Introduction

System Mode

Analytical Results

Performance Comparison

Numerical Results

Continuous Transmission

Non Cooperative Transmission

Coordinated Transmission

Enhanced Cellular Coverage and Throughput using Rateless Codes

Amogh Rajanna and Martin Haenggi

Wireless Institute, University of Notre Dame, USA.

2017

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Papers

Introduction

- System Mode
- Analytical Results
- Performance Comparison
- Numerical Results
- **Continuous Transmission**
- Non Cooperative Transmission
- Coordinated Transmission
- A. Rajanna and M. Haenggi, Enhanced Cellular Coverage and Throughput using Rateless Codes, IEEE Transactions on Communications, vol. 65, no. 5, pp. 1899 -1912, May 2017.
- A. Rajanna and M. Haenggi, Downlink Coordinated Joint Transmission for Mutual Information Accumulation, IEEE Wireless Communications Letters, vol. 6, no. 2, pp.198-201, Apr 2017.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction

System Mode

Analytical Results

Performance Comparison

Numerical Results

Continuous Transmission

Non Cooperative Transmission

Coordinated Transmission

Motivation

Figure: 3GPP MBMS Protocol Stack.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Introduction

System Mode

Analytical Results

Performance Comparison

Numerical Results

Continuous Transmission

Non Cooperative Transmission

Coordinated Transmission

Motivation

b) Decoding operations at user

Figure: Block Diagram View

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Introduction

- System Mode
- Analytical Results
- Performance Comparison
- Numerical Results
- **Continuous Transmission**
- Non Cooperative Transmission
- Coordinated Transmission

Motivation

Property	IR-HARQ/ Punctured Fixed-Rate Codes	Rateless/ Fountain Codes
Initial codeword	Generate a low rate mother codeword of the information (info) packet.	No predetermined codeword of info packet. Info bits are selected adaptively.
Parity generation and transmission	Puncture the codeword into multiple codeblocks and transmit blocks incrementally.	Fountain generation of parity bits, i.e., incrementally obtain <i>any</i> number of parity bits.
Adaptive nature	No adaptive generation of parity bits to channel variations.	Adapt the degree distribution (for parity bit generation) to channel variations.
Selection of info bits	No adaptive selection of info bits.	Adaptively select the info bits to generate parity bits through non-uniform selection.
Rates	Can realize finite discrete rates.	Can realize rates truly matched to the instantaneous channel.

Figure: Punctured Fixed-Rate Codes v/s Rateless Codes.

Introduction

System Mode

Analytical Results

Performance Comparison

Numerical Results

Continuous Transmission

Non Cooperative Transmission

Coordinated Transmission

Rateless Transmission

Figure: Rateless Transmission of K-bit packet.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Introduction

- System Mode
- Analytical Results
- Performance Comparison
- Numerical Results
- Continuous Transmission
- Non Cooperative Transmission
- Coordinated Transmission

Outline

- Introduction
- System Model

Fixed Information Transmission

- Analytical Results
- Performance Comparison
- Numerical Results
- Continuous Transmission
 - Non Cooperative Transmission
 - Coordinated Transmission (CoMP)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction

System Model

- Analytical Results
- Performance Comparison
- Numerical Results
- **Continuous Transmission**
- Non Cooperative Transmission
- Coordinated Transmission

System Model

- BS process is a homogeneous Poisson point process (PPP)
 Φ of intensity λ.
- Each BS X_i ∈ Φ communicates a K-bit packet to a user Y_i in its Voronoi cell.
- Encoding Decoding operations
 - ► **BS**: Encodes *K* bits with a rateless code and sends Gaussian symbols incrementally over the channel.
 - ▶ User: For every *L* channel uses, makes an attempt to decode a subset of *K* bits.
 - Process continues until user decodes K bits, and sends an ACK to BS.

