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Introduction

What is a complex network ?

Complex Networks are large networks of real life.

Social networks :

Facebook, Twitter...
phone-call networks

Technological networks :

the Internet
transportation networks

Biological networks :

protein interaction networks
the food web
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Introduction

Different types of a complex network

Three well-known and much studied classes of complex net-
works are :

Scale-free networks

have power law degree distribution
(WWW, semantic maps, electronic
circuits).

Small-world networks

have generalized binomial distribution
(neural networks in the brain).

Random networks

have poisson distribution (Erdos-Renyi
models).
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Objective

What do we do in complex network ?

We analyze the structure of large networks from the real-
world to understand which properties are underlying them.

In this work, we analyze two families of complex networks
in order to evaluate their robustness.

What is a robustness of a network ?

The robustness of a network is the ability to withstand fai-
lures and perturbations, the ability to adapt random changes
in its structure and the capacity to tolerate changes over evo-
lutionary time.

In this work, we suggest a structural characterization of ro-
bustness in terms of spanning trees entropy.
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Solution

The entropy of spanning trees of a network or the asymp-
totic complexity is a quantitative measure of the number of
spanning trees to evaluate the robustness of networks.

The most robust network is the network that has the highest
spanning tree entropy.

The entropy of spanning trees of a network is defined as :

ρGn = lim
VGn→∞

ln τ(Gn)

VGn
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Solution

The entropy of spanning trees of a network or the asymp-
totic complexity is a quantitative measure of the number of
spanning trees to evaluate the robustness of networks.

The most robust network is the network that has the highest
spanning tree entropy.

The entropy of spanning trees of a network is defined as :

ρGn = lim
VGn→∞

ln τ(Gn)

VGn

with τ(Gn) is the number of spanning trees of Gn or what
is called the complexity of a network Gn.
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A general method that calculate the complexity of a network :

Theorem :

The Kirchhoff Matrix Tree Theorem computes the complexity of
a graph G by

τ(G) = (−1)i+jdet L∗(G)

L∗(G) is a matrix obtained by deleting row i and column j of the
Laplacian matrix L(G).

The problem of Kirchhoff Matrix Theorem :
The use of Kirchhoff’s theorem is not practical in the case
of large and complex networks.

Solution :
The application of combinatorial methods that facilitate the
calculation of the number of spanning trees of a large and
complex network.
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Combinatorial approaches and methods :

For this work, we propose three combinatorial methods :

Reduction and Bipartition approaches to construct two
scale free networks : Flower network and Mosaic network and
calculate their complexity.
Decomposition methods to calculate the complexity of
two small world networks : The Exponential small world net-
work, and the Koch network.
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Combinatorial approaches and methods :

I-Reduction and Bipartition
approaches
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The reduction approach

Definition :

A reduced graph R2(G) is obtained when every edge of G is
multiplied.

A k-reduced graph Rk(G) is obtained when we add k mul-
tiple edges connecting two existing vertices of G.

G R2(G) R3(G)

Figure 1 – A graph G, its reduced graph and its 3-reduced graph
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The reduction approach

The properties of the k-reduced graph Rk(G) :

The number of vertices is : |VRk(G)| = |VG|
The number of edges is : |ERk(G)| = k|EG|
The number of faces is : |FRk(G)| = |FG|+ (k − 1)|EG|

The average degree is : < z >Rk(G)=
2|ERk(G)|
|VRk(G)|

= 2k|EG|
|VG| .

The complexity of the k-reduced graph Rk(G) :

τ(Rk(G)) = k|VG|−1τ(G) (1)

The main objective of the reduction approach is to make
the complexity of G having a large number of edges easy for
computation.
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The bipartition approach

Definition :

A bipartite graph B2(G) is obtained by adding a new vertex
between two connected vertices.

A k-partite graph Bk(G) is obtained when we add k−1 new
vertices in each edge of planar graph G.

G B2(G) B3(G)

Figure 2 – A graph G, its bipartite graph and its 3-partite graph
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The bipartition approach

The properties of the k-partite graph Bk(G) :

The number of vertices of Bk(G) is : |VBk(G)| = |VG|+(k−1)|EG|
The number of edges of Bk(G)) is : |EBk(G)| = k|EG|
The number of faces is : |FBk(G)| = |FG|

The average degree is : < z >Bk(G)=
2|EBk(G)|
|VBk(G)|

= 2k|EG|
|VG|+(k−1)|EG| .

The complexity of the k-partite graph Bk(G) :

τ(Bk(G)) = k|FG|−1τ(G) (2)

The main goal of the bipartite approach is to simplify the
calculation of the complexity of G having a large number of
vertices.
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Main results

To show the effectiveness of our approaches, we combine
them to study two types of scale free networks that are cha-
racterized by the self-similarity :

The Flower network.

The Mosaic network.
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The construction of the Flower network

The k-Flower network is constructed by applying firstly the k-
reduced approach then the k-partite approach.

