probability:

 (⌧) =

Z 1

⌧
 (⌧ 0)d⌧ 0 =

Z 1

0
p(�)e��⌧d�

Laplace transform!



Bernstein’s theorem (1929)

A function is the Laplace transform of a pdf 
(on λ ≥ 0) iff 

1. Ψ(0) = 1 ← trivially satisfied 

and 

2. Ψ is completely monotone, i.e., 

              ← nontrivial for n ≥ 2 n = 0 :  (⌧) � 0

n = 1 :  (⌧) � 0

n = 2 :  0(⌧)  0

(�1)n
dn (⌧)

d⌧n
� 0 (⌧ � 0, n = 0, 1, . . .)



Examples

Exponential distribution (Poisson process)

 (⌧) = �0e
��0⌧

p(�) = �(�� �0)



Power-law distributions
p(�) =

�↵�1e��/

�(↵)↵
 (⌧) =



(1 + ⌧)↵+1

 (⌧) =
e��0⌧

(1 + ⌧)↵

✓
�0 +

↵

1 + ⌧

◆
 (⌧) =

e��0⌧

(1 + ⌧)↵

p(�) =

(
(���0)

↵�1e�(���0)/

�(↵) (� � �0)

0 (0 < � < �0)

With an exponential tail

exponential p(λ) with α=1



Gamma distribution
 (⌧) =

⌧↵�1e�⌧/

�(↵)↵

p(�) =

(
0 (0 < � < �1)

1
�(↵)�(1�↵)�(��1)↵ (� � �1)

Note: 0 < α ≤ 1 only



Other examples

• Special cases of the Weibull distribution 

• Mittag-Leffler distribution 

• Survival function obtained as 

• integral of a valid survival function 

• product of survival functions



Limitations
• Complete monotoneness 

• Coefficient of Variation ≥ 1 only 
(Yannaros, Ann. Inst. Stat. Math. 1994) 

• Invalid examples: Pareto, one-sided 
Cauchy, two-peak distributions 

One-sided CauchyPareto
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⇡(⌧2 + 1)

 0

 0.5

 1

 0  5  10

ψ
(τ

)

τ

 0

 0.1

 0.2

 0.3

 0.4

 0  1  2  3  4  5

ψ
(τ

)

τ



Applications

1. IET sequences with positive correlations 

2. A stochastic epidemic process model



Applications

1. IET sequences with positive correlations 

2. A stochastic epidemic process model



(Goh & Barabási, EPL, 2008)

memory coefficient:



Laplace Gillespie algorithm

1. Given ψi(τ), determine the distribution of 
the Poisson rate pi(λi) 

2. Pick the Poisson rate λi from pi(λi) 

3. Draw the time to the next event 

4. Select i with probability 

5. Draw a new rate λi according to pi(λi) with 
probability 1-q. Also update other pj and λj 
as necessary 

6. Repeat steps 3-5

⇧i =
�iPN
j=1 �j

�t = � lnu/
PN

j=1 �j
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Applications

1. IET sequences with positive correlations 

2. A stochastic epidemic process model
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An SIR model

• Poissonian recovery at rate 1 

• Power-law renewal process on each 
node (same pdf) 

• An activated node selects a neighbour 
with the uniform probability and infects it 
(when it can) 

• Equilibrium renewal process
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Observations: 

• Power-law IET enhances the outbreak size 
• Positive IET corr enhances the outbreak size

= 1/⟨τ⟩

well-mixed population
regular random graph 

(degree = 5)

Use



Conclusions
• Laplace Gillespie algorithm 

• Can treat renewal processes 

• Faster than previous algorithms 

• Can produce positive correlation 

• Completely monotonicity condition 

• Explicit expression for p(λ) in various examples 

• No short-tail distributions, no Pareto 

• Issues 

• Somehow treat short-tailed distributions (e.g., recovery events in 
epidemic processes) 

• Applications? 

• Probably not chemical reaction systems? 

• Other social processes, earthquakes, operations research?
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