Introduction

System Model

- Analytical Results
- Performance Comparison
- Numerical Results
- **Continuous Transmission**
- Non Cooperative Transmission
- Coordinated Transmission

Time-varying Interference

• The interference power at user Y_i at time t is given by

$$I_i(t) = \sum_{k \neq i} |h_{ki}|^2 |X_k - Y_i|^{-\alpha} e_k(t).$$
 (1)

- $|h_{ki}|^2$: Fading from BS X_k to user Y_i α : Path loss exponent $e_k(t)$: MAC state of k^{th} BS.
- MAC state of BS X_k is

$$e_k(t) = 1 (0 < t \le T_k).$$
 (2)

- T_k : packet transmission time of BS X_k
- **Thinning** of the BS PPP Φ with time *t*.

Introduction

System Model

- Analytical Results
- Performance Comparison
- Numerical Results
- Continuous Transmission
- Non Cooperative Transmission
- Coordinated Transmission

Achievable Rate

- Nearest-Neighbor Decoder: Performs minimum Euclidean distance decoding for non-Gaussian noise. (only CSIR)
- Achievable rate at user Y_i is

$$\mathcal{C}_i(t) = \log_2\left(1 + rac{|h_{ii}|^2 D_i^{-lpha}}{\hat{l}_i(t)}
ight)$$
 (3)

 $\hat{l}_i(t)$ - 2nd moment of non-Gaussian noise.

Time averaged interference up to time t

$$\hat{I}_i(t) = \frac{1}{t} \int_0^t I_i(\tau) \,\mathrm{d}\tau. \tag{4}$$

Introduction

System Model

- Analytical Results
- Performance Comparison
- Numerical Results
- Continuous Transmission
- Non Cooperative Transmission
- Coordinated Transmission

Packet Transmission Time

▶ The time to decode *K* information bits

$$\hat{T}_i = \min\left\{t : K < t \cdot C_i(t)\right\}$$
(5)

- Each packet transmission of *K* bits is subject to a delay constraint of *N*.
- Packet transmission time of user Y_i is

$$T_i = \min(N, \hat{T}_i) \tag{6}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• CCDFs of T and \hat{T} are key \longrightarrow

Quantify the performance advantages of rateless codes for $\mathsf{PHY}\text{-}\mathsf{FEC}.$

Introduction

System Mode

Analytical Results

Performance Comparison

Numerical Results

Continuous Transmission

Non Cooperative Transmission

Coordinated Transmission

Analytical Model

► CCDF of \hat{T} $\mathbb{P}\left(\hat{T} > t\right) = \mathbb{P}\left(\frac{\kappa}{t} \ge \log_2\left(1 + \frac{|h|^2 D^{-\alpha}}{\hat{l}(t)}\right)\right)$ (7)

We let $\theta_t = 2^{K/t} - 1$, then (7) can be written out as

$$\mathbb{P}\left(\hat{T} > t\right) = \mathbb{E}\left[1 - \mathbb{P}\left(\frac{|h|^2 D^{-\alpha}}{\hat{I}(t)} \ge \theta_t \middle| D\right)\right]$$

$$\stackrel{(a)}{=} \mathbb{E}\left[1 - \mathbb{E}\left[\exp\left(-\theta_t D^{\alpha} \hat{I}(t)\right) \middle| D\right]\right]$$

$$= \mathbb{E}\left[1 - \mathcal{L}_{\hat{I}(t)}\left(\theta_t D^{\alpha}\right)\right], \qquad (8)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where (a) follows from evaluating the tail of $|h|^2 \sim \text{Exp}(1)$ at $\theta_t D^{\alpha} \hat{I}(t)$.

Introduction

System Mode

Analytical Results

Performance Comparison

Numerical Results

Continuous Transmission

Non Cooperative Transmission

Coordinated Transmission

Analytical Model

Interference

$$\hat{I}(t) = \sum_{k \neq 0} |h_k|^2 |X_k|^{-\alpha} \min(1, T_k/t)$$
(9)

Marks T_k are *correlated* for different $k \rightarrow No$ characteristic function.

Approximation:

- Replace T_k in (9) by i.i.d. \overline{T}_k .
- \overline{T}_k : Transmission duration of interferer X_k .
- \overline{T} : Distribution of Interferer transmission duration

$$\mathbb{P}\left(\bar{T} > t\right) = 1 - {}_{2}F_{1}\left(\left[1,\delta\right]; 1 + \delta; -\theta_{t}\right), \qquad (10)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where $\delta = 2/\alpha$ and $\theta_t = 2^{K/t} - 1$.