G0 G1
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The construction of the Flower network

The k-Flower network is constructed by applying firstly the k-
reduced approach then the k-partite approach.

G0 G1

G2

Figure 3 – The first three iterations of the 3-Flower network.

*Mokhlissi, Raihana, et al. ”An Innovative Combinatorial Approach for the Spanning Tree
Entropy in Flower Network.” International Conference on Networked Systems. Springer,2017.
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The topological properties and the complexity of the Flower network

The topological properties of Gn are presented as follows :

The number of vertices of Gn : |VGn | = 2 + k(k2n−1)
k+1

The number of edges of Gn is |EGn | = k2n

the number of faces of Gn : |FGn | = 1 + k2n−1
k+1

the average degree of Gn : < z >Gn= 2k2n

2+
k(k2n−1)

k+1

.

The complexity of the k-Flower network Gn :

τ(Gn) = k
k[ k

2n−1

k2−1
]

(3)
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The construction of the Mosaic Network

The k-Mosaic network is constructed by applying firstly the k-
partite approach then the k-reduced approach.
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The construction of the Mosaic Network

The k-Mosaic network is constructed by applying firstly the k-
partite approach then the k-reduced approach.

M0 M1

M2

Figure 4 – The first three iterations of the 3-Mosaic network
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The topological properties and the complexity of the Mosaic network

The topological properties of Mn are presented as follows :

The number of vertices of Mn : |VMn | = 2 + k2n−1
k+1

The number of edges of Mn is |EMn | = k2n

the number of faces of Mn : |FMn | = 1 + k(k2n−1)
k+1

the average degree of Mn : < z >Mn= 2k2n

2+ k2n−1
k+1

.

The complexity of the k-Mosaic network Mn :

τ(Mn) = k
k[ k

2n−1

k2−1
]

(4)

*Mokhlissi, Raihana, et al. ”Spanning tree entropy of mosaic network.” Proceedings of the
32nd International Conference on Computers and Their Applications, CATA 2017 .
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Analysis of results

The k-Flower network and the k-Mosaic network have the
same complexity :

τ(Mn) = τ(Gn) = τ(Rk ◦Bk(Mn−1)) = τ(Bk ◦Rk(Gn−1))

The combination of the k-partition and the k-reduction ap-
proaches with two different ways leads to the same com-
plexity in spite of the difference of the structure and the
properties of our complex networks.

*Mokhlissi, Raihana, Dounia Lotfi, and Mohamed El Marraki. ”A theoretical study of the
complexity of complex networks.” Information and Digital Technologies (IDT), 2017
International Conference on. IEEE, 2017.
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The spanning tree entropy of the k-Flower network and the k-Mosaic network

The spanning trees entropy of the k-Flower network is :

ρGk
=

ln(k)

k − 1

The spanning trees entropy of the k-Mosaic network is :

ρMk
= k

ln(k)

k − 1
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The spanning tree entropy of the k-Flower network and the k-Mosaic network

Figure 5 – The spanning tree entropy of the k-Flower network and
the k-Mosaic network

This figure shows the increasing of the dimension k leads
to the decreasing of the entropy of spanning trees of the k-
Flower network and to the increasing the entropy of spanning
trees of the k-Mosaic network.
So the entropy of spanning trees of the k-Mosaic network is
larger than that of the k-Flower network.
This result reflects that the Mosaic network is more robust
and its structure is more heterogeneous than the Flower net-
work.
This result proves that the Flower network having low value
of dimension k is more robust than the Flower network ha-
ving high value of k. On the other hand, the Mosaic network
having high value of dimension k is more robust than the
Mosaic network having low value of k

26/44

R.Mokhlissi, D.Lotfi, J.Debnath, M.El marraki The complexity of complex networks



Comparison the Flower network with other networks having the same average

degree

Type of network < z > ρ

Koch network 3 0.549
Hanoi networks 3 0.677
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The 2-Flower network has an average spanning tree entropy rate
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Comparison the Mosaic network with other networks having the same average

degree

Type of network < z > ρ

Pseudofractal web 4 0.8959
Fractal scale-freelattice 4 1.0397

The 2-dimensional Sierpinskigasket 4 1.0486
Square lattice 4 1.1662

The 2-Mosaic networks 4 1,3862

Table 2 – The entropy of several networks having the same average
degree.

This table proves that the value of the entropy of the span-
ning trees of the 2-Mosaic networks is the biggest known for
networks with average degree 4.

This result proves that the 2-Mosaic network is more robust
than other networks having the same average degree.
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Combinatorial approaches and methods :

II-Decomposition method
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Principle of the decomposition method : “Divide and Conquer”

1 This method aims first to decompose the original graph into dif-
ferent subgraphs.

2 We calculate the number of spanning trees of each of subgraph.
3 We collect the results to obtain the complexity of the original

graph.

We study the case where subgraphs are connected by one vertex.

