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Motivation

Spatial Densification: The heteroginisation of the existing network
architecture by deploying smaller base stations, Access Points (APs).

What is the probability that a Mobile
User (MU) is in the downlink of its
nearest AP?
How should the APs be deployed for
a given distribution of mobile users
(MU) in order to maximise overall
network coverage?
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Outline

How should APs be deployed in a finite domain when MUs are distributed
non-uniformly.

∗ Nearest Neighbour distribution for a non-uniform PPP

∗ A nearest neighbour connection model with interference.

∗ MU Coverage in an interference limited environment.

∗ Optimal distribution of APs
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Nearest Neighbour Distribution (NND)

Poisson Point Process Φ emits a density,

λ(t) = λ0

(
1− bR2

2
+ bt2

)
, where 2π

∫ R

0
λ(t)tdt = λ0 |V|

Complementary cdf of d1, is the probability there are no points within Br (d1)

F̄ = P[N(Br (d1)) = 0] = e

(
−
∫
V\Br (d1) λ(y)dy

)

Thus the Nearest neighbour distribution
(NND) is defined as,

f (r , d1) =
d

dd1
(1− P [N(Br (d1)) = 0])

= − d

dd1
exp

(
−
∫
V\Br (d1)

λ(y)dy

)
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Nearest Neighbour Distribution
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Nearest Neighbour Connection Model

H1(d1, r): The probability that a receiver at r can successfully decode a
signal from its nearest AP separated by a distance d1.

H1(r , d1) = P
[

g(d1)|h1|2

N + γ
∑

k>1 g(dk)|hk |2
≥ q|r , d1

]

g(d1) = d−η1 ; path loss typically η ∈ [2, 6]

|h1|2 ∼ exp(1); channel gain

γ ∈ [0, 1]; captures the orthogonality in the code

N ; Noise

q; threshold value
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Connection Probability

H1(d1, r) = P
[

|h1|2g(d1)

N + γ
∑

k>1 |hk |2g(dk)
≥ q

∣∣r , d1

]
H1(d1, r) = EI1

[
P
[
|h1|2 ≥

q(N + γ
∑

k>1 |hk |2g(dk))

g(d1)

∣∣r , d1, I1

]]
H1(d1, r) = exp

[
− qN

g(d1)

]
LI(q γ dη1 ),

where,

LI1(q γ dη1 ) = exp
[
−
∫
V\Br (d1)

λ(z)

1 +
dη
k

q γdη
1

dkddkdθ
]

z =
√
r2 + d2

k − 2rdk cos θ
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Interference Continued

The interference component of the connection function.

Parameters: R = 5; η = 6; q = 1; γ = 1

Conditioning on a larger d1, E
[
d1
dk

]
→ 1
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Network Coverage

The probability that a mobile user receiver located at r can decode a
message from its nearest transmitter.

C (r , b, λ0πR
2) =

∫ dmax

0
f (r , d1, b, λ0πR

2)H1(d1, r) dd1
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Network Coverage
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High Densities - Coverage
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Olbers’ Paradox

Olbers’ paradox summary: “The paradox is that a static, infinitely old
universe with an infinite number of stars distributed in an infinitely large
space would be bright rather than dark.”

Comparison: The paradox is that for an infinite density of devices, a user
located anywhere would expect to be able to connect to its nearest
neighbour regardless of the interference. For η = 2 the aggregate
interference causes an ”interference storm”.
Namely, η = dim. of the network is the transition point between local and
global behaviour.
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Optimal Distribution of APs

Aim: Find the optimal distribution of APs so that we can maximise the
number of MUs we can serve.
Define the distribution of MUs as

ρ(r , β) = ρ0

(
1− βR2

2
+ βr2

)
The average coverage is,

C̄ (b, β, λ0πR
2) =

2

R2

∫ R

0
ρ(r , β)C (r , b, λ0πR

2)rdr

Find b∗ such that C̄ is maximised,

b∗(η, λ0πR
2) = arg max

b
C̄
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Optimal Distribution of APs
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Conclusions and Applications

Trade-off between border effects and distribution of APs.

User coverage depends on location, distribution of APs, border affects
and the pathloss model in interference limited environments.

Pathloss exponent captures the global or local behaviour of the
network.

Adaptive transmission schemes could be used to provide optimal MU
Coverage.
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