Introduction

System Mode

Analytical Results

Performance Comparison

Numerical Results

Continuous Transmission

Non Cooperative Transmission

Coordinated Transmission

Analytical Model

• Independent Thinning Model- Let $\overline{I}(t)$ be the interference in (9) with \overline{T}_k in place of T_k .

$$\bar{I}(t) = \sum_{k \neq 0} |h_k|^2 |X_k|^{-\alpha} \min(1, \bar{T}_k/t)$$
(11)

 \Rightarrow Closed form characteristic function.

Typical user's packet transmission time

$$\hat{T} = \min\left\{t : K < t \cdot \log_2\left(1 + \frac{|h|^2 D^{-\alpha}}{\bar{I}(t)}\right)\right\}$$
$$T = \min(N, \hat{T}).$$
(12)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Analytical Study Feasible.

Introduction

System Mode

Analytical Results

Performance Comparison

Numerical Results

Continuous Transmission

Non Cooperative Transmission

Coordinated Transmission

Distribution of T

Theorem

An upper bound on the CCDF of the typical user packet transmission time under the independent thinning model, T in (12), is given by

$$\mathbb{P}(T > t) \leq egin{cases} P_{ ext{ub}}(t) & t < N \ 0 & t \geq N, \end{cases}$$
 (13)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

where

$$P_{\rm ub}(t) = 1 - \frac{1}{{}_2F_1\left([1,-\delta];1-\delta;-\theta_t\min{(1,\mu/t)}\right)},\qquad(14)$$

$$\delta=2/lpha$$
, $heta_t=2^{K/t}-1$, and

$$\mu = \mathbb{E}\left[\bar{\mathcal{T}}\right] = \int_0^N \left(1 - {}_2F_1\left([1,\delta]; 1 + \delta; 1 - 2^{K/t}\right)\right) \,\mathrm{d}t.$$
(15)

Introduction

System Mode

Analytical Results

Performance Comparison

Numerical Results

Continuous Transmission

Non Cooperative Transmission

Coordinated Transmission

Comparison

Fixed-Rate Coding:

- K info bits \longrightarrow Transmit codeword of N parity symbols.
- Rate of K/N if success or 0 if outage.

$$p_{\mathrm{s}}(N) \triangleq \mathbb{P}\left(\mathrm{SIR} > 2^{K/N} - 1\right)$$
 (16)

$$R_N \triangleq p_{\rm s}(N) \frac{K}{N}. \tag{17}$$

Rateless Coding:

- ▶ Incrementally transmit up to *N* parity symbols.
- Multiple decoding attempts.
- *K* bits are decoded by variable number of parity symbols.

$$p_{\mathrm{s}}(N) \triangleq 1 - \mathbb{P}(\hat{T} > N)$$
 (18)

$$R_N \triangleq \frac{Kp_{\rm s}(N)}{\mathbb{E}\left[T\right]}.$$
(19)

SIR Gain

Introduction

System Mode

Analytical Results

Performance Comparison

Numerical Results

Continuous Transmission

Non Cooperative Transmission

Coordinated Transmission

 SIR Gain (Horizontal Gap): F
₁ and F
₂ are SIR CCDFs of two schemes. If

$$\bar{F}_2(\theta) \sim \bar{F}_1(\theta/\Gamma), \quad \theta \to 0,$$
(20)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

then scheme 2 provides a SIR gain Γ over scheme 1.

• (20)
$$\Rightarrow \bar{F}_2(\theta) \approx \bar{F}_1(\theta/\Gamma)$$
 for all θ .

Scheme 1: Fixed-Rate Coding & Scheme 2: Rateless Coding

•
$$\theta = 2^{K/N} - 1$$
 with $N \to \infty$ as $\theta \to 0$.

• Compare coverage probability $p_s(N)$ for schemes 1 & 2.