C1 C2

Figure 6 – A network G = C1 • C2

τ(G) = τ(C1 • C2) = τ(C1)× τ(C2). (5)
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Principle of the decomposition method :

C1 C2 C3 Cn

Cn

C1

C2
C3

Figure 7 – Star network and chain network

τ(G) =
n∏

i=1

τ(Ci). (6)
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Main results

To show the effectiveness of the decomposition method, we
study two types of small world networks :

The Exponential Small World Network.

The Koch network.
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The construction of the Exponential Small World Network

To construct the Exponential Small World Network, we fol-
low an iterative algorithm :

At n = 0, we have a simple
node.

At n = 1, G1 is a simple tri-
angle.

For n > 1, each node in the net-
work of the previous iteration is
replaced by a new triangle.
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The construction of the Exponential Small World Network

Figure 8 – The first 4 generations of the exponential Small World
Network Gn
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The topological properties and the complexity of the Exponential Small World

Network

The topological properties of Gn are presented as follows :

The number of nodes of Gn is : VGn = 3n

The number of edges of Gn is : EGn = 3(3
n−1
2 )

The number of faces of Gn is : FGn = 3n − 3n−1
2

the average degree of Gn is : < z >Gn= 3n−1
3(n−1)

The complexity of the Exponential Small World Network Gn :

τ(Gn) = 3
3n−1

2 , n ≥ 1. (7)

*Mokhlissi, Raihana, et al. ”Complexity Analysis of “Small-World Networks” and Spanning
Tree Entropy.” International Workshop on Complex Networks and their Applications. Springer
International Publishing, 2016.
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The construction of the Koch Network

To construct the Koch Network, we follow an iterative algo-
rithm :

At n = 0, C0 is a simple tri-
angle.

For n ≥ 1, Cn is obtained from
Cn−1 by adding one triangle for
each of the three nodes of every
existing triangles in Cn−1.

The growth process to the next
iteration continues in a similar
way.
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The construction of the Koch Network

Figure 9 – The first 3 generations of the koch network Cn
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The topological properties and the complexity of the Koch Network

The topological properties of Cn are presented as follows :

The number of nodes of Cn is : VCn = 2× 4n + 1

The number of edges of Cn is : ECn = 3× 4n

The number of faces of Cn is : FCn = 4n + 1

the average degree of Cn is : < z >Cn= 6×4n
2×4n+1 .

The complexity of the Koch Network Cn :

τ(Cn) = 34
n
, n ≥ 1. (8)

*Zhang, Zhongzhi, et al. ”Mapping Koch curves into scale-free small-world networks.” Journal
of Physics A : Mathematical and Theoretical 43.39 (2010) : 395101.
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The spanning tree entropy of the exponential small world network and the

Koch network

The spanning trees entropy of the exponential small world
network Gn is :

ρGn =
ln(3)

2
= 0.549

The spanning trees entropy of the Koch network Cn is :

ρCn =
ln(3)

2
= 0.549
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Analysis of results

The Exponential small world network and the Koch network
have the same entropy of spanning tree.

The Exponential small world network and the Koch network
have the same robustness in spite of the difference of their
structure and their properties.
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Comparison with other networks having the same average degree

Type of network < z > ρ

The Koch network 3 0.549
The Exponential small world network 3 0.549

Hanoi networks 3 0.677
The 2-Flower networks 3 0.6931

The 3-2-12 lattices 3 0.721
The 4-8-8 bathroom tile 3 0.787

Honeycomb lattice 3 0.807

Table 3 – The entropy of several networks having the same average
degree.

This table proves that the value of the entropy of the spanning
trees of the Koch network and the Exponential small world net-
work is the smallest known for networks with average degree 3.

The Koch network and the Exponential small world network are
less robust than other networks having the same average degree.

41/44

R.Mokhlissi, D.Lotfi, J.Debnath, M.El marraki The complexity of complex networks



Comparison with other networks having the same average degree

Type of network < z > ρ

The Koch network 3 0.549
The Exponential small world network 3 0.549

Hanoi networks 3 0.677
The 2-Flower networks 3 0.6931

The 3-2-12 lattices 3 0.721
The 4-8-8 bathroom tile 3 0.787

Honeycomb lattice 3 0.807

Table 3 – The entropy of several networks having the same average
degree.

This table proves that the value of the entropy of the spanning
trees of the Koch network and the Exponential small world net-
work is the smallest known for networks with average degree 3.

The Koch network and the Exponential small world network are
less robust than other networks having the same average degree.

41/44

R.Mokhlissi, D.Lotfi, J.Debnath, M.El marraki The complexity of complex networks



Conclusion

Among the applications of the evaluation of the complexity
of a complex network, we opt to use the entropy of spanning
tree to quantify the robustness of a network.

This measure gives us an idea of the capacity of a network
to adapt random changes in its structure.

In this work, we calculated and compared the spanning tree
entropy of four complex networks with other networks ha-
ving the same average degree and we deduced the most ro-
bust network between them.
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Thank You
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