Introduction

System Mode

Analytical Results

Performance Comparison

Numerical Results

Continuous Transmission

Non Cooperative Transmission

Coordinated Transmission

SIR Gain

Proposition

Rateless coding in cellular downlink leads to a SIR gain of $\Gamma = \frac{N}{\mu}$ relative to fixed-rate coding under the independent thinning model, where $\mu = \mathbb{E}\left[\bar{T}\right]$ is the mean interferer transmission duration given in (15).

Fixed-rate coding

$$p_{s}(N) = rac{1}{{}_{2}F_{1}\left([1,-\delta];1-\delta;1-2^{K/N}
ight)}$$

Rateless coding

$$\tilde{p}_{\mathrm{s}}(\mathsf{N}) \geq \frac{1}{{}_{2}\mathcal{F}_{1}\left([1,-\delta]\,;\,1-\delta;\,(1-2^{K/N})\min\left(1,\mu/N\right)\right)}$$

μ decreases with path loss exponent α and monotonic with delay constraint N.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction

System Mode

Analytical Results

Performance Comparison

Numerical Results

Continuous Transmission

Non Cooperative Transmission

Coordinated Transmission

Rate Gain

Proposition

In cellular downlink, the rate gain $g_{\rm r}$ of rateless codes relative to fixed-rate codes is

$$g_{\rm r} = g_{\rm s} \; \frac{N}{\mathbb{E}\left[T\right]}.\tag{21}$$

Success probability gain:

$$g_{s} \geq \frac{{}_{2}F_{1}\left([1,-\delta];1-\delta;1-2^{K/N}\right)}{{}_{2}F_{1}\left([1,-\delta];1-\delta;\left(1-2^{K/N}\right)\mu/N\right)} \geq 1.$$
(22)

► Transmission time gain:

$$\frac{N}{\mathbb{E}[T]} \ge \frac{N}{\int_0^N P_{\rm ub}(t) \, \mathrm{d}t} \ge 1. \tag{23}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

▶ \Rightarrow $g_r \ge 1$.

Introduction

System Mode

Analytical Results

Performance Comparison

Numerical Results

Continuous Transmission

Non Cooperative Transmission

Coordinated Transmission

Per-User Gain

• Typical User Performance \longrightarrow Spatial Average

Per-User Downlink Performance \longrightarrow Conditioned on Φ .

- Coverage and Rate are random variables (RVs), achieved by any BS-UE pair in a given Φ realization.
- Fixed-rate coding:

$$R_N \triangleq \frac{K}{N} \mathbb{P}\left(\mathrm{SIR} > 2^{K/N} - 1 \mid \Phi\right).$$
 (24)

Rateless coding:

$$R_{N} \triangleq \frac{K\left[1 - \mathbb{P}(\hat{T} > N \mid \Phi)\right]}{\mathbb{E}\left[T \mid \Phi\right]}.$$
 (25)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction

System Mode

Analytical Results

Performance Comparison

Numerical Results

Continuous Transmission

Non Cooperative Transmission

Coordinated Transmission

Per-User Gain

 Rate gain conditioned on Φ: Ratio of random rates of rateless and fixed-rate coding.

$$G_R = G_S \frac{N}{\mathbb{E}\left[\mathcal{T} \mid \Phi\right]} \tag{26}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$G_{S} = \frac{1 - \mathbb{P}(T > N \mid \Phi)}{\mathbb{P}\left(\mathrm{SIR} > 2^{K/N} - 1 \mid \Phi\right)}.$$
 (27)

Proposition

Every BS-UE pair in a cellular downlink with PPP Φ realization experiences a throughput gain due to rateless code PHY-FEC relative to fixed-rate codes, i.e., $G_R \ge 1$.

• Can show $G_S \geq 1$.

Introductio

System Mode

Analytical Results

Performance Comparison

Numerical Results

Continuous Transmission

Non Cooperative Transmission

Coordinated Transmission

Coverage Probability

Figure: Success Probability $p_s(N)$ v/s Delay constraint N.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Rate

Introductio

System Mode

Analytical Results

Performance Comparison

Numerical Results

Continuous Transmission

Non Cooperative Transmission

Coordinated Transmission

Figure: Rate R_N v/s Delay constraint N.

Rate

Introductio

System Mode

Analytical Results

Performance Comparison

Numerical Results

Continuous Transmission

Non Cooperative Transmission

Coordinated Transmission

Figure: Rate R_N v/s path loss exponent α .

・ロト ・四ト ・ヨト ・ヨト

э

Introduction

System Mode

Analytical Results

Performance Comparison

Numerical Results

Continuous Transmission

Non Cooperative Transmission

Coordinated Transmission

Per-User Case

Figure: Ratio of Rates conditioned on Φ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Introduction

- System Mode
- Analytical Results
- Performance Comparison

Numerical Results

- **Continuous Transmission**
- Non Cooperative Transmission
- Coordinated Transmission

Per-User Rates

Figure: Per-User Rates v/s BS-UE Distance D.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Rate Gain

Introductio

System Mode

Analytical Results

Performance Comparison

Numerical Results

Continuous Transmission

Non Cooperative Transmission

Coordinated Transmission

Figure: Rate Gain v/s BS-UE Distance D.

Introduction

- System Mode
- Analytical Results
- Performance Comparison
- Numerical Results
- **Continuous Transmission**
- Non Cooperative Transmission
- Coordinated Transmission

Outline

- Introduction
- System Model
- Fixed Information Transmission
 - Analytical Results
 - Performance Comparison
 - Numerical Results

Continuous Transmission

- Non Cooperative Transmission
- Coordinated Transmission (CoMP)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction

System Mode

Analytical Results

Performance Comparison

Numerical Results

Continuous Transmission

Non Cooperative Transmission

Coordinated Transmission

Assumptions

- Interfering BSs transmit *continuously*. MAC state of interfering BS X_k at time t is e_k(t) = 1, t ≥ 0.
- Typical user receives a K-bit packet via a rateless code by one BS.
- Interference at typical user

$$I = \sum_{k \neq 0} |h_k|^2 |X_k|^{-\alpha}.$$
 (28)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Simple characteristic function.

• CCDF of the typical user packet transmission time T

$$\mathbb{P}(T > t) = 1 - \frac{1}{{}_2F_1([1, -\delta]; 1 - \delta; - heta_t)}, \quad t < N.$$
 (29)

Introduction

System Mode

Analytical Results

Performance Comparison

Numerical Results

Continuous Transmission

Non Cooperative Transmission

Coordinated Transmission

Performance Comparison

 No Coverage gain: p_s(N) same for both rateless coding and fixed-rate coding. g
_s = 1

► Rate gain: Ratio of rates

$$\bar{g}_{\rm r} = \frac{N}{\mathbb{E}\left[T\right]}.\tag{30}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The rate gain of rateless codes in the cellular downlink under the continuous transmission case is given by

$$\bar{g}_{\rm r} = \left[1 - \frac{1}{N} \int_0^N \frac{1}{{}_2F_1\left([1, -\delta]; 1 - \delta; -\theta_t\right)} \,\mathrm{d}t\right]^{-1}.$$
 (31)

Introduction

System Mode

Analytical Results

Performance Comparison

Numerical Results

Continuous Transmission

Non Cooperative Transmission

Coordinated Transmission

Rate Gain

Rate Gain due to Interferer Activity:

The rate gains \bar{g}_r and g_r in the cellular downlink by using rateless codes for PHY-FEC satisfy the relation

$$1 \le \bar{g}_{\rm r} \le g_{\rm r}.\tag{32}$$

- ▶ g_r: Monotonically decreasing interference due to thinning of interfering BSs.
- ▶ ḡ_r: Constant interference due to *continuous* transmission of interfering BSs.
- Rate gain of a practical user:
 - g
 _r Lower bound
 - ▶ g_r Upper bound.

Introduction

- System Mode
- Analytical Results
- Performance Comparison
- Numerical Results
- **Continuous Transmission**

Non Cooperative Transmission

Coordinated Transmission

Rate Gain

- Rate Gain due to User Location:
 - General User: close to only one BS or
 - Edge User: equidistant from two BSs or
 - Vertex User: equidistant from three BSs.
- General user was the focus till now.
- Vertex User: Resides on a vertex of the Voronoi tessellation of Φ.
- CCDF of the packet transmission time of the vertex user

$$\mathbb{P}(T > t) = 1 - \left[\frac{1/(1+\theta_t)}{{}_2F_1\left([1,-\delta];1-\delta;-\theta_t\right)}\right]^2, \quad t < N.$$
(33)

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | 差|||の��

Introduction

- System Mode
- Analytical Results
- Performance Comparison
- Numerical Results
- **Continuous Transmission**

Non Cooperative Transmission

Coordinated Transmission

Rate Gain

Rate gain of the typical vertex user is

$$\bar{g}_{\rm rv} = \left[1 - \frac{1}{N} \int_0^N \left(\frac{1/(1+\theta_t)}{{}_2F_1\left([1,-\delta];1-\delta;-\theta_t\right)}\right)^2 {\rm d}t\right]^{-1}.$$
(34)

Rate gains of the vertex user and general user satisfy

$$1 \le \bar{g}_{\rm rv} \le \bar{g}_{\rm r}.\tag{35}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- \bar{g}_{r} : Interfering BSs are **all further away** than serving BS.
- ▶ ḡ_{rv}: **Two** interfering BSs at same distance as serving BS while remaining are further away.

Rateless code adapts to changing channel conditions \Rightarrow Varied gains over fixed-rate code.

Introduction

- System Mode
- Analytical Results
- Performance Comparison
- Numerical Results
- Continuous Transmission
- Non Cooperative Transmission
- Coordinated Transmission

Coordinated Transmission (CoMP)

Figure: CoMP for Mutual Information (MI) Accumulation

Introduction

System Mode

- Analytical Results
- Performance Comparison
- Numerical Results
- **Continuous Transmission**
- Non Cooperative Transmission
- Coordinated Transmission

MI Accumulation

- Cooperating BSs: Joint Transmission of K-bit packet to user.
- **•** BSs access: K bits X2/S1 interface of backhaul to cloud.
- ▶ Each BS uses a *unique* rateless code of *K*-bit packet.
- NOMA schemes resolve codewords.
- Multiple codewords input to iterative decoder at user.
- Achievable rate at user

$$C = \sum_{i=1}^{M} \log_2 \left(1 + \operatorname{SIR}_i\right).$$
(36)

Introduction

- System Mode
- Analytical Results
- Performance Comparison
- Numerical Results
- Continuous Transmission
- Non Cooperative Transmission
- Coordinated Transmission

System Model

- Two independent PPPs Φ_1 and Φ_2 of intensity $\lambda/2$.
- ▶ BSs $\in \Phi_k$: Use spreading code $k \in \{1, 2\}$.
- ► BSs in cellular downlink $\Phi = \Phi_1 \cup \Phi_2 = \{X_i\}, i = 1, 2, \cdots$.
- Typical user receives a codeword from nearest BS in both Φ_1 and Φ_2 .
- ▶ Time to decode *K*-bit packet and packet transmission time

$$\hat{T} = \min\left\{t : K < t \cdot C\right\}$$
(37)

$$T = \min(N, \hat{T}). \tag{38}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction

System Mode

Analytical Results

Performance Comparison

Numerical Results

Continuous Transmission

Non Cooperative Transmission

Coordinated Transmission

General User

Theorem

The CCDF of the general user packet transmission time with MI accumulation, T in (38), is lower bounded as

$$\mathbb{P}(T > t) \ge \int_0^{\gamma} (G(\gamma - y) - 1) G'(y) \,\mathrm{d}y, \qquad (39)$$
$$G(\nu) = \frac{1}{{}_2F_1\left([1, -\delta]; 1 - \delta; -\nu\right)}. \qquad (40)$$

where $\gamma = 2 \left(2^{K/2t} - 1 \right)$ and $\delta = 2/\alpha$.

Success Probability and Rate

$$p_{s}(N) \triangleq 1 - \mathbb{P}\left(\hat{T} > N\right)$$

$$R_{N} \triangleq \frac{K \rho_{s}(N)}{\mathbb{E}[T]}.$$
(41)
(42)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction

- System Mode
- Analytical Results
- Performance Comparison
- Numerical Results
- Continuous Transmission

Non Cooperative Transmission

Coordinated Transmission

Diversity Gain

For rateless coding, the diversity gain is

$$g_{\rm d} \triangleq \lim_{N \to \infty} \frac{\log \left(1 - p_{\rm s}(N)\right)}{-\log N}.$$
 (43)

No Cooperation

$$1 - p_s(N) \sim rac{K \log 2}{N} rac{\delta}{1 - \delta}, \ N o \infty.$$
 (44)
 $g_{
m d} = 1.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

MI Accumulation

$$\begin{split} 1-\rho_{\rm s}(N) &\sim \frac{1}{2} \left(\frac{\delta}{1-\delta}\right)^2 \left(\frac{K\log 2}{N}\right)^2, \ N \to \infty, \quad \ (45) \\ g_{\rm d} &= 2. \end{split}$$

Introduction

System Mode

Analytical Results

Performance Comparison

Numerical Results

Continuous Transmission

Non Cooperative Transmission

Coordinated Transmission

Vertex User

Vertex user is served by the **two equidistant** BSs with unique spreading codes (M = 2) with the third equidistant BS as interferer.

Theorem

The CCDF of the vertex user packet transmission time with MI accumulation, T in (38), is lower bounded as

$$\mathbb{P}(T > t) \ge \int_0^\infty \int_0^\gamma (U(\gamma - y) - 1) \tilde{G}'(y) f_D(r) \,\mathrm{d}y \,\mathrm{d}r \qquad (46)$$
$$\tilde{G}(y) = \exp\left(-\pi \frac{\lambda}{2} r^2 \left({}_2F_1\left([1, -\delta]; 1 - \delta; -y\right) - 1\right)\right) \qquad (47)$$

$$U(y) = \frac{\tilde{G}(y)}{1+y}, \quad \gamma = 2\left(2^{K/2t} - 1\right).$$
(48)

Introduction

- System Mode
- Analytical Results
- Performance Comparison
- Numerical Results
- **Continuous Transmission**
- Non Cooperative Transmission
- Coordinated Transmission

Diversity Gain

- Vertex User: CoMP achieves diversity gain Analysis tricky though
- No Cooperation

$$1 - \rho_s(N) \sim rac{K \log 2}{N} \left(2 + rac{2\delta}{1 - \delta}\right), \quad N \to \infty.$$
 (49)
 $g_{\rm d} = 1.$

MI Accumulation

$$1 - p_{s}(N) \sim \left(\frac{K \log 2}{N\sqrt{2}}\right)^{2} \int \left(\pi \frac{\lambda}{2} r^{2} \frac{\delta}{1 - \delta}\right)^{2} f_{D}(r) \, \mathrm{d}r, \ N \to \infty.$$
(50)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Introduction

System Mode

Analytical Results

Performance Comparison

Numerical Results

Continuous Transmission

Non Cooperative Transmission

Coordinated Transmission

Figure: Success Probability $p_s(N)$ v/s Delay constraint N.

Coverage Probability

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Rate

Introduction

System Mode

Analytical Results

Performance Comparison

Numerical Results

Continuous Transmission

Non Cooperative Transmission

Coordinated Transmission

Figure: Rate R_N v/s Delay constraint N. Rate gain of 2.6 and 6.12 for general and vertex user.

Introduction

System Mode

- Analytical Results
- Performance Comparison
- Numerical Results
- **Continuous Transmission**
- Non Cooperative Transmission

Coordinated Transmission

- Stochastic geometry model for downlink:
 - Rateless codes for PHY-FEC \implies Enhanced cellular coverage and throughput.
- \blacktriangleright Typical user: Rateless PHY relative to fixed-rate PHY \Rightarrow
 - SIR gain (Horizontal Gap): Coverage improvement
 - Rate gain: Throughput improvement
- Per-user case

Conclusion

- ► Every BS-UE pair in a cellular network realization has a throughput gain ≥ 1 by rateless codes.
- Achieve per-user rates \Rightarrow Efficient network operation.
- CoMP with Rateless codes:
 - Achieves coverage and rate improvement relative to no-cooperation.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Vertex user benefits more from CoMP.